JPWO2012023389A1 - Molded body, manufacturing method thereof, member for electronic device, and electronic device - Google Patents

Molded body, manufacturing method thereof, member for electronic device, and electronic device Download PDF

Info

Publication number
JPWO2012023389A1
JPWO2012023389A1 JP2012529536A JP2012529536A JPWO2012023389A1 JP WO2012023389 A1 JPWO2012023389 A1 JP WO2012023389A1 JP 2012529536 A JP2012529536 A JP 2012529536A JP 2012529536 A JP2012529536 A JP 2012529536A JP WO2012023389 A1 JPWO2012023389 A1 JP WO2012023389A1
Authority
JP
Japan
Prior art keywords
layer
acrylic resin
gas barrier
atoms
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012529536A
Other languages
Japanese (ja)
Other versions
JP5750441B2 (en
Inventor
渉 岩屋
渉 岩屋
近藤 健
健 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2012529536A priority Critical patent/JP5750441B2/en
Publication of JPWO2012023389A1 publication Critical patent/JPWO2012023389A1/en
Application granted granted Critical
Publication of JP5750441B2 publication Critical patent/JP5750441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • B29C2059/147Low pressure plasma; Glow discharge plasma
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/16Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、ガスバリア層を有する成形体であって、該ガスバリア層が、少なくとも、炭素原子、酸素原子及びケイ素原子を含む材料から構成されてなる表層部を有し、該表層部における、炭素原子、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、炭素原子の存在割合が0%超70%以下、酸素原子の存在割合が10%以上70%以下、窒素原子の存在割合が0%以上35%以下、ケイ素原子の存在割合が20%以上55%以下である成形体、この成形体の製造方法、前記成形体からなる電子デバイス用部材、この部材を備える電子デバイスである。本発明の成形体は優れたガスバリア性、透明性、及び耐折り曲げ性を有する。本発明の成形体の製造方法によれば、前記成形体を一工程で安全に簡便に製造することができる。本発明の電子デバイス用部材は、ディスプレイ、太陽電池等の電子デバイスに好適に用いることができる。The present invention is a molded article having a gas barrier layer, wherein the gas barrier layer has a surface layer portion composed of a material containing at least carbon atoms, oxygen atoms and silicon atoms, and carbon atoms in the surface layer portion The proportion of carbon atoms present is greater than 0% and less than 70%, the proportion of oxygen atoms present is 10% to 70%, and the proportion of nitrogen atoms present is 0% or more with respect to the total amount of oxygen atoms, nitrogen atoms, and silicon atoms. A molded body having a silicon atom content of 35% or less and 20% or more and 55% or less, a method for producing the molded body, an electronic device member formed of the molded body, and an electronic device including the member. The molded product of the present invention has excellent gas barrier properties, transparency, and bending resistance. According to the method for producing a molded article of the present invention, the molded article can be produced safely and simply in one step. The member for electronic devices of this invention can be used suitably for electronic devices, such as a display and a solar cell.

Description

本発明は、成形体、その製造方法、この成形体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスに関する。   The present invention relates to a molded body, a manufacturing method thereof, an electronic device member made of the molded body, and an electronic device including the electronic device member.

従来、プラスチックフィルム等の高分子成形体は、低価格であり加工性に優れるため、所望の機能を付与して種々の分野で用いられている。
例えば、食品や医薬品の包装用フィルムには、蛋白質や油脂等の酸化や変質を抑制して味や鮮度を保持するため、水蒸気や酸素の透過を防ぐガスバリア性のプラスチックフィルムが用いられている。
Conventionally, a polymer molded body such as a plastic film is inexpensive and excellent in workability, and therefore has been used in various fields with a desired function.
For example, a gas barrier plastic film that prevents the permeation of water vapor and oxygen is used for food and pharmaceutical packaging films to maintain the taste and freshness by suppressing the oxidation and alteration of proteins and fats and oils.

また、近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、電極を有する基板として、ガラス板に代えて透明プラスチックフィルムを用いることが検討されている。しかしながら、プラスチックフィルムは、ガラス板に比べて水蒸気や酸素等を透過しやすく、ディスプレイ内部の素子の劣化を起こしやすいという問題があった。   In recent years, a transparent plastic film is used instead of a glass plate as a substrate having electrodes in a display such as a liquid crystal display or an electroluminescence (EL) display in order to realize a reduction in thickness, weight, and flexibility. It is being considered. However, the plastic film has a problem that it easily transmits water vapor, oxygen, and the like as compared with the glass plate, and easily causes deterioration of elements inside the display.

