JPWO2013061590A1 - 光学プローブ及びその製造方法 - Google Patents

光学プローブ及びその製造方法 Download PDF

Info

Publication number
JPWO2013061590A1
JPWO2013061590A1 JP2013540657A JP2013540657A JPWO2013061590A1 JP WO2013061590 A1 JPWO2013061590 A1 JP WO2013061590A1 JP 2013540657 A JP2013540657 A JP 2013540657A JP 2013540657 A JP2013540657 A JP 2013540657A JP WO2013061590 A1 JPWO2013061590 A1 JP WO2013061590A1
Authority
JP
Japan
Prior art keywords
optical
fiber
tip
filter
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013540657A
Other languages
English (en)
Inventor
夏野 靖幸
靖幸 夏野
祥一 田尾
祥一 田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013540657A priority Critical patent/JPWO2013061590A1/ja
Publication of JPWO2013061590A1 publication Critical patent/JPWO2013061590A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/0017Details of single optical fibres, e.g. material or cladding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)

Abstract

光学プローブは、照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、第1のファイバー先端部に配置された第1の光学フィルターと、第2のファイバー先端部に配置された第2の光学フィルターと、を有する。第1の光ファイバー、第2の光ファイバー、第1の光学フィルターおよび第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理が施されている。

Description

本発明は、光学プローブ、より具体的には体腔内部の光学特性の測定に用いられる医療用の光学プローブ、及びその製造方法に関する。
可撓性を有する長尺の光学プローブ(以下、単に「プローブ」という)を例えば内視鏡のチャンネルに挿通することで体腔(消化器系の場合、胃及び食道等)内に導入し、このプローブを用いて体腔内部の生体組織の光学特性を分光法により測定することが、従来知られている(例えば、特許文献1、2、3参照)。
プローブを用いた測定のための分光法としては、近赤外分光法、蛍光法及びラマン分光法等が、知られている。近赤外分光法による体腔内部測定では、体腔内の観察対象部位、例えば病変部に対して近赤外光を照射し、病変部からの反射光のスペクトルを解析することで、病変部の生体組織の成分を解析する。蛍光法及びラマン分光法に共通する点は、比較的狭帯域の励起光を生体組織に照射し、その結果として、励起光とは異なる波長領域に現れる蛍光或いはラマン散乱光(測定光)を含む反射光を生体組織から発生させ、この反射光を受光し、分光器で検出することで、病変部の生体組織の状態を解析する点である。
さて、ラマン分光法による体腔内部測定に用いるプローブでは、例えば特許文献1記載のように、照射側の先端部には、照射光の波長のみを通過させる光学フィルターが装着され、受光側の先端部には、照射光の波長をカットする光学フィルターが装着される。
通常、測定光の強度は励起光の強度に比べて著しく低いため、高強度の励起光と低強度の測定光とを分離して測定光のみを検出することが、求められる。そのために、励起光照射用の光ファイバー(照射用光ファイバー)と測定光受光用の光ファイバー(受光用光ファイバー)とを併用するプローブにおいて光学フィルターを設置することが、知られている。例えば、励起光の波長のみを通過させる光学フィルターを、照射用光ファイバーの出射端面付近に設置し、励起光の波長をカットする光学フィルターを、受光用光ファイバーの入射端面付近に設置する(例えば、特許文献3参照)。
照射用光ファイバーと受光用光ファイバーとを併用するプローブにおいて上記のように光学フィルターを設置した場合であっても、これらのファイバー間のクロストークが問題となることがある。つまり、照射用光ファイバーから漏れ出た極微弱な光が受光用光ファイバーに入射し、その一部が受光用光ファイバー内を伝導してしまうことがある。この光は、照射用光ファイバー内を伝導する光のうちの極わずかであるが、通常は、測定したい光信号自体が微小であるため、この光信号と同程度の強度となることがある。
このようなクロストークを防ぐために、特許文献2記載のプローブでは、外層に厚さ10〜20μm程度の金属ジャケットを備えた石英ファイバーを照射用光ファイバーとして使用し、その外周面からの光の漏れを防止している。
また同様に、ラマン分光法による体腔内部測定において、その精度の向上を図るには、光路の気密性を確保することにより、体腔内の体液によるラマン散乱光或いは蛍光の影響を回避することが求められる。よって、照射側及び受光側の各光学フィルターを、光路の気密性が確保されるように装着する必要がある。
また、照射側光学フィルターの外周部から受光側光学フィルターの外周部に光が漏れたりしないように、各光学フィルターの外周部の遮光性を確保することも求められる。これは上記のクロストークがフィルター間或いはフィルターと光ファイバーとの間でも生じうるためである。
特開2005−305182号公報 特許第4588324号公報 特開2006−317319号公報
しかしながら、上記のような金属ジャケットを備えた光ファイバーは、サプライヤーが少ないこと、高価であること、及び通常入手できるものではコア径/クラッド径/ジャケット径が限定されていること等の理由により、プローブの光学設計が制限されてしまうという問題がある。
また光路の気密性を確保する一般的な装着方法としては、接着剤による接着がある。しかしながら、接着剤は通常、照射光に対して蛍光及びラマン散乱光を発生するプラスチックが主原料であるため、光路での使用に適さないという問題がある。
本発明の目的は、光ファイバー及びフィルターを備えたプローブにおいて、金属ジャケットを備えた光ファイバーのような特別な光ファイバーを使用することなく、遮光性を確保することができる光学プローブ及びその製造方法を提供することである。ここでいう遮光性は、例えば照射用光ファイバーと受光用光ファイバーとの間であったり、フィルター間であったり、さらにファイバーとフィルター間の遮光性を意味する。
また本発明の別の目的は、ラマン分光法による体腔内部測定の精度を向上させることができる、光路の気密性が確保された光学プローブ及びその製造方法を提供することである。
本発明に係る光学プローブは、
体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
