JP2010274855A - 車両用動力伝達装置の制御装置 - Google Patents

車両用動力伝達装置の制御装置 Download PDF

Info

Publication number
JP2010274855A
JP2010274855A JP2009131464A JP2009131464A JP2010274855A JP 2010274855 A JP2010274855 A JP 2010274855A JP 2009131464 A JP2009131464 A JP 2009131464A JP 2009131464 A JP2009131464 A JP 2009131464A JP 2010274855 A JP2010274855 A JP 2010274855A
Authority
JP
Japan
Prior art keywords
torque
power
motor
electric motor
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009131464A
Other languages
English (en)
Inventor
Eiji Nohara
英治 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009131464A priority Critical patent/JP2010274855A/ja
Publication of JP2010274855A publication Critical patent/JP2010274855A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

【課題】有段変速部を有する車両用動力伝達装置の制御装置において、電力供給の制限がある場合でも変速ショックを低減することができる車両用動力伝達装置の制御装置を提供する。
【解決手段】自動変速部20のアップシフト過渡期間内のトルク相中において自動変速部20の出力軸トルクTOUTの落ち込みを第1電動機M1の反力増加で補うことにより出力軸トルクTOUTの変動を抑制するトルク補償手段72と、そのトルク補償に必要な電力量pbtgtを前記トルク相中に第2電動機M2をトルクダウンさせることにより確保する電力量確保手段80とを備えていることから、電力を供給する蓄電装置60の充電残量SOCが上記トルク補償を行うには充分ではないような場合であっても電力量pbtgtが確保されるので、電力供給制限がある場合でも適切にトルク補償が行われて変速ショックを低減することができる。
【選択図】図6