この問題を解決すべく、特許文献1には、透明プラスチックフィルムに金属酸化物からなる透明ガスバリア層を積層したフレキシブルディスプレイ基板が提案されている。
しかしながら、この文献記載のフレキシブルディスプレイ基板は、透明プラスチックフィルム表面に、蒸着法、イオンプレーティング法、スパッター法等により、金属酸化物からなる透明ガスバリア層を積層したものであるため、該基板を丸めたり折り曲げたりすると、ガスバリア層にクラックが発生してガスバリア性が低下するという問題があった。
In order to solve this problem, Patent Document 1 proposes a flexible display substrate in which a transparent gas barrier layer made of a metal oxide is laminated on a transparent plastic film.
However, the flexible display substrate described in this document is obtained by laminating a transparent gas barrier layer made of a metal oxide on the surface of a transparent plastic film by vapor deposition, ion plating, sputtering, or the like. When it is bent or bent, there is a problem in that the gas barrier layer is cracked and the gas barrier property is lowered.

また、特許文献2には、プラスチックフィルムと、該プラスチックフィルムの少なくとも一方の面に、ポリオルガノシルセスキオキサンを主成分とする樹脂層を積層してなるガスバリア性積層体が開示されている。
しかしながら、酸素、水蒸気等のガスバリア性を得るためには、さらに無機化合物層を積層する必要があるため、工程が煩雑であったりコストがかかったり、毒性を有するガスを使用する危険性がある等の問題があった。
Patent Document 2 discloses a gas barrier laminate obtained by laminating a plastic film and a resin layer containing polyorganosilsesquioxane as a main component on at least one surface of the plastic film.
However, in order to obtain gas barrier properties such as oxygen and water vapor, it is necessary to further laminate an inorganic compound layer, so that the process is complicated and expensive, and there is a risk of using a toxic gas. There was a problem.

特許文献3には、フィルムの少なくとも一方の面にポリシラザン膜を形成し、該ポリシラザン膜にプラズマ処理を施してガスバリア性フィルムを製造する方法が開示されている。
しかしながら、この方法では、ガスバリア層の厚みをミクロンオーダーにしなければ充分なガスバリア性能を出せないという問題があった。例えば、ガスバリア層の厚みを0.1μmとすると、水蒸気透過率は0.50g/m2/dayであったと記載されている。
Patent Document 3 discloses a method for producing a gas barrier film by forming a polysilazane film on at least one surface of a film and subjecting the polysilazane film to plasma treatment.
However, this method has a problem in that sufficient gas barrier performance cannot be obtained unless the thickness of the gas barrier layer is in the micron order. For example, it is described that when the thickness of the gas barrier layer is 0.1 μm, the water vapor transmission rate is 0.50 g / m 2 / day.

また、特許文献4には、ポリシラザン膜にアクリル系樹脂を混合した膜が提案されているが、十分なガスバリア性を有するものではない。   Patent Document 4 proposes a film in which an acrylic resin is mixed with a polysilazane film, but it does not have a sufficient gas barrier property.

特開2000−338901号公報JP 2000-338901 A 特開2006−123307号公報JP 2006-123307 A 特開2007−237588号公報JP 2007-237588 A 特開平7−292321号公報Japanese Patent Laid-Open No. 7-292321

本発明は、上記した従来技術に鑑みてなされたものであり、ガスバリア性、透明性及び耐折り曲げ性に優れる成形体、その製造方法、この成形体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスを提供することを目的とする。   The present invention has been made in view of the above-described prior art, and is a molded body excellent in gas barrier properties, transparency, and bending resistance, a manufacturing method thereof, an electronic device member comprising the molded body, and the electronic device It aims at providing an electronic device provided with a member.

本発明者らは、上記課題を解決すべく鋭意検討した結果、ガスバリア層を有する成形体において、前記ガスバリア層が、少なくとも、炭素原子、酸素原子及びケイ素原子を含む材料から構成されてなる表層部を有し、該表層部における、炭素原子、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、炭素原子の存在割合が0%超70%以下、酸素原子の存在割合が10%以上70%以下、窒素原子の存在割合が0%以上35%以下、ケイ素原子の存在割合が20%以上55%以下である成形体は、優れたガスバリア性、透明性及び耐折り曲げ性を有することを見出した。また、このような成形体は、ポリシラザン化合物とアクリル系樹脂とを含む層を表面部に有する成形物の、前記ポリシラザン化合物とアクリル系樹脂とを含む層に、イオンを注入することにより、簡便かつ効率よく製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that in a molded article having a gas barrier layer, the gas barrier layer is composed of a material containing at least carbon atoms, oxygen atoms and silicon atoms. In the surface layer portion, the carbon atom existing ratio is more than 0% and 70% or less, and the oxygen atom existing ratio is 10% or more and 70% with respect to the total amount of carbon atoms, oxygen atoms, nitrogen atoms and silicon atoms. Hereinafter, it has been found that a molded article having a nitrogen atom content of 0% to 35% and a silicon atom content of 20% to 55% has excellent gas barrier properties, transparency, and bending resistance. . In addition, such a molded body is simple and easy by implanting ions into the layer containing the polysilazane compound and the acrylic resin of the molded product having a layer containing the polysilazane compound and the acrylic resin on the surface portion. The inventors have found that it can be produced efficiently and have completed the present invention.

