JPWO2013118255A1 - ハイブリッド車の変速制御装置および変速制御方法 - Google Patents

ハイブリッド車の変速制御装置および変速制御方法 Download PDF

Info

Publication number
JPWO2013118255A1
JPWO2013118255A1 JP2013557277A JP2013557277A JPWO2013118255A1 JP WO2013118255 A1 JPWO2013118255 A1 JP WO2013118255A1 JP 2013557277 A JP2013557277 A JP 2013557277A JP 2013557277 A JP2013557277 A JP 2013557277A JP WO2013118255 A1 JPWO2013118255 A1 JP WO2013118255A1
Authority
JP
Japan
Prior art keywords
output
internal combustion
combustion engine
motor
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013557277A
Other languages
English (en)
Other versions
JP5842937B2 (ja
Inventor
本多 義行
義行 本多
松永 仁
仁 松永
壮一朗 志村
壮一朗 志村
聖二 増永
聖二 増永
宗弘 勝股
宗弘 勝股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2013118255A1 publication Critical patent/JPWO2013118255A1/ja
Application granted granted Critical
Publication of JP5842937B2 publication Critical patent/JP5842937B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Abstract

内燃機関が出力した動力を、第1モータと出力部材とに分割して伝達する差動機構と、いずれかの車輪との間でトルクを授受する第2モータとを有するハイブリッド車の変速制御装置において、変速の開始時に、該変速による内燃機関の回転数の変化を促す方向に内燃機関の出力を変化させる指示を行う第1出力制御手段と、当該指示を行った時点から前記内燃機関の応答遅れに相当する時間が経過するまでの間、前記第1、第2モータについての前記変速前の制御を継続する第1回転数制御手段と、前記応答遅れに相当する時間が経過した場合に、前記内燃機関の回転数を、前記内燃機関の出力の変化によって変化する方向に変化させるように前記第1モータを制御する第2回転数制御手段と、前記内燃機関の回転数が前記変速の後の目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に変化させる指示を行う第2出力制御手段とを備えている。

