JPWO2013172166A1 - ヒートポンプ装置 - Google Patents

ヒートポンプ装置 Download PDF

Info

Publication number
JPWO2013172166A1
JPWO2013172166A1 JP2014515556A JP2014515556A JPWO2013172166A1 JP WO2013172166 A1 JPWO2013172166 A1 JP WO2013172166A1 JP 2014515556 A JP2014515556 A JP 2014515556A JP 2014515556 A JP2014515556 A JP 2014515556A JP WO2013172166 A1 JPWO2013172166 A1 JP WO2013172166A1
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
heat source
refrigerant
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014515556A
Other languages
English (en)
Other versions
JP5868498B2 (ja
Inventor
加藤 央平
央平 加藤
慶郎 青柳
慶郎 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014515556A priority Critical patent/JP5868498B2/ja
Publication of JPWO2013172166A1 publication Critical patent/JPWO2013172166A1/ja
Application granted granted Critical
Publication of JP5868498B2 publication Critical patent/JP5868498B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02531Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02533Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • F25B2313/02542Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02731Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

加熱運転(暖房運転)時には、大気を熱源として熱交換する空気熱源熱交換器5aと、地熱を熱源とする地中熱源熱交換器5bとの両方を蒸発器として作用させて大気と地熱との両方から採熱し、除霜運転時には、四方弁2を切り替えて空気熱源熱交換器5aを放熱器として作用させる一方、地中熱源熱交換器5bを蒸発器として作用させて地熱を採熱し、採熱した地熱を副回路10bを介して主回路10aに採熱する。