かくして本発明の第1によれば、下記(1)〜(7)の成形体が提供される。
(1)ガスバリア層を有する成形体であって、該ガスバリア層が、少なくとも、炭素原子、酸素原子及びケイ素原子を含む材料から構成されてなる表層部を有し、該表層部における、炭素原子、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、炭素原子の存在割合が0%超70%以下、酸素原子の存在割合が10%以上70%以下、窒素原子の存在割合が0%以上35%以下、ケイ素原子の存在割合が20%以上55%以下であることを特徴とする成形体。
(2)前記ガスバリア層が、ポリシラザン化合物とアクリル系樹脂とを含む層であり、40℃、相対湿度90%雰囲気下での水蒸気透過率が、1g/m2/day以下のものであることを特徴とする(1)に記載の成形体。
(3)アクリル系樹脂の含有量が、ポリシラザン化合物及びアクリル系樹脂の合計量に対して、0.1質量%以上70質量%以下である(2)に記載の成形体。
Thus, according to the first aspect of the present invention, the following molded articles (1) to (7) are provided.
(1) A molded body having a gas barrier layer, wherein the gas barrier layer has a surface layer part composed of a material containing at least carbon atoms, oxygen atoms and silicon atoms, and carbon atoms in the surface layer part, The abundance ratio of carbon atoms is more than 0% and 70% or less, the abundance ratio of oxygen atoms is 10% or more and 70% or less, and the abundance ratio of nitrogen atoms is 0% or more and 35 with respect to the total abundance of oxygen atoms, nitrogen atoms, and silicon atoms. % Or less and a silicon atom content of 20% or more and 55% or less.
(2) The gas barrier layer is a layer containing a polysilazane compound and an acrylic resin, and has a water vapor permeability of 1 g / m 2 / day or less in an atmosphere of 40 ° C. and 90% relative humidity. The molded product according to (1), which is characterized.
(3) The molded product according to (2), wherein the content of the acrylic resin is 0.1% by mass or more and 70% by mass or less based on the total amount of the polysilazane compound and the acrylic resin.

(4)前記ガスバリア層がポリシラザン化合物とアクリル系樹脂とを含む層にイオンが注入されて得られる層を有することを特徴とする(1)〜(3)のいずれかに記載の成形体。
(5)前記イオンが、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン、ケイ素化合物及び炭化水素からなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする(4)に記載の成形体。
(6)前記ポリシラザン化合物とアクリル系樹脂とを含む層に、プラズマイオン注入法によりイオンが注入されて得られる層を有することを特徴とする(4)又は(5)に記載の成形体。
(7)前記ポリシラザン化合物が、ペルヒドロポリシラザンであることを特徴とする(2)〜(6)のいずれかに記載の成形体。
(4) The molded body according to any one of (1) to (3), wherein the gas barrier layer includes a layer obtained by implanting ions into a layer containing a polysilazane compound and an acrylic resin.
(5) The ion is characterized in that at least one gas selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, krypton, silicon compound and hydrocarbon is ionized. The molded product according to (4).
(6) The molded body according to (4) or (5), wherein the layer containing the polysilazane compound and the acrylic resin has a layer obtained by implanting ions by a plasma ion implantation method.
(7) The molded product according to any one of (2) to (6), wherein the polysilazane compound is perhydropolysilazane.

本発明の第2によれば、下記(8)〜(11)の成形体の製造方法が提供される。
(8)前記(2)〜(7)のいずれかに記載の成形体を製造する方法であって、ポリシラザン化合物とアクリル系樹脂とを含む層を表面部に有する成形物の、前記ポリシラザン系化合物とアクリル系樹脂とを含む層の表面部に、イオンを注入する工程を有する成形体の製造方法。
(9)ポリシラザン系化合物とアクリル系樹脂とを含む層を表面部に有する成形物の、前記ポリシラザン系化合物とアクリル系樹脂とを含む層の表面部に、水素、窒素、酸素、アルゴン、ヘリウム、キセノン、ネオン、クリプトン、ケイ素化合物及び炭化水素からなる群から選ばれる少なくとも一種のガスのイオンを注入する工程を有する(8)に記載の成形体の製造方法。
(10)前記イオンを注入する工程が、プラズマイオン注入法によりイオンを注入する工程であることを特徴とする(8)又は(9)に記載の成形体の製造方法。
(11)ポリシラザン化合物とアクリル系樹脂とを含む層を表面部に有する、長尺状の成形物を、一定方向に搬送しながら、前記ポリシラザン化合物とアクリル系樹脂とを含む層に、イオンを注入することを特徴とする(2)〜(7)のいずれかに記載の成形体の製造方法。
According to 2nd of this invention, the manufacturing method of the molded object of following (8)-(11) is provided.
(8) A method for producing the molded product according to any one of (2) to (7), wherein the polysilazane compound is a molded product having a layer containing a polysilazane compound and an acrylic resin on the surface portion. The manufacturing method of the molded object which has the process of inject | pouring ion into the surface part of the layer containing acrylic resin.
(9) Hydrogen, nitrogen, oxygen, argon, helium, on the surface portion of the layer containing the polysilazane compound and the acrylic resin of the molded product having a layer containing the polysilazane compound and the acrylic resin on the surface portion, The method for producing a molded article according to (8), including a step of injecting ions of at least one gas selected from the group consisting of xenon, neon, krypton, a silicon compound, and a hydrocarbon.
(10) The method for producing a molded article according to (8) or (9), wherein the step of implanting ions is a step of implanting ions by a plasma ion implantation method.
(11) Implanting ions into the layer containing the polysilazane compound and the acrylic resin while conveying a long shaped molded article having a layer containing the polysilazane compound and the acrylic resin on the surface in a certain direction. The method for producing a molded article according to any one of (2) to (7), wherein:

