JPWO2013018504A1 - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
JPWO2013018504A1
JPWO2013018504A1 JP2013526793A JP2013526793A JPWO2013018504A1 JP WO2013018504 A1 JPWO2013018504 A1 JP WO2013018504A1 JP 2013526793 A JP2013526793 A JP 2013526793A JP 2013526793 A JP2013526793 A JP 2013526793A JP WO2013018504 A1 JPWO2013018504 A1 JP WO2013018504A1
Authority
JP
Japan
Prior art keywords
electrode
semiconductor element
bonding
copper
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013526793A
Other languages
English (en)
Other versions
JP5627789B2 (ja
Inventor
健嗣 大津
健嗣 大津
卓 楠
卓 楠
荒木 健
健 荒木
裕章 巽
裕章 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013526793A priority Critical patent/JP5627789B2/ja
Application granted granted Critical
Publication of JP5627789B2 publication Critical patent/JP5627789B2/ja
Publication of JPWO2013018504A1 publication Critical patent/JPWO2013018504A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/89Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using at least one connector not provided for in any of the groups H01L24/81 - H01L24/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • H01L2224/0345Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92246Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10254Diamond [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

高温動作した場合にも、半導体素子との接合を長期間維持できる半導体装置を得ることを目的として、絶縁基板(21)の一方の面に、銅材料で構成された電極(22,23,26)が設けられた回路基板(2)と、電極に焼結性銀粒子接合材(4P)を用いて接合された電力用半導体素子(1)と、を備え、電極は、電力用半導体素子(1)1との接合面(PB)から絶縁基板(21)に向かう50μmの深さまでの部分(23,26P)が、ビッカース硬さ70HV以上の硬度を有し、かつ、絶縁基板(21)側の部分(22,26B)のビッカース硬さが50HV以下とした。

Description

本発明は、高温動作する半導体素子を搭載する回路基板を用いた半導体装置、およびその製造方法に関する。
シリコン電力用半導体素子を搭載する基板として、例えば、特許文献1に示されるように、窒化アルミニウム焼結体、窒化ケイ素焼結体などからなるセラミックス基板に銅や銅合金などからなる金属板をろう付けによって接合した回路基板が知られている。特許文献1では、セラミックス基板と金属板との熱膨張差に起因する基板のクラックの発生を防止するため、接合後の金属板のビッカース硬度を60以上としている。
インバーターなどの電力用半導体装置に使用されるスイッチング素子(IGBT、MOSFET等)や整流素子などの電力用半導体素子では、電力損失を低減する必要があり、近年、例えば、炭化ケイ素(SiC)、窒化ガリウムのようなワイドバンドギャップ半導体を用いた電力用半導体素子が開発されている。ワイドギャップ半導体素子の場合、素子自身の耐熱性が高く、大電流による高温動作が可能であるが、その特性を発揮するためには、電力用半導体素子と回路基板とが強固に接合されていなければならない。
この接合において、はんだやろう材を接合材に用いた場合、動作温度以上の温度で接合する必要があり、高温動作が想定されるワイドバンドギャップ半導体を用いた電力用半導体装置への適用は困難であった。そこで、バルク金属の融点よりも低い温度で焼結し、焼結後はバルクの融点まで耐えられる金属ナノ粒子が高温動作用の接合材として適用されるようになってきた。例えば、特許文献2には、SiC半導体を基板の電極に接合する際に金、銀、銅などの50nm以下の金属ナノ粒子を用いることが示されている。
特開平8−102570号公報(段落0026〜0042、図1、図2) 国際公開番号WO2009/157160A1(段落0038〜0050、図1、図2)
ワイドバンドギャップ半導体を用いた電力用半導体素子の大電流による高温動作を考慮した場合、回路基板に形成する電極には厚肉の銅材を用いることが適当である。また、銅材と半導体素子とを接合する接合材としてナノ銀粒子を用いて、銀で接合することが適当である。このような観点で検討を進めていくうちに、銀接合の熱サイクル試験での密着性が回路基板の電極の硬度に依存することを見出した。そして、特許文献1に示されているように、厚肉の銅板を回路基板に接合して電極を形成した場合、銅の硬度が低下して、発明者らが見出した必要な硬度を維持することができず、接合強度にばらつきが出て、信頼性の高い接合、ひいては寿命信頼性の高い電力用半導体装置を得ることができなかった。
本発明は、上述のような課題を解決するためになされたもので、高温動作した場合にも、半導体素子との接合を長期間維持できる半導体装置を得ることを目的とする。
本発明にかかる半導体装置は、セラミック材料で構成された絶縁基板の一方の面に、銅材料で構成された電極が設けられた回路基板と、前記電極に焼結性銀粒子接合材を用いて接合された半導体素子と、を備え、前記電極は、前記半導体素子との接合面から前記絶縁基板に向かう50μmの深さまでの部分が、ビッカース硬さ70HV以上の硬度を有し、かつ、前記絶縁基板側の部分のビッカース硬さが50HV以下であることを特徴とする。
この発明によれば、電極の半導体素子との接合面から所定深さまでの範囲をビッカース硬さ70HV以上の硬度にし、かつ、絶縁基板側をビッカース硬さ50HV以下の硬度にしたので、高温動作した場合にも、半導体素子と回路基板との接合を長期間維持できる半導体装置を得ることができる。
本発明の実施の形態1にかかる電力用半導体装置の構成を説明するための部分断面図である。 本発明の実施の形態1にかかる回路基板の製造方法を説明するための断面図である。 本発明の実施の形態1にかかる半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態1にかかる電力用半導体装置の接合信頼性を説明するための、実施例と比較例の寿命試験前後での断面の状態を示す図である。 本発明の実施の形態1にかかる電力用半導体装置の接合信頼性を説明するための、銅電極の表面硬度と密着強度との関係を示すグラフである。 本発明の実施の形態2にかかる電力用半導体装置の構成を説明するための部分断面図である。
実施の形態1.