Description

本発明は、有段変速部を有する車両用動力伝達装置の制御装置に係り、特に、有段変速部の変速ショック低減に関するものである。
エンジンと駆動輪との間に連結された差動機構とその差動機構に動力伝達可能に連結された第1電動機とを有しその第1電動機の運転状態が制御されることにより前記差動機構の差動状態が制御される電気式差動部と、前記駆動輪に動力伝達可能に連結された第2電動機と、動力伝達経路の一部を構成する有段変速部とを備えた車両用動力伝達装置の制御装置が知られている。例えば、特許文献1に記載された車両用動力伝達装置の制御装置がそれである。上記有段変速部は油圧作動の摩擦係合装置を複数備えており、上記特許文献1の車両用動力伝達装置の制御装置は、例えば車速やアクセル開度等から判断される車両状態に基づいて、係合させる摩擦係合装置と解放させる摩擦係合装置との掴み換えのタイミングを制御する所謂クラッチツウクラッチ制御を行うことによって上記有段変速部の変速を実行する。このような有段変速部の変速過渡期間は、有段変速部の出力軸トルクが変化するトルク相と、入力側に回転速度変化が生じるイナーシャ相に大別される。そして、特許文献1では、上記有段変速部の変速の際に、変速過渡期間内のトルク相における上記出力軸トルクの落ち込みに基づく変速ショックを低減する為に、その出力軸トルクの落ち込み(すなわち出力トルクの低下分)を第2電動機により補うトルク補償を行うことが開示されている。
特開2005−96574号公報
ところで、前記特許文献1の制御装置が前記トルク補償を行うには、第2電動機への電力供給が必要である。しかしながら、例えば、その第2電動機へ電気エネルギを供給するバッテリ等の蓄電装置の充電残量が上記トルク補償を行うには充分ではないような場合には、その第2電動機への電力供給が制限されてトルク補償が適切に行われず、変速ショックが低減できないという問題があった。かかる問題に対し、特許文献1においては変速に先立ってエンジンの動作点を変更する技術が開示されている。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、有段変速部を有する車両用動力伝達装置の制御装置において、電力供給の制限がある場合でも変速ショックを低減することができる車両用動力伝達装置の制御装置を提供することにある。
上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(1)エンジンと駆動輪との間に連結された差動機構とその差動機構に動力伝達可能に連結された第1電動機とを有しその第1電動機の運転状態が制御されることにより前記差動機構の差動状態が制御される電気式差動部と、前記駆動輪に動力伝達可能に連結された第2電動機と、動力伝達経路の一部を構成する有段変速部とを、備えた車両用動力伝達装置の制御装置であって、(2)前記有段変速部の変速過渡期間内のトルク相中においてその有段変速部の出力軸トルクの落ち込みを前記第1電動機の反力増加で補うことによりその出力軸トルクの変動を抑制するトルク補償手段と、(3)前記トルク補償手段によるトルク補償に必要な電力量を前記トルク相中に前記第2電動機をトルクダウンさせることにより確保する電力量確保手段とを備えていることにある。
また、請求項2にかかる発明の要旨とするところは、請求項1にかかる発明において、(1)前記トルク補償手段によるトルク補償に必要な電力量が蓄電装置から供給不可能か否かを判定する電力供給制限判定手段を含み、(2)前記電力量確保手段は、前記電力供給制限判定手段により前記必要な電力量が供給不可能であると判定された場合に、前記第2電動機のトルクダウンを実施することにある。
また、請求項3にかかる発明の要旨とするところは、請求項1または2にかかる発明において、(1)予め定められた関係から車両状態に基づいて前記有段変速部の変速において前記トルク相終了時点での前記出力軸トルクの落ち込みトルクを算出する落ち込みトルク算出手段と、(2)その落ち込みトルク算出手段により算出された前記落ち込みトルクに基づいて前記第1電動機の第1電動機目標トルクを算出する第1電動機目標トルク算出手段とを含み、(3)前記トルク補償手段は、前記トルク相終了時点での前記第1電動機のトルクが前記第1電動機目標トルク算出手段で算出された前記第1電動機目標トルクとなるように、前記第1電動機のトルクを前記トルク相の開始にともなって一定の変化率で増加させるものであることにある。
また、請求項4にかかる発明の要旨とするところは、請求項1乃至3のいずれか1にかかる発明において、(1)前記トルク補償手段によるトルク補償に必要な電力量に対する不足電力量を算出する不足電力量算出手段と、(2)その不足電力量算出手段により算出された前記不足電力量を得るための前記第2電動機の第2電動機目標トルクを算出する第2電動機目標トルク算出手段とを含み、(3)前記電力量確保手段は、前記トルク相終了時点での前記第2電動機のトルクが前記第2電動機目標トルク算出手段により算出された前記第2電動機目標トルクとなるように、前記第2電動機のトルクを前記トルク相の開始にともなって一定の変化率で減少させるものであることにある。
請求項1にかかる発明の車両用動力伝達装置の制御装置によれば、前記有段変速部の変速過渡期間内のトルク相中においてその有段変速部の出力軸トルクの落ち込みを前記第1電動機の反力増加で補うことによりその出力軸トルクの変動を抑制するトルク補償手段と、前記トルク補償手段によるトルク補償に必要な電力量を前記トルク相中に前記第2電動機をトルクダウンさせることにより確保する電力量確保手段とを備えていることから、第1電動機や第2電動機に電気エネルギを供給するバッテリ等の蓄電装置の充電残量が上記トルク補償を行うには充分ではないような場合であっても、電力量確保手段によってトルク相中の第2電動機のトルクダウンにより上記トルク補償に必要な電力量が供給されるので、電力供給制限がある場合でも適切にトルク補償が行われて変速ショックを低減することができる。
ここで、従来のようにトルク補償が第2電動機により実行される制御装置では蓄電装置の充電残量が全く無い場合にはトルク補償が全く行えなかったが、本発明ではそのような場合であってもトルク補償の実行が可能であるという利点がある。すなわち、本発明では蓄電装置の電気エネルギを使わずとも、第2電動機のトルクダウンにより得た電気エネルギを用いて第1電動機を作動させてトルク補償を行うことができるという利点がある。
また、請求項2にかかる発明の車両用動力伝達装置の制御装置によれば、前記トルク補償手段によるトルク補償に必要な電力量が蓄電装置から供給不可能か否かを判定する電力供給制限判定手段を含み、前記電力量確保手段は、前記電力供給制限判定手段により前記必要な電力量が供給不可能であると判定された場合に、前記第2電動機のトルクダウンを実施することから、バッテリ等の蓄電装置の充電残量が上記トルク補償を行うに充分である場合には前記第2電動機のトルクダウンが行われないので、その場合には電力量確保手段を実行することによる有段変速部の出力軸トルクの落ち込みを抑制することが可能である。
また、請求項3にかかる発明の車両用動力伝達装置の制御装置は、予め定められた関係から車両状態に基づいて前記有段変速部の変速において前記トルク相終了時点での前記出力軸トルクの落ち込みトルクを算出する落ち込みトルク算出手段と、その落ち込みトルク算出手段により算出された前記落ち込みトルクに基づいて前記第1電動機の第1電動機目標トルクを算出する第1電動機目標トルク算出手段とを含み、前記トルク補償手段は、前記トルク相終了時点での前記第1電動機のトルクが前記第1電動機目標トルク算出手段で算出された前記第1電動機目標トルクとなるように、前記第1電動機のトルクを前記トルク相の開始にともなって一定の変化率で増加させるように構成される。このようにすれば、有段変速部の出力軸トルクの落ち込みの発生にともなってトルク補償が行われる。すなわち、トルク補償手段によるトルク補償が行われない場合においては変速のトルク相において有段変速部の出力トルクが減少する(落ち込む)ように変化するが、その有段変速部の出力軸トルク変化に応じて、その出力軸トルクの変化を抑制するように第1電動機のトルクが制御されるので、トルク補償の実施に伴い出力軸トルクが急激に変動することが抑制され、変速ショックが低減される。
また、請求項4にかかる発明の車両用動力伝達装置の制御装置は、前記トルク補償手段によるトルク補償に必要な電力量に対する不足電力量を算出する不足電力量算出手段と、その不足電力量算出手段により算出された前記不足電力量を得るための前記第2電動機の第2電動機目標トルクを算出する第2電動機目標トルク算出手段とを含み、前記電力量確保手段は、前記トルク相終了時点での前記第2電動機のトルクが前記第2電動機目標トルク算出手段により算出された前記第2電動機目標トルクとなるように、前記第2電動機のトルクを前記トルク相の開始にともなって一定の変化率で減少させるように構成される。このようにすれば、蓄電装置における充電残量が少ない場合であっても、トルク補償手段による第1電動機のトルクが増加するのに合わせて必要となる電力量の確保が行われる。すなわち、有段変速部の変速のトルク相において略一定の変化率で増加させられる第1電動機のトルクに応じてそのトルク制御のために不足する電気エネルギが得られるように第2電動機のトルクが制御されるので、トルク補償のための電力量が確保される。
ここで、好適には、前記エンジンと駆動輪との間の動力伝達経路において、前記エンジン、前記電気式差動部、前記有段変速部、および前記駆動輪の順に連結されている。
また、好適には、前記差動機構は、前記エンジンに動力伝達可能に連結された第1回転要素と前記第1電動機に動力伝達可能に連結された第2回転要素と前記駆動輪に動力伝達可能に連結された第3回転要素とを有する遊星歯車装置であり、上記第1回転要素はその遊星歯車装置のキャリヤであり、上記第2回転要素はその遊星歯車装置のサンギヤであり、上記第3回転要素はその遊星歯車装置のリングギヤである。このようにすれば、前記差動機構の軸心方向寸法が小さくなる。また、差動機構が1つの遊星歯車装置によって簡単に構成される。
また、好適には、前記遊星歯車装置はシングルピニオン型の遊星歯車装置である。このようにすれば、前記差動機構の軸心方向寸法が小さくなる。また、差動機構が1つのシングルピニオン型遊星歯車装置によって簡単に構成される。
本発明の制御装置が適用される車両用動力伝達装置の構成を説明する骨子図である。 図1の車両用動力伝達装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。 図1の車両用動力伝達装置が有段変速作動させられる場合における各ギヤ段の相対回転速度を説明する共線図である。 図1の車両用動力伝達装置に設けられた電子制御装置の入出力信号を説明する図である。 シフトレバーを備えた複数種類のシフトポジションを選択するために操作されるシフト操作装置の一例である。 図4の電子制御装置に備えられた制御機能の要部を説明する機能ブロック線図である。 図1の車両用動力伝達装置において、車速と要求出力トルクとをパラメータとする同じ二次元座標に構成された、自動変速部の変速判断の基となる予め記憶された変速線図の一例と、車両用動力伝達装置の変速状態の切換判断の基となる予め記憶された切換線図の一例と、エンジン走行とモータ走行とを切り換えるためのエンジン走行領域とモータ走行領域との境界線を有する予め記憶された駆動力源切換線図の一例とを示す図であって、それぞれの関係を示す図でもある。 図1のエンジンの最適燃費率曲線を表す図である。 図4の電子制御装置の制御作動の要部、すなわち、トルク相補償の実行のための制御作動およびそのトルク相補償の実行に必要な電気エネルギを確保するための制御作動を説明するフローチャートである。 アクセルペダルが踏込まれ且つ差動部が非ロック状態であるときに自動変速部においてそのギヤ段のアップシフトが実施される際すなわちパワーオンアップシフトが実施される際に、トルク補償のための電力量に対して充電残量が不足している場合を例として、図9に示された制御作動を説明するためのタイムチャートである。
以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
本発明の制御装置は、例えばハイブリッド車両に用いられる。図1は、本発明の制御装置が適用される車両用動力伝達装置10(以下、「動力伝達装置10」と表す)を説明する骨子図である。図1において、動力伝達装置10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、「ケース12」という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)を介して直接に連結された差動部11と、その差動部11と駆動輪38(図6参照)との間の動力伝達経路で伝達部材(伝動軸)18を介して直列に連結されている自動変速部20と、この自動変速部20または動力伝達装置10の出力回転部材としての出力軸22とを直列に備えている。この動力伝達装置10は、車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪38(図6参照)との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)36および一対の車軸等を順次介して左右の駆動輪38へ伝達する。
このように、本実施例の動力伝達装置10においてはエンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。なお、動力伝達装置10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。
本発明の電気式差動部に対応する差動部11は、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、その動力分配機構16に動力伝達可能に連結された第1電動機M1と、伝達部材18と一体的に回転するように設けられている第2電動機M2とを備えている。上記第1電動機M1および第2電動機M2、発電機能をも有する所謂モータジェネレータである。上記第1電動機M1は、主として動力分配機構16の差動状態を制御するための差動用電動機として機能するものである。また、上記第2電動機M2は、主として走行用の駆動力源として駆動力を出力する走行用電動機として機能するものである。これら第1電動機M1と第2電動機M2とは相互に電力授受可能に構成されている。
動力分配機構16は、エンジン8と駆動輪38との間に連結された差動機構であって、例えば「0.418」程度の所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24と、切換クラッチC0および切換ブレーキB0とを主体的に備えている。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転および公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。
この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン8に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。また、切換ブレーキB0は差動部サンギヤS0とケース12との間に設けられ、切換クラッチC0は差動部サンギヤS0と差動部キャリヤCA0との間に設けられている。それら切換クラッチC0および切換ブレーキB0が解放されると、動力分配機構16は差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動状態とされ、エンジン8の出力が第1電動機M1と伝達部材18とに分配される。このとき、その分配されたエンジン8の出力の一部により第1電動機M1で発電が行われ、その発電により発生させられた電気エネルギにより蓄電装置60(図6参照)が充電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は、電気的な差動装置として機能させられて所謂無段変速状態(電気的CVT状態)とされ、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると差動部11も差動状態とされ、差動部11はその変速比γ0(入力軸14の回転速度/伝達部材18の回転速度)が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。このように動力分配機構16が差動状態とされると、動力分配機構16に動力伝達可能に連結された第1電動機M1及び/又は第2電動機M2の運転状態が制御されることにより、動力分配機構16の差動状態、すなわち入力軸14の回転速度と伝達部材18(動力分配機構16の出力軸)の回転速度の差動状態が制御される。なお、蓄電装置60は、第1電動機M1および第2電動機M2に電力を供給し且つそれら第1電動機M1および第2電動機M2から電力の供給を受けることが可能な電気エネルギ源であって、例えば、鉛蓄電池などのバッテリ、またはキャパシタなどで構成される。
上記差動状態とされた状態から上記切換クラッチC0或いは切換ブレーキB0が係合させられると、動力分配機構16は前記差動作用をしないすなわち差動作用が不能な非差動状態とされる。具体的には、上記切換クラッチC0が係合させられて差動部サンギヤS0と差動部キャリヤCA0とが一体的に係合させられると、動力分配機構16は差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0が共に回転すなわち一体回転させられるロック状態とされて前記差動作用が不能な非差動状態とされることから、差動部11も非差動状態とされる。また、エンジン8の回転と伝達部材18の回転速度とが一致する状態となるので、差動部11(動力分配機構16)は変速比γ0が「1」に固定された変速機として機能する定変速状態すなわち有段変速状態とされる。次いで、上記切換クラッチC0に替えて切換ブレーキB0が係合させられて差動部サンギヤS0がケース12に連結させられると、動力分配機構16は差動部サンギヤS0が非回転状態とさせられるロック状態とされて前記差動作用が不能な非差動状態とされることから、差動部11も非差動状態とされる。また、差動部リングギヤR0は差動部キャリヤCA0よりも増速回転されるので、動力分配機構16は増速機構として機能するものであり、差動部11(動力分配機構16)は変速比γ0が「1」より小さい値例えば0.7程度に固定された増速変速機として機能する定変速状態すなわち有段変速状態とされる。
このように、本実施例では、上記切換クラッチC0および切換ブレーキB0は、差動部11(動力分配機構16)の変速状態を差動状態すなわち非ロック状態と非差動状態すなわちロック状態とに、すなわち差動部11(動力分配機構16)を電気的な差動装置として作動可能な差動状態例えば変速比が連続的変化可能な無段変速機として作動する電気的な無段変速作動可能な無段変速状態と、電気的な無段変速作動しない変速状態例えば無段変速機として作動させず無段変速作動を非作動として変速比変化を一定にロックするロック状態すなわち1または2種類以上の変速比の単段または複数段の変速機として作動する電気的な無段変速作動をしないすなわち電気的な無段変速作動不能な定変速状態(非差動状態)、換言すれば変速比が一定の1段または複数段の変速機として作動する定変速状態とに選択的に切り換える差動状態切換装置として機能している。