本発明の第3によれば、下記(12)の電子デバイス用部材が提供される。
(12)前記(1)〜(7)のいずれかに記載の成形体からなる電子デバイス用部材。
本発明の第4によれば、下記(13)の電子デバイスが提供される。
(13)前記(12)に記載の電子デバイス用部材を備える電子デバイス。
According to the third aspect of the present invention, the following electronic device member (12) is provided.
(12) A member for an electronic device comprising the molded body according to any one of (1) to (7).
According to a fourth aspect of the present invention, there is provided the following electronic device (13).
(13) An electronic device comprising the electronic device member according to (12).

本発明の成形体は優れたガスバリア性、透明性、及び耐折り曲げ性を有する。本発明の成形体は、フレキシブルなディスプレイや、太陽電池等の電子デバイス用部材(例えば太陽電池バックシート)として好適に用いることができる。
本発明の製造方法によれば、優れたガスバリア性、透明性、耐折り曲げ性を有する本発明の成形体を一工程で安全に簡便に製造することができる。また、無機膜成膜に比して低コストにて容易に大面積化を図ることができる。
本発明の電子デバイス用部材は、優れたガスバリア性、透明性及び耐折り曲げ性を有するため、ディスプレイ、太陽電池等の電子デバイスに好適に用いることができる。
The molded product of the present invention has excellent gas barrier properties, transparency, and bending resistance. The molded body of the present invention can be suitably used as a flexible display or a member for an electronic device such as a solar battery (for example, a solar battery back sheet).
According to the production method of the present invention, the molded article of the present invention having excellent gas barrier properties, transparency, and bending resistance can be produced safely and simply in one step. In addition, the area can be easily increased at a lower cost than the inorganic film formation.
Since the member for electronic devices of this invention has the outstanding gas barrier property, transparency, and bending resistance, it can be used suitably for electronic devices, such as a display and a solar cell.

本発明に使用するプラズマイオン注入装置の概略構成を示す図である。It is a figure which shows schematic structure of the plasma ion implantation apparatus used for this invention. 本発明に使用するプラズマイオン注入装置の概略構成を示す図である。It is a figure which shows schematic structure of the plasma ion implantation apparatus used for this invention.

以下、本発明を、1)成形体、2)成形体の製造方法、並びに、3)電子デバイス用部材及び電子デバイスに項分けして詳細に説明する。   Hereinafter, the present invention will be described in detail by dividing into 1) a molded body, 2) a method for producing a molded body, and 3) a member for an electronic device and an electronic device.

1)成形体
本発明の成形体は、ガスバリア層を有する成形体であって、該ガスバリア層が、少なくとも、炭素原子、酸素原子及びケイ素原子を含む材料から構成されてなる表層部(表面からの深さ方向に0nm〜10nmの領域)を有し、該表層部における、炭素原子、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、炭素原子の存在割合が0%超70%以下、酸素原子の存在割合が10%以上70%以下、窒素原子の存在割合が0%以上35%以下、ケイ素原子の存在割合が20%以上55%以下であることを特徴とする。
1) Molded body The molded body of the present invention is a molded body having a gas barrier layer, and the gas barrier layer is made of a material containing at least carbon atoms, oxygen atoms, and silicon atoms (from the surface). In the depth direction), the abundance ratio of carbon atoms with respect to the total abundance of carbon atoms, oxygen atoms, nitrogen atoms and silicon atoms in the surface layer portion is more than 0% and 70% or less, oxygen The abundance ratio of atoms is 10% to 70%, the abundance ratio of nitrogen atoms is 0% to 35%, and the abundance ratio of silicon atoms is 20% to 55%.