Description

この発明は、駆動力源として内燃機関とモータとを備えたハイブリッド車における変速を制御する装置に関し、特に、主として内燃機関の回転数を制御するための第1のモータと、主として車両の走行のための駆動トルクを加減するトルクを出力する第2のモータとを備え、内燃機関の回転数をステップ的に変化させる変速を制御するための装置および制御方法に関するものである。
いわゆる2モータ式のハイブリッド車もしくはハイブリッド駆動装置は、内燃機関(すなわちエンジン)の出力した動力を、差動機構を主体として構成された動力分割機構によって、発電機能のある第1モータ側と出力部材側とに分割し、その第1モータによって発電した電力を、出力部材に連結されている第2モータに供給してこれをモータとして機能させるように構成されている。したがって、2モータ式のハイブリッド車では、エンジンで発生した動力の一部が、動力分割機構を介して機械的に出力部材に伝達され、かつエンジンで発生した動力の他の部分が、一旦電力に変換された後、再度、機械的な動力に変換されて出力部材に伝達される。そのため、走行のための駆動トルクを加速などの要求を満たすトルクに維持しつつ、エンジンの回転数を第1モータによって適宜に制御できるので、エンジンを燃費効率の良好な運転点で運転できる。
このような作用は、第1モータによってエンジン回転数を連続的に変化させることによって生じ、したがって2モータ式のハイブリッド車における実質的な変速比も無段変速機を搭載した車両と同様に連続的に変化する。しかしながら、車両の俊敏な挙動が要求される場合には、実質的な変速比を維持して駆動トルクを大きくし、あるいはエンジンブレーキ力を大きくする必要があり、そのような要請を満たすべく、従来、ハイブリッド車のエンジン回転数をステップ的に変化させることが行われるようになってきている。このようなエンジン回転数制御あるいは変速制御は、実質的な変速比を維持する領域あるいは車速の変化に応じてエンジン回転数が変化する領域を、車速やアクセル開度などによって表すことのできる走行状態ごとに予め定めておき、その走行状態がその領域に入った場合あるいは領域を越えて変化した場合にエンジン目標回転数(変速比)を変化させる制御であり、あるいは手動によって変速操作が行われた場合にエンジン目標回転数(変速比)を変化させる制御である。
上述したハイブリッド車では、基本的には、エンジン回転数を第1モータによって制御しているから、上記の変速要求に従ってエンジン回転数をステップ的に変化させる場合、第1モータが大きい正のトルクもしくは負のトルクを出力することになる。モータが正トルクもしくは負トルクを出力するためには、バッテリなどの蓄電装置からの放電や蓄電装置への充電などを行うことになるが、蓄電装置からの放電や蓄電装置への充電が制限されることがある。また、エンジン回転数を変化させる場合、そのイナーシャモーメントに応じたイナーシャトルクが生じ、これが蓄電装置に対する負荷となったり、あるいは制御の遅れの要因となったりすることがある。
従来、ハイブリッド車における蓄電装置の過放電や過充電を回避することを目的とした装置や、エンジンのイナーシャトルクを考慮して変速比やエンジン回転数を制御する装置が、種々提案されている。例えば、特開2008−179291号公報には、いわゆる2モータ式のハイブリッド車において、手動操作によってアップシフト操作が行われた場合の変速を迅速に生じさせることを目的とした動力出力装置が記載されている。この種のハイブリッド車では、エンジン回転数を発電機で制御しているから、エンジン回転数を迅速に、もしくはステップ的に低下させるためには、発電機による発電トルクを増大させることになるが、蓄電装置の充電容量などによって発電トルクが制限されることがある。そこで、特開2008−179291号公報に記載された装置では、エンジン回転数の低下に伴って生じるイナーシャエネルギに応じてエンジンに対する要求パワーを制限することとしている。
エンジンの回転数を変化させる場合には、イナーシャモーメントに応じたトルクが発生し、あるいは必要となり、上記の特開2008−179291号公報に記載された装置は、上述のようにイナーシャエネルギを考慮した制御を行っている。これと同様に、例えば特開2011−37400号公報には、エンジンに対する燃料の噴射を停止してエンジンを停止する過渡状態で、エンジンのイナーシャトルクを考慮してモータのトルクを制御するように構成された装置が記載されている。エンジンの回転を止めるべく発電機を作用させると、その発電機のトルクが、車両を走行させるための駆動トルクを幾分なりとも増大させるように作用するので、特開2011−37400号公報に記載された装置は、燃料の噴射を停止した後の所定時間の間は、走行のために要求されている駆動トルクからエンジンを停止させるための発電機のトルクを減じて得られる大きさのトルクを、出力軸に連結されているモータで出力させるように構成されている。また、エンジンの回転数が停止に向けて低下する場合には、エンジンからイナーシャトルクが発生するので、特開2011−37400号公報に記載された装置は、上記の所定時間が経過した後は、エンジンのイナーシャトルクと発電機のトルクとを、要求駆動力から減じたトルクを、上記のモータで出力させるように構成されている。
一方、特開2011−105240号公報には、エンジンの回転数を変化させる際の応答遅れをモータで補正するとした場合、モータの発電量が多くなって過充電が生じたり、あるいは反対にモータトルクを大きくするためにバッテリからの過放電が生じたりすることを防止するために、アクセル開度と車速とから求められる目標駆動パワーとして、現在時点より所定時間前の値を採用し、その所定時間前の目標駆動パワーに基づいて目標モータジェネレータパワーを求めるように構成された装置が記載されている。
なお、エンジンの出力あるいは回転数を制御する場合の応答遅れに対処する制御の例として、エンジンブレーキを効かせるべくダウンシフトする場合に、エンジン制御やクラッチの係合制御における遅れを考慮して、制御開始時点を早めることが特開2005−315084号公報に記載されている。
また、特開2006−63865号公報には、内燃機関のトルクを推定するにあたり、制御の応答速度を考慮し、かつその応答速度を内燃機関の回転数に応じて変更するように構成された装置が記載されている。
さらに、ハイブリッド車の制御装置として、特開2000−87774号公報には、エンジンの動作線を、定常走行状態では最大トルク線よりも低トルク側の動作線とし、急加速要求があった場合には、まず、エンジントルクを最大トルク線で示されるトルクまで増大させ、その後に、エンジン回転数を、定常走行時に使用する動作線と急加速要求による等出力線との交点として表される回転数に増大させるように構成された装置が記載されている。
上記の特開2008−179291号公報に記載されているように、エンジン回転数を低下させる際にエンジンのイナーシャエネルギを考慮してエンジン出力を低下させれば、発電機で受け持つトルクを小さくして発電量を低減することができる。しかしながら、エンジンの回転数を低下させることに伴うイナーシャエネルギを消費するのには時間を要するから、その分、エンジン回転数の低下すなわち変速が遅れる可能性がある。
また、上記の特開2011−37400号公報に記載された装置によれば、エンジンのイナーシャトルクを考慮してモータのトルクを制御しているので、エンジンを停止する際の過渡時に駆動トルクが不安定になるなどの事態を抑制することができる。しかしながら、その制御は、エンジンの回転数変化に伴うイナーシャトルクがなくなるまでのモータのトルクを制御するものであり、したがってエンジンのイナーシャトルクが生じなくなるまでの時間を短縮するようには作用しないから、エンジン回転数の低下すなわち変速が遅れる可能性がある。
さらに、上記の特開2011−37400号公報に記載された装置によれば、目標駆動パワーとして所定時間前の値を採用するから、例えばアクセルペダルを戻したいわゆるパワーオフの状態では、車速の低下によってエンジン回転数が低下し、モータの発電量を特に大きくする必要がなく、過充電を回避もしくは抑制することができるものと考えられる。しかしながら、エンジン回転数を積極的に低下させる制御を行うものではないので、エンジン回転数を変化させる制御応答性が良好にならない可能性がある。このような技術的課題は、上記の特開2005ー315084号公報や特開2006ー63865号公報に記載された装置にも内在している。
そして、上記の特開2000−87774号公報に記載された装置による制御は、急加速要求があった場合のエンジントルクを制御するものであってエンジン回転数は連続的に変化させるように制御している。しかも、制御の手順は、第1にエンジントルクを増大させ、第2にエンジン回転数を加速要求後の等出力線に沿って変化させるものであるから、エンジン回転数の増大は不可避的に遅れざるを得ず、またエンジンなどのイナーシャモーメントを考慮した制御を行うようには構成されていないので、マニュアル変速などの操作もしくは制御によってエンジン回転数をステップ的に変化させる際の応答遅れが顕著になる可能性がある。
この発明はいわゆる2モータ式のハイブリッド車において、エンジン目標回転数をステップ的に変化させる際の制御応答性を向上させることができ、併せて過充電や過放電を生じず、しかもショックを抑制することのできる変速制御装置を提供することを目的とするものである。
この発明の変速制御装置は、上記の目的を達成するために、内燃機関が出力した動力を、発電機能とトルクを出力する機能との少なくともいずれか一方の機能を備えた第1モータと出力部材とに分割して伝達するとともに前記内燃機関の回転数を前記第1モータの回転数に応じた回転数に設定することのできる差動機構と、トルクを出力する機能と発電機能との少なくともいずれか一方の機能を備えかついずれかの車輪との間でトルクを授受する第2モータとを有するハイブリッド車の変速制御装置であって、前記内燃機関の回転数をステップ的に変化させる変速の開始時に、その変速による内燃機関の回転数の変化を促す方向に内燃機関の出力を変化させる指示を行う第1出力制御手段と、前記第1出力制御手段によって前記内燃機関の出力を変化させる指示を行った時点から前記内燃機関の応答遅れに相当する時間が経過するまでの間、前記第1モータおよび第2モータについての前記変速前の制御を継続する第1回転数制御手段と、前記内燃機関の応答遅れに相当する時間が経過した場合に、前記内燃機関の回転数を、前記内燃機関の出力の変化によって変化する方向に変化させるように前記第1モータを制御する第2回転数制御手段と、前記内燃機関の回転数が前記変速の後の目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に変化させる指示を行う第2出力制御手段とを備えていることを特徴とするものである。
この発明における前記第1出力制御手段は、前記変速が前記内燃機関の回転数をステップ的に低下させるアップシフトの場合に前記内燃機関の出力を低下させる指示を行う手段を含み、前記第2回転数制御手段は、前記内燃機関の応答遅れに相当する時間が経過した後に前記内燃機関の回転数を低下させることに伴って前記第1モータで発電した電力を前記第2モータに供給して第2モータから前記出力部材にトルクを出力させることにより第1モータで発電した電力を第2モータで消費させる手段を含み、前記第2出力制御手段は、前記内燃機関の回転数が前記変速の後の前記目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に増大させる指示を行う手段を含むことができる。
その場合、前記第1出力制御手段は、前記内燃機関の出力を、アップシフト後に設定するべき出力から前記内燃機関の回転数の変化に伴うイナーシャトルクに相当する出力を減じた出力に指示するように構成されていてよい。
また、アップシフト制御を行う構成では、前記第2出力制御手段は、前記内燃機関の出力が実際に変化するまでの制御遅れによって内燃機関の回転数が変速後の目標回転数より低下しないタイミングで前記内燃機関の出力の増大指示を行うように構成され、かつ前記第2回転数制御手段は、前記第2出力制御手段が前記内燃機関の出力を増大させる指示を行った後前記内燃機関の応答遅れに相当する時間が経過するまでの間は、その出力の増大の指示を行う前の低下速度で前記内燃機関の回転数を低下させるよう前記第1モータを制御する手段を含むことができる。
さらに、アップシフト制御を行う構成では、前記第2回転数制御手段は、前記内燃機関の出力の増大の指示の後前記応答遅れに相当する時間が経過した際に前記内燃機関の回転数の低下速度を減じるように構成され、かつ前記第2出力制御手段は、前記内燃機関の出力の増大が指示された場合に前記第2モータのトルクを前記変速の後の目標トルクに向けて低下させるように構成されていてよい。
一方、この発明の変速制御装置では、前記第1出力制御手段は、前記変速が前記第2モータによってエネルギ回生を行いつつ前記内燃機関の回転数をステップ的に増大させるダウンシフトの場合に前記内燃機関の出力を増大させる指示を行う手段を含み、前記第2回転数制御手段は、前記内燃機関の応答遅れに相当する時間が経過した後に前記第2モータによるエネルギ回生で生じた電力を前記第1モータに供給して前記第1モータが出力するトルクによって前記内燃機関の回転数を増大させることにより第2モータで発電した電力を第1モータで消費させる手段を含み、前記第2出力制御手段は、前記内燃機関の回転数が前記変速の後の前記目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に低下させる指示を行う手段を含むことができる。
その場合、前記第1出力制御手段は、前記内燃機関の出力を、ダウンシフト後に設定するべき出力に前記内燃機関の回転数の変化に伴うイナーシャトルクに相当する出力を加えた出力に指示するように構成されていてよい。
また、ダウンシフト制御を行う構成の場合、前記第2出力制御手段は、前記第1出力制御手段による前記内燃機関の出力の増大を終了させる手段を含むことができる。
さらに、ダウンシフト制御を行う構成の場合、前記第2回転数制御手段は、前記内燃機関の回転数の変化の勾配を、前記第2出力制御手段が前記内燃機関の出力を変速後の出力に変化させる指示を行った後は、その指示を行う前より小さくする手段を含むことできる。
そして、この発明に係る変速制御方法は、上記の変速制御装置による制御を実行する方法である。