自動変速部20は、その変速比γAT(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)を段階的に変化させることができる有段式の自動変速機として機能し、エンジン8と駆動輪38との間の動力伝達経路の一部を構成する有段変速部である。その自動変速部20は、シングルピニオン型の第1遊星歯車装置26、シングルピニオン型の第2遊星歯車装置28、およびシングルピニオン型の第3遊星歯車装置30を備えている。第1遊星歯車装置26は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を備えており、例えば「0.562」程度の所定のギヤ比ρ1を有している。第2遊星歯車装置28は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.425」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置30は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.421」程度の所定のギヤ比ρ3を有している。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1、第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3とすると、上記ギヤ比ρ1はZS1/ZR1、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3である。
自動変速部20では、第1サンギヤS1と第2サンギヤS2とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1は第2ブレーキB2を介してケース12に選択的に連結され、第3リングギヤR3は第3ブレーキB3を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2と第3キャリヤCA3とが一体的に連結されて出力軸22に連結され、第2リングギヤR2と第3サンギヤS3とが一体的に連結されて第1クラッチC1を介して伝達部材18に選択的に連結されている。このように、自動変速部20と伝達部材18とは自動変速部20の変速段を成立させるために用いられる第1クラッチC1または第2クラッチC2を介して選択的に連結されている。言い換えれば、第1クラッチC1および第2クラッチC2は、伝達部材18と自動変速部20との間すなわち差動部11(伝達部材18)と駆動輪38との間の動力伝達経路を、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、その動力伝達経路の動力伝達を遮断する動力伝達遮断状態とに選択的に切り換える係合装置として機能している。つまり、第1クラッチC1および第2クラッチC2の少なくとも一方が係合されることで上記動力伝達経路が動力伝達可能状態とされ、或いは第1クラッチC1および第2クラッチC2が解放されることで上記動力伝達経路が動力伝達遮断状態とされる。
前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3は従来の車両用有段式自動変速機においてよく用いられている油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介装されている両側の部材を選択的に連結するためのものである。
以上のように構成された動力伝達装置10では、例えば、図2の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第5速ギヤ段(第5変速段)のいずれか1或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸14の回転速度NIN/出力軸22の回転速度NOUT)が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、差動部11は前述した無段変速機として作動する無段変速状態に加え、変速比が一定の変速機として作動する定変速状態を構成することが可能とされている。したがって、動力伝達装置10では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた差動部11と自動変速部20とで有段変速機として作動する有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた差動部11と自動変速部20とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、動力伝達装置10は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。また、差動部11も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。
例えば、動力伝達装置10が有段変速機として機能する場合には、図2に示すように、切換クラッチC0、第1クラッチC1および第3ブレーキB3の係合により、変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ5が第4速ギヤ段よりも小さい値例えば「0.705」程度である第5速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「3.209」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば全てのクラッチ及びブレーキC0,C1,C2,B0,B1,B2,B3が解放される。
そして、動力伝達装置10が無段変速機として機能する場合には、図2に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、差動部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって動力伝達装置10全体としてのトータル変速比(総合変速比)γTが無段階に得られるようになる。
図3は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する自動変速部20とから構成される動力伝達装置10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28、30のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度Nを示し、横線XGが伝達部材18の回転速度を示している。
また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。さらに、自動変速部20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第1サンギヤS1および第2サンギヤS2を、第5回転要素(第5要素)RE5に対応する第1キャリヤCA1を、第6回転要素(第6要素)RE6に対応する第3リングギヤR3を、第7回転要素(第7要素)RE7に対応し且つ相互に連結された第1リングギヤR1、第2キャリヤCA2、第3キャリヤCA3を、第8回転要素(第8要素)RE8に対応し且つ相互に連結された第2リングギヤR2、第3サンギヤS3をそれぞれ表し、それらの間隔は第1、第2、第3遊星歯車装置26、28、30のギヤ比ρ1、ρ2、ρ3に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2、第3遊星歯車装置26、28、30毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
上記図3の共線図を用いて表現すれば、本実施例の動力伝達装置10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン8に連結されるとともに切換クラッチC0を介して第2回転要素(差動部サンギヤS0)RE2と選択的に連結され、第2回転要素RE2が第1電動機M1に連結されるとともに切換ブレーキB0を介してケース12に選択的に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部(有段変速部)20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。
例えば、上記切換クラッチC0および切換ブレーキB0の解放により無段変速状態(差動状態)に切り換えられたときは、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転が上昇或いは下降させられると、車速Vに拘束される差動部リングギヤR0の回転速度が略一定である場合には、直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度が上昇或いは下降させられる。また、切換クラッチC0の係合により差動部サンギヤS0と差動部キャリヤCA0とが連結されると、動力分配機構16は上記3回転要素が一体回転する非差動状態とされるので、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で伝達部材18が回転させられる。或いは、切換ブレーキB0の係合によって差動部サンギヤS0の回転が停止させられると動力分配機構16は増速機構として機能する非差動状態とされるので、直線L0は図3に示す状態となり、その直線L0と縦線Y3との交点で示される差動部リングギヤR0すなわち伝達部材18の回転速度は、エンジン回転速度Nよりも増速された回転で自動変速部20へ入力される。
また、自動変速部20において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は第3ブレーキB3を介してケース12に選択的に連結され、第7回転要素RE7は出力軸22に連結され、第8回転要素RE8は第1クラッチC1を介して伝達部材18に選択的に連結されている。
自動変速部20では、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線X2との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速の出力軸22の回転速度が示される。上記第1速乃至第4速では、切換クラッチC0が係合させられている結果、エンジン回転速度Nと同じ回転速度で第8回転要素RE8に差動部11すなわち動力分配機構16からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、差動部11からの動力がエンジン回転速度Nよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L5と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第5速の出力軸22の回転速度が示される。
図4は、本発明に係る動力伝達装置10の制御装置としての電子制御装置40に入力される信号及びその電子制御装置40から出力される信号を例示している。この電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1電動機M1、第2電動機M2に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。
電子制御装置40には、図4に示す各センサやスイッチなどから、エンジン水温TEMPを示す信号、シフトポジションPSHを表す信号、差動部11や自動変速部20の各油圧式摩擦係合装置(クラッチC、ブレーキB)の油圧アクチュエータにかかる油圧(係合圧)例えば第1ブレーキ油圧Pb1や第2ブレーキ油圧Pb2や第2クラッチ油圧Pc2などを表す信号、第1電動機M1の回転速度NM1(以下、「第1電動機回転速度NM1」という)を表す信号、第2電動機M2の回転速度NM2(以下、「第2電動機回転速度NM2」という)を表す信号、エンジン8の回転速度であるエンジン回転速度Nを表す信号、動力伝達装置10の無段変速状態と有段変速状態とを選択的に切り換えるための変速状態手動選択装置であって運転席近傍に設けられて搭乗者によって操作される有段/無段モードスイッチからのその切換状態を示す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を示すエアコン信号、出力軸22の回転速度NOUTに対応する車速Vを表す信号、自動変速部20の作動油温を示す油温信号、サイドブレーキ操作を示す信号、フットブレーキ操作を示す信号、触媒温度を示す触媒温度信号、運転者の出力要求量に対応するアクセルペダル41の操作量(アクセル開度)Accを示すアクセル開度信号、カム角信号、スノーモード設定を示すスノーモード設定信号、車両の前後加速度を示す加速度信号、オートクルーズ走行を示すオートクルーズ信号、車両の重量を示す車重信号、エンジン8の空燃比A/Fを示す信号などが、それぞれ供給される。
また、上記電子制御装置40からは、エンジン出力を制御するエンジン出力制御装置43(図6参照)への制御信号例えばエンジン8の吸気管95に備えられた電子スロットル弁96の開度θTHを操作するスロットルアクチュエータ97への駆動信号や燃料噴射装置98によるエンジン8の各気筒内への燃料供給量を制御する燃料供給量信号や点火装置99によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42(図6参照)に含まれる電磁弁を作動させるバルブ指令信号、この油圧制御回路42の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図5は複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置48の一例を示す図である。このシフト操作装置48は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー49を備えている。
そのシフトレバー49は、動力伝達装置10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、動力伝達装置10内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、動力伝達装置10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、または手動変速走行モード(手動モード)を成立させて上記自動変速制御における高速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
上記シフトレバー49の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば油圧制御回路42が電気的に切り換えられる。
上記「P」乃至「M」ポジションに示す各シフトポジションPSHにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれもが解放されるような自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする第1クラッチC1および第2クラッチC2による動力伝達経路の動力伝達遮断状態へ切り換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2の少なくとも一方が係合されるような自動変速部20内の動力伝達経路が連結された車両を駆動可能とする第1クラッチC1および/または第2クラッチC2による動力伝達経路の動力伝達可能状態への切り換えを選択するための駆動ポジションでもある。
具体的には、シフトレバー49が「P」ポジション或いは「N」ポジションから「R」ポジションへ手動操作されることで、第2クラッチC2が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされ、シフトレバー49が「N」ポジションから「D」ポジションへ手動操作されることで、少なくとも第1クラッチC1が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされる。また、シフトレバー49が「R」ポジションから「P」ポジション或いは「N」ポジションへ手動操作されることで、第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされ、シフトレバー49が「D」ポジションから「N」ポジションへ手動操作されることで、第1クラッチC1および第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされる。
図6は、電子制御装置40に備えられた制御機能の要部を説明する機能ブロック線図である。図6において、有段変速制御手段54は、自動変速部20の変速を行う変速制御手段として機能するものである。例えば、有段変速制御手段54は、記憶手段56に予め記憶された図7の実線および一点鎖線に示す関係(変速線図、変速マップ)から車速Vおよび自動変速部20の(要求)出力軸トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の変速を実行する。このとき、有段変速制御手段54は、自動変速部20の変速実行を指令する変速出力を行う。例えば、図2に示す係合表に従って変速段が達成されるように切換クラッチC0および切換ブレーキB0を除いた油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令)を油圧制御回路42へ出力する。なお、アクセル開度Accと自動変速部20の要求出力軸トルクTOUT(図7の縦軸)とはアクセル開度Accが大きくなるほどそれに応じて上記要求出力軸トルクTOUTも大きくなる対応関係にあることから、図7の変速線図の縦軸はアクセル開度Accであっても差し支えない。なお、有段変速制御手段54は、自動変速部20の変速実行を指令する変速出力がアップシフトのためのものか否かに基づいて、アップシフトが開始されるか否かを判断するアップシフト開始判定手段55を機能的に備えているが、上記アップシフト開始判定手段55が有段変速制御手段54とは別に設けられてもかまわない。
ハイブリッド制御手段52は、動力伝達装置10の前記無段変速状態すなわち差動部11の差動状態においてエンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速において、運転者の出力要求量としてのアクセルペダル操作量(アクセル開度)Accや車速Vから車両の目標(要求)出力を算出し、車両の目標出力と充電要求値とから必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、および第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。