本発明の実施の形態1にかかる電力用半導体装置、および電力用半導体装置に用いる回路基板について、図に基づいて説明する。図1〜図5は、本発明の実施の形態1にかかる電力用半導体装置と回路基板について説明するためのもので、図1は電力用半導体装置の部分断面図、図2は回路基板の製造方法を説明するためのもので、図2(a)〜図2(c)は、各工程における断面図である。図3は電力用半導体装置の製造方法のうちの、回路基板に電力用半導体素子を接合する方法を説明するためのもので、図3(a)〜図3(c)は、各行程中の状態を示し、図3(a)は上面を、図3(b)と図3(c)は断面を示す。そして、図4は本実施の形態にかかる電力用半導体装置の接合信頼性を説明するためのもので、図4(a1)と図4(a2)は実施例として作成した回路基板と半導体素子との接合体の寿命試験前後の断面図、図4(b1)と図4(b2)は比較例として作成した回路基板と半導体素子との接合体の寿命試験前後の断面図である。また、図5は本実施の形態にかかる電力用半導体装置の接合信頼性を説明するためのもので、銅電極の表面硬度と密着強度との関係を示すグラフである。
図1に示すように、本発明の実施の形態1にかかる電力用半導体装置は、回路基板2の一方の面にベース板3が、もう一方の面に電力用半導体素子1が接合され、さらに電力用半導体素子1の回路基板2との接合面PBの反対側にリード板6が接合されているものである。図中、回路基板2とベース板3の両端側、リード板6の一端側は記載を省略している。以下詳細に説明する。
<半導体素子>
電力用半導体素子も制御用半導体素子も原理的には同じ半導体素子である。しかし、電力用半導体素子の場合、主電流、つまり、大電流を流すために、必要とされる回路基板の仕様(電極の導電性や放熱性)が異なる。そのために、背景技術で説明したような課題が生じる。そこで、本発明の各実施の形態では、半導体素子には、主電力を制御する電力用半導体素子を用いることとする。
電力用半導体素子1は半導体チップ(半導体基板)11の一方の面に金属シリサイド12、第1金属層(Ni)13及び、第2金属層(Au)14を順に積層して構成している。また、他方の面にはニッケル(Ni)や金(Au)などの金属膜15が形成されている。電力用半導体素子1として、たとえば、ワイドバンドギャップ半導体材料である厚さ500μmの炭化珪素を基板とするものを使用している。電力用半導体素子1としては、整流素子として機能するダイオードやスイッチング素子として機能するIGBT(Insulated Gate Bipolar Transistor)等が適用でき、金属層は所定の回路パターンに形成されてもよい。半導体材料や金属層などの構造や材料はこれに限定されることはなく、電力用半導体素子1の大きさも、特に限定されることはなく、適宜調整すればよい。ただし、後述するように、本実施の形態にかかる電力用半導体装置としての効果を発揮する好適な選択としては、大電流を扱い、高温動作するワイドバンドギャップ半導体をあげることができる。
<回路基板>
電極付絶縁基板である回路基板2は絶縁基板(窒化珪素)21の両面に、スパッタ膜(Cu)22a、22b(まとめて金属薄膜22)、厚さ500μmのめっき電極(Cu)23a、23b(まとめて銅めっき電極23)をそれぞれ順に積層するように形成したものである。この銅めっき電極23は、それぞれ厚みが150μm〜500μmの範囲を好適範囲として、本実施の形態では500μmに設定し、少なくとも電力用半導体素子1との接合面PB側の銅めっき電極23aについては、ビッカース硬さが70HV以上になるようにしている。また、回路基板2には、窒化珪素に限らず、アルミナ、窒化アルミニウムなどを絶縁基板21として用いることができる。発熱量の大きな電力用半導体装置全体の放熱の観点から、熱伝導率20W/m・K以上の材料を用いることが望ましく、熱伝導率70W/m・K上の材料がさらに望ましい。
<接合材>
電力用半導体素子1と回路基板2とは焼結銀接合層4によって接合される。焼結銀接合層4は、銀微粒子を有機基剤中に懸濁させてペースト状にした焼結性銀粒子接合材(銀ナノペースト)を加熱することにより、有機物で覆われていた銀微粒子表面が互いに接触することで、銀の融点よりも低い温度で焼結することにより形成される。
<電力用半導体装置>
銀ナノペーストで電力用半導体素子1を回路基板2の一方の面(図では23a側)に接合した後、他方の面(同じく、23b側)のめっき電極(Cu)23bには、はんだ等の接合材5を用いてベース板(Cu等)3を接合する。さらに、電力用半導体素子1の回路基板2に対向する面に対して反対側の面(能動面)に形成された金属膜15(素子電極)には、はんだ等の接合材7を用いてリード板6が接合され、電気配線上は電力用半導体装置が完成する。その後、一般的に用いられる封止技術により樹脂等でパッケージングされる。
つぎに、電力用半導体素子1の製造方法について簡単に説明する。直径数インチの炭化珪素基板11を用意する。この炭化珪素基板11の少なくとも片面に、外部との電気接続を行うリード板6との接合のため、素子電極として機能するニッケル、金などの金属膜15をスパッタリング法等公知の方法によって形成する。形成する金属膜15の厚さは、特に限定されることはなく、製造される電力用半導体素子の大きさに合わせて、適宜調整すればよいが、一般的に、10nmから2000nm以下である。なお、この金属膜15については、回路基板2との接合の説明に不要なため、以降の図では記載を省略する。
そして、炭化珪素基板11の金属膜15を形成した面の反対面側、つまり、回路基板2と接合する側の面に、金属シリサイド12を形成するための金属層として、厚さ50nmのニッケル層を形成し、その後真空雰囲気下で800℃、1時間の熱処理を行うことにより、厚さ50nm程度の金属シリサイド12としてニッケルシリサイド層を形成する。さらに、スパッタリング法を用いて、金属シリサイド12の表面に、第1金属層13として厚さ200nmのニッケル層、ニッケル層表面に第2金属層14として厚さ200nmの金層を順次形成した。この後、ダイシングで5.0mm角サイズに切断し、洗浄したものを、電力用半導体素子1として用いた。
回路基板2の製造方法について図2を用いて説明する。図2(a)に示すように、20mm角(20mm平方)、厚さ1.0mmの窒化珪素からなる絶縁基板21の両面の、それぞれ18mm角(18mm平方)の範囲に、銅スパッタ処理により、厚さ200nmの金属薄膜22を形成する。そして、図2(b)に示すように、形成した金属薄膜22上に、約600μm厚の銅めっき層23aC、23bC(まとめて銅めっき層23C)を形成する。銅めっき層23Cを厚く形成すると、一般的に厚みむらが生じるため、図2(c)に示すように、表面を機械研磨して、均一な厚みの500μm厚の銅めっき電極23を形成する。
銅めっき電極23の厚みは、150μm〜500μmの範囲が好適である。銅めっき電極23の厚み(厳密には導電部材としての厚み)を150μm以上に保つことにより、大電流に伴って発生する熱を効率よく放熱することができる。また、500μmよりも厚くしても機能的にはかまわないが、本実施の形態のようにめっきで全厚みを形成する場合、材料や工程等の関係から500μm以内に抑えることが望ましい。そして、銅めっき電極23のうち、銀の焼結接合層4により電力用半導体素子1と接合される電極として機能する少なくとも銅めっき電極23a部分については、70HV以上の硬度を保つ必要がある。ただし、銅めっき電極23aの硬度は厚み方向で全層が均一である必要はないが、電力用半導体素子1に近い側の50μm以上の厚み部分が硬度70HV以上に保たれる必要がある。なお、後述するように、実効上は70HV以上で十分であるが、製作精度の観点から、マージンをとって、硬度を100HV以上に保つことが望ましい。