したがってこの発明に係る変速制御装置もしくは変速制御方法によれば、内燃機関の出力を変更する指示を行った後、応答遅れによって内燃機関の出力が未だ変化していない状態では、各モータの制御を変速前の制御に維持するので、いずれかのモータに過剰な負荷が掛かって過充電となったり、あるいは過放電となったりすることを防止もしくは抑制することができる。また、出力の変更に伴って内燃機関の回転数が変化し始めると第1モータによって内燃機関の回転数を変速後の回転数に向けて変化させるように第1モータを制御し、その際に第2モータとの間で電力を授受して、一方のモータで発生した電力を他方のモータで消費するので、電力収支をバランスさせることができる。さらに、その場合の内燃機関の回転数の変化は、出力の変更と第1モータによる制御とによって生じ、したがって迅速かつ円滑に内燃機関の回転数を変化させて違和感やショックがなく、しかも変速時間を短くして心地良い変速を達成することができる。
この発明に係る変速制御装置で実行されるアップシフト制御の一例を説明するためのフローチャートである。 その制御を行った場合のエンジン目標回転数、エンジン目標出力、エンジンおよび第2モータ・ジェネレータのトルク、ならびにハイブリッド車の目標駆動力の変化の一例を示すタイムチャートである。 そのアップシフト変速中におけるエンジントルクおよび各モータ・ジェネレータのトルク(もしくは発電量)の関係を説明するための、動力分割機構についての共線図である。 モータ・ジェネレータによってエンジン回転数を強制的に低下させる制御を行う比較例でのエンジントルクおよび各モータ・ジェネレータのトルク(もしくは発電量)の関係を説明する、動力分割機構についての共線図である。 この発明に係る変速制御装置で実行されるダウンシフト制御の一例を説明するためのフローチャートである。 その制御を行った場合のエンジン目標回転数、エンジン目標出力、エンジンおよび第2モータ・ジェネレータのトルク、ならびにハイブリッド車の目標駆動力の変化の一例を示すタイムチャートである。 そのダウンシフト変速中におけるエンジントルクおよび各モータ・ジェネレータのトルク(もしくは発電量)の関係を説明するための、動力分割機構についての共線図である。 モータ・ジェネレータによってエンジン回転数を強制的に増大させる制御を行う比較例でのエンジントルクおよび各モータ・ジェネレータのトルク(もしくは発電量)の関係を説明する、動力分割機構についての共線図である。 この発明で対象とすることのできる2モータタイプのハイブリッド駆動装置の一例を示す模式図である。 その動力分割機構についての共線図である。
この発明で対象とするハイブリッド車もしくはその駆動装置は、エンジン回転数あるいは実質的な変速比を連続的に変化させることができる機構を備えており、この発明係る変速制御装置もしくは変速制御方法は、そのエンジン回転数もしくは実質的な変速比をステップ的に変化させるように構成されている。そこで、先ず、駆動系統の構成について説明すると、図9に示す例は、いわゆる2モータタイプのハイブリッド駆動装置であって、エンジン(ENG)1が出力した動力を動力分割機構2によって出力軸3側と第1モータ・ジェネレータ(MG1)4側とに分割するように構成されている。そのエンジン1は、ガソリンエンジンやディーゼルエンジンなどの内燃機関であり、そのクランクシャフトなどの出力要素が動力分割機構2に連結されている。動力分割機構2は、図9に示す例では、シングルピニオン側の遊星歯車機構によって構成されており、サンギヤ5とリングギヤ6とが同心円上に配置され、これらサンギヤ5およびリングギヤ6に噛み合っているピニオンギヤがキャリヤ7によって自転かつ公転できるように保持されている。エンジン1は、そのキャリヤ7に連結され、したがってキャリヤ7が入力要素になっている。また、サンギヤ5には第1モータ・ジェネレータ4が連結され、したがってサンギヤ5が反力要素となっている。さらに、リングギヤ6がこの発明における出力部材に相当する出力軸3に連結され、したがってリングギヤ6が出力要素となっている。
また、出力軸3には第2モータ・ジェネレータ(MG2)8が変速部9を介して連結されている。この変速部9は、第2モータ・ジェネレータ8のトルクを増大もしくは減少させて出力軸3に伝達する変速機構によって構成されており、その変速比は所定の一つの値に固定されていてもよく、あるいは複数の変速比に切り替えられるように構成されていてもよい。
各モータ・ジェネレータ4,8は、例えば永久磁石式の同期電動機によって構成され、コイルに通電することによりモータとして機能してトルクを出力し、またロータが外力によって強制的に回転させられることにより発電機として機能し、電力を発生するように構成されている。これらの各モータ・ジェネレータ4,8は、図示しないインバータを介してバッテリなどの蓄電装置に電気的に接続され、また一方のモータ・ジェネレータで発電した電力を他方のモータ・ジェネレータに供給できるように構成されている。そして、マイクロプロセッサーを主体にして構成された電子制御装置(ECU)10が設けられ、この電子制御装置10によって各モータ・ジェネレータ4,8の回転数やトルク、発電量、エンジン1の出力などを制御するように構成されている。なお、エンジン1は、吸入空気量や燃料供給量、点火時期などが電気的に制御され、それに伴ってトルクや回転数が電気的に制御されるように構成されている。
図10は、上記の動力分割機構2を構成している遊星歯車機構についての共線図であり、このエンジン1が出力した動力を出力軸3側と第1モータ・ジェネレータ4側とに分割するいわゆる通常のハイブリッドモードでは、第1モータ・ジェネレータ4が発電機として機能させられ、発電に伴うトルクがサンギヤ5にいわゆる反力トルクとして作用する。これに伴って、出力要素であるリングギヤ6には、エンジントルクを増幅させたトルクが生じる。また、第1モータ・ジェネレータ4で得られた電力は、第2モータ・ジェネレータ8に供給されてこれがモータとして機能し、その出力トルクが変速部9を介して出力軸3に伝達される。すなわち、エンジン1が出力した動力の一部は、動力分割機構2を介して出力軸3に伝達され、かつ他の動力が一旦電力に変換された後、再び機械的な動力に変換されて出力軸3に伝達される。
この発明で対象とするハイブリッド車もしくはハイブリッド機構は、エンジンの回転数を制御するように機能するモータと、そのモータとの間で電力を授受して、走行のための駆動トルクを加減する他のモータとを備えていればよく、したがって図9に示す第2モータ・ジェネレータ8および変速部9は、この発明における出力部材に相当する前記出力軸3に連結する替わりに、エンジン1から動力が伝達される車輪以外の車輪に連結されて、車両の駆動トルクを加減するように構成されていてもよい。
上記のエンジン1および第1モータ・ジェネレータ4ならびに第2モータ・ジェネレータ8の制御について更に具体的に説明すると、車両の燃費を優先した通常のハイブリッドモードでは、アクセル開度で代表させることのできる駆動要求量と車速とに基づいて要求駆動力が求められる。これは、従来知られているように、予め用意したマップを使用して行うことができる。その要求駆動力と車速とからエンジン1の要求出力(目標出力)が求められる。エンジン1の出力は、エンジントルクとエンジン回転数との積として表すことができ、こうして表されるエンジン1の運転点が燃費の良い運転点となるようにエンジン回転数が求められる。各運転点の燃費は予め計測してマップとして用意しておくことができるから、最適燃費となるエンジン回転数はそのマップから求めることができる。前述したように、エンジン1の回転数は第1モータ・ジェネレータ4によって制御できるから、燃費が最適となる回転数へ制御は、例えば第1モータ・ジェネレータ4を発電機として機能させ、そのトルクをエンジン1に対して反力トルクとして作用させることにより行うことができる。この制御は、エンジン1についての目標回転数が既に求められているので、第1モータ・ジェネレータ4の回転数をフィードバック制御することにより行うことができる。
こうしてエンジン1の目標出力および目標回転数が求められるので、その目標出力および目標回転数から目標トルクが求められる。2モータタイプのハイブリッド車もしくはハイブリッド駆動装置では、図10に示す共線図から知られるように、第1モータ・ジェネレータ4を発電機として機能させることにより、その第1モータ・ジェネレータ4のトルクによってエンジントルクが増大させられたトルクが出力軸3に生じる。そして、第2モータ・ジェネレータ8は、第1モータ・ジェネレータ4で発電された電力が供給されてトルクを出力し、そのトルクは、エンジン1から出力軸3に伝達されたトルクを、走行のための目標駆動トルクから減じたトルクとして求められる。各モータ・ジェネレータ4,8は、こうして求められたトルクを出力するように電子制御装置10によって制御される。
ハイブリッド車は、このようにエンジン目標回転数を駆動要求量や車速に応じて連続的に変化させるように構成されている。一方、エンジン回転数は、第1モータ・ジェネレータ4によって制御できるから、エンジン回転数を、有段変速機を搭載した車両と同様にステップ的に変化させるように制御することもできる。このような運転モード(走行モード)は従来知られており、複数の変速比領域もしくは変速段を予め用意してマップなどの形のデータとして電子制御装置10に記憶させておき、アクセル開度などの駆動要求量と車速などとに基づいてその変速比領域もしくは変速段を選択し、あるいは手動による変速操作に応じてその変速比領域もしくは変速段を選択し、その選択された変速比領域もしくは変速段ごとに予め用意されている演算式もしくはマップなどに基づいてエンジン目標回転数を設定する。
エンジン回転数をステップ的に変化させる場合、エンジン1には不可避的な制御応答遅れがあり、またエンジン1の回転角加速度が大きくなることによりイナーシャトルクが大きくなる。そこで、この発明に係る変速制御装置は、各モータ・ジェネレータ4,8に掛かる負荷を低減して過充電や過放電を回避もしくは抑制し、また変速ショックを良好にするとともに変速応答性を良好にするために、以下に説明する制御を実行するように構成されている。図1は、エンジン回転数をステップ的に低下させるアップシフトの制御例を説明するためのフローチャートであって、アップシフト指令があった場合、すなわち図1におけるステップS1で肯定的に判断された場合、アップシフト制御における「フェーズ(phase)1」のフラグが立てられる(ステップS2)。このフラグおよび以下に述べる各フラグは、図1に示す制御に関連する他の制御で使用するフラグである。なお、アップシフト指令は、前述したように、アクセル開度や車速などの走行状態が、予め定めた低速側の変速比領域から高速側の変速比領域に変化することにより発せられる。あるいは、図示しないシフト装置がアップシフト側にマニュアル操作されることにより発せられる。このアップシフト指令がないことによりステップS1で否定的に判断された場合には、特に制御を行うことなくリターンする。
上記のステップS2の制御に続けて、あるいはステップS2の制御と相前後して、エンジンパワーPeを低下させる要求が出力される(ステップS3)。この低下させるエンジンパワーPeの目標値は、アップシフト後のパワーからエンジン回転数を低下させることにより放出されるイナーシャエネルギ(イナーシャトルク)を減じた値である。
そのアップシフト後のパワーは、例えばアクセルペダル(図示せず)が戻されてアクセル開度が減少し、それに伴って走行状態が高速段側の変速比領域に入った場合には、そのアクセル開度に応じたパワーである。また、アップシフト後のパワーから更に低下させるイナーシャトルクに応じたパワーは、エンジン回転数がアップシフトに伴って低下することによりエンジン1から放出されるイナーシャトルクに応じたパワーであり、したがってエンジン1のイナーシャモーメントと回転数の変化勾配すなわち回転角加速度とに基づいて求めることができる。
さらに、エンジンパワーPeの低下要求(もしくは低下指令)に伴って実行されるエンジンパワーPeの低下制御は、従来知られている各種の制御であってよい。例えば、燃料の供給量(もしくは噴射量)を低減する制御、ガソリンエンジンであれば点火時期を遅角する制御、さらにスロットル開度を減少させて吸入空気量を絞る制御などであってよい。これらの制御のうち、燃料の供給を停止もしくは低減する制御や点火時期の遅角制御では、排ガスが悪化する可能性があり、これに対してスロットル開度を減少させる制御では、エンジン出力の低下応答遅れが燃料供給停止や点火時期の遅角制御に比較して長くなるものの、排ガスの悪化を回避もしくは抑制することができる。
これらいずれの制御であっても、エンジンパワーを低下させる指令信号の出力から実際にエンジンパワーが低下するまでには不可避的な応答遅れがある。その応答遅れは、エンジン1が大きいイナーシャモーメントを有していることや吸気量が直ちには減少しないことなどが要因となっており、したがって応答遅れ時間(もしくはむだ時間)Tdの長さは、エンジン1の容量や回転数、出力低減の制御手段などによって異なる。なお、その応答遅れ時間Tdの長さは、予め測定しておくことができる。
したがって、ステップS3でエンジンパワーPeの低下要求(低下指令)を行ってもエンジン出力は直ちには低下しないので、走行のための駆動トルクを制御している第2モータ・ジェネレータ8および第1モータ・ジェネレータ4についての制御を、アップシフト指令を行う以前と同様の制御とする(ステップS4)。前述したハイブリッド車を有段変速機を搭載した車両と同様に制御する場合、各変速比領域では車速やアクセル開度(駆動要求量)に応じてエンジン回転数が変化するようにエンジン目標回転数Netを設定する。なお、車速や駆動要求量とエンジン回転数との関係は、適宜に設定することができ、各変速比領域毎に異なっている場合もあり、あるいはいずれかの変速比領域では同じになる場合もある。その関係は、各変速比領域ごとにマップもしくは演算式として予め用意し、電子制御装置10に記憶させておくことができる。したがって、ステップS4で「従前の制御を継続する」とは、車速やアクセル開度と車速との関係を、アップシフトの判断が成立する前の低速側の変速比領域における関係に維持する制御、もしくはエンジン目標回転数Netを維持する制御である。より具体的には、第2モータ・ジェネレータ8の目標駆動力についての制御を、アップシフト前の低速側の変速比領域におけるのと同様に継続する。その場合、上記のむだ時間Tdの間にアクセル開度が変化した場合、アクセル開度の変化に応じて第2モータ・ジェネレータ8の目標駆動力(すなわち車両の目標駆動力)を変化させることができる。
したがって、アップシフト指令を発した直後でエンジン1の応答遅れの時間Tdの間では、エンジン回転数Neを第1モータ・ジェネレータ4によって強制的に低下させる制御が実行されないので、第1モータ・ジェネレータ4による発電量が特に増大することはない。また、各モータ・ジェネレータ4,8については、アップシフトの判断が成立する前の制御を継続するので、第1モータ・ジェネレータ4で発電した電力を第2モータ・ジェネレータ8が消費することになり、電力収支が特に変化することはない。言い換えれば、過充電や過放電は生じない。