Description

本発明は、ヒートポンプ装置に関するものである。
冷暖房装置や給湯機に用いられているヒートポンプ装置は、空気を熱源とするものが一般的である。
また、大気温度が低い地域では、暖房時に地中熱を利用するヒートポンプも利用されるようになってきている。
大気の熱を熱源として用いる空気熱源ヒートポンプ装置では、暖房運転時において大気温度が低い場合、吸入圧力の低下や着霜などによって暖房能力の低下を招くことがある。このように、ヒートポンプ装置の運転効率は大気温度に左右される。
地中熱を利用する地中熱ヒートポンプ装置では、地中温度が大気温度よりも高い場合、採熱量を多くできるため空気熱源ヒートポンプよりも運転効率が高くなる。しかし、地中温度が大気温度よりも低い場合は逆に、空気熱源ヒートポンプ装置よりも運転効率が悪化する。
また、地中温度は大気温度に比べて年間を通じて温度変化は小さいものの、地域や深度、季節によって温度変化幅が異なり、やはり空気熱源ヒートポンプよりも運転効率が悪化する場合がある。
これらの問題を解決する手段として、特許文献1には、地上に設置した空気熱交換器と、地中に埋設した地中熱交換器とを、大気温度と地中温度の比較結果に応じて切り替えるようにした技術が開示されている。
特開2006−125769号公報(図1、図3)
特許文献1に開示されているように、地中温度と大気温度によって地中熱交換器と空気熱交換器を使い分ける場合、地中熱交換器と空気熱交換器は同じ処理能力となるように大きさが設計される。一般的に地中熱交換器は、空気熱交換器に比べて同じ処理能力を得るために必要な大きさが大きく、また、地下へ埋設する必要があり掘削作業などの工事費が必要となる。このため、空気熱交換器と同じ処理能力の地中熱交換器を設ける構成では、空気熱源又は地中熱源単独のヒートポンプ装置に比べてやはり大幅なコスト上昇を招く。
よって、地中熱交換器と空気熱交換器とを使い分けてどちらか一方から採熱するのではなく、大気と地中から同時に採熱するようにすれば、地中熱交換器の採熱量の一部を空気熱交換器で補える。このため、必要な地中熱交換器サイズを削減でき、システム費用を抑制できる利点がある。
しかし、大気と地中から同時に採熱する構成において、例えば室内の負荷が小さく圧縮機の入力が小さい場合、地中熱交換器を有する地中熱源側回路に設けた地熱用ポンプの動力が、システム全体に占める割合が大きくなる。この場合、低外気(例えば0℃付近)であっても、地中熱交換器側ではなく空気熱交換器側を使って採熱する方が、システム効率が高くなることがある。この場合、空気熱交換器を使って採熱することになり、低外気で蒸発器として機能させることになるため、空気熱交換器に着霜が生じる。よって、着霜による空気熱交換器の熱交換性能低下を防止するために除霜運転を行う必要がある。
空気熱交換器を用いるヒートポンプ装置の一般的な除霜方法には、圧縮機の仕事量を熱源とし、圧縮機の吐出冷媒を直接、空気熱交換器に供給する方式(以下、ホットガス方式)や、冷媒流路を冷房運転に切り替えて負荷側(室内側)の熱を採熱して除霜熱源とする方式(以下、リバース方式)が用いられる。
ホットガス方式は負荷側への放熱が無いため快適性は維持されるが、除霜に使う熱量が圧縮機の仕事分しかないため、除霜時間が長くなり消費電力が大きいという欠点がある。また、リバース方式は負荷側の熱を採熱するため、除霜に使う熱量が多く除霜時間が短いが、快適性が損なわれるという欠点がある。
ところで近年では、ヒートポンプ装置における熱源として、大気以外に上述したように地中熱が利用されるようになってきているが、地中熱以外の他の熱源の利用も求められている。
本発明は、かかる点に鑑みてなされたものであり、大気とその他の熱源との両方から採熱する構成を有し、除霜運転時の快適性や消費電力を抑制することが可能なヒートポンプ装置を提供することを目的とする。
本発明に係るヒートポンプ装置は、圧縮機、負荷側熱交換器の冷媒流路、第一減圧装置及び大気と熱交換する第一熱源熱交換器が順次接続されて冷媒が循環する主回路と、前記主回路の前記第一減圧装置と前記負荷側熱交換器との間から分岐した分岐管に、第二減圧装置と第二熱源熱交換器の冷媒流路とが直列に接続され、前記第二熱源熱交換器の冷媒流路において前記第二減圧装置とは反対側の接続先が、前記第一熱源熱交換器との合流分岐点側又は前記圧縮機の吸入側となるように第1切替装置によって切り替えられる副回路とを有する冷媒回路と、前記第二熱源熱交換器の熱交換媒体流路を備え、大気とは別の熱源と熱交換して前記別の熱源の熱を吸熱する熱交換媒体が循環する熱交換媒体回路と、前記第1切替装置を制御する制御装置とを備え、前記制御装置は除霜運転時に、前記第一熱源熱交換器を放熱器、前記第二熱源熱交換器を蒸発器として作用させ、前記第1切替装置を前記圧縮機の吸入側に切り替え、前記熱交換媒体回路により前記別の熱源から採熱した熱を、前記第二熱源熱交換器における熱交換により前記副回路を介して前記主回路へ採熱し、前記第二熱源熱交換器の除霜熱源として用いるようにしたものである。
本発明によれば、大気以外の熱源を除霜熱源として利用可能であり、また、除霜運転時に快適性を損なうことなく消費電力を抑制することできる。
本発明の実施の形態1のヒートポンプ装置が適用された空調装置の冷媒回路を示す図である。 本実施の形態1における暖房運転時の冷媒の流れを示す図である。 図2の暖房運転時のp−h線図である。 本実施の形態1における冷房運転時の冷媒の流れを示す図である。 図4の冷房運転時のp−h線図である。 本実施の形態1における除霜運転時の冷媒の流れを示す図である。 図6の除霜運転時のp−h線図である。 本発明の実施の形態1の空調装置における除霜運転時の処理の流れを示すフローチャートである。 本発明の実施の形態1の変形例を示す図(その1)である。 本発明の実施の形態1の変形例を示す図(その2)である。 本発明の実施の形態2のヒートポンプ装置を備えた空調システムの冷媒回路を示す図である。 本実施の形態2における暖房運転時の冷媒の流れを示す図である。 本実施の形態2における除霜運転時の冷媒の流れを示す図である。 図13の除霜運転時のp−h線図である。 本発明の実施の形態2のヒートポンプ装置を備えた空調システムの冷媒回路の変形例を示す図である。 本発明の実施の形態3のヒートポンプ装置を備えた空調システムの冷媒回路を示す図である。 本実施の形態3における暖房運転時の冷媒の流れを示す図である。 本実施の形態3における除霜運転時の冷媒の流れを示す図である。 図18の除霜運転時のp−h線図である。 本発明の実施の形態4のヒートポンプ装置を備えた空調システムの冷媒回路を示す図である。 本実施の形態4における暖房運転時の冷媒の流れを示す図である。 本実施の形態4における除霜運転時の冷媒の流れを示す図である。 図22の除霜運転時のp−h線図である。
以下に説明する各実施の形態では、ヒートポンプ装置が適用される負荷側装置が冷房又は暖房を行う空調装置であるものとして説明する。
実施の形態1.
図1は、本発明の実施の形態1のヒートポンプ装置が適用された空調装置の冷媒回路を示す図である。
空調装置100は、ヒートポンプ装置40と、負荷側媒体が循環する負荷側回路51を有し、ヒートポンプ装置40を熱源として冷房又は暖房を行う負荷側装置50とを有している。
<<ヒートポンプ装置>>
ヒートポンプ装置40は、冷媒が循環する冷媒回路10と、地中熱源側回路20と、制御装置30とを備えており、屋外に設置される。
<冷媒回路>
冷媒回路10は、圧縮機1と、第2切替装置である四方弁2と、負荷側熱交換器である水熱交換器3と、第一減圧装置である膨張弁4aと、第一熱源熱交換器である空気熱源熱交換器5aとが順次接続されて冷媒が循環する主回路10aと、副回路10bとを備えている。副回路10bは、主回路10aの膨張弁4aと水熱交換器3との間から分岐した分岐管11aに、膨張弁4bと地中熱源熱交換器5bの冷媒流路41とが直列に接続され、地中熱源熱交換器5bの冷媒流路41において膨張弁4bとは反対側が、第1切替装置である三方弁6によって、空気熱源熱交換器5a側(空気熱源熱交換器5aにおいて膨張弁4aと反対側)又は圧縮機1の吸入側に接続される回路である。また、主回路10aには、圧縮機1への急激な液戻りを防止するための緩衝容器である冷媒容器7aが設けられている。冷媒容器7aは、余剰冷媒を貯留する容器も兼ねている。
(圧縮機)
圧縮機1は、例えば全密閉式圧縮機であり、電動機部(図示せず)と圧縮部(図示せず)とが圧縮機シェル(図示せず)に収納された構成を有している。圧縮機1へ吸引された低圧冷媒は圧縮され、高温高圧冷媒となって圧縮機1より吐出される。圧縮機1は制御装置30によってインバータ(図示しない)を介して回転数制御されることで、ヒートポンプ装置40の能力を制御している。
(水熱交換器)
水熱交換器3は、負荷側装置50の負荷側回路51である冷暖用の水回路51内の負荷側媒体(ここでは、水)と冷媒回路10内の冷媒とを熱交換する。水回路51にはポンプ52により水が循環しており、暖房を行う場合、水熱交換器3は凝縮器として機能し、冷媒回路10の冷媒の熱で水を加熱して温水を生成する。冷房を行う場合、水熱交換器3は蒸発器として機能し、冷媒回路10の冷媒の冷熱で水を冷却することで冷水を生成する。この温水又は冷水を利用して室内を暖房又は冷房する。この熱交換器の形態はプレートを積層したプレート式や、冷媒が流れる伝熱管と水が流れる伝熱管から成る二重管式などがあるが、本実施の形態ではどちらを用いても良い。なお、負荷側回路51を循環する負荷側媒体は水に限られず、ブラインなどの不凍液であってもよい。