銅めっき層23Cを形成する際のめっき浴は、硫酸銅と硫酸から構成されるPH1.0のハイスロー浴を用いた。そして、直流電源(北斗電工:電気化学測定システムHZ−5000)を用い、電流密度1.0A/dm2、浴温25℃の条件で、定電流電解法により銅めっき層23Cを形成した。また、この銅めっき層23Cの硬度を上げるためには、メッキ液にチオ尿素誘導体等の硬質化剤を加えることが望ましい。70HV以上の硬度が得られる上述しためっき浴に限らず、ピロリン酸銅、ホウフッ化銅、シアン化銅などの浴を用いてもよい。
上記のように形成した回路基板2に電力用半導体素子1を接合する方法について図3を用いて説明する。なお、図中、回路基板2のうち、絶縁基板21よりベース板3側の部分については記載を省略する。
図3(a)に示すように、銅めっき電極23aの表面に、6mm角の開口OM4で、厚さ0.2mmのステンレスマスクM4を用いて、開口部分OM4に焼結性銀粒子接合材である銀ナノペースト4Pを印刷する。そして、図3(b)に示すように、印刷した銀ナノペースト4Pの表面に、位置を合わせて電力用半導体素子1を載置して、仮接合体となす。つぎに、仮接合体に100℃、10min間のプリヒート処理を行った後、5MPaの加圧をしながら、350℃まで昇温する。350℃に到達してから、5分間保持することにより、銀ナノペーストが含有する銀ナノ粒子(微粒子)の表面を覆っていた有機物が分解され、露出した微粒子同士が焼結し、図3(c)に示すように銀の焼結接合層4が形成される。その後、空冷させることにより、回路基板2と電力用半導体素子1との接合体を得た。その後、上述したようにベース板3やリード板6をさらに接合することにより、電力用半導体装置を得ることができる。銀ナノペースト4Pとしては、例えば、DOWA社製造T2W−A2を用いることができる。上記加熱接合は、接合装置(アスリートFA:加熱圧着ユニット)を用いて行った。
次に、本発明の実施の形態1にかかる電力用半導体装置における電力用半導体素子1と回路基板2との接合信頼性を評価するため、本実施の形態に準じた接合体のサンプル(実施例)と、従来の回路基板に相当する接合体(比較例)のサンプルで密着強度を比較する実験を行った。
<比較サンプル>
比較例のサンプル(接合体)は、以下の方法で作成した。
半導体素子は、本実施の形態1で使用した電力用半導体素子1と同じ方法で作製した。回路基板としては、図4(b1)に示すように、20mm角、厚さ1.0mmの窒化珪素からなる絶縁基板21の両面(図3と同様に電力用半導体素子との接合面PBと反対側の部分は記載を省略)に、18mm角、厚さ500μmの銅板25を、ろう材24で接合したものを使用した。接合方法(接合体の製造方法)は、本実施の形態1と同様である。実施例サンプルとして3個(SE1−1〜SE1−3)、および比較例サンプルとして3個(SC1−1〜SC1−3)ずつ作製した。
<密着強度比較試験>
このように構成された接合体のサンプルを、ヒートショック試験機(エスペック社:冷熱衝撃試験機TSA−101S−W)に投入し、処理条件は−40℃〜200℃(1サイクル−40℃:30分保持/200℃:30分保持)で行った。200サイクルごとにシェア測定器(Dage社:シェア測定器HS4000)による密着強度測定を行った。密着強度判定は、30kgf/チップ以上かけてもはがれない場合を密着性異常なしとし、30kgf/チップ未満ではがれた場合を強度低下有りとした。なお、ビッカース硬さ試験器(ミツトヨ:MVK−H2)を用い、実施例の銅めっき電極23aと、比較例の銅板電極25aの表面の硬度を測定荷重100g、測定時間10秒の条件で測定した。接合前における実施例サンプルの銅めっき電極23aの硬度は70HV、比較例サンプルの銅板電極25aの硬度は30HVであった。
表1に、密着強度比較試験結果を示す。表中、○は密着性異常なし、×は強度低下有りを示す。
Figure 2013018504
表1に示すように、本実施例の銅めっき電極23aを有するサンプルでは、1000サイクル経過しても、密着性異常が発生せず、密着強度低下が見られなかった。一方、比較例のろう付けした銅板電極25aを有するサンプルでは、400サイクルまでに密着性異常が発生し、密着強度が低下していることが確認できた。
上記密着強度比較試験後における実施例サンプルと比較例サンプルの状態を比較するため、SEM(走査型電子顕微鏡(日本電子:JXA−8530F))を用いてそれぞれの断面を観察した。図4(a1)、(a2)は、実施例サンプルにおけるサイクル前と1000サイクル経過後の断面状態、図4(b1)、(b2)は、比較例サンプルにおけるサイクル前と400サイクル経過後の断面状態を模式的に示したものである。図4(a1)、(a2)に示すように、実施例サンプルの断面観察を行ったところ、銅めっき電極23aの電力用半導体素子1との接合面PBには、粒界すべりは認められず、接合部である焼結銀接合層4内にも縦割れは見られなかった。一方、図4(b1)、(b2)に示すように、比較例サンプルで、400サイクル経過後に密着強度が低下した接合体の断面観察では、銅板電極25aの電力用半導体素子1との接合面PBには、粒界すべりがあり、これを起点として、焼結銀接合層4内に縦割れCVを起こしていた。
ここで、実施例サンプルの銅電極は、めっきにより形成した銅めっき電極23なので、ろう付けなどの熱処理を必要とせず、その後の電力用半導体素子1との接合においても、銅が通常焼きなましされる焼鈍温度(400℃以上)を超えることがない。そのため、高い硬度(70HV以上)を保つことができる。一方、比較例サンプルの銅電極は、ろう付けした銅板電極25aであり、電極表面の硬度は30HVと軟化しており、電力用半導体素子1との接合においてその硬度が上がることは考えられない。
つまり、実施例サンプルでは、銅電極の硬度が高いために、冷熱衝撃試験による電極の粒界すべりを抑制し、これに伴う焼結銀接合層4の縦割れ発生を抑え、一方、比較例サンプルでは、銅電極の硬度が低いために、電極の粒界すべりを抑制することができず、粒界すべりに伴う焼結銀接合層4の縦割れ発生により、密着強度低下を生じたものと考えられる。つまり、実施例と比較例の密着強度の差は、銅電極の硬度の違いにより生じたものと考えられる。
そこで、この考え方を検証するため、同じめっき電極で、硬度のみを変化させた電極を作成し、硬度と密着強度との関係について試験を行った。
めっき電極は、密着強度比較試験における実施例サンプル(SE1−1〜1−3)と同様に、約600μm厚にまでめっき後、機械研磨により500μmの厚さに削って形成した。研磨直後の硬度は120HV以上であったが、予め窒素雰囲気下で熱処理することで20〜120HVの範囲内で調整した。そして、硬度を調整した電極に対して、密着強度比較試験と同様に電力用半導体素子を接合し、−40℃〜200℃の冷熱衝撃試験を行い、400サイクルを経過後に密着強度を測定した。
図5は、銅電極の表面硬度と密着強度との関係を示すもので、横軸が銅電極の表面硬度、縦軸が密着強度を示す。図に示すように、銅電極の表面硬度が、60HV〜70HVの範囲で、表面硬度の増大に伴って密着強度が急激に増大し、70HV以上になると100kgf/チップ以上の密着強度を安定して示している。つまり、密着強度は、めっきか、銅板のろう付けかという製造方法ではなく、最終的な電極の表面硬度に依存し、70HV以上を保つことで密着強度を強固に保つことができることがわかった。一方、製造上のばらつきを考慮すると、マージンを確保する観点から、めっき電極表面硬度は、100HV以上にすることが望ましいことがわかった。
また、密着強度の高い、硬度が70HVの銅電極について、SEMで銅結晶の状態を観察したところ、粒径のほとんどが1〜10μmの範囲内に収まっており、それらの平均結晶粒径は10μm以下であった。一方、硬度が30HV以下の電極ではほとんどの粒子の粒径が50μm以上であった。従って、電極の状態を平均結晶粒径で管理する場合、平均結晶粒径を10μm以下とすることが望ましいと考えられる。また、平均結晶粒径が小さいほど硬度が高い傾向があるので、平均結晶粒径を5μm以下とするとさらに望ましいと考えられる。