上記のステップS4に続けて、エンジン1についての応答遅れ時間Tdが経過したか否かが判断される(ステップS5)。その応答遅れ時間Tdは、前述したように予め定められている時間であり、ステップS1でのアップシフト指令の時点からの経過時間が応答遅れ時間Tdに達するとステップS5で肯定的に判断される。こうしてステップS5で肯定的に判断された場合には、アップシフト制御における「フェーズ2」のフラグが立てられる(ステップS6)。なお、ステップS5で否定的に判断された場合には、ステップS2に戻ってステップS3およびステップS4での制御を継続する。
アップシフト制御における「フェーズ2」では、エンジン1の出力を低下させる制御についての遅れ時間Tdが経過してエンジン1の出力が実際に低下し始め、またエンジン回転数Neが低下し始める。したがってその「フェーズ2」では、先ず、エンジン目標回転数Netの低下要求(低下指令)を発する(ステップS7)。アップシフト後のエンジン目標回転数Netは車速やアクセル開度などに応じて予め決まり、そのエンジン目標回転数Netは定常目標回転数Nets と言うことができ、ステップS7ではエンジン回転数をその定常目標回転数Nets に向けて低下させる際の過渡的なエンジン目標回転数(すなわち過渡目標回転数)Nett を次第に低下させる。このように過渡目標回転数Nettを設定するのは、イナーシャトルクによるショックや回転数の急激もしくは緩慢な変化による違和感などを生じさせないようにエンジン回転数を変化させるためであり、従来知られているように、例えば定常目標回転数Nets をなまし処理もしくは一次遅れ処理した値が過渡目標回転数Nett とされる。エンジン回転数Neがその過渡目標回転数Nets になるように第1モータ・ジェネレータ4のトルクあるいは回転数が制御され、その結果、実際のエンジン回転数Neが過渡目標回転数Nett を定めているなまし係数あるいは一次遅れ係数で定まる勾配(変化率)dNetで次第に低下する。
上記の遅れ時間あるいはむだ時間Tdが経過した後は、エンジン1の制御上の出力トルク(いわゆる図示トルク)が低下し始めるが、回転数が低下することに伴うイナーシャトルクが生じる。また、エンジン1のパワー低下量は前述したようにイナーシャトルクを見込んだ量、もしくはイナーシャトルクに相当する量である。したがって、エンジン1の図示トルクが低下しても、エンジン1から出力されるトルクは特には低下せずに、ほぼ従前のトルクが維持される。また、第1モータ・ジェネレータ4はエンジン回転数をこのように低下させることにより発電を行う。その電力は、前述したように第2モータ・ジェネレータ8に供給され、第2モータ・ジェネレータ8で消費される。その場合に第2モータ・ジェネレータ8の目標駆動力は、従前と同様に、アップシフト前の低速側の変速比領域で設定されていた目標駆動力とされる。すなわち、各モータ・ジェネレータ4,8で発電し、また消費する電力はほぼ均等に維持され、電力収支が悪化することはない。
ついで、上記の過渡目標回転数Nett と定常目標回転数Nets との差が予め定めた基準値αより小さくなったか否かが判断される(ステップS8)。第1モータ・ジェネレータ4は、エンジン回転数Neを所定の勾配dNetで次第に低下させるようにフィードバック制御され、その回転数制御に不可避的な遅れがあるから、エンジン回転数Neが定常目標回転数Nets を超えて低下しないように、すなわちアンダーシュートが生じないように、エンジンパワーPeやエンジン回転数Neを低下させる制御を終了するための制御を前出しして行う。その判断を上記の基準値αによって行うこととしてあり、したがってその基準値αは、エンジン1や第1モータ・ジェネレータ4の応答遅れ時間や最終的な駆動トルクの変化の状態もしくはショックの有無もしくは程度などを考慮して、予め実験などによって決められる。
過渡目標回転数Nets が十分に低下していないことによりステップS8で否定的に判断された場合には、ステップS6に戻ってエンジン目標回転数Netの低下要求(低下指令)を継続して行う。これに対してステップS8で肯定的に判断された場合には、アップシフト制御における「フェーズ3」のフラグが立てられ(ステップS9)、またエンジンパワーPeの低下要求(低下指令)が終了される(ステップS10)。上述したステップS3で開始されているエンジンパワーPeの低下要求は、エンジン回転数の低下に伴って発生するイナーシャトルクに相当するパワーをアップシフト後のパワーから減じる低下制御であり、ステップS10ではそのイナーシャトルクに相当するパワーの低下を終了する。したがってエンジンパワーPeの目標値は、アップシフト後に設定するべきエンジンパワーである。より具体的には、アップシフト後のアクセル開度に対応するスロットル開度である。
エンジンパワーPeの低下要求を終了する場合、上記のステップS3で低下要求を行う場合と同様に、要求値(指令値)をステップ的に変化させるが、エンジン1には応答遅れがあるから、エンジン1の図示トルクや実際に出力されるトルクは、直ちには低下しない。しかしながら、エンジン1による駆動トルクはいずれは低下するので、最終的に駆動力が急激に変化したり、それに伴ってショックが生じないように、第2モータ・ジェネレータ8の目標駆動力(過渡目標駆動力)を予め定めた勾配(変化率)で徐々に低下させる(ステップS11)。
そして、ステップS10でエンジンパワーPeの低下要求の時点からの経過時間が、エンジン1の応答遅れ時間Tdに達したか否かが判断される(ステップS12)。なお、その応答遅れ時間Tdは、実験やシミュレーションなどによって予め定められており、またエンジン回転数などの車両の走行状態に応じてマップ化された値であってもよい。遅れ時間Tdが経過していないことによりステップS12で否定的に判断された場合には、上述したステップS9に戻り、ステップS10およびステップS11の制御を継続する。これに対して遅れ時間Tdが経過してステップS12で肯定的に判断された場合には、アップシフト制御についての「フェーズ4」のフラグが立てられる(ステップS13)。この「フェーズ4」では、エンジンの目標回転数(過渡目標回転数)Nett を低下させる勾配dNetが低減される(ステップS14)。これは、エンジン回転数Neが定常目標回転数Nets を超えて低下しない(アンダーシュートしない)ようにするための制御であり、その低下勾配dNetは実験やシミュレーションなどによって予め決めておくことができる。エンジン回転数Neの過渡目標回転数Nettの低下勾配をこのように低減することにより第1モータ・ジェネレータ4での発電量が減少するので、目標駆動力すなわち第2モータ・ジェネレータ8の出力目標値の低下勾配dMg2t が、上記の過渡目標回転数Nett の低下勾配の低減に応じた勾配に設定される(ステップS15)。すなわち、電力収支が悪化せず、かつ駆動トルクの急激な変化が生じないように過渡目標回転数Nett が制御される。
このようにして低下させる過渡目標回転数Nett と定常目標回転数Nets との差が所定の判定値βより小さくなったか否かが判断される(ステップS16)。この判断は、要は、アップシフトの終了を判断するものであり、したがって判定値βは、「0」に近い小さい値である。このステップS16で否定的に判断された場合には、過渡目標回転数Nett が未だ大きく、定常目標回転数Nets に十分に近づいていないことになるので、ステップS13に戻って「フェーズ4」の制御が継続される。すなわち、低減した低下勾配でエンジン目標回転数Netを低下させ、また過渡目標駆動力を変速後の定常目標駆動力に向けて次第に低下させる制御が継続される。これに対してステップS16で肯定的に判断された場合には、エンジン回転数Neが変速後の目標回転数である定常目標回転数Nets にほぼ一致してアップシフトが終了したことになるので、制御ステップはリターンして図1に示す制御を終了する。したがって、各フラグはリセットされ、またエンジン目標回転数Netを低下させる制御は終了され、アクセル開度などの駆動要求量や車速に基づいてエンジン目標回転数が設定される。
エンジン回転数もしくは実質的な変速比を有段的に変化させることのできる2モータタイプのハイブリッド車において、上記の図1に示す制御を第3速から第4速へのアップシフトの際に実行した場合のエンジン目標回転数、エンジン目標出力、エンジン1および第2モータ・ジェネレータ8のトルク、ならびにハイブリッド車の目標駆動力の変化の一例を図2にタイムチャートで示してある。第3速での制御が実行され、かつアクセルペダルが踏み込まれて、エンジン回転数およびエンジン出力が増大している状態で、エンジン回転数が高くなったこと、あるいは車速がある程度速くなったことにより、運転者がアクセルペダルを所定開度戻すと、車速およびアクセル開度に基づいてマップから求められる変速段が第4速になり、その結果、第4速へのアップシフトの判断が成立する(t1 時点)。したがって、前述した「フェーズ1」の制御が開始される。具体的には、このt1 時点にエンジン1についての定常目標回転数Nets が第4速での回転数に低下させられ、また目標駆動力が第4速での定常目標値に低下させられる。
これに対してエンジン目標出力は、アクセル開度が減じられて変速判断が成立した第4速での定常目標出力から、エンジン1の回転数の低下に伴って発生するイナーシャトルクに相当する出力を減じた目標値に低下させられる。また、このt1 時点では、第1モータ・ジェネレータ4によってエンジン回転数を強制的に低下させる制御は実行されず、第1モータ・ジェネレータ4は第3速での制御と同様に制御されるので、第1モータ・ジェネレータ4から電力が供給される第2モータ・ジェネレータ8についても、第3速での制御が継続される。すなわち、第2モータ・ジェネレータ8の過渡目標駆動力が第3速での制御と同様に制御されるから、車両の全体としての目標駆動力は第3速での駆動力に維持される。なお、その間にアクセル開度が変化すれば、第3速での制御に従って過渡目標駆動力が変化する。
エンジン1の制御についての遅れ時間(むだ時間)Tdが経過すると(t2 時点)、前述した「フェーズ2」の制御が開始される。エンジン目標出力を低下させる制御(例えばスロットル開度を減じる制御)が実行されることによるエンジン出力の低下がt2 時点から生じる。これを図2には破線で示してある。また、このt2 時点にエンジン回転数Neを低下させる制御が開始される。これは、前述したように、定常目標回転数Nets をなまし処理もしくは一次遅れ処理した過渡目標回転数Nett を設定し、その過渡目標回転数Nett に追従してエンジン回転数Neが変化するように、第1モータ・ジェネレータ4が制御される。図2に示す例では、第1モータ・ジェネレータ4が発電機として機能し、その発電に要するトルクがエンジン回転数を低下させるトルクとして作用するが、エンジン1自体は目標出力が低下させられてパワーが低下していることにより回転数を低下させているので、第1モータ・ジェネレータ4の発電量は特には大きくならず、その電力は第2モータ・ジェネレータ8に供給されて、第2モータ・ジェネレータ8が駆動力を出力することにより消費される。すなわち、電力収支が悪化することはない。言い換えれば、各モータ・ジェネレータ4,8が接続されている蓄電装置(図示せず)の過充電あるいは過放電が回避される。また、エンジン回転数はスムースかつ迅速に目標値に向けて低下する。
そして、過渡目標回転数Nett と定常目標回転数Nets との差が前述した基準値αになるまで過渡目標回転数Nett が低下すると(t3 時点)、前述した「フェーズ3」の制御が開始される。すなわち、エンジン目標出力の低下制御が終了する。図2に示す例では、第4速で定常目標出力に対して低下させられていたエンジン目標出力が、第4速での定常目標出力にまで増大させられる。エンジン目標出力をこのように変化させることに伴って実際のエンジン出力(図示トルク)が遅れ時間の後に増大するので、このような変化を見越して、第2モータ・ジェネレータ8の過渡目標駆動力が次第に低減される。なお、第2モータ・ジェネレータ8の駆動力は電気的な制御であることにより、エンジン1に比較して迅速に変化させることができ、したがってエンジン1の実際のトルクが変化し始めた時点に第2モータ・ジェネレータ8の出力制御を開始してもよいが、ここで説明している具体例では、駆動力の急激な変化やそれに伴う違和感を回避もしくは抑制するために、t3 時点から第2モータ・ジェネレータ8の過渡目標出力を低下させることとしてある。したがって、その低下勾配は、実験やシミュレーションで予め違和感とならないように定めることができる。
エンジン出力の制御遅れ時間Tdが経過すると(t4 時点)、前述した「フェーズ4」の制御が開始される。t4 時点からはエンジン1の実出力が低下し始めるので、過渡目標回転数Nett の低下勾配dNetが低減され、またそれに応じて第2モータ・ジェネレータ8の過渡目標駆動力の低下勾配が設定される。エンジン回転数Neは、前述したように第1モータ・ジェネレータ4が発電機として機能することにより制御され、また第1モータ・ジェネレータ4で発生した電力は第2モータ・ジェネレータ8に供給されて消費されるから、電力収支のバランスは従前と同様に維持される。そして、エンジン1についての過渡目標回転数Nett が第4速での定常目標回転数Nets にほぼ一致すると、すなわちこれらの目標回転数の差が上述した判定値βにまで減少すると、変速制御が終了し、エンジン1および各モータ・ジェネレータ4,8の通常制御が実行される。この通常制御とは、2モータタイプのハイブリッド車で実行されている制御であって、車速やアクセル開度などに基づいてエンジン1の目標出力を算出し、その目標出力を最適燃費で達成する目標回転数を求め、エンジン1の回転数がその目標回転数となるように第1モータ・ジェネレータ4を制御し、さらにその第1モータ・ジェネレータ4で発生した電力を第2モータ・ジェネレータ8に供給して第2モータ・ジェネレータ8から駆動輪にトルクを出力する。
ここで変速中におけるエンジントルクおよび各モータ・ジェネレータ4,8のトルク(もしくは発電量)の関係を、前述した動力分割機構2についての共線図を使用して説明すると、図3において、黒く塗りつぶした矢印がアップシフト前もしくはアップシフト開始時のトルクを示しており、白抜きした矢印がアップシフト中のトルクを示している。前述したようにこの発明に係る変速制御装置では、アップシフトの際にエンジン(ENG)1の出力が遅れ時間の経過後に実際に低下し始めた際に第1モータ・ジェネレータ4によってエンジン回転数を低下させるから、アップシフト中のエンジン1の軸トルクTerは、低下させられたスロットル開度に応じたいわゆる図示トルクTetと、回転数の低下に伴うイナーシャトルクTeiとを加えたものとなる。その図示トルクTetはエンジンパワーPeの低下要求に応じて実際に低下しているから、軸トルクTerはアップシフト開始時のトルク程度になっている。したがって、エンジン回転数を制御している第1モータ・ジェネレータ4のトルクTmg1 は、エンジン1の制御遅れ時間Tdが経過するまでは従前と同様に維持されるうえに、エンジン回転数Neを低下させる場合には、エンジン1の軸トルクTerが特には大きくなっていないので、従前のアップシフト開始時のトルク程度に維持される。また、エンジン1の軸トルクTerがイナーシャトルクを含めても特に増大していないので、動力分割機構2で分割されて出力軸3に伝達されるトルクは従前と特には変わることがなく、したがって第2モータ・ジェネレータ8が出力するべきトルクTmg2 はアップシフト前もしくはアップシフト開始時とほぼ同様になる。このように、第1モータ・ジェネレータ4の発電負荷が特に増大することがないうえに、第2モータ・ジェネレータ8では第1モータ・ジェネレータ4で発電した電力を消費することになるので、電力収支がバランスする。