本発明の成形体においては、前記ガスバリア層が、ポリシラザン化合物とアクリル系樹脂とを含む層であることが好ましい。   In the molded article of the present invention, the gas barrier layer is preferably a layer containing a polysilazane compound and an acrylic resin.

本発明の成形体のガスバリア層がポリシラザン化合物とアクリル系樹脂とを含む層である場合、前記ガスバリア層内部の炭素原子、酸素原子、窒素原子及びケイ素原子の存在割合は、アクリル系樹脂及びポリシラザン化合物を所定割合で混合したときの組成割合に類似した状態となっている。すなわち、本発明の成形体は、極表層部においては、ポリシラザン化合物が転化によりガスバリア性を発現し、内部がアクリル系樹脂により柔軟性を持った構造体となっている。   When the gas barrier layer of the molded article of the present invention is a layer containing a polysilazane compound and an acrylic resin, the abundance ratios of carbon atoms, oxygen atoms, nitrogen atoms and silicon atoms in the gas barrier layer are acrylic resin and polysilazane compound. It is in a state similar to the composition ratio when mixing at a predetermined ratio. That is, the molded body of the present invention has a structure in which the polysilazane compound exhibits gas barrier properties by conversion and the inside is flexible due to the acrylic resin in the extreme surface layer portion.

一般的には、前記ガスバリア層内部(表面からの深さ方向に20nm〜150nmの領域)の、炭素原子、酸素原子、窒素原子及びケイ素原子の存在割合は、好ましくは、炭素原子が35%以上60%以下、窒素原子が0%以上10%以下、酸素原子が15%以上70%以下、より好ましくは15%以上30%以下、ケイ素原子が15%以上30%以下である。   In general, the abundance ratio of carbon atoms, oxygen atoms, nitrogen atoms and silicon atoms in the gas barrier layer (region of 20 nm to 150 nm in the depth direction from the surface) is preferably 35% or more of carbon atoms. 60% or less, nitrogen atoms are 0% or more and 10% or less, oxygen atoms are 15% or more and 70% or less, more preferably 15% or more and 30% or less, and silicon atoms are 15% or more and 30% or less.

本発明の成形体のガスバリア層がポリシラザン化合物とアクリル系樹脂とを含む層である場合、前記ガスバリア層の炭素原子、酸素原子、窒素原子及びケイ素原子の存在割合は、より詳細には、次の通りである。   When the gas barrier layer of the molded article of the present invention is a layer containing a polysilazane compound and an acrylic resin, the abundance ratio of carbon atoms, oxygen atoms, nitrogen atoms and silicon atoms in the gas barrier layer is more specifically as follows: Street.

(α)ガスバリア層におけるアクリル系樹脂の含有量が、前記ガスバリア層中のポリシラザン化合物とアクリル系樹脂の合計量を100質量%として、0.1質量%以上10質量%以下である場合には、前記ガスバリア層内部(表面からの深さ方向に20nm〜150nmの領域)においては、炭素原子、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、炭素原子の存在割合が0%以上5%以下、酸素原子の存在割合が50%以上75%以下、窒素原子の存在割合が0%以上5%以下、ケイ素原子の存在割合が20%以上40%以下であり、ガスバリア層表層部(表面からの深さ方向に0nm〜10nmの領域)においては、炭素原子の存在割合が0%超70%以下、酸素原子の存在割合が10%以上70%以下、窒素原子の存在割合が0%以上35%以下、ケイ素原子の存在割合が20%以上55%以下である。 (Α) When the content of the acrylic resin in the gas barrier layer is 0.1% by mass or more and 10% by mass or less, where the total amount of the polysilazane compound and the acrylic resin in the gas barrier layer is 100% by mass, In the gas barrier layer (in the region of 20 nm to 150 nm in the depth direction from the surface), the abundance ratio of carbon atoms to the total abundance of carbon atoms, oxygen atoms, nitrogen atoms and silicon atoms is 0% or more and 5% or less. The oxygen atom content rate is 50% to 75%, the nitrogen atom content rate is 0% to 5%, the silicon atom content rate is 20% to 40%, and the gas barrier layer surface portion (from the surface) In the depth direction (range of 0 nm to 10 nm), the existence ratio of carbon atoms is more than 0% and 70% or less, the existence ratio of oxygen atoms is 10% or more and 70% or less, If less than 35% 0% of proportions of silicon atoms is 55% or less than 20%.