なお、本実施の形態1においては、回路基板2には、両面に銅めっき電極23a、23bを形成した例について説明したが、これに限ることはない。上述した焼結銀接合層4との接合強度を必要とする面が、電力用半導体素子1との接合面PBのみの場合、電力用半導体素子1と接合する面の電極のみめっきで形成するようにしてもよい。ただし、本実施の形態1においては、回路基板2の両面に銅めっき電極23を設けたので、図1に示すように、電力用半導体素子1と反対側にベース板3(ヒートブロックなどでもよい)を接合する際も密着強度を高めることができる。また、銅めっき電極23は純粋な銅であることが望ましいが、少量の他の元素などが添加された合金などとしてもよい。また、本実施の形態では、めっきで形成することにより、所定の硬度(例えば70HV以上)を有するようにしたが、所定の硬度が得られるのであれば、めっき以外で形成してもよい。
以上のように、本実施の形態1にかかる回路基板2によれば、焼結性銀粒子接合材4Pを用いた(または、焼結銀接合層4を介した)電力用半導体素子1との接合面PBを有する回路基板2であって、絶縁基板21と、絶縁基板21の一方の面に設けられ、当該面と同じ向きに接合面PBが形成された電極である銅めっき電極23aと、を備え、銅めっき電極23aは150μm以上の厚みを有し、ビッカース硬さ70HV以上の硬度を有しているように構成したので、電力用半導体素子1の動作に必要な大電流の導通および動作に伴い発生した熱の伝熱が確保できるとともに、高温動作した場合にも、銅めっき電極23aの焼結銀接合層4との界面部分の粒界すべりを抑制して、電力用半導体素子1と回路基板2との接合を長期間維持することができる。
なお、100HV以上とすると、マージンが確保できるので、製造上のばらつきがあっても確実に接合を強固にすることができる。
また、電極を銅めっきにより形成するようにしたので、電極の硬度を容易に所定以上に調整することができる。
また、本実施の形態1にかかる回路基板2の製造方法によれば、絶縁基板21の少なくとも一方の面(電力用半導体素子1を接合する側の面)の所定範囲(パターン)に、スパッタにより金属薄膜22aとして銅スパッタ膜を形成する工程と、金属薄膜22a上に、150μmより厚い銅のめっき層23aCを形成する工程と、めっき層23aCの表面を研磨して、電力用半導体素子1との接合面PBを形成する工程と、を含むようにしたので、所望厚みで所定硬度を保つ銅の電極を容易に形成することができる。
また、本実施の形態1にかかる電力用半導体装置によれば、上述した回路基板2と、回路基板2の電極(銅めっき電極23a)の接合面PBに焼結性銀粒子接合材4Pを介して接合された電力用半導体素子1と、を備えるように構成したので、電力用半導体素子1の動作に必要な大電流の導通および動作に伴い発生した熱の伝熱が確保できるとともに、高温動作した場合にも、銅めっき電極23aの焼結銀接合層4との界面部分の粒界すべりを抑制して、電力用半導体素子1と回路基板2との接合を長期間維持することができる電力用半導体装置を得ることができる。
また、本実施の形態1にかかる電力用半導体装置の製造方法によれば、回路基板2の銅めっき電極23aの接合面PBの所定範囲(パターン)に焼結性銀粒子接合材4Pを塗布する工程と、焼結性銀粒子接合材4Pの塗布面に電力用半導体素子1を載置する工程と、電極(銅めっき電極23a)の焼鈍温度より低い温度で焼結性銀粒子接合材4P中の銀粒子を焼結させ、電力用半導体素子1を回路基板2に接合する工程と、を含むようにしたので、銅めっき電極23aの硬度を維持し、界面部分の粒界すべりを抑制して、電力用半導体素子1と回路基板2との接合を長期間維持することができる電力用半導体装置を得ることができる。
実施の形態2.
上記実施の形態1においては、電力用半導体素子と接合する電極の全厚みをめっきで形成する例について説明した。本実施の形態2においては、硬度を保持する必要のある厚みを特定し、硬度の必要な電力用半導体素子との接合面PBから所定深さの厚み分をめっきで形成し、絶縁基板側の部分は、硬度を限定しない銅板(ろう付け)で形成するようにした。他の構成については、実施の形態1と同様である。
図6は、本発明の実施の形態2にかかる電力用半導体装置と回路基板について説明するためのもので、電力用半導体装置の部分断面図である。本実施の形態2にかかる電力用半導体装置においては、実施の形態1に対して回路基板202の構成のみ異なるので、電力用半導体素子1や焼結銀接合層4を形成する銀ナノペースト4P、および電力用半導体装置全体についての説明は省略する。
<回路基板>
電極付絶縁基板である回路基板202は絶縁基板(窒化珪素)21の両面に、それぞれ下地として厚さ500μmの銅板26Ba、26Bb(まとめて下地銅板26B)をろう材24a、24b(まとめてろう材24)で接合し、さらに、下地銅板26Bの上に、厚さ50μm以上の銅めっき層26Pa、26Pb(まとめて銅めっき層26P)を形成したものである。つまり、回路基板202の両面にそれぞれ形成された銅電極26a、26b(まとめて銅電極26)は、硬度を特定しない下地銅板26B上に所定以上の硬度(70HV)を有する銅めっき層26Pが所定厚さ以上形成されているものである。
この、銅めっき層26Pの厚み(厳密には電力用半導体素子1との接合面PBにおいて、70HV以上の硬度を有する厚み)を50μm以上とすると、下地銅板26Bの硬度に関係なく、焼結銀接合層4との界面における粒界すべりを抑制して、縦クラックの発生を防止し、密着強度を高めることができる。つまり、銅めっき層26Pの厚みを50μm以上にすると、下地銅板26Bの結晶としての脆弱性の接合面PBへの影響を排除し、接合強度を高く保つことができる。また、銅めっき層26Pの厚みを100μm以上とすると、さらに信頼性を向上することができる。銅電極としての厚みの好適範囲の下限は、実施の形態1と同様の150μmであるが、上限値は、下地銅板26Bの厚み分、さらに厚くなってもよい。なお、銅めっき層26Pの厚さは、下地銅板26Bの厚さより厚くなってもよい。
回路基板202の製造方法について説明する。20mm角、厚さ1.0mmの窒化珪素からなる絶縁基板21の両面のそれぞれに、銀ロウを用いて18mm角、厚さ500μmの下地銅板26Ba、26Bbを接合温度700℃で接合する。そして、接合した下地銅板26B上に、50μm厚の銅めっき層26Pを形成する。
銅電極26の厚み(厳密には導電部材としての厚み)は、150μm以上の範囲が好適である。銅電極26の厚みを150μm以上に保つことにより、大電流に伴って発生する熱を効率よく放熱することができる。そして、銅電極26のうち、電力用半導体素子1との接合面PB側に形成された銅めっき層26Pについては、後述するように70HV以上の硬度を確保する部分として50μm以上の厚みを確保する必要がある。なお、本実施の形態2のように、銅電極26として必要な厚みのほとんどを下地銅板26Bにより稼いだので、銅めっき層26Pの厚みは、50μm程度でよい。そのため、めっき直後の銅電極26の面は、電力用半導体素子1との接合上、十分精度が確保されており、実施の形態1のように研磨して面精度を出す必要はない。なお、本実施の形態2においても、実効上は銅めっき層26Pの硬度は70HV以上で十分であるが、製作精度の観点から、マージンをとって、100HV以上に保つことが望ましい。
銅めっき層26Pを形成する際のめっき浴は、実施の形態1と同様に、硫酸銅と硫酸から構成されるPH1.0のハイスロー浴を用いた。そして、直流電源(北斗電工:電気化学測定システムHZ−5000)を用い、電流密度1.0A/dm2、浴温25℃の条件で、定電流電解法により銅めっき層26Pを形成した。また、この銅めっき層26Pの硬度を上げるためには、メッキ液にチオ尿素誘導体等の硬質化剤を加えることが望ましい。70HV以上の硬度が得られる上述しためっき浴に限らず、ピロリン酸銅、ホウフッ化銅、シアン化銅などの浴を用いてもよい。