比較のために、制御遅れによるエンジンパワーの実際の低下を待たずに第1モータ・ジェネレータ4によってエンジン回転数を低下させる場合の各トルクの関係を図4に示してある。この場合には、エンジン1の図示トルクTetがアップシフト前のトルクを維持している状態で、その回転数を低下させることになるので、エンジン1の軸トルクTerは、図示トルクTetにイナーシャトルクTeiを加えたものとなり、アップシフト直前のトルクより大きくなる。第1モータ・ジェネレータ4はこのように大きいエンジン1の軸トルクTerに対抗するトルクTmg1 を出力する必要があるので、その発電量が増大する。これに対して、エンジン1から動力分割機構2を介して出力軸3に伝達されるいわゆる直行トルクは、エンジン1の軸トルクTerが大きくなっていることにより増大し、したがって第2モータ・ジェネレータ8によるいわゆるアシストトルクTmg2 は直行トルクの増大分、小さくする必要がある。そのため、第2モータ・ジェネレータ8で消費する電力量が減少するので、各モータ・ジェネレータ4,8での電力収支が崩れてしまい、発電量の過剰分を蓄電装置に充電するとすれば、過充電が生じて蓄電装置の耐久性が低下する可能性がある。
上述した制御を行うように構成されたこの発明に係る変速制御装置によれば、アップシフト要求に基づいてエンジン回転数を低下させる場合、エンジン1の応答遅れの間はエンジン回転数を第1モータ・ジェネレータ4によって強制的に低下させることはないので、第1モータ・ジェネレータ4が過剰に発電したり、蓄電装置に対する過充電が生じたりすることを回避もしくは抑制することができる。言い換えれば、エンジン1の応答遅れの間は、エンジン回転数の制御としてアップシフト要求前の制御が継続され、したがって第1モータ・ジェネレータ4および第2モータ・ジェネレータ8の間の電力収支がバランスした状態を維持することができる。また、この発明に係る変速制御装置では、エンジン回転数をステップ的に低下させるアップシフトの際に、エンジン1のイナーシャトルクに対抗するトルクを第1モータ・ジェネレータ4によって出力することがないので、アップシフトの際に駆動トルクが一時的に増大したり、それに伴ってショックが生じたりすることを防止もしくは抑制することができる。そして、第1モータ・ジェネレータ4はアップシフトの際に要求されるトルクを過不足なく出力するので、エンジン回転数の変化すなわち変速を迅速に進行させることができ、その結果、ハイブリッド車の変速をいわゆる有段変速機での変速と同様に実行する場合、機敏で違和感のない変速を生じさせ、ドライバビリティを向上させることができる。
この発明に係る変速制御装置は、エンジン回転数をステップ的に低下させるアップシフトの制御だけでなく、エンジン回転数をステップ的に増大させるダウンシフトの制御を、上述したアップシフトの場合と同様に実行することができる。その例を図5のフローチャートを参照して説明する。アクセルペダルを戻している減速中などの所定の走行状態でダウンシフトの指令があった場合、すなわち図5におけるステップS21で肯定的に判断された場合、ダウンシフト制御における「フェーズ1」のフラグが立てられる(ステップS22)。このフラグおよび以下に述べる各フラグは、図5に示す制御に関連する他の制御で使用するフラグである。なお、ダウンシフト指令は、前述したように、アクセル開度や車速などの走行状態が、予め定めた高速側の変速比領域から低速側の変速比領域に変化することにより発せられる。あるいは、図示しないシフト装置がダウンシフト側にマニュアル操作されることにより発せられる。このダウンシフト指令がないことによりステップS21で否定的に判断された場合には、特に制御を行うことなくリターンする。
上記のステップS22の制御に続けて、あるいはステップS22の制御と相前後して、エンジンパワーPeを増大させる要求が出力される(ステップS23)。この増大させるエンジンパワーPeの目標値は、ダウンシフト後のパワー(減速時であれば負のトルク)にエンジン回転数Neを増大させることに必要とされるイナーシャエネルギ(イナーシャトルク)を加えた値である。
そのダウンシフト後のパワーは、例えばスロットルバルブが閉じられてエンジンブレーキによって減速している場合には、ゼロであり、エンジン1のポンピングロスによって制動力を生じさせていれば、負のパワーと言うことができる。また、ダウンシフト後のパワーから増大させるイナーシャトルクに応じたパワーは、エンジン回転数Neをダウンシフトに伴って増大させることによりエンジン1で生じるイナーシャトルクに応じたパワーであり、したがってエンジン1のイナーシャモーメントと回転数の変化勾配すなわち回転角加速度とに基づいて求めることができる。
さらに、エンジンパワーの増大要求(もしくは増大指令)に伴って実行されるエンジンパワーの増大制御は、従来知られている各種の制御であってよい。例えば、燃料の供給量(もしくは噴射量)を増大する制御、ガソリンエンジンであればスロットル開度を増大させて吸入空気量を増大する制御などであってよい。これらいずれの制御であっても、エンジンパワーを増大させる指令信号の出力から実際にエンジンパワーが増大するまでには不可避的な応答遅れがある。その応答遅れは、エンジン1が大きいイナーシャモーメントを有していることや吸気量が直ちには増大しないことなどが要因となっており、したがって応答遅れ時間(もしくはむだ時間)Tdの長さは、エンジン1の容量や回転数、出力増大の制御手段などによって異なる。なお、その応答遅れ時間Tdの長さは、予め測定しておくことができる。
したがって、ステップS23でエンジンパワーの増大要求(増大指令)を行ってもエンジン出力は直ちには増大しないので、各モータ・ジェネレータ4,8についての制御を、ダウンシフト指令を行う以前と同様の制御とする(ステップS24)。前述したハイブリッド車を有段変速機を搭載した車両と同様に制御する場合、各変速比領域では車速やアクセル開度(駆動要求量)に応じてエンジン回転数が変化するようにエンジン目標回転数Netを設定する。なお、車速や駆動要求量とエンジン回転数との関係は、適宜に設定することができ、各変速比領域毎に異なっている場合もあり、あるいはいずれかの変速比領域では同じになる場合もある。その関係は、各変速比領域ごとにマップもしくは演算式として予め用意し、電子制御装置10に記憶させておくことができる。したがって、ステップS24で「従前の制御を継続する」とは、車速やアクセル開度と車速との関係を、ダウンシフトの判断が成立する前の高速側の変速比領域における関係に維持する制御、もしくはエンジン目標回転数を維持する制御である。より具体的には、第1モータ・ジェネレータ4のモータトルクおよび第2モータ・ジェネレータ8の回生トルク(発電トルク)についての制御を、ダウンシフト前の高速側の変速比領域におけるのと同様に継続する。その場合、トルクを一定に維持せずに車両の走行状態に応じて制御しているのであるから、上記のむだ時間Tdの間にアクセル開度が変化した場合、アクセル開度の変化に応じて各モータ・ジェネレータ4,8のトルクを変化させることができる。
したがって、ダウンシフト指令を発した直後でエンジン1の応答遅れの時間Tdの間では、エンジン回転数Neを第1モータ・ジェネレータ4によって強制的に増大させる制御が実行されないので、第1モータ・ジェネレータ4で必要とし、あるいは消費する電力が特に増大することはなく、また図示しない蓄電装置の過放電が生じることはない。また、各モータ・ジェネレータ4,8については、ダウンシフトの判断が成立する前の制御を継続するので、第2モータ・ジェネレータ8で発電した電力を第1モータ・ジェネレータ4で消費することになり、電力収支が特に変化することはない。言い換えれば、過充電や過放電は生じない。
上記のステップS24に続けて、エンジン1についての応答遅れ時間Tdが経過したか否かが判断される(ステップS25)。その応答遅れ時間Tdは、前述したように予め定められている時間であり、ステップS21でのダウンシフト指令の時点からの経過時間が応答遅れ時間Tdに達するとステップS25で肯定的に判断される。こうしてステップS25で肯定的に判断された場合には、ダウンシフト制御における「フェーズ2」のフラグが立てられる(ステップS26)。なお、ステップS25で否定的に判断された場合には、ステップS22に戻ってステップS23およびステップS24での制御を継続する。
ダウンシフト制御における「フェーズ2」では、エンジン1の出力を増大させる制御についての遅れ時間Tdが経過してエンジン1の出力が実際に増大し始め、またエンジン回転数Neが増大し始める。したがってその「フェーズ2」では、先ず、エンジン目標回転数Netの増加要求(増加指令)を発する(ステップS27)。ダウンシフト後のエンジン目標回転数Netは変速後の変速比領域における車速とエンジン回転数との関係を定める変速比に相当する係数などに応じて決まり、そのエンジン目標回転数Netは定常目標回転数Nets と言うことができ、ステップS27ではエンジン回転数をその定常目標回転数Nets に向けて増加させる際の過渡的なエンジン目標回転数(すなわち過渡目標回転数)Nett を次第に増加させる。このように過渡目標回転数Nett を設定するのは、イナーシャトルクによるショックや回転数の急激もしくは緩慢な変化による違和感などを生じさせないようにエンジン回転数を変化させるためであり、従来知られているように、例えば定常目標回転数Nets をなまし処理もしくは一次遅れ処理した値が過渡目標回転数Nett とされる。エンジン回転数がその過渡目標回転数Nett になるように第1モータ・ジェネレータ4のトルクあるいは回転数が制御され、その結果、実際のエンジン回転数Neが過渡目標回転数Nett を定めているなまし係数あるいは一次遅れ係数で定まる勾配(変化率)dNetで次第に増加する。
上記の遅れ時間あるいはむだ時間Tdが経過した後は、エンジン1の制御上の出力トルク(いわゆる図示トルク)が増大し始めるが、回転数が増加することに伴うイナーシャトルク分のトルクを必要とする。また、エンジン1のパワー増大量は前述したようにイナーシャトルクを見込んだ量、もしくはイナーシャトルクに相当する量である。その場合、第1モータ・ジェネレータ4はモータとして機能し、電力を消費するが、その電力は回生トルクを出力している第2モータ・ジェネレータ8によって発電された電力である。したがってこれらのモータ・ジェネレータ4,8による電力の収支はバランスし、蓄電装置からの過度な放電や充電は生じない。
ついで、上記の過渡目標回転数Nett と定常目標回転数Nets との差が予め定めた基準値αより小さくなったか否かが判断される(ステップS28)。第1モータ・ジェネレータ4は、エンジン回転数を所定の勾配で次第に増大させるようにフィードバック制御され、その回転数制御に不可避的な遅れがあるから、エンジン回転数Neが定常目標回転数Nets を超えて増大しないように、すなわちオーバーシュートが生じないように、エンジンパワーやエンジン回転数Neを増大させる制御を終了するための制御を前出しして行う。その判断を上記の基準値αによって行うこととしてあり、したがってその基準値αは、エンジン1や第1モータ・ジェネレータ4の応答遅れ時間や最終的な駆動トルクの変化の状態もしくはショックの有無もしくは程度などを考慮して、予め実験などによって決められる。
過渡目標回転数Nett が十分に増大していないことによりステップS28で否定的に判断された場合には、ステップS26に戻ってエンジン目標回転数Netの増加要求(増加指令)を継続して行う。これに対してステップS28で肯定的に判断された場合には、ダウンシフト制御における「フェーズ3」のフラグが立てられ(ステップS29)、またエンジンパワーPeの増加要求(増加指令)が終了される(ステップS30)。上述したステップS23で開始されているエンジンパワーPeの増加要求は、エンジン回転数の増大に伴って発生するイナーシャトルクに相当するパワーを加える増加制御であり、ステップS30ではそのイナーシャトルクに相当するパワーの増加を終了する。したがってエンジンパワーPeの目標値は、ダウンシフト後に設定するべきエンジンパワーであり、エンジンブレーキによって減速している場合には、スロットル開度を「0」にする。
エンジンパワーPeの増加要求を終了する場合、上記のステップS23で増加要求を行う場合と同様に、要求値(指令値)をステップ的に変化させるが、エンジン1には応答遅れがあるから、エンジン1の図示トルクや実際に出力されるトルクは、直ちには低下しない。しかしながら、エンジン1による駆動トルクはいずれは増大するので、最終的に駆動力が急激に変化したり、それに伴ってショックが生じないように、エンジン1の過渡目標回転数Nett の増加勾配dNetを「フェーズ2」での増加勾配よりも小さくしてもよい。
このようにして低下させる過渡目標回転数Nett と定常目標回転数Nets との差が所定の判定値γより小さくなったか否かが判断される(ステップS31)。この判断は、要は、ダウンシフトの終了を判断するものであり、したがって判定値γは、「0」に近い小さい値である。このステップS31で否定的に判断された場合には、過渡目標回転数Nett が未だ小さく、定常目標回転数Nets に十分に近づいていないことになるので、ステップS29に戻って「フェーズ3」の制御が継続される。すなわち、低減した増大勾配でエンジン目標回転数Netを増大させ、また過渡目標駆動力を変速後の定常目標駆動力に向けて次第に増加させる制御が継続される。これに対してステップS31で肯定的に判断された場合には、エンジン回転数が変速後の目標回転数である定常目標回転数Nets にほぼ一致してダウンシフトが終了したことになるので、制御ステップはリターンして図5に示す制御を終了する。したがって、各フラグはリセットされ、またエンジン目標回転数Netを増大させる制御は終了されて、アクセル開度などの駆動要求量や車速に基づいてエンジン目標回転数が設定される。