ハイブリッド制御手段52は、その制御を動力性能や燃費向上などのために自動変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Nと車速Vおよび自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段52は、例えば図8に示すようなエンジン回転速度NとエンジントルクTとをパラメータとする二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に定められたエンジン8の動作曲線の一種である最適燃費率曲線LEF(燃費マップ、関係)を予め記憶しており、その最適燃費率曲線LEFにエンジン8の動作点(以下、「エンジン動作点」と表す)が沿わされつつエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力を発生するためのエンジントルクTとエンジン回転速度Nとなるように動力伝達装置10のトータル変速比γTの目標値を定め、その目標値が得られるように差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内例えば13〜0.5の範囲内で制御する。ここで、上記エンジン動作点とは、エンジン回転速度N及びエンジントルクTなどで例示されるエンジン8の動作状態を示す状態量を座標軸とした二次元座標においてエンジン8の動作状態を示す動作点である。なお、本実施例で例えば、燃費とは単位燃料消費量当たりの走行距離等であり、燃費の向上とはその単位燃料消費量当たりの走行距離が長くなることであり、或いは、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)が小さくなることである。逆に、燃費の低下とはその単位燃料消費量当たりの走行距離が短くなることであり、或いは、車両全体としての燃料消費率が大きくなることである。
このとき、ハイブリッド制御手段52は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2へ供給する。そのため、エンジン8の動力の主要部は機械的に伝達部材18へ伝達される一方で、エンジン8の動力の一部は第1電動機M1による発電のために消費されてそこで電気エネルギに変換され、インバータ58を通してその電気エネルギが第2電動機M2へ供給される。そして、その供給された電気エネルギにより第2電動機M2が駆動される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。
ハイブリッド制御手段52は、スロットル制御のためにスロットルアクチュエータ97により電子スロットル弁96を開閉制御させる他、燃料噴射制御のために燃料噴射装置98による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置99による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置43に出力して必要なエンジン出力を発生するようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。例えば、ハイブリッド制御手段52は、基本的には図示しない予め記憶された関係からアクセル開度信号Accに基づいてスロットルアクチュエータ97を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。
前記図7の実線Aは、車両の発進/走行用(以下、走行用という)の駆動力源をエンジン8と電動機例えば第2電動機M2とで切り換えるための、言い換えればエンジン8を走行用の駆動力源として車両を発進/走行(以下、走行という)させる所謂エンジン走行と第2電動機M2を走行用の駆動力源として車両を走行させる所謂モータ走行とを切り換えるための、エンジン走行領域とモータ走行領域との境界線である。この図7に示すエンジン走行とモータ走行とを切り換えるための境界線(実線A)を有する予め記憶された関係は、車速Vと駆動力関連値である出力軸トルクTOUTとをパラメータとする二次元座標で構成された駆動力源切換線図(駆動力源マップ)の一例である。この駆動力源切換線図は、例えば同じ図7中の実線および一点鎖線に示す変速線図(変速マップ)と共に記憶手段56に予め記憶されている。
そして、ハイブリッド制御手段52は、例えば図7の駆動力源切換線図から車速Vと要求出力軸トルクTOUTとで示される車両状態に基づいてモータ走行領域とエンジン走行領域との何れであるかを判断してモータ走行或いはエンジン走行を実行する。このように、ハイブリッド制御手段52によるモータ走行は、図7から明らかなように一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力軸トルクTOUT時すなわち低エンジントルクT時、或いは車速Vの比較的低車速時すなわち低負荷域で実行される。
ハイブリッド制御手段52は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、差動部11の電気的CVT機能(差動作用)によって、第1電動機回転速度NM1を負の回転速度で制御例えば空転させて、差動部11の差動作用によりエンジン回転速度Nを零乃至略零に維持する。
ハイブリッド制御手段52は、エンジン走行とモータ走行とを切り換えるために、エンジン8の作動状態を運転状態と停止状態との間で切り換える、すなわちエンジン8の始動および停止を行うエンジン始動停止制御手段66を備えている。このエンジン始動停止制御手段66は、ハイブリッド制御手段52により例えば図7の駆動力源切換線図から車両状態に基づいてモータ走行とエンジン走行と切り換えが判断された場合に、エンジン8の始動または停止を実行する。
例えば、エンジン始動停止制御手段66は、図7の実線Bの点a→点bに示すように、アクセルペダル41が踏込操作されて要求出力軸トルクTOUTが大きくなり車両状態がモータ走行領域からエンジン走行領域へ変化した場合には、第1電動機M1に通電して第1電動機回転速度NM1を引き上げることで、すなわち第1電動機M1をスタータとして機能させることで、エンジン回転速度Nを引き上げ、所定のエンジン回転速度N’例えば自律回転可能なエンジン回転速度Nで点火装置99により点火させるようにエンジン8の始動を行って、ハイブリッド制御手段52によるモータ走行からエンジン走行へ切り換える。このとき、エンジン始動停止制御手段66は、第1電動機回転速度NM1を速やかに引き上げることでエンジン回転速度Nを速やかに所定のエンジン回転速度N’まで引き上げてもよい。これにより、良く知られたアイドル回転速度NEIDL以下のエンジン回転速度領域における共振領域を速やかに回避できて始動時の振動が抑制される。
また、エンジン始動停止制御手段66は、図7の実線Bの点b→点aに示すように、アクセルペダル41が戻されて要求出力軸トルクTOUTが小さくなり車両状態がエンジン走行領域からモータ走行領域へ変化した場合には、燃料噴射装置98により燃料供給を停止させるように、すなわちフューエルカットによりエンジン8の停止を行って、ハイブリッド制御手段52によるエンジン走行からモータ走行へ切り換える。このとき、エンジン始動停止制御手段66は、第1電動機回転速度NM1を速やかに引き下げることでエンジン回転速度Nを速やかに零乃至略零まで引き下げてもよい。これにより、上記共振領域を速やかに回避できて停止時の振動が抑制される。或いは、エンジン始動停止制御手段66は、フューエルカットより先に、第1電動機回転速度NM1を引き下げてエンジン回転速度Nを引き下げ、所定のエンジン回転速度N’でフューエルカットするようにエンジン8の停止を行ってもよい。
また、ハイブリッド制御手段52は、エンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置60からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動してエンジン8の動力を補助するトルクアシストが可能である。よって、本実施例ではエンジン8と第2電動機M2との両方を走行用の駆動力源とする車両の走行はモータ走行ではなくエンジン走行に含まれるものとする。
また、ハイブリッド制御手段52は、車両の停止状態又は低車速状態に拘わらず、差動部11の電気的CVT機能によってエンジン8の運転状態を維持させることができる。例えば、車両停止時に蓄電装置60の充電残量SOCが低下して第1電動機M1による発電が必要となった場合には、エンジン8の動力により第1電動機M1が発電させられてその第1電動機M1の回転速度が引き上げられ、車速Vで一意的に決められる第2電動機回転速度NM2が車両停止状態により零(略零)となっても動力分配機構16の差動作用によってエンジン回転速度Nが自律回転可能な回転速度以上に維持される。
また、ハイブリッド制御手段52は、車両の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1および/または第2電動機回転速度NM2を制御してエンジン回転速度Nを任意の回転速度に維持させられる。例えば、図3の共線図からもわかるようにハイブリッド制御手段52はエンジン回転速度Nを引き上げる場合には、車速Vに拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。
増速側ギヤ段判定手段62は、動力伝達装置10を有段変速状態とする際に切換クラッチC0および切換ブレーキB0のいずれを係合させるかを判定するために、例えば車両状態に基づいて記憶手段56に予め記憶された前記図7に示す変速線図に従って動力伝達装置10の変速されるべき変速段が増速側ギヤ段例えば第5速ギヤ段であるか否かを判定する。
切換制御手段50は、車両状態に基づいて前記差動状態切換装置(切換クラッチC0、切換ブレーキB0)の係合/解放を切り換えることにより、前記無段変速状態と前記有段変速状態とを、すなわち前記差動状態と前記ロック状態とを選択的に切り換える。例えば、切換制御手段50は、記憶手段56に予め記憶された前記図7の破線および二点鎖線に示す関係(切換線図、切換マップ)から車速Vおよび要求出力軸トルクTOUTで示される車両状態に基づいて、動力伝達装置10(差動部11)の変速状態を切り換えるべきか否かを判断して、すなわち動力伝達装置10を無段変速状態とする無段制御領域内であるか或いは動力伝達装置10を有段変速状態とする有段制御領域内であるかを判定することにより動力伝達装置10の切り換えるべき変速状態を判断して、動力伝達装置10を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える変速状態の切り換えを実行する。
具体的には、切換制御手段50は有段変速制御領域内であると判定した場合は、ハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可すなわち禁止とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速を許可する。このときの有段変速制御手段54は、記憶手段56に予め記憶された例えば図7に示す変速線図に従って自動変速部20の自動変速を実行する。例えば記憶手段56に予め記憶された図2は、このときの変速において選択される油圧式摩擦係合装置すなわちC0、C1、C2、B0、B1、B2、B3の作動の組み合わせを示している。すなわち、動力伝達装置10全体すなわち差動部11および自動変速部20が所謂有段式自動変速機として機能し、図2に示す係合表に従って変速段が達成される。
例えば、増速側ギヤ段判定手段62により第5速ギヤ段が判定される場合には、動力伝達装置10全体として変速比が1.0より小さな増速側ギヤ段所謂オーバードライブギヤ段が得られるために切換制御手段50は差動部11が固定の変速比γ0例えば変速比γ0が0.7の副変速機として機能させられるように切換クラッチC0を解放させ且つ切換ブレーキB0を係合させる指令を油圧制御回路42へ出力する。また、増速側ギヤ段判定手段62により第5速ギヤ段でないと判定される場合には、動力伝達装置10全体として変速比が1.0以上の減速側ギヤ段が得られるために切換制御手段50は差動部11が固定の変速比γ0例えば変速比γ0が1の副変速機として機能させられるように切換クラッチC0を係合させ且つ切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。このように、切換制御手段50によって動力伝達装置10が有段変速状態に切り換えられるとともに、その有段変速状態における2種類の変速段のいずれか1となるように選択的に切り換えられて、差動部11が副変速機として機能させられ、それに直列の自動変速部20が有段変速機として機能することにより、動力伝達装置10全体が所謂有段式自動変速機として機能させられる。
しかし、切換制御手段50は、動力伝達装置10を無段変速状態に切り換える無段変速制御領域内であると判定した場合は、動力伝達装置10全体として無段変速状態が得られるために差動部11を無段変速状態として無段変速可能とするように切換クラッチC0および切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。同時に、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号を出力するとともに、有段変速制御手段54には、予め設定された無段変速時の変速段に固定する信号を出力するか、或いは記憶手段56に予め記憶された例えば図7に示す変速線図に従って自動変速部20を自動変速することを許可する信号を出力する。この場合、有段変速制御手段54により、図2の係合表内において切換クラッチC0および切換ブレーキB0の係合を除いた作動により自動変速が行われる。このように、切換制御手段50により無段変速状態に切り換えられた差動部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって動力伝達装置10全体として無段変速状態となりトータル変速比γTが無段階に得られるようになる。
ここで前記図7について詳述すると、図7は自動変速部20の変速判断の基となる記憶手段56に予め記憶された関係(変速線図、変速マップ)であり、車速Vと駆動力関連値である要求出力軸トルクTOUTとをパラメータとする二次元座標で構成された変速線図の一例である。図7の実線はアップシフトを実行すべき旨の変速判断がなされる変速線(アップシフト線)であり、一点鎖線はダウンシフトを実行すべき旨の変速判断がなされる変速線(ダウンシフト線)である。この図7の変速線図における変速線は、例えば自動変速部20の要求出力軸トルクTOUTを示す横線上において実際の車速Vが線を横切ったか否か、また例えば車速Vを示す縦線上において自動変速部20の要求出力軸トルクTOUTが線を横切ったか否か、すなわち変速線上の変速を実行すべき値(変速点)を横切ったか否かを判断するためのものであり、この変速点の連なりとして予め記憶されている。
また、図7の破線は切換制御手段50による有段制御領域と無段制御領域との判定のための判定車速V1および判定出力トルクT1を示している。つまり、図7の破線はハイブリッド車両の高速走行を判定するための予め設定された高速走行判定値である判定車速V1の連なりである高車速判定線と、ハイブリッド車両の駆動力に関連する駆動力関連値例えば自動変速部20の出力軸トルクTOUTが高出力となる高出力走行を判定するための予め設定された高出力走行判定値である判定出力トルクT1の連なりである高出力走行判定線とを示している。さらに、図7の破線に対して二点鎖線に示すように有段制御領域と無段制御領域との判定にヒステリシスが設けられている。つまり、この図7は判定車速V1および判定出力トルクT1を含む、車速Vと出力軸トルクTOUTとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための予め記憶された切換線図(切換マップ、関係)である。なお、この切換線図を含めて変速マップとして記憶手段56に予め記憶されてもよい。また、この切換線図は判定車速V1および判定出力トルクT1の少なくとも1つを含むものであってもよいし、車速Vおよび出力軸トルクTOUTの何れかをパラメータとする予め記憶された切換線であってもよい。
上記変速線図、切換線図、或いは駆動力源切換線図等は、マップとしてではなく実際の車速Vと判定車速V1とを比較する判定式、出力軸トルクTOUTと判定出力トルクT1とを比較する判定式等として記憶されてもよい。この場合には、切換制御手段50は、車両状態例えば実際の車速が判定車速V1を越えたときに動力伝達装置10を有段変速状態とする。また、切換制御手段50は、車両状態例えば自動変速部20の出力軸トルクTOUTが判定出力トルクT1を越えたときに動力伝達装置10を有段変速状態とする。
また、差動部11を電気的な無段変速機として作動させるための電動機等の電気系の制御機器の故障や機能低下時、例えば第1電動機M1における電気エネルギの発生からその電気エネルギが機械的エネルギに変換されるまでの電気パスに関連する機器の機能低下すなわち第1電動機M1、第2電動機M2、インバータ58、蓄電装置60、それらを接続する伝送路などの故障(フェイル)や、故障とか低温による機能低下が発生したような車両状態となる場合には、無段制御領域であっても車両走行を確保するために切換制御手段50は動力伝達装置10を優先的に有段変速状態としてもよい。
前記駆動力関連値とは、車両の駆動力に1対1に対応するパラメータであって、駆動輪38での駆動トルク或いは駆動力のみならず、例えば自動変速部20の出力軸トルクTOUT、エンジントルクT、車両加速度や、例えばアクセル開度或いはスロットル弁開度θTH(或いは吸入空気量、空燃比、燃料噴射量)とエンジン回転速度Nとに基づいて算出されるエンジントルクTなどの実際値や、運転者のアクセルペダル操作量或いはスロットル開度等に基づいて算出される要求(目標)エンジントルクT、自動変速部20の要求(目標)出力軸トルクTOUT、要求駆動力等の推定値であってもよい。また、上記駆動トルクは出力軸トルクTOUT等からデフ比、駆動輪38の半径等を考慮して算出されてもよいし、例えばトルクセンサ等によって直接検出されてもよい。上記他の各トルク等も同様である。
また、例えば判定車速V1は、高速走行において動力伝達装置10が無段変速状態とされるとかえって燃費が悪化するのを抑制するように、その高速走行において動力伝達装置10が有段変速状態とされるように設定されている。また、判定トルクT1は、車両の高出力走行において第1電動機M1の反力トルクをエンジンの高出力域まで対応させないで第1電動機M1を小型化するために、例えば第1電動機M1からの電気エネルギの最大出力を小さくして配設可能とされた第1電動機M1の特性に応じて設定されている。
図7の関係に示されるように、出力軸トルクTOUTが予め設定された判定出力トルクT1以上の高トルク領域、或いは車速Vが予め設定された判定車速V1以上の高車速領域が有段制御領域として設定されているので、有段変速走行がエンジン8の比較的高トルクとなる高駆動トルク時、或いは車速の比較的高車速時において実行され、無段変速走行がエンジン8の比較的低トルクとなる低駆動トルク時、或いは車速の比較的低車速時すなわちエンジン8の常用出力域において実行されるようになっている。
これによって、例えば、車両の低中速走行および低中出力走行では、動力伝達装置10が無段変速状態とされて車両の燃費性能が確保されるが、実際の車速Vが前記判定車速V1を越えるような高速走行では動力伝達装置10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる場合に発生する動力と電気エネルギとの間の変換損失が抑制されて燃費が向上する。また、出力軸トルクTOUTなどの前記駆動力関連値が判定トルクT1を越えるような高出力走行では動力伝達装置10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる領域が車両の低中速走行および低中出力走行となって、第1電動機M1が発生すべき電気的エネルギ換言すれば第1電動機M1が伝える電気的エネルギの最大値を小さくできて第1電動機M1或いはそれを含む車両の駆動装置が一層小型化される。また、他の考え方として、この高出力走行においては燃費に対する要求より運転者の駆動力に対する要求が重視されるので、無段変速状態より有段変速状態(定変速状態)に切り換えられるのである。これによって、ユーザは、例えば有段自動変速走行におけるアップシフトに伴うエンジン回転速度Nの変化すなわち変速に伴うリズミカルなエンジン回転速度Nの変化が楽しめる。