上記のように形成した回路基板202に電力用半導体素子1を接合する方法については、実施の形態1と同様であり、図3を用い、名称や符号等を読み替えて説明する。
図3(a)に示すように、銅電極26aの表面に、6mm角の開口OM4で、厚さ0.2mmのステンレスマスクM4を用いて、開口部分OM4に銀ナノペースト4Pを印刷する。そして、図3(b)に示すように、印刷した銀ナノペースト4Pの表面に、位置を合わせて電力用半導体素子1を載置して、仮接合体となす。つぎに、仮接合体に100℃、10min間のプリヒート処理を行った後、5MPaの加圧をしながら、350℃まで昇温する。350℃に到達してから、5分間保持することにより、銀ナノペーストが含有する銀ナノ粒子(微粒子)の表面を覆っていた有機物が分解され、露出した微粒子同士が焼結し、図3(b)に示すように銀の焼結接合層4が形成される。その後、空冷させることにより、回路基板202に電力用半導体素子1との接合体を得た。その後、上述したようにベース板3やリード板6をさらに接合することにより、図6に示すような電力用半導体装置を得ることができる。銀ナノペースト4Pとしては、例えば、DOWA社製造T2W−A2を用いることができる。上記加熱接合は、接合装置(アスリートFA:加熱圧着ユニット)を用いて行った。
次に、本発明の実施の形態2にかかる電力用半導体装置における電力用半導体素子1と回路基板202との接合信頼性を評価するため、本実施の形態に準じた接合体のサンプル(実施例)と、従来の回路基板に相当する接合体(比較例)のサンプルで密着強度を比較する実験を行った。
<サンプル>
比較例のサンプル(接合体)は、実施の形態1における比較例と同様に、回路基板としては、20mm角、厚さ1.0mmの窒化珪素からなる絶縁基板21の両面に、18mm角、厚さ500μmの銅板25を、ろう材24で接合したものを使用した。接合方法(接合体の製造方法)は、本実施の形態1および2と同様である。実施例サンプルとして3個(SE2−1〜SE2−3)、および比較例サンプルとして3個(SC2−1〜SC2−3)ずつ作製した。
<密着強度比較試験>
このように構成された接合体のサンプルを、実施の形態1における密着強度比較試験と同様に、ヒートショック試験機(エスペック社:冷熱衝撃試験機TSA−101S−W)に投入し、−40℃〜200℃(1サイクル−40℃:30分保持/200℃:30分保持)の処理条件で行った。200サイクルごとにシェア測定器(Dage社:シェア測定器HS4000)による密着強度測定を行った。密着強度判定も、同様に、30kgf/チップ以上かけてもはがれない場合を密着性異常なしとし、30kgf/チップ未満ではがれた場合を強度低下有りとした。なお、ビッカース硬さ試験器(ミツトヨ:MVK−H2)を用い、実施例の銅電極26aと、比較例の銅板電極25aの表面の硬度を測定荷重100g、測定時間10秒の条件で測定した。接合前における実施例サンプルの銅めっき電極23aの硬度は70HV、比較例サンプルの銅板電極25aの硬度は30HVであった。
表2に、密着強度比較試験結果を示す。表中、○は密着性異常なし、×は強度低下有りを示す。
Figure 2013018504
表2に示すように、本実施例の銅めっき層26Pを有するサンプルでは、1000サイクル経過しても、密着性異常が発生せず、密着強度低下が見られなかった。一方、比較例のろう付けした銅板電極25aを有するサンプルでは、400サイクルまでに密着性異常が発生し、密着強度が低下していることが確認できた。
上記密着強度比較試験後における実施例サンプルと比較例サンプルの状態を比較するため、実施の形態1と同様に、SEM(走査型電子顕微鏡(日本電子:JXA−8530F))を用いてそれぞれの断面を観察した。その結果、本実施の形態2においても、銅電極26のうち、銅めっき層26Pの電力用半導体素子1との接合面PBには、粒界すべりは認められず、接合部である焼結銀接合層4内にも縦割れは見られなかった。一方、比較例サンプルで、400サイクル経過後に密着強度が低下した接合体の断面観察では、銅板電極25aの電力用半導体素子1との接合面PBには、粒界すべりがあり、これを起点として、焼結銀接合層4内に縦割れCVを起こしていた。
つぎに、所定(70HV)以上の硬度を有する部分の厚みの下限値を調べるため、銅めっき層26Pの厚みをパラメータとしてサンプルを作成し、上述した密着強度比較試験のようにヒートショック試験を行い、密着強度を維持できるサイクル数を調べた。
各サンプル(接合体)は、回路基板としては、20mm角、厚さ1.0mmの窒化珪素からなる絶縁基板21の両面に、銅下地として18mm角、厚さ500μmの銅板26Bを、ろう材24で接合し、さらにその上に種々の厚みの銅めっき層26Pを形成した。接合方法(接合体の製造方法)は、本実施の形態1および2と同様である。厚みの異なるサンプルとして、比較例に相当するめっき厚みがそれぞれ25μm、40μm、45μmのSPT1〜3、および実施例に相当するめっき厚みがそれぞれ50、55、60、100、150μmのSPT4〜8の計8種類のサンプルを、それぞれ3個ずつ作製した。各サンプルの銅めっき層26P部分のビッカース硬さは70HVになるように調整した。
表3に、密着強度比較試験結果を示す。表中、○は密着性異常なし、×は強度低下有りを示す。
Figure 2013018504
表3に示すように、銅めっき層26Pの厚みを厚くしていくと密着強度が保たれる試験サイクル回数が増加する。そして、銅めっき層26Pの厚みを50μm以上とすると、2000回のサイクル後も強度が十分保たれることがわかった。一方、50μm未満の場合、厚みが薄いほど、密着強度に異常が出るサイクル数が短くなるとともに、テスト結果にもばらつきが生じやすくなり、接合性が不安定になっていくことがわかった。
以上のように、本実施の形態2にかかる回路基板202によれば、焼結性銀粒子接合材4Pを用いた(または、焼結銀接合層4を介した)電力用半導体素子1との接合面PBを有する回路基板202であって、絶縁基板21と、絶縁基板21の一方の面(電力用半導体素子1を接合する側の面)に設けられ、当該面と同じ向きに電力用半導体素子1との接合面PBが形成された電極である銅電極26aと、を備え、銅電極26aは150μm以上の厚みを有し、前記厚みのうち、少なくとも電力用半導体素子1との接合面PBから絶縁基板21に向かう50μmの深さまでの部分である銅めっき層26Pは、ビッカース硬さ70HV以上の硬度を有しているように構成したので、電力用半導体素子1の動作に必要な大電流の導通および動作に伴い発生した熱の伝熱が確保できるとともに、高温動作した場合にも、銅電極26aの焼結銀接合層4との界面部分の粒界すべりを抑制して、電力用半導体素子1と回路基板202との接合を長期間維持することができる。
また、本実施の形態2においても、実施の形態1と同様に接合信頼性の高い電力用半導体装置を得ることができる。
また、本実施の形態2にかかる回路基板202の製造方法によれば、絶縁基板21の少なくとも電力用半導体素子1を接合する側の面である一方の面に銅下地として100μm以上の厚みを有する所定形状の銅板26Baを接合する工程と、接合された銅板26Baの表面に50μm以上の厚みの銅めっきを行う、つまり銅めっき層26Pを形成し、電力用半導体素子1との接合面PB(を有する電極26a)を形成する工程と、を含むように構成したので、所望厚みを有するとともに、前記所定厚みのうちの接合面PBから必要な深さ範囲の硬度を所定に保つ銅電極26aを容易に形成することができる。
また、接合面PB側の厚さ50μm以上の部分をめっきにより形成するようにしたので、少なくとも接合面PBから絶縁基板21に向かう50μmの深さまでの部分の硬度を容易に所定以上に調整することができる。さらに、銅めっき層26Paの厚みを50μm程度に設定したことで、機械研磨(切削)なしでも接合面PBに必要とされる面精度を容易に確保することができる。ただし、当然のことながら、銅めっき層26Paにさらに面精度を上げるための研磨をすることを妨げるものではない。
実施の形態3.