(膨張弁)
膨張弁4aは、空気熱源熱交換器5aを流れる冷媒流量を調整する。また、第二減圧装置である膨張弁4bは、地中熱交換器21を流れる冷媒流量を調整する。各膨張弁4a、4nの開度は制御装置30からの制御信号に基づいて可変に設定される。膨張弁は電気信号によって開度が可変な電子膨張弁の他に、複数のオリフィスやキャピラリを並列に接続し、電磁弁などの開閉弁操作によって熱交換器へ流入する冷媒流量を制御できるようにしても良い。
(空気熱源熱交換器)
空気熱源熱交換器5aは、例えば銅やアルミニウムで構成されるフィンアンドチューブ型熱交換器である。空気熱源熱交換器5aは、熱媒体搬送装置であるファン8から供給された外気と冷媒とを熱交換する。
(三方弁)
第1切替装置である三方弁6は、通常運転(暖房運転又は冷房運転)時と、空気熱源熱交換器5aの除霜運転時とで、地中熱源熱交換器5bの冷媒の流れを切り替えるために用いられる。具体的には、通常運転時には、空気熱源熱交換器5aと地中熱源熱交換器5bとが共に凝縮器(放熱器)又は蒸発器として作用するように、空気熱源熱交換器5a側に切り替えられる。一方、除霜運転時は、空気熱源熱交換器5aが凝縮器として作用し、地中熱源熱交換器5bが蒸発器として作用するように、圧縮機1の吸入側に切り替えられる。
(四方弁)
第2切替装置である四方弁2は、冷媒回路10の流れを切り替えるために用いられる。流路を切り替えることによって、水熱交換器3を暖房運転時は凝縮器として利用し、冷房運転時は蒸発器として利用することができる。
<<地中熱源側回路>>
熱交換媒体回路である地中熱源側回路20は、第二熱源熱交換器である地中熱源熱交換器5bの地中熱源側媒体流路42と、地中に埋設される地中熱交換器21と、地熱用ポンプ22とが順次配管で接続され、ブラインなどの不凍液である熱交換媒体としての地中熱源側媒体が循環し、地中熱を採熱できるように構成されている。
(地中熱交換器)
地中熱交換器21は、例えば略U字状に形成されて地中に垂直又は水平に埋設された樹脂製の採熱パイプ群によって構成される。地中熱交換器21は、採熱パイプ群を埋設する地域や深度によって熱交換性能が異なったものとなる。地中熱交換器21では、内部を通過する地中熱源側媒体が地中から熱を採熱する。
(地中熱源熱交換器)
地中熱源熱交換器5bは、冷媒回路10を循環する冷媒と地中熱源側回路20内を循環する地中熱源側媒体との熱交換を行う。地中熱源熱交換器5bには、地中熱交換器21によって地中熱を採熱した地中熱源側媒体が地中熱源側媒体流路42に流入するため、地中から地中熱交換器21によって採熱した熱が冷媒流路41の冷媒に伝達される。これにより、冷媒回路10は地中熱を採熱する。地中熱源熱交換器5bは水熱交換器3と同様に、プレート式や二重管式などがあり、どちらを用いても良い。
<センサの説明>
ヒートポンプ装置40には、必要に応じて温度又は圧力センサが設けられている。各センサの検出値は制御装置30に入力され、ヒートポンプ装置40の運転制御、例えば圧縮機1の容量制御や、膨張弁4a、4bの開度制御に使われている。図1では、冷媒温度センサ31と、大気温度センサ32と、地熱温度センサ33とを備えている。
冷媒温度センサ31は、冷媒回路10の低圧側冷媒の飽和温度を検出する。大気温度センサ32は、熱源側熱媒体である大気温度を検出する。地熱温度センサ33は、地中熱交換器21から地熱用ポンプ22によってくみ上げられた地中熱源側媒体の温度(地熱温度)を検出する。なお、冷媒温度センサ31は図1に示すように、圧縮機1の吸入側の圧力を検出する吸入圧力センサ34でもよく、その場合は制御装置30によって冷媒圧力から冷媒飽和温度を換算すればよい。
次に、この空調装置における各運転を、冷媒の流れを示す図2、図4及び図6と、p−h線図(冷媒の圧力と比エンタルピーとの関係を示す線図)である図3、図5及び図7とを参照して説明する。なお、図2及び図4において一点鎖線は冷媒が流れない配管部分を示している。また、図2、図4及び図6における[i](i=1,2,...)は、図3、図5及び図7に示す各配管位置における冷媒状態を示している。
以下、この空調装置における各運転について説明する。なお、本発明のヒートポンプ装置は、大気と地中の両方から同時に採熱する装置であり、以下に説明する何れの運転においても地中熱源側回路20の地熱用ポンプ22は稼動し、地中熱の採熱を行っているものとする。
(通常運転時の冷媒動作(暖房運転))
本実施の形態1における通常運転、特に暖房運転の運転動作について説明する。暖房運転時、四方弁2及び三方弁6は共に図1の点線側に切り替えられる。
図2は、本実施の形態1における暖房運転時の冷媒の流れを示す図である。図3は、図2の暖房運転時の運転状態と熱源側熱媒体の温度(大気温度及び地熱温度)との関係を示した図である。ここでは、地熱温度が空気温度よりも高くなっている。
低温低圧の冷媒(状態[1])は圧縮機1で圧縮され、高温高圧の冷媒(状態[2])となって吐出される。圧縮機1から吐出された高温高圧の冷媒は、暖房用に切り替えられた四方弁2を通過して水熱交換器3に流入し、水回路51の水へ放熱する。水への放熱により低温高圧となった冷媒(状態[3])は2つに分岐してそれぞれ膨張弁4a、4bに流入する。
膨張弁4aに流入した冷媒は、減圧されて状態[4]の冷媒となり、空気熱源熱交換器5aに流入する。空気熱源熱交換器5aに流入した冷媒は、外気から熱を吸熱して蒸発し、空気熱源熱交換器5aから流出する。一方、膨張弁4bへ流入した冷媒は、減圧されて状態[4’]の冷媒となり、地中熱源熱交換器5bに流入する。地中熱源熱交換器5bに流入した冷媒は、地中熱源側媒体と熱交換して吸熱する。ここでの熱交換により地中熱を採熱している。そして、地中熱を採熱して蒸発した冷媒は、主回路10aの空気熱源熱交換器5aから流出した冷媒と合流分岐点Pで合流し、再び四方弁2及び冷媒容器7aを通過して圧縮機1へ吸引される。
(通常運転時の冷媒動作(冷房運転))
次に、本実施の形態における通常運転、特に冷房運転の運転動作について説明する。冷房運転時、四方弁2は図1の実線側に切り替えられ、三方弁6は図1の点線側に切り替えられる。
図4は、本実施の形態1における冷房運転時の冷媒の流れを示す図である。図5は、図4の冷房運転時の運転状態と熱源側熱媒体の温度(大気温度及び地中温度)との関係を示した図である。ここでは、地熱温度が空気温度よりも低くなっている。
低温低圧の冷媒(状態[1])は圧縮機1で圧縮され、高温高圧の冷媒(状態[2])となって吐出される。圧縮機1から吐出された高温高圧の冷媒は、冷房用に切り替えられた四方弁2を通過後、合流分岐点Pで2つに分岐して一方は空気熱源熱交換器5aに流入し、他方は三方弁6を介して地中熱源熱交換器5bに流入する。
空気熱源熱交換器5aに流入した冷媒は、大気に放熱して低温高圧冷媒(状態[3])となって空気熱源熱交換器5aを流出し、膨張弁4aに流入して減圧される。一方、地中熱源熱交換器5bに流入した冷媒は、地中熱源側媒体に放熱して低温高圧冷媒(状態[3’])となって地中熱源熱交換器5bを流出し、膨張弁4bに流入して減圧される。そして、膨張弁4bで減圧された冷媒は、膨張弁4aで減圧された冷媒と合流して状態[4]の冷媒となって水熱交換器3に流入する。水熱交換器3に流入した冷媒は、水回路51の水から吸熱して蒸発し、四方弁2及び冷媒容器7aを通過して再び圧縮機1へ吸引される。
(除霜運転時の冷媒動作)
次に、本実施の形態1における除霜運転の運転動作について説明する。除霜運転時、四方弁2及び三方弁6は共に図1の実線側に切り替えられる。
図6は、本実施の形態1における除霜運転時の冷媒の流れを示す図である。図7は、図6の除霜運転時の運転状態と熱源側熱媒体の温度(大気温度及び地中温度)との関係を示した図である。ここでは、地熱温度が空気温度よりも高くなっている。
低温低圧の冷媒(状態[1])は圧縮機1で圧縮され、高温高圧の冷媒(状態[2])となって吐出される。圧縮機1から吐出された高温高圧の冷媒は、除霜用(冷房用と同じ)に切り替えられた四方弁2を通過して空気熱源熱交換器5aに流入する。そして、空気熱源熱交換器5aに流入した冷媒は、空気熱源熱交換器5aに付着した霜や熱源側熱媒体である大気へ放熱して凝縮し、低温高圧冷媒(状態[3])となる。低温高圧となった冷媒は膨張弁4aに流入して減圧されて状態[4]の冷媒となる。
状態[4]の冷媒は、2つに分岐し、一方は水熱交換器3に流入し、水回路51の水から熱を吸熱することで蒸発し、水熱交換器3を流出する。他方は、副回路10bの膨張弁4bに流入して更に減圧され、低温低圧冷媒(状態[4’])となって地中熱源熱交換器5bに流入し、地中熱源側媒体と熱交換して吸熱する。ここでの熱交換により地中熱を採熱している。そして、地中熱を採熱して蒸発した副回路10bの冷媒は、三方弁6を通過し四方弁2に向かう。四方弁2に向かう冷媒は、水熱交換器3を流出して四方弁2を通過した主回路10a側の冷媒と合流し、冷媒容器7aを通過し、再び圧縮機1へ吸引される。