エンジン回転数もしくは実質的な変速比を有段的に変化させることのできる2モータタイプのハイブリッド車において、上記の図5に示す制御を第3速から第2速へのダウンシフトの際に実行した場合のエンジン目標回転数、エンジン目標出力、エンジン1および第2モータ・ジェネレータ8のトルク、ならびにハイブリッド車の目標駆動力、および蓄電装置に対する充放電量の変化の一例を図6にタイムチャートで示してある。第3速での制御が実行されて走行している状態でスロットル開度が「0」になり、その状態で車速が低下して走行状態が第2速の変速比領域に入ると、車速やアクセル開度あるいは予め用意したマップなどに基づいて第2速へのダウンシフトの判断が成立し、またシフト装置がダウンシフト操作されると第2速へのダウンシフトの判断が成立する(t11時点)。その判断の成立によってダウンシフト制御における「フェーズ1」の制御が開始され、先ず、エンジン1についての定常目標回転数が第2速での回転数に増大させられ、またエンジン1の目標出力が増大させられる。エンジン1の制御には不可避的な遅れがあるので、その遅れを見込んでエンジン1の目標出力を増大させるのであり、したがってその目標値はその時点のエンジン回転数や定常目標回転数などに応じて予め定めた値であってよい。
このt11時点では、第1モータ・ジェネレータ4によってエンジン回転数を強制的に増大させる制御は実行されず、第1モータ・ジェネレータ4は第3速での制御と同様に制御されるので、第1モータ・ジェネレータ4に電力を供給する第2モータ・ジェネレータ8についても、第3速での制御が継続される。すなわち、第2モータ・ジェネレータ8の過渡目標駆動力が第3速での制御と同様に制御されるから、車両の全体としての目標駆動力は第3速での駆動力に維持される。また、電力収支がダウンシフト判断の成立以前と同様にバランスしているので、蓄電装置に対する充電や蓄電装置からの放電は特には生じない。
エンジン1の制御についての遅れ時間(むだ時間)Tdが経過すると(t12時点)、前述したダウンシフト制御での「フェーズ2」の制御が開始される。エンジン目標出力を増加させる制御(例えばスロットル開度を開く制御)が実行されることによるエンジン出力の増加がt12時点付近から生じる。また、このt12時点にエンジン回転数を増大させる制御が開始される。これは、前述したように、定常目標回転数Nets をなまし処理もしくは一次遅れ処理した過渡目標回転数Nett を設定し、その過渡目標回転数Nett に追従してエンジン回転数Neが変化するように、第1モータ・ジェネレータ4が制御される。図6に示す例では、第1モータ・ジェネレータ4がモータとして機能し、その出力トルクがエンジン回転数を増大させるトルクとして作用するが、エンジン1自体は目標出力が増加させられてパワーが増加していることにより回転数を増大させているので、第1モータ・ジェネレータ4で必要とし、また消費する電力量は特には大きくならず、その電力は第2モータ・ジェネレータ8がエネルギ回生を行って発電した電力で賄われる。すなわち、電力収支が悪化することはない。言い換えれば、各モータ・ジェネレータ4,8が接続されている蓄電装置(図示せず)の過充電あるいは過放電が回避される。また、エンジン回転数はスムースかつ迅速に目標値に向けて増大する。
なお、t12時点では、エンジン回転数が増大し始めるから、エンジン1の目標出力はその回転数変化を生じさせるイナーシャトルクを加えた出力にまで増大させられる。また、図6に示す例は、手動操作によってダウンシフトするなど意図的に減速する例を示しており、したがってエンジン出力を増大させてその回転数を増大させることに加えて、第1モータ・ジェネレータ4をモータとして機能させてそのトルクを増大させることによりエンジン回転数を引き上げる。それに伴って第2モータ・ジェネレータ8による制動トルク(回生による負のトルク)が幾分大きくなる。このような制御の過程で車両の駆動トルク(負のトルクすなわち制動トルク)が一時的に大きくなるが、これは減速意図に沿うものであり、違和感となるものではない。また、このような一次的な変化は僅かであるから、電力収支の悪化要因になることはない。
そして、過渡目標回転数Nett と定常目標回転数Nets との差が前述した基準値αになるまで過渡目標回転数Nett が増大すると(t13時点)、前述したダウンシフト制御における「フェーズ3」の制御が開始される。すなわち、エンジン目標出力の増加制御が終了する。図6に示す例では、スロットル開度が「0」に戻される。また、エンジン1の過渡目標回転数Nett の増加勾配dNetが減じられ、それに伴って各モータ・ジェネレータ4,8のトルクが一時的に低下し、その後に次第に元のトルクに増大する。その場合、エンジン1の回転数の増加勾配dNetが減じられることに伴って慣性トルクが変化するなどのことにより一時的に駆動トルク(すなわち制動トルク)が低下するので、これを補うように第2モータ・ジェネレータ8のトルク(負のトルク)が増大させられるが、電力収支が大きく変化することはない。そして、エンジン1についての過渡目標回転数Nett が第2速での定常目標回転数Nets にほぼ一致すると(t14時点)、すなわちこれらの目標回転数の差が上述した判定値γにまで減少すると、変速制御が終了し、エンジン1および各モータ・ジェネレータ4,8の通常制御が実行される。このエンジンブレーキ力によって減速している場合の通常制御とは、2モータタイプのハイブリッド車で実行されている制御であって、第2モータ・ジェネレータ8が回生トルクを発生し、その電力を第1モータ・ジェネレータ4に供給して第1モータ・ジェネレータ4をモータとして機能させてエンジン回転数を制御し、それに伴うトルクを制動トルクとする制御である。
ここでエンジン回転数をステップ的に増加させる上記のダウンシフト中におけるエンジントルクおよび各モータ・ジェネレータ4,8のトルク(もしくは発電量)の関係を、前述した動力分割機構2についての共線図を使用して説明すると、図7において、黒く塗りつぶした矢印がダウンシフト前もしくはダウンシフト開始時のトルクを示しており、白抜きした破線の矢印がダウンシフト中のトルクを示している。前述したようにこの発明に係る変速制御装置では、ダウンシフトの際にエンジン1の出力が遅れ時間Tdの経過後に実際に増加し始めると第1モータ・ジェネレータ4によってエンジン回転数を増大させるから、ダウンシフト中のエンジン1の軸トルクTerは、増大させられたスロットル開度に応じたいわゆる図示トルクTetから、回転数の増大に伴うイナーシャトルクTeiを減じたものとなる。その図示トルクTetはエンジンパワーの増加要求に応じて実際に増加しているから、軸トルクTerはダウンシフト開始時の負のトルクとは異なり、エンジン回転数を積極的に増加させる正のトルクになっている。したがって、エンジン回転数を制御している第1モータ・ジェネレータ4のトルクTmg1 は、エンジン1の制御遅れ時間Tdが経過するまでは従前と同様に維持されるうえに、エンジン回転数を増大させる場合には、エンジン1の軸トルクTerが大きくなっているので、小さいトルクでエンジン回転数を増大させることができる。また、第2モータ・ジェネレータ8は、エネルギ回生を行って、第1モータ・ジェネレータ4で必要とする電力を発生しているので、電力収支は特には変化しない。
比較のために、第1モータ・ジェネレータ4によってエンジン回転数を変速後の回転数に増大させる場合の各トルクの関係を図8に示してある。この場合、第1モータ・ジェネレータ4は、エンジン1の回転数を増大させるためのトルクとその回転数の変化に伴うイナーシャトルクとを加えた大きいトルクを出力することになる。これに対して第2モータ・ジェネレータ8による制動力すなわち回生トルクは、要求されている制動力以上に大きくすることはできないので、その発電量はダウンシフトの開始前と変わるところはない。すなわち、第2モータ・ジェネレータ8による発電量に対して第1モータ・ジェネレータ4で必要とする電力量が相対的に大きくなるので、その不足分は蓄電装置から供給することになり、その結果、過放電が生じてしまう。
上述した制御を行うように構成されたこの発明に係る変速制御装置によれば、ダウンシフト要求に基づいてエンジン回転数を増大させる場合、エンジン1の応答遅れの間はエンジン回転数を第1モータ・ジェネレータ4によって強制的に増大させることはないので、第1モータ・ジェネレータ4で過剰に電力を消費したり、蓄電装置からの過放電が生じたりすることを回避もしくは抑制することができる。言い換えれば、エンジン1の応答遅れの間は、エンジン回転数の制御としてダウンシフト要求前の制御が継続され、したがって第1モータ・ジェネレータ4および第2モータ・ジェネレータ8の間の電力収支がバランスした状態を維持することができる。また、この発明に係る変速制御装置では、ダウンシフトの際にエンジン回転数を増大させるトルクをエンジン自ら出力するように制御するので、エンジン回転数を増大させる際の負のイナーシャトルクが駆動トルクとして表せることを回避もしくは抑制でき、その結果、変速ショックを防止もしくは抑制できる。さらに、エンジン回転数を増大させる第1モータ・ジェネレータ4で必要とする電力を、減速に伴って第2モータ・ジェネレータ8で発生させる電力で賄うことができるので、第1モータ・ジェネレータ4のトルクが制限されたり、不足することがなく、その結果、エンジン回転数の変化すなわち変速を迅速に進行させることができ、ハイブリッド車の変速をいわゆる有段変速機での変速と同様に実行する場合、機敏で違和感のない変速を生じさせ、ドライバビリティを向上させることができる。
なお、ここで、上記の具体例とこの発明との関係を簡単に説明すると、前述したステップS3あるいはステップS23の制御を実行する機能的手段もしくは電子制御装置が、この発明における第1出力制御手段に相当し、前述したステップS4あるいはステップS24の制御を実行する機能的手段もしくは電子制御装置が、この発明における第1回転数制御手段に相当し、前述したステップS7あるいはステップS27の制御を実行する機能的手段もしくは電子制御装置が、この発明における第2回転数制御手段に相当し、前述したステップS10あるいはステップS30の制御を実行する機能的手段もしくは電子制御装置が、この発明における第2出力制御手段に相当する。
また、この発明は、上述した具体例に限定されないのであって、この発明における出力部材は上記の出力軸に替えて出力ギヤなどの他の部材であってもよく、具体的な構成は、請求の範囲に記載されている技術事項に含まれる範囲内で適宜に変更可能である。
この発明の変速制御装置は、上記の目的を達成するために、内燃機関が出力した動力を、発電機能とトルクを出力する機能との少なくともいずれか一方の機能を備えた第1モータと出力部材とに分割して伝達するとともに前記内燃機関の回転数を前記第1モータの回転数に応じた回転数に設定することのできる差動機構と、トルクを出力する機能と発電機能との少なくともいずれか一方の機能を備えかついずれかの車輪との間でトルクを授受する第2モータとを有するハイブリッド車の変速制御装置であって、前記内燃機関の回転数をステップ的に変化させる変速の開始時に、その変速による内燃機関の回転数の変化を促す方向に内燃機関の出力を変化させる指示を行い、前記内燃機関の出力を変化させる指示を行った時点から前記内燃機関の応答遅れに相当する時間が経過するまでの間、前記第1モータおよび第2モータについての前記変速前の制御を継続し、前記内燃機関の応答遅れに相当する時間が経過した場合に、前記内燃機関の回転数を、前記内燃機関の出力の変化によって変化する方向に変化させるように前記第1モータを制御し、前記内燃機関の回転数が前記変速の後の目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に変化させる指示を行うように構成されていることを特徴とするものである。
この発明における前記変速制御装置は、前記変速が前記内燃機関の回転数をステップ的に低下させるアップシフトの場合に前記内燃機関の出力を低下させる指示を行い、前記内燃機関の応答遅れに相当する時間が経過した後に前記内燃機関の回転数を低下させることに伴って前記第1モータで発電した電力を前記第2モータに供給して第2モータから前記出力部材にトルクを出力させることにより第1モータで発電した電力を第2モータで消費させ、前記内燃機関の回転数が前記変速の後の前記目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に増大させる指示を行うように構成されていてよい。
その場合、前記変速制御装置は、前記内燃機関の出力を、アップシフト後に設定するべき出力から前記内燃機関の回転数の変化に伴うイナーシャトルクに相当する出力を減じた出力に指示するように構成されていてよい。
また、アップシフト制御を行う構成では、前記変速制御装置は、前記内燃機関の出力が実際に変化するまでの制御遅れによって内燃機関の回転数が変速後の目標回転数より低下しないタイミングで前記内燃機関の出力の増大指示を行うように構成され、かつ前記内燃機関の出力を増大させる指示を行った後前記内燃機関の応答遅れに相当する時間が経過するまでの間は、その出力の増大の指示を行う前の低下速度で前記内燃機関の回転数を低下させるよう前記第1モータを制御するように構成されていてよい。
さらに、アップシフト制御を行う構成では、前記変速制御装置は、前記内燃機関の出力の増大の指示の後前記応答遅れに相当する時間が経過した際に前記内燃機関の回転数の低下速度を減じ、つ前記内燃機関の出力の増大が指示された場合に前記第2モータのトルクを前記変速の後の目標トルクに向けて低下させるように構成されていてよい。
一方、前記変速制御装置は、前記変速が前記第2モータによってエネルギ回生を行いつつ前記内燃機関の回転数をステップ的に増大させるダウンシフトの場合に前記内燃機関の出力を増大させる指示を行い、前記第2回転数制御手段は、前記内燃機関の応答遅れに相当する時間が経過した後に前記第2モータによるエネルギ回生で生じた電力を前記第1モータに供給して前記第1モータが出力するトルクによって前記内燃機関の回転数を増大させることにより第2モータで発電した電力を第1モータで消費させ、前記第2出力制御手段は、前記内燃機関の回転数が前記変速の後の前記目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に低下させる指示を行うように構成されていてよい。
その場合、前記変速制御装置は、前記内燃機関の出力を、ダウンシフト後に設定するべき出力に前記内燃機関の回転数の変化に伴うイナーシャトルクに相当する出力を加えた出力に指示するように構成されていてよい。
また、ダウンシフト制御を行う構成の場合、前記変速制御装置は、前記内燃機関の出力の増大を終了させるように構成されていてよい。
さらに、ダウンシフト制御を行う構成の場合、前記変速制御装置は、前記内燃機関の回転数の変化の勾配を、前記内燃機関の出力を変速後の出力に変化させる指示を行った後は、その指示を行う前より小さくするように構成されていてよい。