なお、上記実施の形態2の銅電極26aでは、絶縁基板21の側の銅板26Baの硬度はろう付けにより焼鈍されているため、電力用半導体素子1の側の銅めっき層26Paの硬度よりも小さくなる。このように銅電極26aはその硬度が絶縁基板21の側で小さくなるように深さ方向に硬度の分布を有するようにしてもよい。例えば、厚み方向の全範囲にわたって硬度を一律にして、絶縁基板21の側の硬度が大きくなると、冷熱衝撃が加わった場合に絶縁基板21のセラミック部分にクラックが発生する場合がある。しかし、実施の形態2の銅電極26aのように、絶縁基板21側の硬度が電力用半導体素子1側の硬度よりも小さい電極を使用した場合、クラックの発生が減少することがわかった。硬度が小さい部分で応力緩和が起こるものと考えられる。
そこで、本実施の形態3にかかる電力用半導体装置では、回路基板2における銅電極を電力用半導体素子1との接合面PB側の硬度よりも、絶縁基板21側の硬度が小さくなるように構成した。そして、本実施の形態3にかかる電力用半導体装置の効果を検証するため、以下のような評価を行った。
絶縁基板21側の硬度やその硬度を有する部分の厚み等を正確に再現するため、実施の形態1に示した電極構造と同様に、絶縁基板21側の電極材料としてスパッタ膜22aの硬度と厚み、電力用半導体素子1側の電極材料として銅めっき電極23aの硬度と厚みをパラメータとして評価を実施した。つまり銅めっき電極23a/スパッタ膜22a/SiN(絶縁基板)21/スパッタ膜22b/銅めっき電極の構成で評価を行った。
絶縁基板21側の電極材料としてのスパッタ膜22aの厚みを10μmとして、スパッタ膜のビッカース硬度(30、40、50、60、70HV)、銅めっき電極の厚さ(50、100、200μm)と硬度(70、80、90、100HV)をパラメータとして実施の形態1や2の実施例のように接合体のサンプルを試作した。このように構成した接合体のサンプルを−40℃〜200℃(1サイクル−40℃:30分保持/200℃:30分保持)の条件で1000サイクル処理した後、セラミックであるSiNにクラックが発生するかどうかについて確認した。その試験結果を表4に示す。表中、○はクラック発生なし、×はクラック発生有りを示す。
Figure 2013018504
表4に示すように、電力用半導体素子1側の銅めっき電極23a(表では、ひとつの電極の中の層として、「銅めっき層」と表示)の厚みや硬度によらず、スパッタ膜22aのビッカース硬度が、30から50HVのサンプルでは、クラック発生がないことを確認した。一方、60HVより大きいものでは、クラック発生が認められた。つまり、絶縁基板21側の電極材料の硬度を50HV以下にすることにより、ヒートサイクル時に発生する絶縁基板21と電極との間の応力が緩和されたため、クラック発生を防止できたと考えられる。また、スパッタ膜の厚みを5μmまで薄くして同様の試験を行った結果を表5に示す。
Figure 2013018504
表5に示すように、スパッタ膜22aの厚みを5μmと薄くしても、つまり、硬度の低い部分の厚みを5μmまで薄くしても、ビッカース硬度を50HV以下に下げることで、クラック発生を防止できることが分かった。なお、これ以上スパッタ膜22aの厚みを薄くすると、硬度を正確に測定することができなくなるが、クラック発生を防止する効果があることは確認できた。
さらに、上記サンプルで密着強度についても評価したところ、少なくとも接合面PB側から深さ50μmまでの範囲の硬度が70HV以上で、絶縁基板21側の硬度を50HV以下にすれば、電極の総厚みが150μm以下でも、密着強度を保つことができることが確認できた。つまり、接合面PB側から深さ50μmまでの範囲の硬度が70HV以上で、絶縁基板21側の硬度を50HV以下にすれば、電極層厚みに関わらず、クラック発生を防止し、密着強度を保つことができることが分かった。
なお、本実施の形態3は、上述したように実施の形態2の構成に特有の現象である、銅板26Bの硬度が下がることから見出し、その効果を検証するために、硬度の制御が容易なスパッタ膜22aを利用して試験評価を行ったものである。そのため、実施の形態2の構成で接合面PB側から深さ50μmまでの範囲(26P)の硬度は70HV以上とし、絶縁基板21側(26B)の硬度が積極的に50HV以下になるようにすれば、上述した効果を得ることができるのは言うまでもない。
実施の形態4.