この除霜運転においては、主回路10aでは通常の冷房運転とほぼ同じサイクル状態となり、圧縮機1から吐出された高温の冷媒が空気熱源熱交換器5aに流入する。このため、空気熱源熱交換器5aに付着した霜を溶かすことができる。一方、地中熱源側回路20では、地中熱交換器21において地中熱源側媒体が地中との間で熱交換して地中熱を採熱しており、地中熱を採熱した地中熱源側媒体が地中熱交換器21で副回路10bの冷媒と熱交換する。これにより、地中熱が副回路10bの冷媒に採熱され、地中熱を採熱した副回路10bの冷媒が主回路10aに合流し、主回路10aへ採熱される。よって、除霜時には、圧縮機1の仕事量に加えて地中熱源熱交換器5bから採熱した熱量も除霜熱量として利用することができる。
(除霜運転制御方法)
図8は、本発明の実施の形態1の空調装置における除霜運転時の処理の流れを示すフローチャートである。
空調装置の制御装置30は暖房運転中(S1)、センサ等からの検出値に基づき除霜運転要否を判断している(S2)。一般的な除霜要否の判断の例としては、例えば以下の方法がある。一つは、冷媒温度センサ31により検知された温度又は吸入圧力センサ34の検出値から換算された温度と、大気温度センサ32により検出された大気温度との差が所定値となった場合、除霜要と判断する方法がある。他には、大気温度が所定値以下でこのときの暖房運転時間が所定値以上となった場合、除霜要と判断する方法がある。
このような判断方法で除霜の要否を判断し、除霜必要と判断した場合、図6に示したように四方弁2及び三方弁6を切り替えて除霜運転を開始する。すなわち、空気熱源熱交換器5aが凝縮器として作用するように、冷房運転と同様に四方弁2の流路を切り替える(S3)。また、三方弁6を圧縮機1の吸入側に切り替え(S4)、地中熱源熱交換器5bと圧縮機1の吸入側とが流通する流路を形成する。これにより地中熱源熱交換器5bが蒸発器として作用する。
このように四方弁2及び三方弁6を切り替えることにより、上述したように空気熱源熱交換器5aの除霜が開始され、空気熱源熱交換器5aに流入する高温高圧冷媒によって付着した霜が溶解する。制御装置30は、除霜運転開始後、霜が無くなったと判断した場合(S5)、除霜運転を終了する。霜の有無は、例えば凝縮温度が所定値以上か否かによって判断しても、設定した除霜運転時間が経過したか否かによって判断してもよい。制御装置30は、除霜終了と判断すると、三方弁6と四方弁2の流路を切り替え、再び暖房運転を実施する(S6)。
以上説明したように本実施の形態1によれば、暖房運転時に、大気を熱源として熱交換する空気熱源熱交換器5aと、地熱を熱源とする地中熱源熱交換器5bとの両方を蒸発器として作用させて大気と別の熱源との両方から採熱する。そして、除霜運転時には、四方弁2を切り替えて空気熱源熱交換器5aを放熱器として作用させる一方、地中熱源熱交換器5bを蒸発器として作用させ、地中熱源側回路20により地中から採熱した熱を、副回路10bを介して主回路10aに採熱するため、地熱を除霜熱源として利用できる。よって、除霜運転時に利用できる熱量が多くなり、除霜時間の短縮を図ることができる。
また、除霜運転時に空気熱源熱交換器5aから流出する冷媒の一部を地中熱源熱交換器5bへ流通させるため、水熱交換器3に流入する冷媒流量が減る。このため、水熱交換器3を介した室内側からの吸熱量が減り、除霜運転時に快適性が損なわれることを抑制できる。つまり、除霜運転中の室温低下を抑制でき、暖房運転に戻った際の圧縮機入力の低減が可能で、結果として消費電力を抑制することができる。
なお、ヒートポンプ装置40は、図1に示した構成に更に、以下のような変形を加えても良い。この場合も図1の装置と同様の作用効果を得ることができる。
(変形例)
図9に示すように水熱交換器3と膨張弁4aとの間に開閉弁9を設けたり、図10(a)、図10(b)に示すように除霜運転時に水熱交換器3の入口側となる位置に膨張弁4cを設けたりしてもよい。このような構成とすると、除霜運転時に開閉弁9を閉とする又は膨張弁4cを全閉とすることで、水熱交換器3に流入する冷媒流量を無くすことができる。この場合、負荷側(室内側)からの吸熱量が減るため、除霜運転中の室内の快適性を更に向上することができる。なお、図10(a)において7bは冷媒を貯留する冷媒容器である。図10(a)に示すように冷媒容器7bの他に更に冷媒緩衝容器である冷媒容器7aを設けた構成としてもよい。
実施の形態1では、第2切替装置として四方弁2を例に挙げて説明したが、第2切替装置を四方弁2に限定するものではない。例えば、第2切替装置として二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒の流れを切り替えられるように構成してもよい。
また、実施の形態1では、第1切替装置として三方弁6を例に挙げて説明したが、第1切替装置を三方弁6に限定するものではない。例えば、第1切替装置として二方流路切替弁を複数個用いたり、四方弁の1つの流路を閉塞したりして、同じように冷媒の流れを切り替えられるように構成してもよい。
実施の形態2.
実施の形態2は、除霜運転時の圧縮機仕事量の低減を図るようにしたものである。
図11は、本発明の実施の形態2のヒートポンプ装置を備えた空調システムの冷媒回路を示す図である。図11において図1と同一部分には同一符号を付す。後述の実施の形態においても同様である。また、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態2についても同様に適用される。この点は後述の実施の形態においても同様である。
図11に示した実施の形態2のヒートポンプ装置は、図1に示した実施の形態1に加え、膨張弁4aと並列に冷媒ポンプ1bを備えると共に、除霜運転時において冷媒回路10の流路の一部、具体的には四方弁2→冷媒容器7a→圧縮機1→水熱交換器3の流路を遮断して他の流路から切り離すための開閉弁12a、12bとを備えた構成を有する。また、実施の形態2のヒートポンプ装置40は、図1に示した実施の形態1の三方弁6を省略している。冷媒ポンプ1bは除霜運転時に稼動され、通常運転時は停止される。実施の形態2のヒートポンプ装置40では、除霜運転時に圧縮機1を停止し、冷媒ポンプ1bを運転させて後述の除霜回路A内で冷媒を循環させて空気熱源熱交換器5aの除霜を行うものである。
(通常運転時の冷媒動作(暖房運転))
本実施の形態2における通常運転、特に暖房運転の運転動作について説明する。暖房運転時、四方弁2は図11の点線側に切り替えられる。
図12は、本実施の形態2における暖房運転時の冷媒の流れを示す図である。図12において一点鎖線は冷媒が流れない配管部分を示している。また、冷媒ポンプ1bは停止し、開閉弁12a、12bは開とする。
低温低圧の冷媒は圧縮機1で圧縮され、高温高圧の冷媒となって吐出される。圧縮機1から吐出された高温高圧の冷媒は、暖房用に切り替えられた四方弁2を通過して水熱交換器3に流入し、水回路51の水へ放熱する。水への放熱により低温高圧となった冷媒は2つに分岐してそれぞれ膨張弁4a、4bに流入する。
膨張弁4aに流入した冷媒は、減圧されて空気熱源熱交換器5aに流入し、外気から熱を吸熱して蒸発し、低圧冷媒となり空気熱源熱交換器5aから流出する。一方、膨張弁4bに流入した冷媒は、減圧されて地中熱源熱交換器5bに流入し、地中熱源側媒体と熱交換して吸熱する。ここでの熱交換により地中熱を採熱している。そして、地中熱を採熱して蒸発した冷媒は、主回路10aの空気熱源熱交換器5aから流出した冷媒と合流分岐点Pで合流し、再び四方弁2及び冷媒容器7aを通過して圧縮機1へ吸引される。
(除霜運転時の冷媒動作)
次に、本実施の形態2における除霜運転の運転動作について説明する。
図13は、本実施の形態2における除霜運転時の冷媒の流れを示す図である。図13において一点鎖線は冷媒が流れない配管部分を示している。図14は、p−h線図(冷媒の圧力と比エンタルピーとの関係を示す線図)を示しており、図13の除霜運転時の運転状態と熱源側熱媒体の温度(大気温度及び地中温度)との関係を示した図である。ここでは、地熱温度が空気温度よりも高くなっている。また、図14における[i](i=1,2,...)は、図13の[i](i=1,2,...)に示す各配管位置における冷媒状態を示している。
本実施の形態2では、除霜運転中、圧縮機1を停止させる一方、冷媒ポンプ1bを運転させ、開閉弁12a、12bを閉じ、また、膨張弁4aも閉じる。これにより、空気熱源熱交換器5aの冷媒が冷媒ポンプ1b→膨張弁4b→地中熱源熱交換器5b→空気熱源熱交換器5aの順に循環する除霜回路Aが形成され、空気熱源熱交換器5aが凝縮器、地中熱源熱交換器5bが蒸発器として作用する。
このような除霜回路A内において、状態[1]の冷媒が空気熱源熱交換器5aに流入し、空気熱源熱交換器5aに付着した霜や大気に放熱して凝縮し、低温冷媒(状態[2])となって空気熱源熱交換器5aを流出する。空気熱源熱交換器5aを流出した冷媒は冷媒ポンプ1bで昇圧されて状態[3]の冷媒となり、続いて膨張弁4bで減圧されて状態[4]の冷媒となる。そして、状態[4]の冷媒は、地中熱源熱交換器5bに流入し、地中熱源側媒体と熱交換して吸熱する。ここでの熱交換により地中熱を採熱している。そして、地中熱を採熱して蒸発した冷媒は、空気熱源熱交換器5aに流入し、上述したように空気熱源熱交換器5aに付着した霜や大気に放熱する。これにより空気熱源熱交換器5aの霜が溶ける。