前記第1のファイバー先端部に配置された第1の光学フィルターと、
前記第2のファイバー先端部に配置された第2の光学フィルターと、を有し、
前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルター及び前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理が施されている。
本発明に係る光学プローブの製造方法は、
体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
前記第1のファイバー先端部に配置された第1の光学フィルターと、
前記第2のファイバー先端部に配置された第2の光学フィルターと、を有する光学プローブの製造方法であって、
前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルター及び前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理を施す。
本発明によれば、光ファイバー及びフィルターを備えたプローブにおいて、金属ジャケットを備えた光ファイバーのような特別な光ファイバーを使用することなく、遮光性を確保することができる。
また、本発明によれば、ラマン分光法による体腔内部測定の精度を向上させることができる。
診断システムの構成例を示す図 図1の診断システムに用いる内視鏡の先端部の斜視図 本発明の実施の形態1に係るプローブの内部構成を概略的に示す図 実施の形態1に係るプローブ内の、先端部を除く照射用光ファイバー及び受光用光ファイバーの構成を示す断面図 実施の形態1に係るプローブの要部構成を示す断面図 実施の形態1に係るプローブの要部構成についての第1の変形例を示す断面図 実施の形態1に係るプローブの要部構成についての第2の変形例を示す断面図 実施の形態1に係るプローブの要部構成についての第3の変形例を示す断面図 本発明の実施の形態2に係るプローブの要部構成を示す断面図 実施の形態2に係るプローブにおいて、メタライズ膜厚との関係で決まる接合用金属材の配置位置の第1の例を示す図 実施の形態2に係るプローブにおいて、メタライズ膜厚との関係で決まる接合用金属材の配置位置の第2の例を示す図 実施の形態2に係るプローブにおいて、メタライズ膜厚との関係で決まる接合用金属材の配置位置の第3の例を示す図 本発明の実施の形態3に係るプローブの要部構成を示す断面図 本発明の実施の形態4に係るプローブの要部構成を示す断面図 本発明の実施の形態5に係るプローブの要部構成を示す断面図
本発明の構成(以下、実施の形態1〜5に相当する)によれば、プローブ先端部における光学部品(光ファイバー、光学フィルター)のクロストークを解消或いは低減できるという効果が得られ、特にラマン光の検出を高効率で行うことができる。
また、光ファイバーの先端領域の表面に金属膜を形成する表面処理を施す(以下、実施の形態1、2、5に相当する)ことで、当該表面処理が施された光ファイバーに不要な光が入射・出射することを抑止できる。特に出射(照射)、受光の両方の光ファイバーに金属膜を形成する(以下、実施の形態1、2、5に相当する)ことで、不要な光の遮光は確実になり、出射(照射)、受光の光ファイバー間における光軸垂直方向のクロストークを解消することができる。
また、光学フィルターの外周部に金属膜を形成する(以下、実施の形態2〜5に相当する)ことも、クロストークを解消する上で大変効果的である。光学フィルターは光軸方向に厚みを有することから、この厚み部分から光が漏れ出すことがある。本発明の光学プローブにおいては、出射(照射)、受光の両方に光学フィルターを備えるため、この厚み部分から漏れた光が、クロストークの原因となることが考えられるが、光学フィルターの外周部に金属膜を形成して遮光することで、このような問題を解消できる。
さらに、出射(照射)、受光の両方の光学フィルターに金属膜を形成する(以下、実施の形態2〜5に相当する)ことが遮光上最も好ましく、さらに、このメタライズ処理を利用して、2つの光学フィルターをろう付け又は半田付けにより接合する(以下、実施の形態2〜5に相当する)ことが、光学プローブを構成する上で小型化に貢献することとなり、非常に好ましい。
そして、光ファイバーの先端領域と光学フィルターの外周部との両方に金属膜が形成されていてももちろんかまわない(以下、実施の形態2〜5に相当する)。さらに、これらが接合されている形態(以下、実施の形態3、4に相当する)も好ましく、採用可能であり、この場合は特に遮光が確実に行われる。
また、光学プローブの内部構造においては、光ファイバーは、保持部によって位置や状態が固定されるものであることが好ましい(以下、実施の形態1〜5に相当する)。この保持部は、例えばファイバー束を保持する外装チューブとすることができる(以下、実施の形態1に相当する)。
また一方で、保持部は、いわゆるフェルールであっても良い(以下、実施の形態1〜5に相当する)。この場合はさらにフェルールを保持する外装部材や枠部材による保持、固定などが行い易いという利点があるし、さらにフェルールの先端面と光ファイバーの先端面とが同一面であれば(以下、実施の形態1に相当する)、先端研磨を行い易いという利点もある。そしてこの場合は特に、光ファイバー間のクロストークを解消することができる。
また、フェルールの先端面と光ファイバーの先端面とが同一面ではない場合(以下、実施の形態2〜5に相当する)は、光ファイバーの先端領域の表面に金属膜を形成することで、クロストークを低減させることができる。
また、光ファイバーは、光学プローブ全体の光軸方向の柔軟性を達成するため、プラスチックファイバーであることが好ましい(以下、実施の形態1〜5に相当する)。そして、光ファイバーの先端領域については、プラスチックジャケットを除去しておくことが、金属膜を形成する上で好ましい(以下、実施の形態1、2、5に相当する)。
さて、光学プローブの構成としては、金属枠を有しており、この金属枠に光学フィルターの外周部が接合されている構成が好ましい(以下、実施の形態2〜5に相当する)。このような構成であれば、光学フィルターの前後で気密が保たれることになり、光路への異物侵入を防止することが可能になる。特に、光学フィルターの全厚み方向にわたって接合されていれば、強度的にもっとも確実であり好ましい(以下、実施の形態2、3、5に相当する)。
ここで、光ファイバーの先端領域の表面、光学フィルターの外周部に金属膜を形成する方法としては、金属めっきとメタライズ処理とが挙げられる。いずれの方法も、非金属材料である光ファイバー、光学フィルターの表面に金属膜を形成する(金属化する)処理を意味する。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。
(実施の形態1)
図1は、診断システムの構成例を示す図である。図1の診断システム1は、内視鏡2、内視鏡プロセッサー3、ベースユニット4、入力装置5、モニター6、7、及び本発明の実施の形態1に係るプローブ10を有する。
内視鏡2は、体腔内に導入可能に形成された可撓性を有する長尺の内視鏡本体21と、内視鏡本体21の基端部(内視鏡基端部)21aに設けられた操作部22と、操作部22を介して内視鏡本体21と内視鏡プロセッサー3とを通信可能に接続するケーブル23と、を有する。
内視鏡本体21は、体腔内部を進入する際に体腔の湾曲に追従して容易に湾曲可能な可撓性を、その略全長にわたって有する。また、内視鏡本体21は、操作部22のノブ22aの操作に従って内視鏡先端部21b側の一定範囲(操作可能部21c)を任意の角度で湾曲させることができる機構(図示せず)を有する。