このように、本実施例の差動部11(動力伝達装置10)は無段変速状態と有段変速状態(定変速状態)とに選択的に切り換え可能であって、前記切換制御手段50により車両状態に基づいて差動部11の切り換えるべき変速状態が判断され、差動部11が無段変速状態と有段変速状態とのいずれかに選択的に切り換えられる。また、本実施例では、ハイブリッド制御手段52により車両状態に基づいてモータ走行或いはエンジン走行が実行されるが、このエンジン走行とモータ走行とを切り換えるために、エンジン始動停止制御手段66によりエンジン8の始動または停止が行われる。
ところで、動力伝達装置10はクラッチツウクラッチ制御が実施される自動変速部20を備えているので、自動変速部20の変速過渡期間内に出力軸トルクTOUTが変動する。その出力軸トルクTOUTの変動とは、例えば、自動変速部20のアップシフトに際してその変速過渡期間内のトルク相において生じる出力軸トルクTOUTの落ち込みのことである。このように自動変速部20の変速中に出力軸トルクTOUTの落ち込みが生じると、その落ち込みが変速ショックとして感じられ快適性を損なう可能性がある。本実施例の電子制御装置40は、上記のような出力軸トルクTOUTの変動を抑制するために、落ち込みトルク算出手段68、第1電動機目標トルク算出手段69、トルク補償開始判断手段70、およびトルク補償手段72を備えている。
前記落ち込みトルク算出手段68は、予め定められて記憶手段56に記憶された関係(マップ、関係式)から、車両状態例えば差動部11の変速比γ0と自動変速部20の変速比γATとアップシフト後の自動変速部20の変速比γAT+1とアクセル開度Accとに基づいて、後に詳述するトルク補償手段72によるトルク補償が行われない場合に発生するトルク相終了時点での出力軸トルクTOUTの落ち込みトルク△TOUTを算出する。すなわち、落ち込みトルク算出手段68は、アップシフトのトルク相における自動変速部20の出力軸トルクTOUTの減少分(落ち込みトルク△TOUT)を算出する。なお、本実施例では、落ち込みトルク算出手段68は、アップシフト開始判定手段55により自動変速部20のアップシフトの実行を指令する変速出力が為されたと判断された場合すなわちアップシフトが開始されたと判断された場合に、上記落ち込みトルク△TOUTを算出する。
前記第1電動機目標トルク算出手段69は、予め定められて記憶手段56に記憶された第1電動機M1の回転速度NM1、出力トルクtgout、および入出力電力などについての関係(マップ、関係式)から、例えば第1電動機出力軸の回転速度NM1および出力トルクtgoutなどの車両状態と上記落ち込みトルク算出手段68により算出された落ち込みトルク△TOUTとに基づいて、その落ち込みトルク△TOUTを補う(補償する)ための第1電動機M1の第1電動機目標トルクtgtgtを算出する。この第1電動機目標トルクtgtgtは、例えば前記落ち込みトルク△TOUTを補うのに十分なトルクとして算出される。
前記トルク補償開始判断手段70は、後に詳述するトルク補償手段72が実行するトルク補償の開始条件であるトルク補償開始条件が成立したか否かを判断する。具体的には、トルク補償開始判断手段70は、先ず、有段変速制御手段54が図7の変速線図に基づいて自動変速部20の変速を実行すべき旨の変速判断をした場合に、その変速判断がアップシフトの変速判断かダウンシフトの変速判断かを判断する。上記変速判断がアップシフトのものであると判断された場合には、そのアップシフトの変速過渡期間内すなわちアップシフト過渡期間内のトルク相が開始されたか否かを判断する。トルク補償開始判断手段70は、上記アップシフト過渡期間内のトルク相が開始された場合に、上記トルク補償開始条件が成立したと判断する。一方、上記トルク相の開始前であればその判断を否定する。本実施例では、上記トルク相の開始は、例えば、有段変速制御手段54から油圧制御回路42へ上記アップシフトの変速出力が行われた変速出力時から予め実験的に求められたトルク相が開始される所定時間が経過したか否かに基づいて判断される。なお、上記所定時間の経過判断には、例えば、電子制御装置40に備えられ、上記アップシフトの変速出力が行われた変速出力時から時間の計測を開始するタイマー(トルク相開始判定カウンタ)が用いられる。また、上記トルク相の開始は、上述以外にも、例えば、自動変速部20のアップシフト中に作動する係合側の係合装置の油圧値もしくは解放側の係合装置の油圧値が、トルク相開始を示す予め実験的に求められた所定の油圧値に達したか否かに基づいて判断されてもよい。
前記トルク補償手段72は、ハイブリッド制御手段52に備えられている。このトルク補償手段72は、トルク補償開始判断手段70がその判断を肯定した場合すなわち前記トルク補償開始条件が成立したと判断した場合に、自動変速部20のアップシフト過渡期間内(変速過渡期間内)のトルク相中において自動変速部20の出力軸トルクTOUTの落ち込みを第1電動機M1の反力増加で補う即ち第1電動機M1の出力トルクtgoutの増加分で補うことによりその出力軸トルクTOUTの変動を抑制するトルク補償を実行する。トルク補償手段72は、第1電動機M1をトルク補償電動機として機能させ、その第1電動機M1の作動によって前記トルク補償を実行するものであり、アップシフト過渡期間内のトルク相において略一定の変化率で減少する出力軸トルクTOUTの落ち込みに合わせて出力軸トルクTOUTの低下(落ち込み)を打ち消す方向すなわち正方向に第1電動機M1の出力トルクtgoutを増大させることにより、換言すればその出力軸トルクTOUTの落ち込みを打ち消すための補償トルクTFLを第1電動機M1に出力させることにより、上記出力軸トルクTOUTの落ち込みを抑制する。具体的には、トルク補償手段72は、トルク相開始時点から予め実験的に求められたトルク相時間tt1(後述の図10参照)経過後のトルク相終了時点での第1電動機M1の出力トルクtgoutが前記第1電動機目標トルク算出手段69で算出された第1電動機目標トルクtgtgtとなるように、その第1電動機M1の出力トルクtgoutを前記トルク相開始にともなって一定の変化率で増大させる。
前記トルク補償手段72によるトルク補償の実行の際には、前述のように自動変速部20の出力軸トルクTOUTの落ち込みを打ち消す(補償する)ように第1電動機M1の出力トルクtgoutを第1電動機目標トルクtgtgtとするためにその第1電動機M1にて電気エネルギが消費されることになるが、その電気エネルギの消費は、上記補償トルクTFLが大きい程すなわちトルク相における出力軸トルクTOUTの落ち込みトルク△TOUTが大きくなるアクセル高開度領域程、大きくなる。ここで、例えば蓄電装置60の充電残量SOCがその下限値またはその付近にまで低下している場合等であって、その充電残量SOCが上記補償トルクTFLを出力するために第1電動機M1に供給されるべき電気エネルギすなわち電力量に対して不足する場合には、その第1電動機M1への電力供給が制限されてトルク補償が十分に行われず、変速ショックが低減できない可能性がある。本実施例の電子制御装置40は、上記のような電力量供給不足の事態に備えて、電力供給制限判定手段74、不足電力量算出手段76、第2電動機目標トルク算出手段78、および電力量確保手段80を備えている。
上記電力供給制限判定手段74は、例えば第1電動機目標トルク算出手段69により第1電動機目標トルクtgtgtが算出された場合に、先ず、第1電動機M1の出力トルクtgoutを第1電動機目標トルクtgtgtとするためにその第1電動機M1にて消費される電気エネルギ、すなわち前記トルク補償手段72によるトルク補償に必要な電力量pbtgtを算出する。そして、蓄電装置60の充電残量SOCに基づいて、上記電力量pbtgtが供給不可能か否かを判定する。具体的には、例えば、第1電動機M1が蓄電装置60によって供給される電力により駆動される場合には、前記必要な電力量pbtgtは蓄電装置60から持ち出し(使用)される電気エネルギとなるので、上記電力量pbtgtが蓄電装置60の充電残量SOCよりも大きい場合に、その電力量pbtgtが供給不可能であると判定される。なお、電力供給制限判定手段74は、上述のように、トルク補償に必要な電力量pbtgtを算出する必要電力量算出手段を機能的に備えているが、上記必要電力量算出手段が電力供給制限判定手段74とは別に設けられてもよい。
前記不足電力量算出手段76は、トルク補償手段72によるトルク補償に必要な電力量pbtgtに対する不足電力量△pbtgtを算出する。具体的には、不足電力量算出手段76は、電力供給制限判定手段74により電力量pbtgtが供給不可能であると判定された場合に、電力量pbtgtと蓄電装置60の充電残量SOCとの差を計算し、その差を不足電力量△pbtgtとする。なお、本実施例では、上述のように、充電残量SOCに対する電力量pbtgtの不足分が不足電力量△pbtgtとされるが、これに限らず、例えば、充電残量SOCにおける活用可能な電力量が算出され、その活用可能な電力量に対する電力量pbtgtの不足分が不足電力量△pbtgtとされてもよい。
前記第2電動機目標トルク算出手段78は、予め定められて記憶手段56に記憶された第2電動機M2の回転速度NM2、出力トルクtmout、および入出力電力などについての関係(マップ、関係式)から、例えば第2電動機出力軸の回転速度NM2および出力トルクtmoutなどの車両状態および上記不足電力量算出手段76により算出された不足電力量△pbtgtに基づいて、その不足電力量△pbtgtを得るための第2電動機M2の第2電動機目標トルクtmtgtを算出する。
前記電力量確保手段80は、電力供給制限判定手段74がその判断を肯定した場合すなわちトルク補償手段72によるトルク補償に必要な電力量pbtgtが供給不可能であると判定された場合に、上記トルク補償に必要な電力量pbtgtをアップシフト過渡期間内のトルク相中に実施される前記第2電動機のトルクダウンにより確保する。上記電力量pbtgtを確保するとは、電力量pbtgtに対して実際の蓄電装置60の充電残量SOCの不足分すなわち不足電力量△pbtgtの一部を確保する場合も含むが、好適には、その不足電力量△pbtgtの全部を確保する場合のことである。電力量確保手段80は、第2電動機M2を電力量確保電動機として機能させ、その第2電動機M2の作動によって電力量の確保を実施する。具体的には、アップシフト過渡期間内のトルク相において略一定の変化率で増大する第1電動機M1の出力トルクtgoutのトルク増加に合わせて電力量確保電動機である第2電動機のトルクを制御する(トルクダウンさせる)ように、ハイブリッド制御手段52に対して指令することにより、第1電動機M1のトルク制御のために不足する電力量を確保する。より具体的には、電力量確保手段80は、トルク相開始時点から前記トルク相時間tt1(後述の図10参照)経過後のトルク相終了時点での第2電動機M2の出力トルクtmoutが前記第2電動機目標トルク算出手段78で算出された第2電動機目標トルクtmtgtとなるように、その第2電動機M2の出力トルクtmoutを前記トルク相開始時点またはその前後から一定の変化率で減少させるようにハイブリッド制御手段52に対して指令する。
ここで、第2電動機M2の出力トルクtmoutは第2電動機M2が駆動力を発揮している状態を正方向とし、その第2電動機M2のトルクダウンはその出力トルクtmoutの正負が考慮されて判断されるものである。本実施例では、第2電動機M2のトルクダウンとは、例えば、第2電動機M2が回生制御されて電気エネルギを発生する状態とされることである。
図9は、電子制御装置40の制御作動の要部、すなわち、前記トルク相補償の実行のための制御作動およびそのトルク相補償の実行に必要な電気エネルギを確保するための制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
図9において、アップシフト開始判定手段55に対応するステップ(以下、「ステップ」を省略する)S1においては、例えば図7の変速線図に基づいて行われた自動変速部20の変速実行を指令する変速出力がアップシフトのためのものか否かに基づいて、アップシフトが開始されるか否かが判断される。
S1の判定が肯定される場合には、本ルーチンが終了させられるが、否定される場合には、落ち込みトルク算出手段68および第1電動機目標トルク算出手段69に対応するS2において、先ず、予め定められて記憶された関係(マップ、関係式)から、車両状態例えば差動部11の変速比γ0と自動変速部20の変速比γATとアップシフト後の自動変速部20の変速比γAT+1とアクセル開度Accとに基づいて、トルク補償が行われない場合のトルク相終了時点での出力軸トルクTOUTの落ち込みトルク△TOUTが算出される。そして、予め定められて記憶手段56に記憶された第1電動機M1の回転速度NM1、出力トルクtgout、および入出力電力などについての関係(マップ、関係式)から、例えば第1電動機出力軸の回転速度NM1および出力トルクtgoutなどの車両状態および上記算出された落ち込みトルク△TOUTに基づいて、その落ち込みトルク△TOUTを補う(補償する)ための第1電動機M1の第1電動機目標トルクtgtgtが算出される。
次いで、電力供給制限判定手段74に対応するS3では、第1電動機M1の出力トルクtgoutを第1電動機目標トルクtgtgtとするためにその第1電動機M1にて消費される電気エネルギ、すなわち前記トルク補償手段72によるトルク補償に必要な電力量pbtgtが算出される。例えば、第1電動機M1が蓄電装置60によって供給される電力により駆動される場合には、前記必要な電力量pbtgtは蓄電装置60から持ち出し(使用)される電気エネルギとなる。
次いで、電力供給制限判定手段74に対応するS4では、蓄電装置60の充電残量SOCに基づいて、トルク補償制御を蓄電装置60に蓄電された電気エネルギにより実行可能か否かが判定される。例えば、前述の第1電動機M1が蓄電装置60によって供給される電力により駆動される場合においては、上記電力量pbtgtが蓄電装置60の充電残量SOCよりも大きい場合に、その電力量pbtgtが供給不可能であると判定される。
S4の判定が肯定される場合には、不足電力量算出手段76および第2電動機目標トルク算出手段78に対応するS5において、先ず、後述のS7で必要な電力量pbtgtに対する不足電力量△pbtgtが算出される。具体的には、電力量pbtgtと蓄電装置60の充電残量SOCとの差が計算され、その差が不足電力量△pbtgtとされる。そして、予め定められて記憶手段56に記憶された第2電動機M2の回転速度NM2、出力トルクtmout、および入出力電力などについての関係(マップ、関係式)から、例えば第2電動機出力軸の回転速度NM2および出力トルクtmoutなどの車両状態および上記算出された不足電力量△pbtgtに基づいて、その不足電力量△pbtgtを得るための第2電動機M2の第2電動機目標トルクtmtgtが算出される。
次いで、トルク補償開始判断手段70に対応するS6では、後述のS7で行うトルク補償の開始条件であるトルク補償開始条件が成立したか否かが判断される。具体的には、先ず、S1においてアップシフトであると判断された変速判断に対する変速において、そのアップシフトの変速過渡期間内すなわちアップシフト過渡期間内のトルク相が開始されたか否かが判断される。トルク相が開始されたと判断された場合には、トルク補償開始条件が成立したと判断され、それ以外はトルク補償開始条件の成立を否定する。本実施例では、上記トルク相の開始は、例えば、油圧制御回路42への変速出力が行われた変速出力時から時間計測を開始するタイマー(トルク相開始判定カウンタ)の値に基づいて、その変速出力時から予め実験的に求められたトルク相が開始される所定時間が経過したか否かに基づいて判断される。なお、このS6での制御作動は、後述のS8での制御作動と同様である。
S6の判定が否定される場合には本ルーチンは終了させられるが、肯定される場合には、トルク補償手段72および電力量確保手段80に対応するS7において、第1電動機M1に対しては、インバータ58を介して、自動変速部20のアップシフト過渡期間内のトルク相中において自動変速部20の出力軸トルクTOUTの落ち込みを第1電動機M1の出力トルクtgoutで補うことにより出力軸トルクTOUTの変動を抑制するトルク補償を実行するように指令が出力される一方で、第2電動機M2に対しては、インバータ58を介して、上記トルク補償に必要な電力量pbtgtをアップシフト過渡期間内のトルク相中に実施される前記第2電動機のトルクダウンにより確保するように指令が出力されて、本ルーチンは終了させられる。
具体的には、アップシフト過渡期間内のトルク相において略一定の変化率で減少する出力軸トルクTOUTの落ち込みにともなって出力軸トルクTOUTの低下(落ち込み)を打ち消す方向すなわち正方向に第1電動機M1の出力トルクtgoutを増大させるように、第1電動機M1の駆動電流が制御される。さらに具体的には、トルク相終了時点での第1電動機M1の出力トルクtgoutが前記S2で算出された第1電動機目標トルクtgtgtとなるように且つ第1電動機M1の出力トルクtgoutを前記トルク相開始時点から一定の変化率で増大させるように、第1電動機M1の駆動電流が制御される。なお、このS7では、第1電動機M1の出力トルクtgoutが、トルク補償が実施されない場合に発生するトルク相終了時点での出力軸トルクTOUTの落ち込みトルク△TOUTを完全補償するための第1電動機目標トルクtgtgtとされるが、上記のようにその第1電動機M1に供給される電力量の不足分を確保するために第2電動機がトルクダウンされるので、実際には完全には補償されず、そのトルクダウン分だけ出力軸トルクTOUTが落ち込むことになる。しかしながら、その落ち込み量は、上記トルク補償が行われなかった場合に比較すると小さくなる。
また、上述のようにアップシフト過渡期間内のトルク相において略一定の変化率で増大させられる第1電動機M1の出力トルクtgoutのトルク増加に応じて、その第1電動機M1のトルク制御のために不足する電力量を確保するべく第2電動機がトルクダウンするように、その第2電動機の駆動電流が制御される。さらに具体的には、トルク相終了時点での第2電動機M2の出力トルクtmoutが前記S5で算出された第2電動機目標トルクtmtgtとなるように且つ第2電動機M2の出力トルクtmoutを前記トルク相開始時点から一定の変化率で減少させるように、第2電動機の駆動電流が制御される。なお、本実施例では、電力量pbtgtに対して実際の蓄電装置60の充電残量SOCの不足分すなわち不足電力量△pbtgtの全部が確保される。
S4の判定が否定される場合には、トルク補償開始判断手段70に対応するS8において、後述のS9で行うトルク補償の開始条件であるトルク補償開始条件が成立したか否かが判断される。このS8での制御作動は、前述のS6での制御作動と同様である。
S8の判定が否定される場合には本ルーチンは終了させられるが、肯定される場合には、トルク補償手段72に対応するS9において、第1電動機M1に対し、インバータ58を介して、自動変速部20のアップシフト過渡期間内のトルク相中において自動変速部20の出力軸トルクTOUTの落ち込みを第1電動機M1で補うことによりその出力軸トルクTOUTの変動を抑制するトルク補償を実行するように指令が出力されて、本ルーチンは終了させられる。