Claims (17)

  1. 内燃機関が出力した動力を、発電機能とトルクを出力する機能との少なくともいずれか一方の機能を備えた第1モータと出力部材とに分割して伝達するとともに前記内燃機関の回転数を前記第1モータの回転数に応じた回転数に設定することのできる差動機構と、トルクを出力する機能と発電機能との少なくともいずれか一方の機能を備えかついずれかの車輪との間でトルクを授受する第2モータとを有するハイブリッド車の変速制御装置において、
    前記内燃機関の回転数をステップ的に変化させる変速の開始時に、その変速による内燃機関の回転数の変化を促す方向に内燃機関の出力を変化させる指示を行う第1出力制御手段と、
    前記第1出力制御手段によって前記内燃機関の出力を変化させる指示を行った時点から前記内燃機関の応答遅れに相当する時間が経過するまでの間、前記第1モータおよび第2モータについての前記変速前の制御を継続する第1回転数制御手段と、
    前記内燃機関の応答遅れに相当する時間が経過した場合に、前記内燃機関の回転数を、前記内燃機関の出力の変化によって変化する方向に変化させるように前記第1モータを制御する第2回転数制御手段と、
    前記内燃機関の回転数が前記変速の後の目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に変化させる指示を行う第2出力制御手段と
    を備えていることを特徴とするハイブリッド車の変速制御装置。
  2. 前記第1出力制御手段は、前記変速が前記内燃機関の回転数をステップ的に低下させるアップシフトの場合に前記内燃機関の出力を低下させる指示を行う手段を含み、
    前記第2回転数制御手段は、前記内燃機関の応答遅れに相当する時間が経過した後に前記内燃機関の回転数を低下させることに伴って前記第1モータで発電した電力を前記第2モータに供給して第2モータから前記出力部材にトルクを出力させることにより第1モータで発電した電力を第2モータで消費させる手段を含み、
    前記第2出力制御手段は、前記内燃機関の回転数が前記変速の後の前記目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に増大させる指示を行う手段を含む
    ことを特徴とする請求項1に記載のハイブリッド車の変速制御装置。
  3. 前記第1出力制御手段は、前記内燃機関の出力を、アップシフト後に設定するべき出力から前記内燃機関の回転数の変化に伴うイナーシャトルクに相当する出力を減じた出力に指示するように構成されていることを特徴とする請求項2に記載のハイブリッド車の変速制御装置。
  4. 前記第2出力制御手段は、前記内燃機関の出力が実際に変化するまでの制御遅れによって内燃機関の回転数が変速後の目標回転数より低下しないタイミングで前記内燃機関の出力の増大指示を行うように構成され、かつ
    前記第2回転数制御手段は、前記第2出力制御手段が前記内燃機関の出力を増大させる指示を行った後前記内燃機関の応答遅れに相当する時間が経過するまでの間は、その出力の増大の指示を行う前の低下速度で前記内燃機関の回転数を低下させるよう前記第1モータを制御する手段を含む
    ことを特徴とする請求項2または3に記載のハイブリッド車の変速制御装置。
  5. 前記第2回転数制御手段は、前記内燃機関の出力の増大の指示の後前記応答遅れに相当する時間が経過した際に前記内燃機関の回転数の低下速度を減じるように構成され、かつ
    前記第2出力制御手段は、前記内燃機関の出力の増大が指示された場合に前記第2モータのトルクを前記変速の後の目標トルクに向けて低下させるように構成されている
    ことを特徴とする請求項2ないし4のいずれかに記載のハイブリッド車の変速制御装置。
  6. 前記第1出力制御手段は、前記変速が前記第2モータによってエネルギ回生を行いつつ前記内燃機関の回転数をステップ的に増大させるダウンシフトの場合に前記内燃機関の出力を増大させる指示を行う手段を含み、
    前記第2回転数制御手段は、前記内燃機関の応答遅れに相当する時間が経過した後に前記第2モータによるエネルギ回生で生じた電力を前記第1モータに供給して前記第1モータが出力するトルクによって前記内燃機関の回転数を増大させることにより第2モータで発電した電力を第1モータで消費させる手段を含み、
    前記第2出力制御手段は、前記内燃機関の回転数が前記変速の後の前記目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に低下させる指示を行う手段を含む
    ことを特徴とする請求項1に記載のハイブリッド車の変速制御装置。
  7. 前記第1出力制御手段は、前記内燃機関の出力を、ダウンシフト後に設定するべき出力に前記内燃機関の回転数の変化に伴うイナーシャトルクに相当する出力を加えた出力に指示するように構成されていることを特徴とする請求項6に記載のハイブリッド車の変速制御装置。
  8. 前記第2出力制御手段は、前記第1出力制御手段による前記内燃機関の出力の増大を終了させる手段を含むことを特徴とする請求項6または7に記載のハイブリッド車の変速制御装置。
  9. 前記第2回転数制御手段は、前記内燃機関の回転数の変化の勾配を、前記第2出力制御手段が前記内燃機関の出力を変速後の出力に変化させる指示を行った後は、その指示を行う前より小さくする手段を含むことを特徴とする請求項1ないし8のいずれかに記載のハイブリッド車の変速制御装置。
  10. 内燃機関が出力した動力を、発電機能とトルクを出力する機能との少なくともいずれか一方の機能を備えた第1モータと出力部材とに分割して伝達するとともに前記内燃機関の回転数を前記第1モータの回転数に応じた回転数に設定することのできる差動機構と、トルクを出力する機能と発電機能との少なくともいずれか一方の機能を備えかついずれかの車輪との間でトルクを授受する第2モータとを有するハイブリッド車の変速制御方法において、
    前記内燃機関の回転数をステップ的に変化させる変速の開始時に、その変速による内燃機関の回転数の変化を促す方向に内燃機関の出力を変化させる指示を行い、
    前記内燃機関の出力を変化させる指示を行った時点から前記内燃機関の応答遅れに相当する時間が経過するまでの間、前記第1モータおよび第2モータについての前記変速前の制御を継続し、
    前記内燃機関の応答遅れに相当する時間が経過した場合に、前記内燃機関の回転数を、前記内燃機関の出力の変化によって変化する方向に変化させるように前記第1モータを制御し、
    前記内燃機関の回転数が前記変速の後の目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に変化させる指示を行う
    ことを特徴とするハイブリッド車の変速制御方法。
  11. 前記変速が前記内燃機関の回転数をステップ的に低下させるアップシフトの場合に前記内燃機関の出力を低下させる指示を行い、
    前記内燃機関の出力を低下させる指示を行ってから前記内燃機関の応答遅れに相当する時間が経過した後に前記内燃機関の回転数を低下させることに伴って前記第1モータで発電した電力を前記第2モータに供給して第2モータから前記出力部材にトルクを出力させることにより第1モータで発電した電力を第2モータで消費させ、
    前記内燃機関の回転数が前記変速の後の前記目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に増大させる
    ことを特徴とする請求項10に記載のハイブリッド車の変速制御方法。
  12. 前記内燃機関の出力を、アップシフト後に設定するべき出力から前記内燃機関の回転数の変化に伴うイナーシャトルクに相当する出力を減じた出力に指示することを特徴とする請求項11に記載のハイブリッド車の変速制御方法。
  13. 前記内燃機関の出力の増大指示は、前記内燃機関の出力が実際に変化するまでの制御遅れによって内燃機関の回転数が変速後の目標回転数より低下しないタイミングで行い、かつ
    前記内燃機関の出力を増大させる指示を行った後前記内燃機関の応答遅れに相当する時間が経過するまでの間は、その出力の増大の指示を行う前の低下速度で前記内燃機関の回転数を低下させる
    ことを特徴とする請求項11または12に記載のハイブリッド車の変速制御方法。
  14. 前記内燃機関の出力の増大の指示の後前記応答遅れに相当する時間が経過した際に前記内燃機関の回転数の低下速度を減じ、かつ
    前記内燃機関の出力の増大が指示された場合に前記第2モータのトルクを前記変速の後の目標トルクに向けて低下させる
    ことを特徴とする請求項11ないし13のいずれかに記載のハイブリッド車の変速制御方法。
  15. 前記変速が前記第2モータによってエネルギ回生を行いつつ前記内燃機関の回転数をステップ的に増大させるダウンシフトの場合に前記内燃機関の出力を増大させる指示を行い、
    前記内燃機関の出力の増大を指示してから前記内燃機関の応答遅れに相当する時間が経過した後に前記第2モータによるエネルギ回生で生じた電力を前記第1モータに供給して前記第1モータが出力するトルクによって前記内燃機関の回転数を増大させることにより第2モータで発電した電力を第1モータで消費させ、
    前記内燃機関の回転数が前記変速の後の前記目標回転数に近づいた際に前記内燃機関の出力を前記変速の後に設定するべき出力に低下させる指示を行う
    ことを特徴とする請求項10に記載のハイブリッド車の変速制御方法。
  16. 前記内燃機関の出力を、ダウンシフト後に設定するべき出力に前記内燃機関の回転数の変化に伴うイナーシャトルクに相当する出力を加えた出力に指示することを特徴とする請求項15に記載のハイブリッド車の変速制御方法。
  17. 前記内燃機関の出力を低下させる指示は、前記内燃機関の出力の増大を終了させる指示を含むことを特徴とする請求項15または16に記載のハイブリッド車の変速制御方法。
JP2013557277A 2012-02-07 2012-02-07 ハイブリッド車の変速制御装置および変速制御方法 Active JP5842937B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052748 WO2013118255A1 (ja) 2012-02-07 2012-02-07 ハイブリッド車の変速制御装置および変速制御方法