このように冷媒が除霜回路Aを循環することで、地中熱源熱交換器5bから採熱した熱量を空気熱源熱交換器5aの除霜熱量として利用できる。このサイクルの場合、空気熱源熱交換器凝縮温度が地中熱源熱交換器蒸発温度よりも低いため、地熱温度が空気温度よりも高い状態、少なくとも0℃より大きい場合に、空気熱源熱交換器凝縮温度が0℃以上になり、霜を溶かすことができる。
次に、本実施の形態2における除霜運転の制御動作について説明する。ここでは、特に実施の形態1と異なるアクチュエータ動作について説明する。
制御装置30は、暖房運転中に除霜必要と判断した場合、圧縮機1を停止し、開閉弁12a、12bを閉とする。その後、冷媒ポンプ1bを稼動させ、除霜回路Aに冷媒を循環させる。これにより、上述したように地中熱源熱交換器5bで採熱した地中熱により空気熱源熱交換器5aの除霜を行う。そして、制御装置30は除霜終了すると判断すると、冷媒ポンプ1bを停止させ、開閉弁12a、12bを開き、圧縮機1を稼動させて再び暖房運転を実施する。
以上説明したように本実施の形態2によれば、暖房運転時に、大気を熱源として熱交換する空気熱源熱交換器5aと、地熱を熱源とする地中熱源熱交換器5bとの両方を蒸発器として作用させて大気と別の熱源との両方から採熱する。そして、除霜運転時に圧縮機1を停止させ、冷媒ポンプ1bを動力源として用いて除霜を行えるため、除霜運転時の圧縮機仕事量を減らすことができる。このため、除霜運転時の消費電力を抑制することができる。また、圧縮機1を停止することで水熱交換器3に流入する冷媒流量が減るため、除霜運転時に快適性が損なわれることを抑制できる。
なお、本実施の形態2では、図1に示した実施の形態1の構成から三方弁6が省略されているが、図15に示すように実施の形態1と同様に三方弁6が設けられていても良い。三方弁6を設けた構成の場合、除霜回路Aで除霜を行う方法と、リバース方式で除霜を行う方法とのどちらか一方を適宜選択して除霜を行うことが可能となる。適宜選択して除霜を行う条件としては、例えば、素早く除霜を完了したい場合は外気や地中よりも温度が高い室内から採熱できるリバース方式を採用し、消費電力をできるだけ抑えたい場合は自然循環や冷媒ポンプを用いた除霜を行うなどがある。
また、本実施の形態2では、通常運転時の圧損を考慮して膨張弁4aと並列に冷媒ポンプ1bを設けているが、冷媒ポンプ1bは空気熱源熱交換器5aと地中熱源熱交換器5bとの間を冷媒が循環できるように設けられていればよい。
なお、空気熱源熱交換器5aが地中熱源熱交換器5bよりも高い位置に配置されている場合、空気熱源熱交換器5aと地中熱源熱交換器5bとに温度差が生じることで冷媒が除霜回路A内を自然循環する。よって、この場合、冷媒ポンプ1bが不要となり、更に除霜運転時の消費電力を抑制することができる。
実施の形態3.
実施の形態1では、除霜運転中、暖房運転を停止して主回路10aを冷房運転する構成であったが、実施の形態3では、除霜運転中、暖房運転を継続しつつ除霜も行えるようにしたものである。
図16は、本発明の実施の形態3のヒートポンプ装置を備えた空調システムの冷媒回路を示す図である。
実施の形態3のヒートポンプ装置40では、実施の形態1と三方弁6の位置が異なる。具体的には、実施の形態3では主回路10aにおいて、圧縮機1と四方弁2との間から分岐した分岐管11bに三方弁6が設けられており、空気熱源熱交換器5aにおいて膨張弁4aと反対側が、三方弁6によって地中熱源熱交換器5b側(地中熱源熱交換器5bにおいて膨張弁4bと反対側)又は圧縮機1の吐出側に接続するように切り替えられる構成としたものである。
(通常運転時の冷媒動作(暖房運転))
本実施の形態3における通常運転、特に暖房運転の運転動作について説明する。暖房運転時、四方弁2は図16の実線側、三方弁6は図16の点線側に切り替えられる。
図17は、本実施の形態3における暖房運転時の冷媒の流れを示す図である。図17において一点鎖線は冷媒が流れない配管部分を示している。
低温低圧の冷媒は圧縮機1で圧縮され、高温高圧の冷媒となって吐出される。圧縮機1から吐出された高温高圧の冷媒は、暖房用に切り替えられた四方弁2を通過して水熱交換器3に流入し、水回路51の水へ放熱する。水への放熱により低温高圧となった冷媒は2つに分岐してそれぞれ膨張弁4a、4bに流入する。
膨張弁4aに流入した冷媒は、減圧されて空気熱源熱交換器5aに流入し、外気から熱を吸熱して蒸発し、低圧冷媒となり空気熱源熱交換器5aから流出し、三方弁6を通過する。一方、膨張弁4bに流入した冷媒は、減圧されて地中熱源熱交換器5bに流入し、地中熱源側媒体と熱交換して吸熱する。ここでの熱交換により地中熱を採熱している。そして、地中熱を採熱して蒸発した冷媒は、主回路10aの空気熱源熱交換器5aから流出して三方弁6を通過後の冷媒と合流分岐点Pで合流し、再び四方弁2及び冷媒容器7aを通過して圧縮機1へ吸引される。
(除霜運転時の冷媒動作)
次に、本実施の形態3における除霜運転の運転動作について説明する。除霜運転時、四方弁2及び三方弁6は共に図16の実線側に切り替えられる。
図18は、本実施の形態3における除霜運転時の冷媒の流れを示す図である。図19は、p−h線図(冷媒の圧力と比エンタルピーとの関係を示す線図)を示しており、図18の除霜運転時の運転状態と熱源側熱媒体の温度(大気温度及び地中温度)との関係を示した図である。ここでは、地熱温度が空気温度よりも高くなっている。また、図19における[i](i=1,2,...)は、図18の[i](i=1,2,...)に示す各配管位置における冷媒状態を示している。
低温低圧の冷媒(状態[1])は圧縮機1で圧縮され、高温高圧の冷媒(状態[2])となって吐出される。圧縮機1から吐出された高温高圧の冷媒は、2つに分岐され、一方は除霜用(暖房用と同じ)に切り替えられた四方弁2を通過して水熱交換器3に流入する。そして、水熱交換器3に流入した冷媒は、水回路51内の水へ放熱して低温高圧冷媒(状態[3])となって水熱交換器3から流出する。他方は、空気熱源熱交換器5aに流入する。このように圧縮機1から吐出された高温高圧の冷媒の一部が空気熱源熱交換器5aに流入することにより、空気熱源熱交換器5aに付着した霜を溶かすことができる。そして、空気熱源熱交換器5aに流入した冷媒は、空気熱源熱交換器5aに付着した霜及び大気へ放熱し、低温高圧冷媒(状態[3’])となった後、膨張弁4aを通過する。なお、膨張弁4aは全開又は全開に近い状態とされており、ここでは減圧されずにそのまま通過する。
膨張弁4aを通過した冷媒は、水熱交換器3から流出した冷媒と合流して副回路10bの膨張弁4bに流入し、減圧されて状態[4]の冷媒となる。状態[4]の冷媒は、地中熱源熱交換器5bに流入し、地中熱源側媒体と熱交換して吸熱する。ここでの熱交換により地中熱を採熱している。そして、地中熱を採熱して蒸発した冷媒は四方弁2に流入し、冷媒容器7aを通過して再び圧縮機1へ吸引される。
この除霜運転においては、除霜運転中も主回路10aでは暖房運転が継続して行われるため、室内の快適性を維持したまま空気熱源熱交換器5aの除霜を行うことができる。また、地中熱源側回路20では、地中熱交換器21で地中熱を採熱しており、その地中熱が副回路10bを介して主回路10aに伝達されている。よって、除霜時には、圧縮機1の仕事量に加えて地中熱源熱交換器5bから採熱した熱量も除霜熱量として利用することができ、且つ暖房用熱量としても利用することができる。
次に、本実施の形態3における除霜運転の制御動作について説明する。ここでは、特に実施の形態1と異なるアクチュエータ動作について説明する。
制御装置30は、暖房運転中に除霜必要と判断した場合、四方弁2の流路は切り替えず暖房用のままとし、三方弁6の流路を、圧縮機1の吐出冷媒が空気熱源熱交換器5aに流入するように圧縮機1の吐出側に切り替える。これにより、圧縮機1を吐出した冷媒が水熱交換器3と空気熱源熱交換器5aとのそれぞれに流入し、それぞれが凝縮器として作用し、地中熱源熱交換器5bが蒸発器として作用する。そして、制御装置30は、除霜を終了すると判断すると、三方弁6の流路を地中熱源熱交換器5b側に切り替え、再び暖房運転を実施する。
以上説明したように本実施の形態3によれば、暖房運転時に、大気を熱源として熱交換する空気熱源熱交換器5aと、地熱を熱源とする地中熱源熱交換器5bとの両方を蒸発器として作用させて大気と別の熱源との両方から採熱する。そして、除霜運転時に地中熱源熱交換器5bを蒸発器として作用させて地中熱を採熱するため、除霜運転時に利用できる熱量が多くなり、除霜時間の短縮を図ることができる。
また、圧縮機1の吐出冷媒の一部が水熱交換器3に流入することで除霜運転中にも暖房運転が可能となり、除霜運転時に快適性が損なわれることを抑制できる。よって、除霜運転中の室温低下を抑制でき、暖房運転に戻った際の圧縮機入力の低減が可能で、結果として消費電力を抑制することができる。
また、本実施の形態3によれば、圧縮機1の仕事量と地中熱源熱交換器5bから採熱した熱量を空気熱源熱交換器5aの除霜熱量として利用でき、且つ暖房用熱量としても利用することができる。
実施の形態4.
図20は、本発明の実施の形態4のヒートポンプ装置を備えた空調システムの冷媒回路を示す図である。実施の形態4のヒートポンプ装置40は、図16に示した実施の形態3のヒートポンプ装置40において分岐管11bが削除される一方、主回路10aに補助圧縮機1cを新たに追加した構成を有する。また、実施の形態4のヒートポンプ装置40は、三方弁6の切り替えにより空気熱源熱交換器5aが補助圧縮機1cの吐出側又は地中熱源熱交換器5b側(地中熱源熱交換器5bの冷媒流路41において膨張弁4bとは反対側)に流通するようになっている。また、水熱交換器3と膨張弁4a、4bの間に膨張弁4cを備えており、水熱交換器3に流入する冷媒流量を制御可能となっている。