具体的には、アップシフト過渡期間内のトルク相において略一定の変化率で減少する出力軸トルクTOUTの落ち込みに合わせて出力軸トルクTOUTの低下(落ち込み)を打ち消す方向すなわち正方向に第1電動機M1の出力トルクtgoutを増大させるように、第1電動機M1の駆動電流が制御される。さらに具体的には、トルク相終了時点での第1電動機M1の出力トルクtgoutが前記S2で算出された第1電動機目標トルクtgtgtとなるように且つ第1電動機M1の出力トルクtgoutを前記トルク相開始時点から一定の変化率で増大させるように、第1電動機M1の駆動電流が制御される。なお、このS9では、第1電動機M1の出力トルクtgoutが、トルク補償が実施されなかった場合のトルク相終了時点での出力軸トルクTOUTの落ち込みトルク△TOUTを補償するための第1電動機目標トルクtgtgtとされ、出力軸トルクTOUTの落ち込みが補償される。したがって、アップシフト過渡期間内のトルク相において出力軸トルクTOUTの変動(落ち込み)が抑制される。
図10は、アクセルペダル41が踏込まれ且つ差動部11が非ロック状態であるときに自動変速部20においてそのギヤ段のアップシフトが実施される際すなわちパワーオンアップシフトが実施される際に、トルク補償のための電力量pbtgtに対して充電残量SOCが不足している場合を例として、図9に示された制御作動を説明するためのタイムチャートである。このタイムチャートでは、横軸が時刻(経過時間)を表し、縦軸がそれぞれアップシフト状態すなわちアップシフトの進行状態、前記タイマーすなわちトルク相判定カウンタのカウント数、第1電動機目標トルクtgtgt、第2電動機目標トルクtmtgt、第1電動機M1の出力トルクtgout、第2電動機M2の出力トルクtmout、および出力軸トルクTOUTを表している。なお、縦軸は上側すなわち紙面上方向が正である。また、出力軸トルクTOUTには実線と二点鎖線とが示されているが、上記実線はトルク相補償が行われる本実施例の場合を示しており、上記二点鎖線はそのトルク相補償が行われない場合を示している。なお、第1電動機目標トルクtgtgt、第2電動機目標トルクtmtgt、第1電動機M1の出力トルクtgout、第2電動機M2の出力トルクtmoutは、それぞれ駆動する方向を正としており、また、ベース値すなわち本制御が実施されない場合からの変化量を表している。
図10のt1時点は、図9のS1の判断が肯定された時点、すなわち、自動変速部20のアップシフトのための変速出力が為された時点である。このt1時点では、アップシフト状態が定常状態から、変速開始〜トルク相の間の状態へと変更されている。そして、変速出力時からトルク相が開始される所定時間が経過したか否かの判断に用いられるタイマー(トルク相開始判定カウンタ)による時間計測が開始されており、時間経過と共にそのタイマーのカウント値が上昇している。また、t1時点直後に図9のS2乃至S4が実行され、そのS4での判断が肯定されることでS5およびS6が実行されるが、トルク相開始までの間はS6での判断が否定されることから、そのトルク相開始が判断されるt2時点まではS1乃至S6が繰り返し実行される。
t2時点は、タイマー(トルク相開始判定カウンタ)の値が予め実験的に求められた所定値に相当するトルク相開始判定値count1に達したことで図9のS6の判断が肯定された時点、すなわち、自動変速部20のアップシフト過渡期間内のトルク相が開始された時点である。そして、図9のS2およびS5で算出された第1電動機目標トルクtgtgtおよび第2電動機目標トルクtmtgtが設定されている。第1電動機M1の出力トルクtgoutは正方向(増加側)に変更され、第2電動機M2の出力トルクtmoutは負方向(減少側)に変更されている。そして、t2時点直後に図9のS7が実行され、t2時点(トルク相開始時点)からトルク相時間tt1経過後のt3時点(トルク相終了時点)までの間に、出力トルクtgoutが一定の変化率で増大させられていると共に出力トルクtmoutが一定の変化率で減少(トルクダウン)させられている。上記の出力トルクtgoutおよび出力トルクtmoutの制御すなわちトルク補償制御および電力量確保制御が実行される実線で示す場合は、その制御が実行されない二点鎖線で示す場合に比較して、出力軸トルクTOUTの落ち込みが小さくされて変動が抑制されている。
t3時点は、イナーシャ相開始時点、すなわちトルク相終了時点である。このt3時点では、アップシフト状態がトルク相状態からイナーシャ相状態へと変更されている。そして、図9のS7の実行により、t3時点(トルク相終了時点)での出力トルクtgoutおよび出力トルクtmoutは、それぞれ図9のS2およびS5で算出された第1電動機目標トルクtgtgtおよび第2電動機目標トルクtmtgtとされている。t2時点からt3時点にかけて図9のS7が実行されない場合すなわち前記トルク補償制御および電力量確保制御が実行されない場合には、二点鎖線で示すように、t3時点での出力軸トルクTOUTは、t2時点での出力軸トルクTOUTから所定の落ち込みトルク△TOUTだけ落ち込んでしまう。しかし、上記トルク補償制御および電力量確保制御が実行される場合には、実線で示すように、t3時点での出力軸トルクTOUTは、t2時点での出力軸トルクTOUTから第2電動機M2のトルクダウン量だけ減少させられる。上記トルクダウン量は上記落ち込みトルク△TOUTよりも小さい値であり、上記トルク補償制御および電力量確保制御が実行される場合には出力軸トルクTOUTの落ち込みが小さくされて変動が抑制されている。
t4時点は、自動変速部20のアップシフトの終了時、すなわちイナーシャ相終了時点である。このt4時点では、アップシフト状態がイナーシャ相状態から定常状態(変速終了状態)へと変更されている。そして、トルク相判定カウンタ、第1電動機目標トルクtgtgt、および第2電動機目標トルクtmtgtがそれぞれリセットされている。t3時点からt4時点(イナーシャ相中)では、エンジン8のトルクダウン制御が行われるので、エンジントルクTの反力トルクとしての第1電動機M1の出力トルクtgoutが零に近い値すなわち出力トルクtgtgtに保持されている。
上述のように、本実施例の車両用動力伝達装置10の制御装置としての電子制御装置40によれば、自動変速部(有段変速部)20のアップシフト過渡期間内(変速過渡期間内)のトルク相中においてその自動変速部20の出力軸トルクTOUTの落ち込みを第1電動機M1の出力トルクtgoutで補うことによりその出力軸トルクTOUTの変動を抑制するトルク補償手段72と、そのトルク補償手段72によるトルク補償に必要な電力量pbtgtを前記トルク相中に実施される第2電動機M2のトルクダウンにより確保する電力量確保手段80とを備えていることから、電力を供給する蓄電装置60の充電残量SOCが上記トルク補償を行うには充分ではないような場合であっても、電力量確保手段80によってトルク相中の第2電動機M2のトルクダウンにより電力量pbtgtが供給されるので、電力供給制限がある場合でも適切にトルク補償が行われて変速ショックを低減することができる。
ここで、従来のようにトルク補償が第2電動機M2により実行される制御装置では蓄電装置60の充電残量SOCが全く無い場合にはトルク補償が全く行えなかったが、本発明ではそのような場合であってもトルク補償の実行が可能であるという利点がある。すなわち、本発明では蓄電装置60の電気エネルギを使わずとも、第2電動機M2のトルクダウンにより得た電気エネルギを用いて第1電動機M1を作動させてトルク補償を行うことができるという利点がある。
また、本実施例の電子制御装置40によれば、トルク補償手段72によるトルク補償に必要な電力量pbtgtが蓄電装置60から供給不可能か否かを判定する電力供給制限判定手段74を含み、電力量確保手段80は、その電力供給制限判定手段74により電力量pbtgtが供給不可能であると判定された場合に、第2電動機M1のトルクダウンを実施することから、蓄電装置60の充電残量SOCが上記トルク補償を行うに充分である場合には第2電動機M2のトルクダウンが行われないので、その場合には有段変速部20の出力軸トルクTOUTの落ち込みを補うことが可能である。
また、本実施例の電子制御装置40によれば、予め定められた関係から車両状態に基づいて有段変速部20の変速においてトルク相終了時点での出力軸トルクTOUTの落ち込みトルク△TOUTを算出する落ち込みトルク算出手段68と、上記算出された落ち込みトルク△TOUTを補うための第1電動機目標トルクtgtgtを算出する第1電動機目標トルク算出手段69とを含み、トルク補償手段72は、トルク相終了時点での第1電動機M1の出力トルクtgoutが上記算出された第1電動機目標トルクtgtgtとなるように、その第1電動機M1の出力トルクtgoutをトルク相開始時点から一定の変化率で増加させるように構成される。このことから、有段変速部20の出力軸トルクTOUTの落ち込みの発生にともなってトルク補償が行われる。すなわちトルク補償手段72によるトルク補償が行われない場合においては変速のトルク相において略一定の変化率で減少する有段変速部20の出力軸トルク変化に応じて、その出力軸トルクTOUTの変動を抑制するように第1電動機M1の出力トルクtgoutが制御されるので、トルク補償の実施に伴い出力軸トルクTOUTが急激に変動することが抑制され、変速ショックが低減される。
また、本実施例の電子制御装置40によれば、トルク補償手段72によるトルク補償に必要な電力量pbtgtに対する不足電力量△pbtgtを算出する不足電力量算出手段76と、上記算出された不足電力量△pbtgtを得るための第2電動機目標トルクtmtgtを算出する第2電動機目標トルク算出手段78とを含み、電力量確保手段80は、トルク相終了時点での第2電動機M2の出力トルクtmoutが上記算出された第2電動機目標トルクtmtgtとなるように、その第2電動機M2の出力トルクtmoutをトルク相開始時点から一定の変化率で減少させるように構成される。このことから、蓄電装置60における充電残量SOCが少ない場合であっても、トルク補償手段72による第1電動機M1がトルク増加するのに合わせて必要となる電力量△pbtgtの確保が行われる。すなわち、トルク相において略一定の変化率で増加させられる第1電動機M1の出力トルクtgoutに応じてそのトルク制御のために不足する電力量が得られるように第2電動機M2の出力トルクtmoutが制御されるので、トルク補償のために必要な電力量が確保される。
以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。
例えば、前述の実施例において、電力量確保手段80は、トルク補償手段72によるトルク補償に必要な電力量pbtgtをアップシフト過渡期間内のトルク相中に実施される前記第2電動機のトルクダウンにより確保するものであったが、これに限らず、不足電力量△pbtgtの一部を確保するものであってもよい。その場合には、不足電力量算出手段76は、トルク補償手段72によるトルク補償に必要な全電力量の一部を算出するものであってもよい。
また、第1電動機M1は、蓄電装置60の電気エネルギと第2電動機M2の回生エネルギとによって駆動されてもよい。かかる場合においては、図9に示すフローチャートのステップS4においては、第1電動機M1を駆動するための電気エネルギのうち蓄電装置60から供給されるエネルギと蓄電装置60の充電残量SOCとが比較されてもよい。
また、前述の実施例において、出力軸トルクTOUTの変動を抑制するとは、例えば、その出力軸トルクTOUTの変動を小さくする場合と、出力軸トルクTOUTの変動を無くすようにする完全補償の場合との両方の場合を含む。
また、前述の実施例において、第2電動機M2のトルクダウンとは、第2電動機M2が回生制御されて電気エネルギを発生する状態とされることであったが、これに限らず、駆動力を発揮している第2電動機M2の出力トルクtmoutが零に向かうことで第2電動機M2における消費電気エネルギが低減されることであってもよい。
例えば、前述の実施例において、自動変速部20のアップシフトでは、そのアップシフトのトルク相開始が前記トルク補償開始条件であるが、そのトルク相開始時から所定時間が経過したことがそのトルク補償開始条件とされ、トルク補償開始判断手段70は、そのトルク相開始時から上記所定時間が経過した場合に、上記トルク補償開始条件が成立したとの判断を肯定してもよい。そのようにした場合には、自動変速部20のアップシフトにおいて上記トルク相開始時から上記所定時間遅れて、トルク補償手段72にとるトルク補償が開始される。
また、前述の実施例において、トルク補償手段72は、第1電動機M1をトルク補償電動機として機能させ、その第1電動機M1の作動によって前記トルク補償を実行するものであったが、トルク補償電動機として作動させるのは第1電動機M1に限らず、例えば、第2電動機やエンジン8であってもよい。そして、第1電動機M1、第2電動機M2、およびエンジン8のいずれか1または2以上がトルク補償電動機として作動させられてもよい。例えば、充電残量SOCに余裕がある場合等には第2電動機M2をトルク補償電動機として機能させ、充電残量SOCに余裕がない場合には、第1電動機M1をトルク補償電動機として機能させつつ第2電動機を電力確保用電動機として作動させてもよい等、種々の態様が可能である。
また、前述の実施例において、トルク補償手段72は、自動変速部20のアップシフトでは、第1電動機M1をトルク補償電動機として機能させてトルク相補償制御を実行するものであったが、この制御と併せて、ダウンシフトにおいて第2電動機M2をトルク補償電動機として機能させてイナーシャ相補償制御が実行されるようにしてもよい。
また、前述の実施例において、トルク補償手段72は、前記トルク補償開始条件が成立したとトルク補償開始判断手段70によって判断された場合には、トルク補償を実行するようになっていたが、これに限らず、そのトルク補償が全ての自動変速部20のアップシフトにおいて行われる必要はない。例えば、変速ショック低減などを目的として上記トルク補償を実行すべき自動変速部20のアップシフトを決定するための条件を予め実験的に定めておき、その予め定められた条件に基づいて上記トルク補償の実行対象と判断された自動変速部20のアップシフトにおいて、上記トルク補償が行われてもよい。
また前述の実施例においては、第1電動機M1の運転状態が制御されることにより、差動部11(動力分配機構16)はその変速比γ0が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能するものであったが、例えば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであってもよい。
また、前述の実施例の動力伝達装置10においてエンジン8と差動部11とは直結されているが、エンジン8が差動部11にクラッチ等の係合要素を介して連結されていてもよい。
また、前述の実施例の動力伝達装置10において第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。
また、前述の実施例では、エンジン8から駆動輪38への動力伝達経路において、差動部11の次に自動変速部20が連結されているが、自動変速部20の次に差動部11が連結されている順番でもよい。要するに、自動変速部20は、エンジン8から駆動輪38への動力伝達経路の一部を構成するように設けられればよい。
また、前述の実施例の図1によれば、差動部11と自動変速部20は直列に連結されているが、動力伝達装置10全体として電気的に差動状態を変更し得る電気式差動機能とその電気式差動機能による変速とは異なる原理で変速する機能とが備わっていれば、差動部11と自動変速部20とが機械的に独立していなくても本発明は適用される。
また、前述の実施例において動力分配機構16はシングルプラネタリであるが、ダブルプラネタリであってもよい。
また前述の実施例においては、差動部遊星歯車装置24を構成する第1回転要素RE1にはエンジン8が動力伝達可能に連結され、第2回転要素RE2には第1電動機M1が動力伝達可能に連結され、第3回転要素RE3には駆動輪38への動力伝達経路が連結されているが、例えば、2つの遊星歯車装置がそれを構成する一部の回転要素で相互に連結された構成において、その遊星歯車装置の回転要素にそれぞれエンジン、電動機、駆動輪が動力伝達可能に連結されており、その遊星歯車装置の回転要素に連結されたクラッチ又はブレーキの制御により有段変速と無段変速とに切換可能な構成にも本発明は適用される。
また、前述の実施例における切換クラッチC0及び切換ブレーキB0等の油圧式摩擦係合装置は、例えば、パウダー(磁粉)クラッチ等の磁粉式係合装置、電磁クラッチ等の電磁式係合装置、および噛み合い型ドグクラッチ等の機械式係合装置等から構成されていてもよい。
また前述の実施例においては、第2電動機M2は伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、エンジン8又は伝達部材18から駆動輪38までの間の動力伝達経路に直接的或いは変速機、遊星歯車装置、係合装置等を介して間接的に連結されていてもよい。
また、前述の実施例の動力分配機構16では、差動部キャリヤCA0がエンジン8に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA0、S0、R0のうちのいずれと連結されていても差し支えない。
また、前述の実施例においてエンジン8は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されていてもよく、共通の軸心上に配置される必要はない。
また、前述の実施例の第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。
また、前述の実施例において自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられてそのカウンタ軸上に同心に自動変速部20が配列されていてもよい。この場合には、差動部11と自動変速部20とは、たとえば伝達部材18としてカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。
また、前述の実施例の動力分配機構16は1組の差動部遊星歯車装置24から構成されていたが、2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。
また、前述の実施例の第2電動機M2はエンジン8から駆動輪38までの動力伝達経路の一部を構成する伝達部材18に連結されているが、第2電動機M2がその動力伝達経路に連結されていることに加え、クラッチ等の係合要素を介して動力分配機構16にも連結可能とされており、第1電動機M1の代わりに第2電動機M2によって動力分配機構16の差動状態を制御可能とする動力伝達装置10の構成であってもよい。
また前述の実施例において、動力分配機構16が切換クラッチC0および切換ブレーキB0を備えているが、切換クラッチC0および切換ブレーキB0は動力分配機構16とは別個に動力伝達装置10に備えられていてもよい。また、切換クラッチC0と切換ブレーキB0との何れか一方または両方がない構成も考え得る。
また前述の実施例において、差動部11が、第1電動機M1及び第2電動機M2を備えているが、第1電動機M1及び第2電動機M2は差動部11とは別個に動力伝達装置10に備えられていてもよい。
なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。
10:車両用動力伝達装置
11:差動部(電気式差動部)
20:自動変速部(有段変速部)
40:電子制御装置
72:トルク補償手段
74:電力供給制限判定手段
80:電力量確保手段
M1:第1電動機
M2:第2電動機
OUT:出力軸トルク(要求出力軸トルク)
pbtgt:電力量
△TOUT:落ち込みトルク(落ち込み)