(β)ガスバリア層におけるアクリル系樹脂の含有量が、前記ガスバリア層中のポリシラザン化合物とアクリル系樹脂の合計量を100質量%として、10質量%超40質量%以下である場合には、前記ガスバリア層内部(表面からの深さ方向に20nm〜150nmの領域)においては、炭素原子、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、炭素原子の存在割合が0%以上40%以下、酸素原子の存在割合が20%以上70%以下、窒素原子の存在割合が0%以上10%以下、ケイ素原子の存在割合が20%以上40%以下であり、ガスバリア層表層部(表面からの深さ方向に0nm〜10nmの領域)においては、炭素原子の存在割合が0%超70%以下、酸素原子の存在割合が10%以上70%以下、窒素原子の存在割合が0%以上35%以下、ケイ素原子の存在割合が20%以上55%以下である。 (Β) When the content of the acrylic resin in the gas barrier layer is 10% by mass or more and 40% by mass or less, where the total amount of the polysilazane compound and the acrylic resin in the gas barrier layer is 100% by mass, In the inside of the layer (region of 20 nm to 150 nm in the depth direction from the surface), the abundance ratio of carbon atoms to the total abundance of carbon atoms, oxygen atoms, nitrogen atoms and silicon atoms is 0% to 40%, oxygen The abundance ratio of atoms is 20% to 70%, the abundance ratio of nitrogen atoms is 0% to 10%, the abundance ratio of silicon atoms is 20% to 40%, and the gas barrier layer surface portion (depth from the surface) In the region of 0 nm to 10 nm in the direction), the presence ratio of carbon atoms is more than 0% and 70% or less, the presence ratio of oxygen atoms is 10% or more and 70% or less, the presence of nitrogen atoms If less than 35% 0% of proportions of silicon atoms is 55% or less than 20%.

(γ)また、ガスバリア層におけるアクリル系樹脂の含有量が、前記ガスバリア層中のポリシラザン化合物とアクリル系樹脂の合計量を100質量%として、40質量%超70質量%以下である場合には、前記ガスバリア層内部(表面からの深さ方向に20nm〜150nmの領域)においては、炭素原子、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、炭素原子の存在割合が30%以上70%以下、酸素原子の存在割合が10%以上50%以下、窒素原子の存在割合が0%以上10%以下、ケイ素原子の存在割合が10%以上40%以下であり、ガスバリア層表層部(表面からの深さ方向に0nm〜10nmの領域)においては、炭素原子の存在割合が0%超70%以下、酸素原子の存在割合が10%以上70%以下、窒素原子の存在割合が0%以上35%以下、ケイ素原子の存在割合が20%以上55%以下である。 (Γ) When the content of the acrylic resin in the gas barrier layer is more than 40% by mass and 70% by mass or less, where the total amount of the polysilazane compound and the acrylic resin in the gas barrier layer is 100% by mass, In the gas barrier layer (in the region of 20 nm to 150 nm in the depth direction from the surface), the abundance ratio of carbon atoms is 30% to 70% with respect to the total abundance of carbon atoms, oxygen atoms, nitrogen atoms and silicon atoms. The oxygen atom content rate is 10% to 50%, the nitrogen atom content rate is 0% to 10%, the silicon atom content rate is 10% to 40%, and the gas barrier layer surface portion (from the surface) In the depth direction (range of 0 nm to 10 nm), the presence ratio of carbon atoms is more than 0% and 70% or less, the presence ratio of oxygen atoms is 10% or more and 70% or less, 35% The proportion of more than 0% or less, the abundance ratio of silicon atoms is 55% or less than 20%.

(ポリシラザン化合物)
本発明に用いるポリシラザン化合物は、分子内に−Si−N−結合(シラザン結合)を含む繰り返し単位を有する高分子化合物である。具体的には、式(1)
(Polysilazane compound)
The polysilazane compound used in the present invention is a polymer compound having a repeating unit containing a —Si—N— bond (silazane bond) in the molecule. Specifically, the formula (1)

Figure 2012023389
Figure 2012023389

で表される繰り返し単位を有する化合物が好ましい。また、用いるポリシラザン化合物の数平均分子量は、特に限定されないが、100〜50,000であるのが好ましい。 The compound which has a repeating unit represented by these is preferable. Further, the number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably 100 to 50,000.

式(1)中、nは任意の自然数を表す。
Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基又はアルキルシリル基等の非加水分解性基を表す。
In formula (1), n represents an arbitrary natural number.
Rx, Ry, and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or substituted Represents a non-hydrolyzable group such as an aryl group having a group or an alkylsilyl group;

前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−へキシル基、n−ヘプチル基、n−オクチル基等の炭素数1〜10のアルキル基が挙げられる。   Examples of the alkyl group of the unsubstituted or substituted alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, C1-C10 alkyl groups, such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, are mentioned.

無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3〜10のシクロアルキル基が挙げられる。   Examples of the cycloalkyl group of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.

無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基等の炭素数2〜10のアルケニル基が挙げられる。   Examples of the alkenyl group of an unsubstituted or substituted alkenyl group include, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, etc. 10 alkenyl groups are mentioned.

前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4−メチルフェニル基、4−クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。   Examples of the substituent for the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group An unsubstituted or substituted aryl group such as a phenyl group, a 4-methylphenyl group, and a 4-chlorophenyl group;

無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基等の炭素数6〜10のアリール基が挙げられる。   Examples of the aryl group of the unsubstituted or substituted aryl group include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.