内視鏡本体21は、内視鏡先端部21bの斜視図(図2)に示すように、カメラCA、ライトガイドLG及びチャンネルCHを有する。ライトガイドLGは、内視鏡プロセッサー3の照明光源31から発光された光(可視光)を内視鏡先端部21bまで導光し、その光を内視鏡先端部21bの端面から出射させる。カメラCAは、固体撮像素子を備えた電子カメラであり、ライトガイドLGから出射された光により照明された領域を撮像し、その信号(撮像信号)を内視鏡プロセッサー3の画像処理部32に伝送する。伝送された撮像信号に基づく映像(内視鏡映像)は、モニター6に表示される。チャンネルCHは、操作部22に形成された導入口22bと連通するように内視鏡本体21に形成された例えば2.6mm径の内腔である。
プローブ本体11は、内視鏡2のチャンネルCHに挿通可能な外径(例えば2.4mm)を有し、且つプローブ基端部11aからプローブ先端部11bまで延在する長尺の可撓性線状部材であり、チャンネルCHへの挿通により体腔に導入される。プローブ本体11は、プローブ基端部11aに設けられたコネクター11c、11dを介してベースユニット4に接続されている。プローブ本体11は、照射用光ファイバー110(図3参照)により、ベースユニット4のレーザー41から発光された励起光を導光し、その光を体腔内の観察対象部位への照射光として出射する。レーザー41は、半導体レーザー又は固体レーザー等であるが、装置小型化の観点では半導体レーザーの使用が好ましい。また、レーザー光の波長としては、400〜410nm、487nm、630〜660nm、780〜790nm、830〜860nm、1290〜1330nm又は1520〜1580nmの波長が好ましい。なお、励起光の光源はレーザー41でなくても良く、LED(Light Emitting Diode)等であっても良い。
また、プローブ本体11は、観察対象部位からの反射光を受光用光ファイバー120(図3参照)により受光し、その光をベースユニット4の分光器42へ導光する。分光器42へ導光された光に含まれる蛍光又はラマン散乱光は、分光器42によりスペクトル解析を施される。スペクトル解析結果は、コンピューター43のCPU(Central Processing Unit)43aにより画像処理等を施され、グラフ等の形態でモニター7に表示される。CPU43aにおいて病状等についての判定を行い、その判定結果をメモリー43bに保存すると共にモニター7に表示するようにしても良い。また、コンピューター43における各種の解析及び判定の実行及び設定等は、入力装置5(例えばキーボード又はマウス等)を操作することによって行うことができる。
図3は、図1に示すプローブ10の内部構成を概略的に示す図である。
照射用光ファイバー110(第1の光ファイバー)及び受光用光ファイバー120(第2の光ファイバー)はいずれも、全長数メートル及び外径100〜300μm程度の長尺線状部材であり、プローブ本体11に収納されている。照射用光ファイバー110は、プローブ基端部11aのコネクター11cによりベースユニット4のレーザー41と光学的に接続されている。受光用光ファイバー120は、プローブ基端部11aのコネクター11dによりベースユニット4の分光器42と光学的に接続されている。
照射用光ファイバー110の先端領域(ファイバー先端領域)111及び受光用光ファイバー120の先端領域(ファイバー先端領域)121は保持部130により保持されている。これにより、照射用光ファイバー110及び受光用光ファイバー120が束を成し、出射端面(つまり観察対象部位への照射光の出射面)及び入射端面(つまり観察対象部位からの反射光の受光面)が位置決めされている。保持部130により保持されるファイバー先端領域111、121の長さは、5〜10mm程度である。ファイバー先端領域111、121を保持する保持部130を含む、プローブ10の要部構成については、後述する。
光学フィルター141(第1の光学フィルター)は、照射用光ファイバー110を含む照射光学系内に位置し、その一端面は、ファイバー先端領域111の出射端面に近接している。光学フィルター141は、例えば石英ガラス等の透明基材内に光吸収物質(又は光反射物質)を分散させた構成、又は透明基板上に誘電体多層膜を形成した構成を有し、照射光の波長のみが透過可能となっている。
光学フィルター142(第2の光学フィルター)は、受光用光ファイバー120を含む受光光学系内に位置し、その一端面は、ファイバー先端領域121の入射端面に近接している。光学フィルター142は、例えば石英ガラス等の透明基材内に光吸収物質(又は光反射物質)を分散させた構成、又は透明基板上に誘電体多層膜を形成した構成を有し、照射光の波長のみが透過不可能となっている。
光学フィルター141、142前方のプローブ先端部11bには、例えば石英ガラス又はサファイア等から成るレンズ150が配置されている。レンズ150は、外部への光の照射、外部からの光の受光、及び光路の気密性を向上させる目的で装備されている。レンズ150は、複数枚のレンズ群であっても良い。
ファイバー先端領域111、121、保持部130、光学フィルター141、142、及びレンズ150は、長さ10〜15mm程度の筒状の金属枠(図示せず)に収納されている。
ファイバー先端領域111、121を除く照射用光ファイバー110及び受光用光ファイバー120の構成は、図4の断面図に示すように、コア、クラッド及びプラスチックジャケットから成る3層構造を有する。
コア及びクラッドは例えば石英ガラス等の透明材料から成り、コアはクラッドに比べて高い屈折率を有しており、これにより光はコア内に閉じ込められて伝播する。照射用光ファイバー110及び受光用光ファイバー120の取り扱い性を向上させるため、照射用光ファイバー110及び受光用光ファイバー120のコア及びクラッドは、曲げに強いプラスチックで構成する(すなわち、照射用光ファイバー110及び受光用光ファイバー120をプラスチックファイバーとして構成する)ことが好ましい。プラスチックジャケットは、照射用光ファイバー110及び受光用光ファイバー120の補強及び機械特性改善等のためにクラッドの外周を被覆する。
図5は、ファイバー先端領域111、121を保持する保持部130を含む、プローブ10の要部構成を示す断面図である。
保持部130は、フェルール132及び外皮134を有する。フェルール132は、例えば金属、石英ガラス又はジルコニア等から成る部材である。フェルール132には、照射用光ファイバー110及び各受光用光ファイバー120を挿入可能な孔が形成されている。照射用光ファイバー110及び受光用光ファイバー120は、この孔に挿入されることによって、フェルール132に保持される。外皮134は、例えばビニール製の薄いチューブであり、フェルール132の外周を被覆する。
保持部130により保持された照射用光ファイバー110及び受光用光ファイバー120は、受光効率向上及びプローブ細径化の目的で、互いに当接又は近接して束を成すように配置されている。
照射用光ファイバー110を囲繞して配置された受光用光ファイバー120は、ファイバー先端領域121においてもファイバー先端領域121以外の領域と同様、図4に示す3層構造を有している。