Claims (4)

  1. エンジンと駆動輪との間に連結された差動機構と該差動機構に動力伝達可能に連結された第1電動機とを有し該第1電動機の運転状態が制御されることにより該差動機構の差動状態が制御される電気式差動部と、前記駆動輪に動力伝達可能に連結された第2電動機と、動力伝達経路の一部を構成する有段変速部とを、備えた車両用動力伝達装置の制御装置であって、
    前記有段変速部の変速過渡期間内のトルク相中において該有段変速部の出力軸トルクの落ち込みを前記第1電動機の反力増加で補うことにより該出力軸トルクの変動を抑制するトルク補償手段と、
    前記トルク補償手段によるトルク補償に必要な電力量を前記トルク相中に前記第2電動機をトルクダウンさせることにより確保する電力量確保手段と
    を、備えていることを特徴とする車両用動力伝達装置の制御装置。
  2. 前記トルク補償手段によるトルク補償に必要な電力量が蓄電装置から供給不可能か否かを判定する電力供給制限判定手段を含み、
    前記電力量確保手段は、前記電力供給制限判定手段により前記必要な電力量が供給不可能であると判定された場合に、前記第2電動機のトルクダウンを実施することを特徴とする請求項1の車両用動力伝達装置の制御装置。
  3. 予め定められた関係から車両状態に基づいて前記有段変速部の変速において前記トルク相終了時点での前記出力軸トルクの落ち込みトルクを算出する落ち込みトルク算出手段と、
    該落ち込みトルク算出手段により算出された前記落ち込みトルクに基づいて前記第1電動機の第1電動機目標トルクを算出する第1電動機目標トルク算出手段とを含み、
    前記トルク補償手段は、前記トルク相終了時点での前記第1電動機のトルクが前記第1電動機目標トルク算出手段で算出された前記第1電動機目標トルクとなるように、該第1電動機のトルクを前記トルク相の開始にともなって一定の変化率で増加させるものであることを特徴とする請求項1または2の車両用動力伝達装置の制御装置。
  4. 前記トルク補償手段によるトルク補償に必要な電力量に対する不足電力量を算出する不足電力量算出手段と、
    該不足電力量算出手段により算出された前記不足電力量を得るための前記第2電動機の第2電動機目標トルクを算出する第2電動機目標トルク算出手段とを含み、
    前記電力量確保手段は、前記トルク相終了時点での前記第2電動機のトルクが前記第2電動機目標トルク算出手段により算出された前記第2電動機目標トルクとなるように、前記第2電動機のトルクを前記トルク相の開始にともなって一定の変化率で減少させるものであることを特徴とする請求項1乃至3のいずれか1の車両用動力伝達装置の制御装置。
JP2009131464A 2009-05-29 2009-05-29 車両用動力伝達装置の制御装置 Pending JP2010274855A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131464A JP2010274855A (ja) 2009-05-29 2009-05-29 車両用動力伝達装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131464A JP2010274855A (ja) 2009-05-29 2009-05-29 車両用動力伝達装置の制御装置