(通常運転時の冷媒動作(暖房運転))
本実施の形態4における通常運転、特に暖房運転の運転動作について説明する。暖房運転時、四方弁2は図20の実線側、三方弁6は図20の点線側に切り替えられる。
図21は、本実施の形態4における暖房運転時の冷媒の流れを示す図である。図21において一点鎖線は冷媒が流れない配管部分を示している。また、補助圧縮機1cの運転は停止しており、膨張弁4cは全開となっている。
低温低圧の冷媒は圧縮機1で圧縮され、高温高圧の冷媒となって吐出される。圧縮機1から吐出された高温高圧の冷媒は、暖房用に切り替えられた四方弁2を通過して水熱交換器3に流入し、水回路51の水へ放熱する。水への放熱により低温高圧となった冷媒は2つに分岐してそれぞれ膨張弁4a、4bに流入する。
膨張弁4aに流入した冷媒は、減圧されて空気熱源熱交換器5aに流入し、外気から熱を吸熱して蒸発し、低圧冷媒となり空気熱源熱交換器5aから流出し、三方弁6を通過する。一方、膨張弁4bに流入した冷媒は、減圧されて地中熱源熱交換器5bに流入し、地中熱源側媒体と熱交換して吸熱する。ここでの熱交換により地中熱を採熱している。そして、地中熱を採熱して蒸発した冷媒は、主回路10aの空気熱源熱交換器5aから流出して三方弁6を通過後の冷媒と合流分岐点Pで合流し、再び四方弁2及び冷媒容器7aを通過して圧縮機1へ吸引される。
(除霜運転時の冷媒動作)
次に、本実施の形態4における除霜運転の運転動作について説明する。除霜運転時、四方弁2及び三方弁6は共に図20の実線側に切り替えられる。
図22は、本実施の形態4における除霜運転時の冷媒の流れを示す図である。図23は、p−h線図(冷媒の圧力と比エンタルピーとの関係を示す線図)を示しており、図22の除霜運転時の運転状態と熱源側熱媒体の温度(大気温度及び地中温度)との関係を示した図である。ここでは、地熱温度が空気温度よりも高くなっている。また、図23における[i](i=1,2,...)は、図22の[i](i=1,2,...)に示す各配管位置における冷媒状態を示している。
低温低圧の冷媒(状態[1])は圧縮機1で圧縮され、高温高圧の冷媒(状態[2])となって吐出される。圧縮機1から吐出された高温高圧の冷媒は、四方弁2を通過して水熱交換器3に流入する。水熱交換器3に流入した冷媒は、水回路51内の水へ放熱して低温高圧冷媒(状態[3])となって水熱交換器3から流出し、その後、膨張弁4cで減圧される。膨張弁4cで減圧された冷媒は、副回路10bの膨張弁4bで更に減圧されて地中熱源熱交換器5bに流入し、地中熱源側媒体と熱交換して吸熱する。ここでの熱交換により地中熱を採熱している。
そして、地中熱を採熱して蒸発した冷媒は、四方弁2の手前の合流分岐点Pで2つに分岐し、一方は四方弁2に流入し、冷媒容器7aを通過して圧縮機1へ吸引される。他方は三方弁6を通過して補助圧縮機1cに流入し、ここで昇温昇圧されて高温高圧の冷媒(状態[2’])となって空気熱源熱交換器5aに流入する。空気熱源熱交換器5aは凝縮器として作用するため、空気熱源熱交換器5aに流入した冷媒は、空気熱源熱交換器5aに付着した霜や大気に放熱して凝縮し、低温高圧冷媒(状態[3’])となる。低温高圧冷媒は膨張弁4aで減圧され、主回路10aにおいて膨張弁4cで減圧された冷媒と合流して膨張弁4bに流入して更に減圧されて状態[4]の冷媒となる。状態[4]の冷媒は、地中熱源熱交換器5bに流入し、地中熱源側媒体と熱交換して吸熱し、再び高温低圧の冷媒(状態[1])となる。
この除霜運転では、圧縮機1の仕事量は水熱交換器3で負荷側の暖房熱量として利用され、補助圧縮機1cの仕事量は空気熱源熱交換器5aの除霜熱量として利用される。
次に、本実施の形態4における除霜運転における制御動作について説明する。ここでは、特に実施の形態3と異なるアクチュエータ動作について説明する。
制御装置30は、暖房運転中に除霜必要と判断した場合、四方弁2の流路は切り替えず暖房用のままとし、三方弁6の流路を、地中熱源熱交換器5bから流出した冷媒が補助圧縮機1cに流入するように切り替える。これにより、地中熱源側回路20の地中熱源側媒体を介して地中熱を採熱した地中熱源熱交換器5bの冷媒の一部が、補助圧縮機1cで昇温昇圧された後、空気熱源熱交換器5aに流入し、空気熱源熱交換器5aの除霜を行う。そして、制御装置30は除霜終了すると判断すると、空気熱源熱交換器5aの膨張弁4aとは反対側が補助圧縮機1cを介さず直接、地中熱源熱交換器5b側に接続されるように三方弁6の流路を切り替え、補助圧縮機1cを停止して、再び暖房運転を実施する。
また、除霜運転中、制御装置30は膨張弁4cを適宜制御し、空気熱源熱交換器5aに流入する冷媒量を増やして水熱交換器3に流入する冷媒量を減らす。これにより、空気熱源熱交換器5aの除霜を早く終了させることができる。なお、水熱交換器3に流入する冷媒量を減らすと、室内の暖房能力が低下するため、室内の快適性確保と除霜促進との兼ね合いで膨張弁4cを制御するようにすればよい。
以上説明したように本実施の形態4では、暖房運転時に、大気を熱源として熱交換する空気熱源熱交換器5aと、地熱を熱源とする地中熱源熱交換器5bとの両方を蒸発器として作用させて大気と別の熱源との両方から採熱する。そして、除霜運転時に、補助圧縮機1cで昇温昇圧した冷媒を空気熱源熱交換器5aに流入させるようにすると共に、三方弁6の流路を切り替え、地中熱源熱交換器5bで地中熱を採熱して水熱交換器3側に向かう冷媒の一部を、空気熱源熱交換器5aに流入させるようにした。これにより、地中熱源熱交換器5bを介して地中から採熱した熱を暖房用と除霜用の両方の熱量として使用できる。そして、除霜時に利用できる熱量が地中からの採熱分だけ多くなることで除霜時間の短縮を図ることができる。
また、除霜運転中にも水熱交換器3が凝縮器として作用し、暖房運転が可能となるため、除霜運転時に快適性が損なわれることを抑制できる。
また、本実施の形態4では、圧縮機1と補助圧縮機1cとのそれぞれの入力調整により、図23に示すように水熱交換器凝縮温度と空気熱源熱交換器凝縮温度とを互いに異ならせることができる。このため、暖房用の凝縮温度(水熱交換器凝縮温度)を維持しつつ、空気熱源熱交換器凝縮温度が必要以上に高くならない除霜運転が可能となり、除霜時の消費電力を抑制することができる。つまり、空気熱源熱交換器凝縮温度は霜を溶かせる程度の温度で十分であるため、暖房用の凝縮温度に比べて低くて良く、凝縮温度を低くできる分、消費電力を抑制が可能である。
なお、上記各実施の形態では、大気以外の熱源として地熱を用いる例を説明したが、地熱に限られたものではなく、地下水、海水、太陽熱温水を熱源としてもよい。
また、一般的に電気ヒータやボイラーで生成した熱は、暖房運転時にそのまま負荷側に利用することができるが、負荷側の設定温度よりも低温の地熱や、地下水、海水、太陽熱温水の熱は、負荷側を設定温度にするための熱源として用いるには熱量が足りない。しかし、上記各実施の形態のヒートポンプ装置40であれば、地熱や、地下水、海水、太陽熱温水の熱を除霜熱源の一部として用いることができ、除霜運転時の消費電力低減に有効であると言える。
なお、上記各実施の形態では四方弁2を備えた構成を示したが、実施の形態2〜4については、四方弁2は必ずしも必須ではなく、省略可能である。
また、実施の形態2〜4において第2切替装置を備える場合には、実施の形態1と同様に四方弁2に限定するものではなく、二方流路切替弁や三方流路切替弁を複数個用い、四方弁2と同じように冷媒の流れを切り替えられるように構成してもよい。
さらに、実施の形態2〜4では、第1切替装置として三方弁6を例に挙げて説明したが、実施の形態1と同様に第1切替装置を三方弁6に限定するものではない。例えば、第1切替装置として、二方流路切替弁を複数個用いたり、四方弁の1つの流路を閉塞したりして、同じように冷媒の流れを切り替えられるように構成してもよい。
また、各実施の形態では、ヒートポンプ装置40が適用される装置として空調システムの例を説明したが、これに限られたものではなく給湯システムなどとしてもよい。要は、負荷側熱交換器(水熱交換器3)が放熱器として作用し、空気熱源熱交換器5aが蒸発器として作用するように冷媒が循環する加熱運転を行うシステムであればよい。
本発明の活用例として、多数の熱源を備えたヒートポンプ装置について有用である。
1 圧縮機、1b 冷媒ポンプ、1c 補助圧縮機、2 四方弁、3 水熱交換器、4a 膨張弁、4b 膨張弁、4c 膨張弁、5a 空気熱源熱交換器、5b 地中熱源熱交換器、6 三方弁、7a 冷媒容器、7b 冷媒容器、8 ファン、9 開閉弁、10 冷媒回路、10a 主回路、10b 副回路、11a 分岐管、11b 分岐管、12a 開閉弁、12b 開閉弁、20 地中熱源側回路、21 地中熱交換器、22 地熱用ポンプ、30 制御装置、31 冷媒温度センサ、32 大気温度センサ、33 地熱温度センサ、34 吸入圧力センサ、40 ヒートポンプ装置、41 冷媒流路、42 地中熱源側媒体流路、50 負荷側装置、51 水回路、52 ポンプ、100 空調装置、A 除霜回路。