他方、照射用光ファイバー110は、ファイバー先端領域111においてはファイバー先端領域111以外の領域と異なり、3層構造の外層に相当するプラスチックジャケットが除去されており、その部分(ジャケット除去部)には金属めっきが施されている。金属めっき層112の厚さは数μmから100μm程度であり、金属めっきの処理の時間の長さ、金属めっきの処理を繰り返す回数、或いは金属めっきの処理の方法によって調整可能である。よって、ファイバー外径を任意の径にすることができる。なお、めっき処理で使用され金属めっき層112を構成することとなる金属材料としては、例えばNi、Ti又はAu等がある。
このように、本実施の形態では、照射用光ファイバー110及び受光用光ファイバー120として、プラスチックジャケットを有する光ファイバーを使用する。プラスチックジャケットタイプの光ファイバーは、安価であるだけでなく、繰り返し屈曲させたときの劣化又は剥離の可能性が低い点で、金属ジャケットタイプの光ファイバーに比べて有利である。また、プラスチックジャケットタイプの光ファイバーの使用によりプローブ10の柔軟性を確保することができ、生産、梱包及び施術時のプローブ10の取り扱いを容易にすることができる。
また、ベースユニット4への接続に用いるコネクター11c、11dとして、一般に流通しているコネクターを使用する場合、使用可能なファイバー外径がそのコネクターによって制限される。しかしながら、プラスチックジャケットタイプの光ファイバーはファイバー外径のバリエーションが豊富であるため、使用するコネクターに適合する光ファイバーの入手が容易である。
使用するプラスチックジャケットタイプの光ファイバーには、金属めっきが施されている。金属めっきは所望の個所に施すことができる。よって、本実施の形態のように、金属めっき層112は、照射用光ファイバー110のファイバー先端領域111のみに形成可能である。そのため、金属めっき層112は、プラスチックジャケットタイプの光ファイバーを使用することによる上記効果の阻害要因とはならない。また、ファイバー先端領域111において金属めっき層112が形成されているため、金属めっき層112によりファイバー先端領域111から光が漏れ出すことを防ぐことができる。すなわち、照射用光ファイバー110及び受光用光ファイバー120の間のクロストークを防止可能な遮光性を、照射用光ファイバー110と受光用光ファイバー120とが束を成すように(つまり互いに当接又は近接して)保持されている領域であるファイバー先端領域111において確保することができる。なお、金属めっきの処理においてファイバー外径は問題とならないため、多様なサイズの光ファイバーの使用が可能である。また、チューブ(外皮134)の外径及び内径や照射用光ファイバー110及び受光用光ファイバー120の外径が、仕様から決定された場合、必ずしも照射用光ファイバー110及び受光用光ファイバー120の束がチューブ内で密着した状態に保持されないことがある。このような場合、照射用光ファイバー110のファイバー先端領域111に金属めっきを施すことで照射用光ファイバー110の径を太らせることで、チューブの内径内における照射用光ファイバー110及び受光用光ファイバー120の充填率を高めることができ、ひいてはチューブ内における照射用光ファイバー110及び受光用光ファイバー120の束の安定性を高めることができる。
なお、本実施の形態では、ファイバー先端領域111においてプラスチックジャケットが除去されており、ジャケット除去部に金属めっきが施されている。ファイバー先端領域111において、プラスチックジャケットを除去せずにその外周部に金属めっきを施しても良いが、プラスチックジャケットを除去するとプローブ細径化の点で有利である。
以下、プローブ10の要部構成の変形例について、幾つかの例を挙げて説明する。
図6に示す第1の変形例では、図5に示す例で使用されるフェルール132が使用されていない。したがって、照射用光ファイバー110を囲繞する受光用光ファイバー120は、照射用光ファイバー110外周の金属めっき層112に当接した状態で例えば接着剤で照射用光ファイバー110に接着されており、外皮134に挿入されている。この構成では、フェルール132のような位置決め用の部材を必要とせず、容易に照射用光ファイバー110をプローブ10の中心に配置することできる。また、フェルール132を使用しないため、プローブ細径化を図ることができると共に、金属めっき層112の厚さを調整することでプローブ外径を調整することができる。
図7に示す第2の変形例は図6に示す例と類似するが、受光用光ファイバー120のファイバー先端領域121においてプラスチックジャケットが除去され、金属めっきによりジャケット除去部に金属めっき層122が形成されている点で、図6に示す例と相違する。この構成では、照射用光ファイバー110及び受光用光ファイバー120の双方に金属めっきが施されているため、照射用光ファイバー110及び受光用光ファイバー120の間の遮光性を一層向上させることができる。
図8に示す第3の変形例は図7に示す例と類似するが、照射用光ファイバー110のファイバー先端領域111においてプラスチックジャケットが除去されておらず、図4に示す3層構造が残されている点で、図7に示す例と相違する。この構成では、照射用光ファイバー110のファイバー先端領域111から光が漏れ出したとしても、金属めっき層122によりこの光が受光用光ファイバー120のファイバー先端領域121に入射することを防ぐことができる。
なお、上記の各例において、照射用光ファイバー110及び受光用光ファイバー120の使用本数は、適宜変更して実施可能である。
(実施の形態2)
以下、本発明の実施の形態2について説明する。本実施の形態では、実施の形態1で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略する。
図9は、前述の診断システム1において使用可能な、本実施の形態に係るプローブ15の要部構成を示す断面図である。プローブ15は、前述のプローブ10と同様、プローブ基端部11aからプローブ先端部11bまで延在し、内視鏡2のチャンネルCHに挿通可能且つベースユニット4に接続可能なプローブ本体11を有する。
照射用光ファイバー211(第1の光ファイバー)は、前述の照射用光ファイバー110と同様、図4の3層構造を有する長尺且つ細径の光ファイバーである。照射用光ファイバー211の先端領域においては、3層構造の外層に相当するプラスチックジャケットが除去されており、その部分には金属めっき層112が形成されている。照射用光ファイバー211は、観察対象部位への照射光をファイバー先端部211a(第1のファイバー先端部)から出射する。
受光用光ファイバー212(第2の光ファイバー)は、前述の受光用光ファイバー120と同様、図4の3層構造を有する長尺且つ細径の光ファイバーである。受光用光ファイバー212の先端領域においても、照射用光ファイバー211と同様、金属めっき層112が形成されている。受光用光ファイバー212は、観察対象部位の生体組織により照射光に対して生じたラマン散乱光を含む、観察対象部位からの反射光を、ファイバー先端部212a(第2のファイバー先端部)で受光する。
照射用光ファイバー211及び受光用光ファイバー212は、例えば金属、石英ガラス又はジルコニア等から成るフェルール213(保持部)により保持されている。フェルール213は、長さ5〜10mm程度の筒状の金属枠214(例えばステンレス製)に嵌入されている。これにより、ファイバー先端部211aを含む照射用光ファイバー211及びファイバー先端部212aを含む受光用光ファイバー212は、金属枠214に収納される。