前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1〜6のアルキル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4−メチルフェニル基、4−クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。   Examples of the substituent of the aryl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, or the like An aryl group having a substituent; and the like.

アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。   Examples of the alkylsilyl group include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group, and ethylsilyl group.

これらの中でも、Rx、Ry、Rzとしては、水素原子、炭素数1〜6のアルキル基、又はフェニル基が好ましく、水素原子が特に好ましい。   Among these, as Rx, Ry, and Rz, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom is particularly preferable.

前記式(1)で表される繰り返し単位を有するポリシラザン化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンのいずれであってもよい。
無機ポリシラザンとしては、下記
Examples of the polysilazane compound having a repeating unit represented by the formula (1) include inorganic polysilazanes in which Rx, Ry, and Rz are all hydrogen atoms, and organic polysilazanes in which at least one of Rx, Ry, and Rz is not a hydrogen atom. There may be.
As inorganic polysilazane, the following

Figure 2012023389
Figure 2012023389

(式中、aは任意の自然数を表す。)で表される繰り返し単位を有する直鎖状構造を有し、690〜2000の分子量を持ち、一分子中に3〜10個のSiH基を有するペルヒドロポリシラザン(特公昭63−16325号公報)、式(A)(Wherein a represents an arbitrary natural number) has a linear structure having a repeating unit represented by the formula, has a molecular weight of 690 to 2000, and 3 to 10 SiH 3 groups in one molecule. Perhydropolysilazane (Japanese Patent Publication No. 63-16325), formula (A)

Figure 2012023389
Figure 2012023389

〔式中、b、cは任意の自然数を表し、Yは、水素原子又は式(B)[Wherein, b and c represent an arbitrary natural number, and Y 1 represents a hydrogen atom or a formula (B)

Figure 2012023389
Figure 2012023389

(式中、dは任意の自然数を表し、*は結合位置を表し、Yは水素原子、又は前記(B)で表される基を表す。)で表される基を表す。〕で表される繰り返し単位を有する、直鎖状構造と分岐構造を有するペルヒドロポリシラザン、式(C)(Wherein, d represents an arbitrary natural number, * represents a bonding position, and Y 2 represents a hydrogen atom or a group represented by (B) above). A perhydropolysilazane having a linear structure and a branched structure, having a repeating unit represented by formula (C):

Figure 2012023389
Figure 2012023389

で表されるペルヒドロポリシラザン構造を有する、分子内に、直鎖状構造、分岐構造及び環状構造を有するペルヒドロポリシラザン等が挙げられる。 And perhydropolysilazane having a linear structure, a branched structure and a cyclic structure in the molecule.

有機ポリシラザンとしては、
(i)−(Rx’SiHNH)−(Rx’は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、又はアルキルシリル基を表す。以下のRx’も同様である。)を繰り返し単位として、主として重合度が3〜5の環状構造を有するもの、
(ii)−(Rx’SiHNRz’)−(Rz’は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、又はアルキルシリル基を表す。)を繰り返し単位として、主として重合度が3〜5の環状構造を有するもの、
(iii)−(Rx’Ry’SiNH)−(Ry’は、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、又はアルキルシリル基を表す。)を繰り返し単位として、主として重合度が3〜5の環状構造を有するもの、
(iv)下記式で表される構造を分子内に有するポリオルガノ(ヒドロ)シラザン、
As organic polysilazane,
(I)-(Rx'SiHNH)-(Rx 'is an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or substituted An aryl group having a group or an alkylsilyl group, and the following Rx ′ is also the same), and having a cyclic structure having a degree of polymerization of 3 to 5,
(Ii)-(Rx'SiHNRz ')-(Rz' is an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or An aryl group having a substituent or an alkylsilyl group)), and having a cyclic structure having a degree of polymerization of 3 to 5,
(Iii)-(Rx'Ry'SiNH)-(Ry 'is an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, or unsubstituted Or an aryl group having a substituent, or an alkylsilyl group) as a repeating unit, mainly having a cyclic structure having a degree of polymerization of 3 to 5,
(Iv) a polyorgano (hydro) silazane having a structure represented by the following formula in the molecule;

Figure 2012023389
Figure 2012023389

(v)下記式 (V) The following formula

Figure 2012023389
Figure 2012023389

〔Rx’、Ry’は前記と同じ意味を表し、e、fは任意の自然数を表し、Yは、水素原子又は式(E)[Rx ′ and Ry ′ represent the same meaning as described above, e and f represent any natural number, Y 3 represents a hydrogen atom or a formula (E)

Figure 2012023389
Figure 2012023389

(式中、gは任意の自然数を表し、*は結合位置を表し、Yは水素原子、又は前記(E)で表される基を表す。)で表される基を表す。〕
で表される繰り返し構造を有するポリシラザン等が挙げられる。
(Wherein, g represents an arbitrary natural number, * represents a bonding position, and Y 4 represents a hydrogen atom or a group represented by (E) above). ]
And polysilazane having a repeating structure represented by

上記有機ポリシラザンは、公知の方法により製造することができる。例えば、下記式(2)で表される無置換若しくは置換基を有するハロゲノシラン化合物と2級アミンとの反応生成物に、アンモニア又は1級アミンを反応させることにより得ることができる。   The organic polysilazane can be produced by a known method. For example, it can be obtained by reacting ammonia or a primary amine with a reaction product of an unsubstituted or substituted halogenosilane compound represented by the following formula (2) and a secondary amine.