一方、実施の形態1のような構成であっても、絶縁基板21側の層を硬度が低くなるめっき条件で形成し、電力用半導体素子1側の層をメッキ液に硬化剤を加えるなどして硬度が高くなるめっき条件で形成しても同様な効果が得られるはずである。
そこで、本実施の形態4にかかる電力用半導体装置の効果を検証するため、以下のような評価を行った。
絶縁基板21側の電極材料として厚み100μmの銅めっき層のビッカース硬度(30、40、50、60、70HV)、電力用半導体素子1側の銅めっき層の厚さ(50、100μm)と硬度(70、80、90、100HV)をパラメータとして実施の形態1や2の実施例のように接合体のサンプルを試作した。このように構成した接合体のサンプルを−40℃〜200℃(1サイクル−40℃:30分保持/200℃:30分保持)の条件で1000サイクル処理した後、セラミックであるSiNにクラックが発生するかどうかについて確認した。その試験結果を表6に示す。表中、○はクラック発生なし、×はクラック発生有りを示す。
Figure 2013018504
表6に示すように、電力用半導体素子1側の銅めっき層の厚みや硬度によらず、絶縁基板21側の銅めっき層のビッカース硬度が、30から50HVのサンプルでは、クラック発生がないことを確認した。一方、60HVより大きいものでは、クラック発生が認められた。つまり、絶縁基板21側の電極材料の硬度を50HV以下にすることにより、ヒートサイクル時に発生する絶縁基板21と電極との間の応力が緩和されたため、クラック発生を防止できたと考えられる。また、絶縁基板21側の銅めっき層の厚みを200μm、300μmにした場合に同様の試験を行った結果をそれぞれ表7、表8に示す。
Figure 2013018504
Figure 2013018504
表7、表8に示すように、絶縁基板21側の銅めっき層の厚みを200μm、300μmと厚くしても、つまり、硬度の低い部分の厚みを300μmまで厚くしても、ビッカース硬度を50HV以下に下げることで、クラック発生を防止できることが分かった。したがって、実施の形態3における評価結果と合わせると、硬度の低い部分の厚みに関わらず、ビッカース硬度を50HV以下に下げることで、クラック発生を防止できることが分かった。
以上のように、上記実施の形態1〜4にかかる半導体装置によれば、セラミック材料で構成された絶縁基板21の一方の面に、銅材料で構成された電極(例えば、22、23、26の組み合わせ)が設けられた回路基板2と、電極に焼結性銀粒子接合材4Pを用いて接合された半導体素子である電力用半導体素子1と、を備え、電極は、電力用半導体素子1との接合面PBから絶縁基板21に向かう50μmの深さまでの部分(例えば、23、26P、26Pのうち硬度が高くなるように形成した層)が、ビッカース硬さ70HV以上の硬度を有し、かつ、絶縁基板21側の部分(例えば、22、26B、26Pのうち硬度が低くなるように形成した層)のビッカース硬さが50HV以下であるように構成したので、高温動作した場合にも、クラックの発生を防止し、密着性を保持することにより、電力用半導体素子1と回路基板2との接合を長期間維持できる半導体装置を得ることができる。
また、上記実施の形態1、4にかかる半導体装置の製造方法によれば、セラミック材料で構成された絶縁基板21の少なくとも一方の面の所定範囲に、スパッタにより金属薄膜22を形成する工程と、金属薄膜22上に、ビッカース硬度が50HV以下となるように第1の銅のめっき層を形成する工程と、第1の銅のめっき層の上に、50μm以上の厚みで、ビッカース硬度が70HV以上となるように第2の銅のめっき層を形成し、半導体素子との接合面PBを有する電極を形成する工程と、電極の接合面に、焼結性銀粒子接合材4Pを用いて半導体素子である電力用半導体素子1を接合する工程と、を含むように構成したので、上述した半導体装置を容易に製造することができる。
また、上記実施の形態2、3にかかる半導体装置の製造方法によれば、セラミック材料で構成された絶縁基板21の少なくとも一方の面に、少なくとも前記絶縁基板21側の部分の接合後のビッカース硬度が50HV以下となるように所定形状の銅板26Bを接合する工程と、絶縁基板21に接合された銅板26Bの表面に銅めっきを行い、50μm以上の厚みでビッカース硬度が70HV以上となるように半導体素子との接合面PBを有する電極26を形成する工程と、電極26の接合面PBに、焼結性銀粒子接合材4Pを用いて半導体素子である電力用半導体素子1を接合する工程と、を含むように構成したので、上述した半導体装置を容易に製造することができる。
なお、上記各実施の形態では、スイッチング素子にIGBTを使用した場合を示したが、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を使用してもよい。また、ワイドバンドギャップ半導体素子材料として、炭化珪素以外に窒化ガリウム(GaN)、ガリウムヒ素、またはダイヤモンドといった材料を用いてもよい。
また、上記各実施の形態においては、整流素子(ダイオード)やスイッチング素子(トランジスタ)として機能する電力用半導体素子1には、炭化ケイ素によって形成されたいわゆるワイドバンドギャップ半導体素子の例を示したが、これに限られることはなく、ケイ素(Si)で形成されたものであってもよい。しかし、上述したようにケイ素よりもバンドギャップが大きい、いわゆるワイドギャップ半導体を形成できる炭化ケイ素や、窒化ガリウム系材料、ガリウムヒ素、又はダイヤモンドを用いた時の方が、動作温度域が高いので、本発明による効果をより一層発揮することができる。
1 電力用半導体素子(半導体素子)、
2 回路基板(電極付絶縁基板)、
3 ベース板、
4 焼結金属結合層、
4P 焼結性銀粒子接合材(銀ナノペースト)、
5 接合材(はんだ)、
6 リード(配線材)、
7 接合材(はんだ)、
11 半導体チップ(半導体基板)、
12 金属シリサイド、
13 第1金属層、
14 第2金属層、
21 絶縁基板、
22 スパッタ膜(金属薄膜)、
23 銅めっき電極(電極)、
24 接合材(ろう材)、
26 銅電極(26B:下地銅板、26P:銅めっき層)、
PB 接合面、
百位の数字は実施の形態による違いを示す。

Claims (9)

  1. セラミック材料で構成された絶縁基板の一方の面に、銅材料で構成された電極が設けられた回路基板と、
    前記電極に焼結性銀粒子接合材を用いて接合された半導体素子と、を備え、
    前記電極は、前記半導体素子との接合面から前記絶縁基板に向かう50μmの深さまでの部分が、ビッカース硬さ70HV以上の硬度を有し、かつ、前記絶縁基板側の部分のビッカース硬さが50HV以下であることを特徴とする半導体装置。
  2. 前記接合面から前記絶縁基板に向かう50μmの深さまでの部分が、ビッカース硬さ100HV以上の硬度を有していることを特徴とする請求項1に記載の半導体装置。
  3. 前記接合面から前記絶縁基板に向かう50μmの深さまでの部分が、めっきにより形成されていることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記半導体素子は電力用半導体素子であり、
    前記電極は150μm以上の厚みを有することを特徴とする請求項1ないし3のいずれか1項に記載の半導体装置。
  5. 前記電力用半導体素子がワイドバンドギャップ半導体材料で形成されていることを特徴とする請求項4に記載の半導体装置。
  6. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、ガリウムヒ素、およびダイヤモンドのうちのいずれかであることを特徴とする請求項5に記載の半導体装置。
  7. セラミック材料で構成された絶縁基板の少なくとも一方の面の所定範囲に、スパッタにより金属薄膜を形成する工程と、
    前記金属薄膜上に、ビッカース硬度が50HV以下となるように第1の銅のめっき層を形成する工程と、
    前記第1の銅のめっき層の上に、50μm以上の厚みで、ビッカース硬度が70HV以上となるように第2の銅のめっき層を形成し、半導体素子との接合面を有する電極を形成する工程と、
    前記電極の接合面に、焼結性銀粒子接合材を用いて前記半導体素子を接合する工程と、
    を含む半導体装置の製造方法。
  8. セラミック材料で構成された絶縁基板の少なくとも一方の面に、少なくとも前記絶縁基板側の部分の接合後のビッカース硬度が50HV以下となるように、所定形状の銅板を接合する工程と、
    前記絶縁基板に接合された銅板の表面に銅めっきを行い、50μm以上の厚みでビッカース硬度が70HV以上となるように半導体素子との接合面を有する電極を形成する工程と、
    前記電極の接合面に、焼結性銀粒子接合材を用いて前記半導体素子を接合する工程と、
    を含む半導体装置の製造方法。
  9. 前記形成した電極の厚みが150μm以上であることを特徴とする請求項7または8に記載の半導体装置の製造方法。
JP2013526793A 2011-08-04 2012-07-06 半導体装置とその製造方法 Active JP5627789B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013526793A JP5627789B2 (ja) 2011-08-04 2012-07-06 半導体装置とその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011170793 2011-08-04
JP2011170793 2011-08-04
PCT/JP2012/067314 WO2013018504A1 (ja) 2011-08-04 2012-07-06 半導体装置とその製造方法
JP2013526793A JP5627789B2 (ja) 2011-08-04 2012-07-06 半導体装置とその製造方法

Publications (2)

Publication Number Publication Date
JP5627789B2 JP5627789B2 (ja) 2014-11-19
JPWO2013018504A1 true JPWO2013018504A1 (ja) 2015-03-05

Family

ID=47629035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013526793A Active JP5627789B2 (ja) 2011-08-04 2012-07-06 半導体装置とその製造方法

Country Status (5)

Country Link
US (1) US9224665B2 (ja)
JP (1) JP5627789B2 (ja)
CN (1) CN103703560B (ja)
DE (1) DE112012003228B4 (ja)
WO (1) WO2013018504A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672324B2 (ja) 2013-03-18 2015-02-18 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