プローブ先端部11bには、円形の横断面(図示せず)を有するレンズ215が配置されており、金属枠214内に保持されている。レンズ215は、外部への光の照射、外部からの光の受光、及び光路の気密性を向上させる目的で装備されており、例えば石英ガラス又はサファイア等から成るものである。なお、レンズ215の保持方法としては、従来周知の方法を採用可能である。また、レンズ215の構成について、本実施の形態では、図9に示すように、プローブ基端部11a側の面が凸面状に形成されているが、平面状であっても良く、また、プローブ先端部11b側の面が平面状に形成されているが、凸面状であっても良い。また、レンズ215は、複数枚のレンズ群であっても良い。
ファイバー先端部211a、212aとレンズ215との間には、光学フィルター221、222が配置されており、金属枠214内に収納されている。光学フィルター221、222は、組み合わせにより円形の横断面を成すよう、それぞれ半円形の横断面(図示せず)を有する。
光学フィルター221(第1の光学フィルター)は、照射用光ファイバー211を含む照射光学系内に位置し、その一端面は、照射用光ファイバー211のファイバー先端部211aに近接している。光学フィルター221の内部構成及び波長透過特性は、前述の光学フィルター141と同様である。
光学フィルター222(第2の光学フィルター)は、受光用光ファイバー212を含む受光光学系内に位置し、その一端面は、受光用光ファイバー212のファイバー先端部212aに近接している。光学フィルター222の内部構成及び波長透過特性は、前述の光学フィルター142と同様である。
光学フィルター221の半円形横断面の外周部であるフィルター外周部221aは、その全体にメタライズ処理を施されている。そのため、フィルター外周部221a上には、メタライズ膜231が形成されている。メタライズ膜厚は、メタライズ処理を繰り返す回数によって調整することができる。なお、メタライズ処理で使用されメタライズ膜231を構成することとなる金属材料としては、Ni、Ti又はAu等が好ましい。金属材料は単一材料であることが好ましいが、複数材料からなる合金であっても良い。ただし、合金を使用する場合は、その組成が既知であることが好ましい。メタライズ処理としては各種の手法を採用することができる。例えば、物理気相成長法及び化学気相成長法等の蒸着による手法が挙げられる。また、溶融金属を接触させる方法、無電解めっきによる方法、これらを組み合わせた方法、又はその組み合わせた方法にさらに電解めっきを組み合わせた方法等でも良い。
フィルター外周部221a、222a全体に形成されたメタライズ膜231のうち、互いに対向する部分は、ろう付け又は半田付けを施されている。よって、ろう付け又は半田付けに用いられたろう材又は半田である接合用金属材241によって、光学フィルター221、222は、互いに接合されている。
このように、本実施の形態では、照射用光学系の光学フィルター221と受光光学系の光学フィルター222との間において、メタライズ処理とろう付け又は半田付けとによる気密接合が形成されている。そのため、照射光学系の光学フィルター221と受光光学系の光学フィルター222との間の気密性を、接着剤を使用せずに確保することができる。気密性を確保する一般的な接着方法として、接着剤による接着が従来から知られているが、接着剤は通常、照射光に対して蛍光及びラマン散乱光を発生するプラスチックが主原料であるため、光路での使用には必ずしも適当ではない。これに対して本実施の形態では、プラスチックを主原料とする接着剤が光学フィルター221、222間の接合部分で使用されない。これにより、接着剤の使用に起因するラマン散乱光及び蛍光の発生を確実に防ぐことができる。さらに、照射光学系のフィルター外周部221a及び受光光学系のフィルター外周部222aはいずれも、全体にメタライズ処理を施されている。そのため、照射光学系の光学フィルター221と受光光学系の光学フィルター222との間に介在するメタライズ膜231により、照射光学系のフィルター外周部221aから受光光学系のフィルター外周部222aへの光の漏れを抑制することができる。よって、分光器42において検出される光に、観察対象部位の生体組織により生じたラマン散乱光とは異なるノイズ光が混入することを抑制することができる。したがって、ラマン分光法による体腔内部測定の精度を向上させることができる。
また、フィルター外周部221a、222a全体に形成されたメタライズ膜131のうち、金属枠214に対向する部分も、ろう付け又は半田付けを施されている。よって、光学フィルター221、222及び金属枠214も、接合用金属材241によって接合されている。
すなわち、各光学フィルター221、222と金属枠214との間においても、メタライズ処理とろう付け又は半田付けとによる気密接合が形成されている。そのため、各光学フィルター221、222と金属枠214との間においても、プラスチックを主原料とする接着剤を使用せずに気密性を確保することができる。これにより、各光学フィルター221、222と金属枠214との間の接合部分からラマン散乱光及び蛍光が発生することを確実に防ぐことができる。
なお、接合用金属材241は、Ag又はCu等の単一材料であることが好ましいが、複数材料から成る合金であっても良い。ただし、合金を使用する場合は、その組成が既知であることが好ましい。
本実施の形態のプローブ15において、既述のとおり、メタライズ膜厚は、メタライズ処理を繰り返す回数によって調整することができる。すなわち、メタライズ膜厚は、任意に設定することができる。
メタライズ膜厚を例えば100μm程度或いはそれ以上に設定した場合には、メタライズ膜231のみで十分な遮光性の確保が容易である。よって、例えば図10Aに示すように、光学フィルター221、222と金属枠214との間に介在する接合用金属材241が、光学フィルター221、222の厚さ方向全域に回り込んでおらず、厚さ方向の一部においてのみフィルター外周部221a、222aを覆うように、配置されていても良い。この場合、メタライズ膜231と金属枠214との間の空隙に光が回り込んでも、その光がフィルター外周部221a、222aを介して光学フィルター221、222に入射することを、メタライズ膜231のみで確実に防ぐことができる。
図10Aに示す接合用金属材241は、例えば以下の方法で形成することができる。まず、金属枠214への光学フィルター221、222装着前に、金属ペーストをフェルール213近傍に配置しておく。そして、金属枠214への光学フィルター221、222装着後に、加熱によって金属ペーストを溶融させ、毛細管現象を利用してメタライズ膜231と金属枠214との間の空隙に金属ペーストを浸透させる。そして、空隙への金属ペースト浸透後に、金属ペーストを冷却させる。
なお、光学フィルター221、222の厚さ方向の一部においてのみフィルター外周部221a、222aを覆う接合用金属材241は、図10Bに示すように、レンズ215側(言い換えれば、プローブ先端部11b)にあっても良い。
また、メタライズ膜厚を例えば100μm未満、特に10μm程度に設定した場合には、メタライズ処理コストを安価に抑えることができる。ただし、この場合は、メタライズ膜231のみでは十分な遮光性の確保は容易ではない。よって、例えば図10Cに示すように、光学フィルター221、222と金属枠214との間に介在する接合用金属材241が、光学フィルター221、222の厚さ方向全域に回り込み、厚さ方向全域においてフィルター外周部221a、222aを覆うように、配置されていることが好ましい。
(実施の形態3)