Publications (1)

Publication Number Publication Date
JP2010274855A true JP2010274855A (ja) 2010-12-09

Family

ID=43422220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131464A Pending JP2010274855A (ja) 2009-05-29 2009-05-29 車両用動力伝達装置の制御装置

Country Status (1)

Country Link
JP (1) JP2010274855A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186905A1 (ja) * 2012-06-14 2013-12-19 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
JPWO2013118255A1 (ja) * 2012-02-07 2015-05-11 トヨタ自動車株式会社 ハイブリッド車の変速制御装置および変速制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013118255A1 (ja) * 2012-02-07 2015-05-11 トヨタ自動車株式会社 ハイブリッド車の変速制御装置および変速制御方法
US9643591B2 (en) 2012-02-07 2017-05-09 Toyota Jidosha Kabushiki Kaisha Speed change control system and speed change control method for hybrid vehicle
WO2013186905A1 (ja) * 2012-06-14 2013-12-19 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
CN104349957A (zh) * 2012-06-14 2015-02-11 丰田自动车株式会社 混合动力车辆用驱动装置
JPWO2013186905A1 (ja) * 2012-06-14 2016-02-01 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
US9415675B2 (en) 2012-06-14 2016-08-16 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle driving device
CN104349957B (zh) * 2012-06-14 2017-06-16 丰田自动车株式会社 混合动力车辆用驱动装置
DE112012006517B4 (de) * 2012-06-14 2017-11-16 Toyota Jidosha Kabushiki Kaisha Hybridfahrzeugantriebsvorrichtung

Similar Documents

Publication Publication Date Title
JP4998164B2 (ja) 車両用動力伝達装置の制御装置
JP4888602B2 (ja) 車両用動力伝達装置の制御装置
JP4600549B2 (ja) 車両用動力伝達装置の制御装置
JP4957475B2 (ja) 車両用動力伝達装置の制御装置
JP4605256B2 (ja) 車両用動力伝達装置の制御装置
JP2008302801A (ja) ハイブリッド車両用駆動装置の制御装置
JP2008260491A (ja) ハイブリッド車両用駆動装置の制御装置
JP2009280176A (ja) 車両用動力伝達装置の制御装置
JP2010120518A (ja) 車両用駆動装置の制御装置
JP2010083361A (ja) 車両用動力伝達装置の制御装置
JP2009166643A (ja) 車両用動力伝達装置の制御装置
JP5195376B2 (ja) 車両用駆動装置の制御装置
JP5330669B2 (ja) 車両用動力伝達装置の制御装置
JP4853410B2 (ja) ハイブリッド車両用動力伝達装置の制御装置
JP2010083199A (ja) 車両用駆動装置の制御装置
JP2010036705A (ja) 車両用動力伝達装置の制御装置
JP2009227096A (ja) 車両用動力伝達装置の制御装置
JP2009179204A (ja) 車両用動力伝達装置の制御装置
JP5018272B2 (ja) 車両用動力伝達装置の制御装置
JP4483892B2 (ja) ハイブリッド車両用駆動装置の制御装置
JP2010125937A (ja) 車両用駆動装置の制御装置
JP5051050B2 (ja) 車両用動力伝達装置の制御装置
JP5092953B2 (ja) 車両用動力伝達装置の制御装置
JP2010274855A (ja) 車両用動力伝達装置の制御装置
JP2010120519A (ja) 車両用動力伝達装置の制御装置