JP6111764B2 (ja) * 2013-03-18 2017-04-12 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP2015207747A (ja) * 2014-04-17 2015-11-19 政宏 星野 ワイドバンドギャップ半導体デバイス
DE112015004770B4 (de) * 2014-10-20 2021-01-14 Mitsubishi Electric Corporation Leistungsmodul
CN107210241B (zh) * 2015-03-10 2019-12-31 三菱电机株式会社 功率半导体装置
JP6630053B2 (ja) * 2015-03-25 2020-01-15 スタンレー電気株式会社 電子デバイスの製造方法
JP6491032B2 (ja) 2015-04-24 2019-03-27 スタンレー電気株式会社 抵抗器の製造方法、および、抵抗器
JP6415381B2 (ja) * 2015-04-30 2018-10-31 三菱電機株式会社 半導体装置の製造方法
DE102015216047A1 (de) 2015-08-21 2017-02-23 Continental Automotive Gmbh Schaltungsträger, Leistungselektronikanordnung mit einem Schaltungsträger
WO2017126344A1 (ja) 2016-01-19 2017-07-27 三菱電機株式会社 電力用半導体装置および電力用半導体装置を製造する方法
WO2017146132A1 (ja) * 2016-02-26 2017-08-31 国立研究開発法人産業技術総合研究所 放熱基板
CN107290914B (zh) * 2016-04-01 2022-09-09 上海伯乐电子有限公司 电子纸显示模组及其制备方法、电子纸显示装置
WO2018207856A1 (ja) * 2017-05-10 2018-11-15 ローム株式会社 パワー半導体装置およびその製造方法
JP6869140B2 (ja) * 2017-08-07 2021-05-12 株式会社 日立パワーデバイス 半導体装置及びそれを用いたオルタネータ
EP3457434B1 (en) * 2017-09-13 2020-11-18 Infineon Technologies AG Method for producing a semiconductor substrate for a power semiconductor module arrangement
JP7043794B2 (ja) * 2017-11-06 2022-03-30 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板およびヒートシンク付パワーモジュール用基板の製造方法
CN108231703B (zh) * 2017-12-11 2020-02-07 全球能源互联网研究院有限公司 一种功率器件模组及其制备方法
CN114391176A (zh) * 2019-09-11 2022-04-22 三菱电机株式会社 半导体装置及半导体装置的制造方法
KR102312085B1 (ko) * 2019-11-08 2021-10-13 제엠제코(주) 방열 기판, 그 제조 방법, 그리고 이를 포함하는 반도체 패키지
JP2023013629A (ja) * 2021-07-16 2023-01-26 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102570A (ja) 1994-09-30 1996-04-16 Toshiba Corp セラミックス回路基板
US6297548B1 (en) * 1998-06-30 2001-10-02 Micron Technology, Inc. Stackable ceramic FBGA for high thermal applications
JP2001085571A (ja) * 1999-09-14 2001-03-30 Ngk Spark Plug Co Ltd 銅貼り窒化珪素回路基板
US8390131B2 (en) * 2004-06-03 2013-03-05 International Rectifier Corporation Semiconductor device with reduced contact resistance
US20080251908A1 (en) * 2007-04-11 2008-10-16 Advanced Chip Engineering Technology Inc. Semiconductor device package having multi-chips with side-by-side configuration and method of the same
US7948075B2 (en) * 2008-03-10 2011-05-24 Hitachi Metals, Ltd. Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
WO2009157160A1 (ja) 2008-06-25 2009-12-30 パナソニック株式会社 実装構造体、及び実装構造体の製造方法
JP5135079B2 (ja) 2008-06-30 2013-01-30 株式会社日立製作所 半導体装置及び接合材料
JP5392901B2 (ja) * 2009-03-12 2014-01-22 日立金属株式会社 窒化珪素配線基板
US8895358B2 (en) * 2009-09-11 2014-11-25 Stats Chippac, Ltd. Semiconductor device and method of forming cavity in PCB containing encapsulant or dummy die having CTE similar to CTE of large array WLCSP
DE102009029577B3 (de) * 2009-09-18 2011-04-28 Infineon Technologies Ag Verfahren zur Herstellung eines hochtemperaturfesten Leistungshalbleitermoduls
CN101673761B (zh) * 2009-09-29 2011-05-25 株洲南车时代电气股份有限公司 一种半导体器件及半导体组件
JP5672707B2 (ja) * 2010-02-01 2015-02-18 富士電機株式会社 半導体装置の製造方法
US8716864B2 (en) * 2012-06-07 2014-05-06 Ixys Corporation Solderless die attach to a direct bonded aluminum substrate

Also Published As

Publication number Publication date
CN103703560A (zh) 2014-04-02
DE112012003228B4 (de) 2021-08-12
CN103703560B (zh) 2016-07-20
US9224665B2 (en) 2015-12-29
JP5627789B2 (ja) 2014-11-19
US20140138710A1 (en) 2014-05-22
WO2013018504A1 (ja) 2013-02-07
DE112012003228T5 (de) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5627789B2 (ja) 半導体装置とその製造方法
JP6632686B2 (ja) 半導体装置および半導体装置の製造方法
CN107408538B (zh) 电路基板及半导体装置
CN109476556B (zh) 接合体、电路基板及半导体装置
JP6250864B2 (ja) パワー半導体装置
JP6319643B2 (ja) セラミックス−銅接合体およびその製造方法
JP6808067B2 (ja) 電力用半導体装置および電力用半導体装置の製造方法
Zheng et al. Low-pressure joining of large-area devices on copper using nanosilver paste
CN108475647B (zh) 电力用半导体装置以及制造电力用半导体装置的方法
EP3093882B1 (en) Electronic circuit device
JP2014135411A (ja) 半導体装置および半導体装置の製造方法
JPWO2015114987A1 (ja) パワーモジュール用基板およびそれを用いてなるパワーモジュール
JP6399906B2 (ja) パワーモジュール
Bajwa et al. Die-attachment technologies for high-temperature applications of Si and SiC-based power devices
JP2005026252A (ja) セラミック回路基板、放熱モジュール、および半導体装置
JP5866075B2 (ja) 接合材の製造方法、接合方法、および電力用半導体装置
JP2009088330A (ja) 半導体モジュール
JP6259625B2 (ja) 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法
JP2014207490A (ja) 絶縁基板、その製造方法、半導体モジュールおよび半導体装置
Chen et al. Low temperature Cu sinter joining on different metallization substrates and its reliability evaluation with a high current density
JP4795471B2 (ja) 電力用半導体素子
JP5630375B2 (ja) 絶縁基板、その製造方法、半導体モジュールおよび半導体装置
Kato et al. Precise chip joint method with sub-micron Au particle for high-density SiC power module operating at high temperature
WO2024047959A1 (ja) 半導体装置及び接合方法
WO2023204054A1 (ja) セラミックス回路基板、半導体装置、セラミックス回路基板の製造方法、及び半導体装置の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R151 Written notification of patent or utility model registration

Ref document number: 5627789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250