図11は、本発明の実施の形態3に係るプローブの要部構成を示す断面図である。図11に示す本実施の形態のプローブ20の要部構成は、図9に示す実施の形態2のプローブ15の要部構成と類似する。よって、本実施の形態では、実施の形態2で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2との相違点を中心に説明する。
図11に示すように、プローブ20においては、照射用光ファイバー211及び受光用光ファイバー212がフェルール213からプローブ先端部11b側に突出している。そのため、フェルール213から光学フィルター221、222まで延在する突出部211b、212bが、照射用光ファイバー211及び受光用光ファイバー212において形成されている。
フェルール213と照射用光ファイバー211及び受光用光ファイバー212との間の接合には通常、エポキシ系の接着剤を使用することができるが、この接着剤が突出部211b、212b側にはみ出る虞がある。
そこで、突出部211b、212bの外周部であるファイバー外周部211c、212cは、それぞれ全体に、光学フィルター221、222と同様のメタライズ処理を施されている。そのため、ファイバー外周部211c、212c上には、メタライズ膜232が形成されている。
この構成によれば、接着剤がフェルール213から突出部211b、212b側にはみ出ても、その接着剤は、メタライズ膜232とファイバー外周部211c、212cとの間に進入せず、メタライズ膜232外側の空隙に出ることとなる。したがって、光路が、フェルール213からはみ出た接着剤による影響を受けることを、メタライズ膜232によって確実に防ぐことができる。
(実施の形態4)
図12は、本発明の実施の形態4に係るプローブの要部構成を示す断面図である。図12に示す本実施の形態のプローブ30の要部構成は、図9、11に示す実施の形態2、3のプローブ15、20の要部構成、特にプローブ20の要部構成と類似する。よって、本実施の形態では、実施の形態2、3で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2、3との相違点を中心に説明する。
図12に示すように、プローブ30においては、フィルター外周部221a、222aがファイバー外周部211c、212cと面一となるように、光学フィルター221、222が照射用光ファイバー211及び受光用光ファイバー212と同等の大きさ(横断面)に加工されている。そして、メタライズ膜231、232をそれぞれ有するフィルター外周部221a、222a及びファイバー外周部211c、212cにおいてろう付け又は半田付けが施されている。そのため、接合用金属材241、242によって、光学フィルター221と照射用光ファイバー211との間の接合及び光学フィルター222と受光用光ファイバー212との間の接合が、形成されている。
この構成によれば、メタライズ処理とろう付け又は半田付けとによる気密接合が、光学フィルター221、222と照射用光ファイバー211及び受光用光ファイバー212との間において形成されている。よって、光学フィルター221、222は、照射用光ファイバー211及び受光用光ファイバー212に直結される。したがって、ノイズ光が回り込む可能性がある空隙を、光学フィルター221、222と照射用光ファイバー211及び受光用光ファイバー212との間に介在させないようにすることができる。
なお、本実施の形態では、照射用光ファイバー211及び受光用光ファイバー212においては、メタライズ膜232があるため、金属めっき層の形成は不要である。
(実施の形態5)
図13は、本発明の実施の形態5に係るプローブの要部構成を示す断面図である。図13に示す本実施の形態のプローブ40の要部構成は、図9、11、12に示す実施の形態2〜4のプローブ15、20、30の要部構成と類似する。よって、本実施の形態では、実施の形態2〜4で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2〜4との相違点を中心に説明する。
図13に示すように、プローブ40においては、ファイバー先端部212aがファイバー先端部211aよりもプローブ先端部11b側に配置されており、これにより受光用光ファイバー212の長さが照射用光ファイバー211の長さよりも長くなっている。
この構成によれば、照射光に比べて光量が非常に小さいラマン散乱光を、受光用光ファイバー212において効率的に集光することができる。
より具体的には、照射用光ファイバー211から出射される光及び受光用光ファイバー212に入射する光にケラレが発生することを防ぐことができる。一般に、光ファイバーから出射される光或いは光ファイバーに入射する光は発散光又は収束光であり、例えば石英ファイバーの場合はN.A.(Numerical Aperture:開口数)は約0.2程度である。観察対象部位からの反射を効率良く受光するためには、光ファイバーのN.A.を最大(フルN.A.)にする必要がある。図9〜12に示す構成例では、照射用光ファイバー211の前方に配置された光学フィルター221及びその周囲にあるメタライズ膜231等によりケラレが発生して受光効率の向上を妨げる虞があるが、図13に示す構成例では、照射用光ファイバー211と受光用光ファイバー212との間隔を空けたことにより、ケラレ発生を予防することができる。
また、光による観察においては生体からの散乱光を受光する必要がある。そのためには、照射に関しては広い面積にわたって測定対象部位を照射し且つ受光に関してはファイバー先端部212aに集光するレイアウトが、好ましい。図13に示す構成例では、観察対象部位に対して、照射用光ファイバー211を相対的に遠ざけ、受光用光ファイバー212を相対的に近づけることができる。そのため、照射用光ファイバー211からの出射光を広い面積で観察対象部位に当てることができ、受光用光ファイバー212に光を集光させることもできる。
また、図13に示すように、照射用光ファイバー211と受光用光ファイバー212との間にフェルール213を介在させ、これらが互いに離間するようにしても良い。この場合は、照射用光ファイバー211における照射も、受光用光ファイバー212における受光も、ファイバーのフルN.A.で行うことができ、照射及び受光の双方の効率向上を図ることができる。
以上、本発明の各実施の形態について説明した。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2011年11月25日出願の特願2011−257360及び2011年10月25日出願の特願2011−233809の日本出願に含まれる明細書、図面及び要約書の開示内容は、全て本願に援用される。
1 診断システム
2 内視鏡
3 内視鏡プロセッサー
4 ベースユニット
5 入力装置
6、7 モニター
10、15、20、30、40 プローブ
11 プローブ本体
11a プローブ基端部
11b プローブ先端部
11c、11d コネクター
110、211 照射用光ファイバー
111、121 ファイバー先端領域
112、122 金属めっき層
120、212 受光用光ファイバー
130 保持部
132、213 フェルール
134 外皮
141、142、221、222 光学フィルター
150、215 レンズ
211a、212a ファイバー先端部
211b、212b 突出部
211c、212c ファイバー外周部
214 金属枠
221a、222a フィルター外周部
231、232 メタライズ膜
241、242 接合用金属材