Publications (2)

Publication Number Publication Date
JPWO2013118255A1 true JPWO2013118255A1 (ja) 2015-05-11
JP5842937B2 JP5842937B2 (ja) 2016-01-13

Family

ID=48947059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013557277A Active JP5842937B2 (ja) 2012-02-07 2012-02-07 ハイブリッド車の変速制御装置および変速制御方法

Country Status (5)

Country Link
US (1) US9643591B2 (ja)
JP (1) JP5842937B2 (ja)
CN (1) CN104080673B (ja)
DE (1) DE112012005834T5 (ja)
WO (1) WO2013118255A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118255A1 (ja) * 2012-02-07 2013-08-15 トヨタ自動車株式会社 ハイブリッド車の変速制御装置および変速制御方法
JP6137210B2 (ja) * 2015-01-29 2017-05-31 トヨタ自動車株式会社 車両の制御装置
JP6241438B2 (ja) * 2015-03-11 2017-12-06 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR101704191B1 (ko) * 2015-04-29 2017-02-07 현대자동차주식회사 하이브리드 차량의 토크 인터벤션 제어장치 및 제어방법
MY168268A (en) * 2015-06-03 2018-10-17 Nissan Motor Mode transition control device for hybrid vehicle
US10106147B2 (en) * 2015-11-19 2018-10-23 Hyundai Motor Company Method and device for controlling torque intervention of hybrid vehicle
SE540521C2 (en) * 2015-12-01 2018-09-25 Scania Cv Ab A method and system for gear shifting in a hybrid powertrain
CN105584484B (zh) * 2016-01-16 2017-11-03 吉林大学 一种装载机amt换档过程中发动机的转速节能控制方法
FR3048411B1 (fr) * 2016-03-03 2019-07-05 Diodon Drone Technology Aeronef sans pilote telecommande et pliable
JP6680049B2 (ja) * 2016-04-04 2020-04-15 トヨタ自動車株式会社 車両の運転制御方法
CN109789797B (zh) * 2016-09-21 2022-06-21 日本精工株式会社 电动车辆驱动装置
US10293692B2 (en) 2016-10-17 2019-05-21 Toyota Motor Engineering & Manufacturing North America, Inc. Motor generated assist torque control for hybrid vehicles
JP6551381B2 (ja) * 2016-12-20 2019-07-31 トヨタ自動車株式会社 ハイブリッド車両の制御装置
EP3712026A4 (en) * 2017-11-15 2021-06-30 Kabushiki Kaisha Toshiba VEHICLE
JP6888528B2 (ja) * 2017-11-20 2021-06-16 トヨタ自動車株式会社 ハイブリッド車の制御装置
CN111491838B (zh) * 2017-12-15 2023-03-24 日产自动车株式会社 混合动力车辆的控制方法和控制装置
JP7135476B2 (ja) * 2018-06-13 2022-09-13 三菱自動車工業株式会社 車両の発電制御装置
WO2020203706A1 (ja) * 2019-03-29 2020-10-08 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
KR20200132430A (ko) * 2019-05-17 2020-11-25 현대자동차주식회사 전기 차량의 가속페달 안내 방법 및 시스템
US11408506B2 (en) * 2019-08-22 2022-08-09 Toyota Motor Engineering & Manufacturing North America, Inc. Simulated rev-matching in a vehicle having a two motor hybrid system transmission
CN110588624B (zh) * 2019-09-25 2021-01-19 一汽解放青岛汽车有限公司 一种混合动力汽车发动机的调速方法
CN114364587B (zh) * 2019-10-15 2023-06-27 三菱自动车工业株式会社 发动机起动控制装置
JP2021098424A (ja) 2019-12-20 2021-07-01 本田技研工業株式会社 車両の制御装置
US11565581B2 (en) 2020-01-07 2023-01-31 Toyota Motor Engineering & Manufacturing North America, Inc. Sequential simulated gear ratio calculation and rev-matching in a hybrid electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195303A (ja) * 2007-02-14 2008-08-28 Toyota Motor Corp 車両用駆動装置の制御装置
JP2009255873A (ja) * 2008-04-21 2009-11-05 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010274855A (ja) * 2009-05-29 2010-12-09 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2011245892A (ja) * 2010-05-24 2011-12-08 Toyota Motor Corp 動力伝達装置
WO2013118255A1 (ja) * 2012-02-07 2013-08-15 トヨタ自動車株式会社 ハイブリッド車の変速制御装置および変速制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622529B2 (ja) 1998-09-11 2005-02-23 トヨタ自動車株式会社 動力出力装置、およびそれを搭載したハイブリッド車両並びに原動機の動作点制御方法
JP3360643B2 (ja) * 1999-04-06 2002-12-24 トヨタ自動車株式会社 動力源と無段変速機を備えた車両の制御装置
US6655351B2 (en) * 2001-10-24 2003-12-02 Deere & Company Vehicle engine control
JP2005315084A (ja) 2004-04-27 2005-11-10 Denso Corp 自動変速機の制御装置
JP4134954B2 (ja) * 2004-07-01 2008-08-20 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4039409B2 (ja) 2004-08-26 2008-01-30 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4604749B2 (ja) * 2005-02-09 2011-01-05 トヨタ自動車株式会社 メータ表示装置、その方法及びハイブリッド自動車
JP4258492B2 (ja) * 2005-06-01 2009-04-30 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
JP4241710B2 (ja) * 2005-10-13 2009-03-18 トヨタ自動車株式会社 車両およびその制御方法
JP4957267B2 (ja) * 2007-01-25 2012-06-20 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4858310B2 (ja) * 2007-05-29 2012-01-18 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP2009196454A (ja) * 2008-02-20 2009-09-03 Toyota Motor Corp 車両および駆動装置並びに車両の制御方法
JP5177093B2 (ja) 2009-08-18 2013-04-03 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
JP5429626B2 (ja) * 2009-11-20 2014-02-26 スズキ株式会社 ハイブリッド車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195303A (ja) * 2007-02-14 2008-08-28 Toyota Motor Corp 車両用駆動装置の制御装置
JP2009255873A (ja) * 2008-04-21 2009-11-05 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010274855A (ja) * 2009-05-29 2010-12-09 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2011245892A (ja) * 2010-05-24 2011-12-08 Toyota Motor Corp 動力伝達装置
WO2013118255A1 (ja) * 2012-02-07 2013-08-15 トヨタ自動車株式会社 ハイブリッド車の変速制御装置および変速制御方法

Also Published As

Publication number Publication date
US20150012159A1 (en) 2015-01-08
US9643591B2 (en) 2017-05-09
DE112012005834T5 (de) 2014-10-23
CN104080673A (zh) 2014-10-01
JP5842937B2 (ja) 2016-01-13
CN104080673B (zh) 2017-07-21
WO2013118255A1 (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5842937B2 (ja) ハイブリッド車の変速制御装置および変速制御方法
CN101638091B (zh) 混合动力车辆的扭矩调节控制
US9162665B2 (en) Kick-down shift control device for electric vehicle
JP4127142B2 (ja) ハイブリッド車輌の制御装置
JP4862624B2 (ja) ハイブリッド車両の制御装置
US20070107956A1 (en) Hybrid power unit
JP4683137B2 (ja) 動力伝達装置の制御装置
JPWO2010116534A1 (ja) 車両用駆動装置の制御装置
JP5338471B2 (ja) 電動車両の変速制御装置
JP2012153321A (ja) 電動車両の制御装置
JP5821475B2 (ja) ハイブリッド車両の制御装置
WO2015118765A1 (ja) 車両制御装置
JP4100445B1 (ja) ハイブリッド駆動装置、それを備える車両およびその制御方法
JP2006341848A (ja) 変速機付きハイブリッド車両の制御装置
JP6358207B2 (ja) ハイブリッド車両
JP2004208417A (ja) ハイブリッド駆動装置の制御装置
JP2009154723A (ja) 車両用動力伝達装置の制御装置
JP3852403B2 (ja) ハイブリッド駆動装置の制御装置
JP2012254688A (ja) ハイブリッド車の変速制御装置
JP5338958B2 (ja) ハイブリッド車両の制御装置
JP4165461B2 (ja) ハイブリッド駆動装置
JP2013035457A (ja) ハイブリッド車両の制御装置
JP2013107446A (ja) ハイブリッド車両の制御装置
JP2010018215A (ja) 車両用動力伝達装置の制御装置
WO2013137213A1 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5842937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151