Claims (11)

  1. 圧縮機、負荷側熱交換器の冷媒流路、第一減圧装置及び大気と熱交換する第一熱源熱交換器が順次接続されて冷媒が循環する主回路と、前記主回路の前記第一減圧装置と前記負荷側熱交換器との間から分岐した分岐管に、第二減圧装置と第二熱源熱交換器の冷媒流路とが直列に接続され、前記第二熱源熱交換器の冷媒流路において前記第二減圧装置とは反対側の接続先が、前記第一熱源熱交換器との合流分岐点側又は前記圧縮機の吸入側となるように第1切替装置によって切り替えられる副回路とを有する冷媒回路と、
    前記第二熱源熱交換器の熱交換媒体流路を備え、大気とは別の熱源と熱交換して前記別の熱源の熱を吸熱する熱交換媒体が循環する熱交換媒体回路と、
    前記第1切替装置を制御する制御装置とを備え、
    前記制御装置は除霜運転時に、
    前記第一熱源熱交換器を放熱器、前記第二熱源熱交換器を蒸発器として作用させ、前記第1切替装置を前記圧縮機の吸入側に切り替え、前記熱交換媒体回路により前記別の熱源から採熱した熱を、前記第二熱源熱交換器における熱交換により前記副回路を介して前記主回路へ採熱し、前記第二熱源熱交換器の除霜熱源として用いるようにした
    ことを特徴とするヒートポンプ装置。
  2. 前記圧縮機の吐出側に第2切替装置を備え、
    前記制御装置は除霜運転時に、
    前記第2切替装置を切り替えて、前記第一熱源熱交換器を放熱器、前記第二熱源熱交換器を蒸発器として作用させる
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  3. 前記圧縮機の吐出側に設けた第2切替装置と、
    前記冷媒回路の一部の流路を遮断することにより形成され、前記第一熱源熱交換器と、前記第二熱源熱交換器との間を冷媒が循環する除霜回路と、
    前記除霜回路上に設けられ、冷媒を循環させるための冷媒ポンプとを備え、
    前記制御装置は除霜運転時に、
    前記第一熱源熱交換器が放熱器、前記第二熱源熱交換器が蒸発器として作用するように前記第2切替装置を切り替えると共に前記第1切替装置を前記圧縮機の吸入側に切り替えて除霜を行う方法と、
    前記圧縮機を停止させると共に、前記除霜回路を形成して前記冷媒ポンプを稼動させ、前記熱交換媒体回路から前記第二熱源熱交換器を介して前記別の熱源の熱を採熱した冷媒を前記除霜回路に循環させることにより除霜を行う方法とのどちらかにより除霜を行う
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  4. 前記圧縮機の吐出側に設けた第2切替装置と、
    前記冷媒回路の一部の流路を遮断することにより形成され、前記第一熱源熱交換器と、前記第二熱源熱交換器との間を冷媒が循環する除霜回路と、
    前記第一熱源熱交換器が、前記第二熱源熱交換器よりも高い位置に配置され、前記熱交換媒体回路から前記第二熱源熱交換器を介して前記別の熱源の熱を採熱した冷媒が、前記除霜回路を自然循環するように構成され、
    前記制御装置は除霜運転時に、
    前記第一熱源熱交換器が放熱器、前記第二熱源熱交換器が蒸発器として作用するように前記第2切替装置を切り替えると共に前記第1切替装置を前記圧縮機の吸入側に切り替えて除霜を行う方法と、
    前記圧縮機を停止させると共に前記除霜回路を形成し、自然循環により除霜を行う方法とのどちらかにより除霜を行う
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  5. 前記主回路は、前記前記第一熱源熱交換器において前記第一減圧装置と反対側の接続先が前記第1切替装置によって切り替えられるように構成され、
    前記副回路は、前記第二熱源熱交換器の冷媒流路において前記第二減圧装置とは反対側が前記圧縮機の吸入側に接続されるように構成され、
    前記冷媒回路は、前記第一熱源熱交換器において前記第一減圧装置と反対側の接続先を、前記第二熱源熱交換器との合流分岐点側となるように前記第1切替装置を切り替えることで、前記負荷側熱交換器が放熱器として作用し、前記第一熱源熱交換器が蒸発器として作用するように冷媒が循環する加熱運転を少なくとも行うように構成されており、
    前記制御装置は除霜運転時に、
    前記第一熱源熱交換器において前記第一減圧装置と反対側の接続先を前記第1切替装置により前記圧縮機の吐出側とし、前記圧縮機から吐出された冷媒の一部が前記第一熱源熱交換器に流入するようにする
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  6. 前記冷媒回路の前記合流分岐点と前記第一熱源熱交換器との間に前記第1切替装置を介して設けられた補助圧縮機を備え、
    前記主回路は、前記前記第一熱源熱交換器において前記第一減圧装置と反対側の接続先が前記第1切替装置によって切り替えられるように構成され、
    前記副回路は、前記第二熱源熱交換器の冷媒流路において前記第二減圧装置とは反対側が前記圧縮機の吸入側に接続されるように構成され、
    前記冷媒回路は、前記第一熱源熱交換器において前記第一減圧装置と反対側の接続先を、前記第二熱源熱交換器との合流分岐点側となるように前記第1切替装置を切り替えることで、前記負荷側熱交換器が放熱器として作用し、前記第一熱源熱交換器が蒸発器として作用するように冷媒が循環する加熱運転を少なくとも行うように構成されており、
    前記制御装置は除霜運転時に、
    前記第一熱源熱交換器において前記第一減圧装置と反対側の接続先を前記第1切替装置により前記補助圧縮機の吐出側とし、前記第二熱源熱交換器の冷媒流路から流出した冷媒の一部が前記補助圧縮機で圧縮されて前記第二熱源熱交換器に流入するようにする
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  7. 圧縮機、負荷側熱交換器の冷媒流路、第一減圧装置及び大気と熱交換する第一熱源熱交換器が順次接続されて冷媒が循環する主回路と、前記主回路の前記第一減圧装置及び前記第一熱源熱交換器に並列に接続される回路であって、第二減圧装置及び第二熱源熱交換器の冷媒流路が直列に接続された副回路とを有する冷媒回路と、
    前記第二熱源熱交換器の熱交換媒体流路を備え、大気とは別の熱源と熱交換して前記別の熱源の熱を吸熱する熱交換媒体が循環する熱交換媒体回路と、
    前記冷媒回路の一部の流路を遮断することにより形成され、前記第一熱源熱交換器と、前記第二熱源熱交換器との間を冷媒が循環する除霜回路と、
    除霜運転時に、前記圧縮機を停止させると共に、前記除霜回路を形成して、前記熱交換媒体回路から前記第二熱源熱交換器を介して前記別の熱源の熱を採熱した冷媒を、前記除霜回路に循環させて除霜を行う制御装置とを備えた
    ことを特徴とするヒートポンプ装置。
  8. 前記除霜回路上に設けられ、冷媒を循環させるための冷媒ポンプを備え、
    前記制御装置は、
    除霜運転時に、前記圧縮機を停止させると共に、前記除霜回路を形成して前記冷媒ポンプを稼動させ、前記熱交換媒体回路から前記第二熱源熱交換器を介して前記別の熱源の熱を採熱した冷媒を、前記除霜回路に循環させて除霜を行う
    ことを特徴とする請求項7に記載のヒートポンプ装置。
  9. 前記第一熱源熱交換器は、前記第二熱源熱交換器よりも高い位置に配置され、
    除霜運転時に前記熱交換媒体回路から前記第二熱源熱交換器を介して前記別の熱源の熱を採熱した冷媒が、前記除霜回路を自然循環する
    ことを特徴とする請求項7に記載のヒートポンプ装置。
  10. 前記別の熱源として、前記負荷側熱交換器が設置される負荷側装置の設定温度よりも低い温度を有する熱源を用いる
    ことを特徴とする請求項1〜9の何れか一項に記載のヒートポンプ装置。
  11. 前記別の熱源として、地熱、地下水、海水、太陽熱温水の何れかを用いる
    ことを特徴とする請求項10に記載のヒートポンプ装置。
JP2014515556A 2012-05-18 2013-04-24 ヒートポンプ装置 Active JP5868498B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515556A JP5868498B2 (ja) 2012-05-18 2013-04-24 ヒートポンプ装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/003271 WO2013171803A1 (ja) 2012-05-18 2012-05-18 ヒートポンプ装置
JPPCT/JP2012/003271 2012-05-18
JP2014515556A JP5868498B2 (ja) 2012-05-18 2013-04-24 ヒートポンプ装置
PCT/JP2013/062133 WO2013172166A1 (ja) 2012-05-18 2013-04-24 ヒートポンプ装置