Claims (24)

  1. プラスチックジャケットを有し、体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
    プラスチックジャケットを有し、前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
    前記第1のファイバー先端部に配置された第1の光学フィルターと、
    前記第2のファイバー先端部に配置された第2の光学フィルターと、を有し、
    前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルターおよび前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理が施されている、
    光学プローブ。
  2. 前記第1及び第2の光ファイバーは、プラスチックファイバーである、
    請求項1に記載の光学プローブ。
  3. 前記第1及び第2の光ファイバーの先端領域を、前記第1及び第2の光ファイバーが束を成すように保持する保持部と、を有する、
    請求項1に記載の光学プローブ。
  4. 前記保持部は、チューブであり、
    前記第2の光ファイバーが前記第1の光ファイバーに当接した状態で、前記第1及び第2の光ファイバーの先端領域は、前記チューブに挿入されている、
    請求項3に記載の光学プローブ。
  5. 前記保持部は、フェルールであり、
    前記第1及び第2の光ファイバーの先端領域は、前記フェルールに形成されている孔に挿入されている、
    請求項3に記載の光学プローブ。
  6. 前記第1及び第2のファイバーの先端面は、前記フェルールの先端面と同一面に形成されている、
    請求項5に記載の光学プローブ。
  7. 前記第1及び第2のファイバーの少なくとも一方は、前記フェルールの先端面から突出している、
    請求項5に記載の光学プローブ。
  8. 前記第1及び第2の光ファイバーの少なくとも一方において前記保持部により保持された先端領域には、金属めっきが施されており、
    前記保持部により保持され且つ前記金属めっきを施された先端領域においては、プラスチックジャケットが除去されている、
    請求項3に記載の光学プローブ。
  9. 前記第1及び第2の光ファイバーは、前記保持部からプローブ先端部側に突出し、
    前記第1及び第2の光ファイバーの突出部は、それぞれ全体にメタライズ処理を施された第1及び第2のファイバー外周部を有する、
    請求項3に記載の光学プローブ。
  10. 前記第1の光ファイバーは、前記保持部からプローブ先端部側に突出し、
    前記第1の光ファイバーの突出部は、全体にメタライズ処理を施された第1のファイバー外周部を有する、
    請求項3に記載の光学プローブ。
  11. 前記第2の光ファイバーは、前記保持部からプローブ先端部側に突出し、
    前記第2の光ファイバーの突出部は、全体にメタライズ処理を施された第2のファイバー外周部を有する、
    請求項3に記載の光学プローブ。
  12. 前記第1の光学フィルターは、全体にメタライズ処理を施された第1のフィルター外周部を有し、
    前記第2の光学フィルターは、全体にメタライズ処理を施された第2のフィルター外周部を有する、
    請求項1に記載の光学プローブ。
  13. 前記第1及び第2の光学フィルターは、前記第1及び第2のフィルター外周部において施されたろう付け又は半田付けにより、互いに接合されている、
    請求項12に記載の光学プローブ。
  14. 前記第1及び第2の光ファイバーは、前記保持部からプローブ先端部側に突出し、
    前記第1及び第2の光ファイバーの突出部は、それぞれ全体にメタライズ処理を施された第1及び第2のファイバー外周部を有し、
    前記第1の光学フィルターは、全体にメタライズ処理を施された第1のフィルター外周部を有し、
    前記第2の光学フィルターは、全体にメタライズ処理を施された第2のフィルター外周部を有する、
    請求項1に記載の光学プローブ。
  15. 前記第1及び第2の光学フィルターは、前記第1及び第2のフィルター外周部並びに前記第1及び第2のファイバー外周部において施されたろう付け又は半田付けにより、前記前記第1及び第2の光ファイバーに接合されている、
    請求項14に記載の光学プローブ。
  16. 前記第1及び第2のファイバー先端部並びに前記第1及び第2の光学フィルターを収納する筒状の金属枠を有し、
    前記第1の光学フィルターは、全体にメタライズ処理を施された第1のフィルター外周部を有し、
    前記第2の光学フィルターは、全体にメタライズ処理を施された第2のフィルター外周部を有し、
    前記第1及び第2の光学フィルターは、前記第1及び第2のフィルター外周部において施されたろう付け又は半田付けにより、前記金属枠に接合されている、
    請求項7に記載の光学プローブ。
  17. 前記第1及び第2の光学フィルターと前記金属枠とを接合するろう材又は半田は、前記第1及び第2の光学フィルターの厚さ方向の少なくとも一部において前記第1及び第2のフィルター外周部を覆っている、
    請求項16に記載の光学プローブ。
  18. 前記第2のファイバー先端部は、前記第1のファイバー先端部に比べて、プローブ先端部側に配置されている、
    請求項7に記載の光学プローブ。
  19. 前記第2のファイバー先端部は、前記第1のファイバー先端部に比べて、プローブ先端部側に配置されている、
    請求項16に記載の光学プローブ。
  20. 前記第2の光学フィルターは、前記第1の光学フィルターに比べて、プローブ先端部側に配置されている、
    請求項7に記載の光学プローブ。
  21. 前記第2の光学フィルターは、前記第1の光学フィルターに比べて、プローブ先端部側に配置されている、
    請求項16に記載の光学プローブ。
  22. 前記第2の光学フィルターは、前記第1の光学フィルターに比べて、プローブ先端部側に配置されている、
    請求項18に記載の光学プローブ。
  23. 前記第2の光学フィルターは、前記第1の光学フィルターに比べて、プローブ先端部側に配置されている、
    請求項19に記載の光学プローブ。
  24. プラスチックジャケットを有し、体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
    プラスチックジャケットを有し、前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
    前記第1のファイバー先端部に配置された第1の光学フィルターと、
    前記第2のファイバー先端部に配置された第2の光学フィルターと、を有する光学プローブの製造方法であって、
    前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルターおよび前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理を施す、
    光学プローブの製造方法。
JP2013540657A 2011-10-25 2012-10-25 光学プローブ及びその製造方法 Withdrawn JPWO2013061590A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013540657A JPWO2013061590A1 (ja) 2011-10-25 2012-10-25 光学プローブ及びその製造方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011233809 2011-10-25
JP2011233809 2011-10-25
JP2011257360 2011-11-25
JP2011257360 2011-11-25
JP2013540657A JPWO2013061590A1 (ja) 2011-10-25 2012-10-25 光学プローブ及びその製造方法

Publications (1)

Publication Number Publication Date
JPWO2013061590A1 true JPWO2013061590A1 (ja) 2015-04-02

Family

ID=48167441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013540657A Withdrawn JPWO2013061590A1 (ja) 2011-10-25 2012-10-25 光学プローブ及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2013061590A1 (ja)
WO (1) WO2013061590A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870399A (zh) * 2016-09-27 2018-04-03 福州高意光学有限公司 一种特殊光接受结构
US11275215B2 (en) 2017-01-27 2022-03-15 Heriot Watt University Direct laser writing and chemical etching and optical devices

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234749B2 (ja) * 2013-09-12 2017-11-22 中村 正一 医療用照明装置
CN104013377A (zh) * 2014-06-10 2014-09-03 上海大学 可弯折变形光纤束内窥镜管线
KR101790561B1 (ko) 2016-08-10 2017-10-26 경희대학교 산학협력단 라만 광섬유 탐침 장치
KR101806745B1 (ko) * 2016-11-04 2017-12-07 경희대학교 산학협력단 라만 프로브장치
CN106525816A (zh) 2016-12-08 2017-03-22 同方威视技术股份有限公司 非接触式安全检查系统及方法
KR101872127B1 (ko) * 2016-12-14 2018-07-02 한국광기술원 라만 신호를 제거한 광섬유 모듈
KR101944760B1 (ko) * 2016-12-22 2019-04-17 주식회사 모멘텀컨설팅 프로브 유닛, 이것을 포함하는 광학 영상 장치, 및 광학 영상 장치의 제어 방법
KR101942911B1 (ko) 2017-07-24 2019-01-28 주식회사 에스에스솔루션 표면증강 라만산란에 의한 기체 검출 광센서
JP7411941B2 (ja) 2020-04-24 2024-01-12 パナソニックIpマネジメント株式会社 照明システム
JP7458039B2 (ja) 2020-04-24 2024-03-29 パナソニックIpマネジメント株式会社 発光システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400875B1 (en) * 1998-11-02 2002-06-04 Spectrx, Inc. Method for protecting a fiber optic probe and the resulting fiber optic probe
JP4588324B2 (ja) * 2002-04-05 2010-12-01 マサチユセツツ・インスチチユート・オブ・テクノロジイ 組織測定用プローブ
JP4675149B2 (ja) * 2005-05-13 2011-04-20 独立行政法人理化学研究所 血管診断用分光プローブ
JP5214193B2 (ja) * 2007-08-10 2013-06-19 オリンパス株式会社 ファイバー光源
JP5704516B2 (ja) * 2009-11-17 2015-04-22 コニカミノルタ株式会社 光断層画像測定装置のプローブ及びプローブの調整方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870399A (zh) * 2016-09-27 2018-04-03 福州高意光学有限公司 一种特殊光接受结构
US11275215B2 (en) 2017-01-27 2022-03-15 Heriot Watt University Direct laser writing and chemical etching and optical devices

Also Published As

Publication number Publication date
WO2013061590A1 (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2013061590A1 (ja) 光学プローブ及びその製造方法
US10890753B2 (en) Endoscope
US10389921B2 (en) Endoscope
JP5903893B2 (ja) プローブ
JP4675149B2 (ja) 血管診断用分光プローブ
JP6464321B2 (ja) 電子回路ユニット、撮像ユニットおよび内視鏡
JP2011072424A (ja) 投光ユニット、及びこれを搭載した医療機器、並びに内視鏡装置
JP5719683B2 (ja) 内視鏡
JP5485480B1 (ja) ファイバユニット
US9717419B2 (en) Optical fiber cable, method of manufacturing the same, and light source module including the same
EP3231347B1 (en) Endoscope
US11478128B2 (en) Endoscope with cover at distal end of cannula
WO2013136664A1 (ja) プローブ
JP6210797B2 (ja) 内視鏡
JP2011182871A (ja) 照明光学系及び内視鏡
JP2005025074A (ja) 撮像装置
JP3989721B2 (ja) プローブ及び内視鏡システム
JP2015000267A (ja) 内視鏡及び内視鏡システム
JP5831543B2 (ja) プローブ
JP6744118B2 (ja) 内視鏡
JP6240391B2 (ja) 腹腔鏡
JP2020028469A (ja) 内視鏡
JP2013099469A (ja) 撮像装置、内視鏡
JP5148428B2 (ja) 内視鏡、およびその内蔵物
JP2013099487A (ja) プローブ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151022

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20161003