Publications (2)

Publication Number Publication Date
JPWO2013172166A1 true JPWO2013172166A1 (ja) 2016-01-12
JP5868498B2 JP5868498B2 (ja) 2016-02-24

Family

ID=49583256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515556A Active JP5868498B2 (ja) 2012-05-18 2013-04-24 ヒートポンプ装置

Country Status (5)

Country Link
US (1) US10001318B2 (ja)
EP (1) EP2863154B1 (ja)
JP (1) JP5868498B2 (ja)
CN (1) CN203323456U (ja)
WO (2) WO2013171803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909792B2 (en) * 2014-01-31 2018-03-06 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469459B1 (ko) * 2014-07-01 2014-12-08 주식회사 신진에너텍 복합 열원을 이용한 히트펌프 냉난방 시스템 및 그의 제어방법
CN105318559B (zh) * 2014-07-01 2023-05-09 贵州中建建筑科研设计院有限公司 一种太阳能与空气源热泵热水系统及控制方法
JP6109119B2 (ja) * 2014-07-10 2017-04-05 三菱電機株式会社 ヒートポンプ給湯システム
JP2016211832A (ja) * 2015-04-28 2016-12-15 ダイキン工業株式会社 利用側ユニットおよび冷凍装置
EP3109572B1 (en) * 2015-06-22 2019-05-01 Lg Electronics Inc. Refrigerator
JP6604540B2 (ja) * 2015-11-24 2019-11-13 いすゞ自動車株式会社 エンジン冷却装置
KR101673846B1 (ko) * 2016-04-11 2016-11-09 대성히트펌프 주식회사 히트펌프 시스템의 오일회수 운전제어방법 및 오일회수 운전제어기능을 갖는 히트펌프 시스템
CN106678989A (zh) * 2017-03-01 2017-05-17 苟仲武 一种改进空气源空调增加冷热源的装置及其使用方法
CN107036205A (zh) * 2017-03-22 2017-08-11 青岛新欧亚能源有限公司 利用相变热的水、地源热泵系统及制冷与制热工艺
CN110062866A (zh) * 2017-04-06 2019-07-26 松下知识产权经营株式会社 空气调节机
CN108286763B (zh) * 2017-12-26 2021-08-10 广东申菱环境系统股份有限公司 一种能量梯级利用的空调系统
EP3719409B1 (en) * 2018-02-19 2022-09-28 Daikin Industries, Ltd. Air-conditioning apparatus
CN108224848A (zh) * 2018-02-28 2018-06-29 徐生恒 兼用空气能和地能的热泵空调系统
JP7332274B2 (ja) * 2018-03-29 2023-08-23 三機工業株式会社 熱源システム
JP7359361B2 (ja) * 2018-09-28 2023-10-11 国立研究開発法人農業・食品産業技術総合研究機構 ヒートポンプ装置
JP7357324B2 (ja) * 2018-09-28 2023-10-06 国立研究開発法人農業・食品産業技術総合研究機構 マルチ熱源ヒートポンプ装置
CN110207290B (zh) * 2018-10-26 2023-11-21 华帝股份有限公司 高节能的制冷/制热循环水路系统及控制方法
KR101988495B1 (ko) * 2018-12-04 2019-06-12 (주)유천써모텍 냉방, 급탕 및 항온항습 성능이 증대되는 히트펌프 시스템
KR101980159B1 (ko) * 2018-12-04 2019-05-20 (주)유천써모텍 수열원 및 공기열원을 이용하는 복합열원 히트펌프의 열원절환 시스템
KR102004847B1 (ko) * 2019-03-07 2019-07-29 (주)유천써모텍 수열원 및 공기열원을 이용하는 복합열원 히트펌프에서 냉매 흐름제어에 의한 효율적인 열원 절환 시스템
CN110160180B (zh) * 2019-05-24 2024-07-05 清华大学 一种复合能源空气处理机组
FR3099232B1 (fr) 2019-07-26 2021-07-30 X Terma Machine thermodynamique de type pompe a chaleur a cycle reversible multisources et procede de fonctionnement
CN110486891B (zh) * 2019-08-22 2021-04-23 海信(山东)空调有限公司 一种除霜控制方法及空调器
KR102258449B1 (ko) * 2019-12-27 2021-06-01 주식회사 대흥금속 하이브리드 히트펌프 시스템
TWI718985B (zh) * 2020-09-14 2021-02-11 國立臺北科技大學 多段熱泵性能測試系統
CN112665046A (zh) * 2020-12-21 2021-04-16 安徽郁金香新能源科技有限公司 基于浅层地热能应用于锂离子动力电池车间生态体系方法
US11946669B1 (en) * 2021-09-28 2024-04-02 Garen Noel Ewbank Polymodal heat pump
CN114777350A (zh) * 2022-05-19 2022-07-22 华北电力大学 一种光伏热-地源热耦合的双蒸发器混合供热供冷系统
CN115218555B (zh) * 2022-09-15 2022-12-06 河北坤昌新能源科技有限公司 一种双热源耦合式热泵系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316927B2 (ja) * 1973-06-19 1978-06-05
JPS61272558A (ja) * 1985-05-28 1986-12-02 青樹 英夫 冷却器の熱交換器式霜取装置
JPH0886528A (ja) * 1994-09-20 1996-04-02 Sanyo Electric Co Ltd 冷凍装置
JP2006284022A (ja) * 2005-03-31 2006-10-19 Toa Tone Boring:Kk 地中熱源ヒートポンプ装置
JP2009243802A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp ヒートポンプ式空気調和装置
JP2009250495A (ja) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp 空気調和機
WO2010143373A1 (ja) * 2009-06-11 2010-12-16 パナソニック株式会社 ヒートポンプシステム
JP2011179692A (ja) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の運転制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885076A (ja) 1981-11-16 1983-05-21 松下電器産業株式会社 給湯冷暖房装置
JPH03117866A (ja) 1989-09-29 1991-05-20 Toshiba Corp ヒートポンプ式冷凍サイクル
JP3328043B2 (ja) * 1993-12-27 2002-09-24 東北電力株式会社 蓄熱式空気調和装置
US6286326B1 (en) * 1998-05-27 2001-09-11 Worksmart Energy Enterprises, Inc. Control system for a refrigerator with two evaporating temperatures
US6250090B1 (en) * 1999-09-15 2001-06-26 Lockheed Martin Energy Research Corp. Oak Ridge National Laboratory Apparatus and method for evaporator defrosting
JP2006125769A (ja) * 2004-10-29 2006-05-18 Denso Corp ヒートポンプサイクル装置
JP2008157557A (ja) * 2006-12-25 2008-07-10 Daikin Ind Ltd 空気調和装置
JP5395479B2 (ja) * 2009-03-19 2014-01-22 東芝キヤリア株式会社 空気調和システム
JP2011237887A (ja) * 2010-05-06 2011-11-24 Hitachi Plant Technologies Ltd 電子機器の冷却方法及び冷却システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316927B2 (ja) * 1973-06-19 1978-06-05
JPS61272558A (ja) * 1985-05-28 1986-12-02 青樹 英夫 冷却器の熱交換器式霜取装置
JPH0886528A (ja) * 1994-09-20 1996-04-02 Sanyo Electric Co Ltd 冷凍装置
JP2006284022A (ja) * 2005-03-31 2006-10-19 Toa Tone Boring:Kk 地中熱源ヒートポンプ装置
JP2009243802A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp ヒートポンプ式空気調和装置
JP2009250495A (ja) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp 空気調和機
WO2010143373A1 (ja) * 2009-06-11 2010-12-16 パナソニック株式会社 ヒートポンプシステム
JP2011179692A (ja) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の運転制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909792B2 (en) * 2014-01-31 2018-03-06 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
US20150121913A1 (en) 2015-05-07
CN203323456U (zh) 2013-12-04
EP2863154B1 (en) 2022-03-09
EP2863154A1 (en) 2015-04-22
US10001318B2 (en) 2018-06-19
WO2013172166A1 (ja) 2013-11-21
EP2863154A4 (en) 2016-11-30
JP5868498B2 (ja) 2016-02-24
WO2013171803A1 (ja) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5868498B2 (ja) ヒートポンプ装置
JP5395479B2 (ja) 空気調和システム
JP5427428B2 (ja) ヒートポンプ式給湯・空調装置
US20090173091A1 (en) Multi-range composite-evaporator type cross-defrosting system
WO2014054178A1 (ja) ヒートポンプ装置
JP2006258343A (ja) 空気調和装置
JPWO2014091548A1 (ja) 空調給湯複合システム
JP2009228979A (ja) 空気調和装置
CN110226068B (zh) 废热回收型混合热泵系统
JP6528078B2 (ja) 空気調和機
JP2006292313A (ja) 地中熱利用装置
EP3244141A1 (en) Defrosting with heat generated by compressor driver
EP2541170A1 (en) Air-conditioning hot-water-supply system
WO2013061473A1 (ja) 給湯空調装置
JP5145026B2 (ja) 空気調和装置
JP6888280B2 (ja) 冷凍装置
JP2006010137A (ja) ヒートポンプシステム
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
WO2013080497A1 (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
JP6143682B2 (ja) 複合熱源ヒートポンプ装置
KR101658021B1 (ko) 이원냉동사이클을 이용한 히트펌프 시스템
JP2006242480A (ja) 蒸気圧縮サイクルシステム
JP2018096575A (ja) 冷凍装置
JP4360183B2 (ja) 空気調和装置
JP2004293889A (ja) 氷蓄熱ユニット、氷蓄熱式空調装置及びその運転方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160105

R150 Certificate of patent or registration of utility model

Ref document number: 5868498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250