Figure 2012023389
Figure 2012023389

式(2)中、mは2又は3を表し、Xはハロゲン原子を表し、Rは、前述した、Rx、Ry、Rz、Rx’、Ry’、Rz’のいずれかの置換基を表す。)
用いる2級アミン、アンモニア及び1級アミンは、目的とするポリシラザン化合物の構造に応じて、適宜選択すればよい。
In formula (2), m represents 2 or 3, X represents a halogen atom, R 1 represents any of the substituents of Rx, Ry, Rz, Rx ′, Ry ′, and Rz ′ described above. . )
The secondary amine, ammonia, and primary amine to be used may be appropriately selected according to the structure of the target polysilazane compound.

また、本発明においては、ポリシラザン化合物として、ポリシラザン変性物を用いることもできる。ポリシラザン変性物としては、例えば、金属原子(該金属原子は架橋をなしていてもよい。)を含むポリメタロシラザン、繰り返し単位が〔(SiH(NH))〕及び〔(SiHO〕(式中、g、h、iはそれぞれ独立して、1、2又は3である。)で表されるポリシロキサザン(特開昭62−195024号公報)、ポリシラザンにボロン化合物を反応させて製造するポリボロシラザン(特開平2−84437号公報)、ポリシラザンとメタルアルコキシドとを反応させて製造するポリメタロシラザン(特開昭63−81122号公報等)、無機シラザン高重合体や改質ポリシラザン(特開平1−138108号公報等)、ポリシラザンに有機成分を導入した共重合シラザン(特開平2−175726号公報等)、ポリシラザンにセラミックス化を促進するための触媒的化合物を付加又は添加した低温セラミックス化ポリシラザン(特開平5−238827号公報等)、In the present invention, a modified polysilazane compound can also be used as the polysilazane compound. Examples of the modified polysilazane include, for example, a polymetallosilazane containing a metal atom (the metal atom may be crosslinked) and repeating units of [(SiH 2 ) g (NH) h )] and [(SiH 2 ) i O] (wherein, g, h, i are each independently 1, 2 or 3. polysiloxazane (JP 62-195024 discloses represented by)), boron compound polysilazane Polyborosilazane produced by reacting polysilazane (JP-A-2-84437), polymetallosilazane produced by reacting polysilazane and metal alkoxide (JP-A-63-81122, etc.), high inorganic silazane polymer And modified polysilazanes (JP-A-1-138108, etc.), copolymer silazanes obtained by introducing organic components into polysilazane (JP-A-2-175726, etc.), Low temperature ceramicized polysilazane (Japanese Patent Laid-Open No. 5-238827 etc.) in which a catalytic compound for promoting ceramification is added or added to lysilazane,

ケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドール付加ポリシラザン(特開平6−122852号公報)、アセチルアセトナト錯体付加ポリシラザン(特開平6−306329号公報)、金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報等)、   Silicon alkoxide-added polysilazane (Japanese Patent Laid-Open No. 5-238827), glycidol-added polysilazane (Japanese Patent Laid-Open No. 6-122852), acetylacetonato complex-added polysilazane (Japanese Patent Laid-Open No. 6-306329), metal carboxylate-added polysilazane ( JP-A-6-299118)

上記ポリシラザン又はその変性物に、アミン類及び/又は酸類を添加してなるポリシラザン組成物(特開平9−31333号公報)、ペルヒドロポリシラザンにメタノール等のアルコールあるいはヘキサメチルジシラザンを末端N原子に付加して得られる変性ポリシラザン(特開平5−345826号公報、特開平4−63833号公報)等が挙げられる。   A polysilazane composition obtained by adding amines and / or acids to the polysilazane or a modified product thereof (JP-A-9-31333), perhydropolysilazane with alcohol such as methanol or hexamethyldisilazane as a terminal N atom Examples thereof include modified polysilazanes obtained by addition (JP-A-5-345826, JP-A-4-63833) and the like.

これらの中でも、ポリシラザン化合物としては、入手容易性、及び優れたガスバリア性を有するイオン注入層を形成できる観点から、Rx、Ry、Rzが全て水素原子であるペルヒドロポリシラザンが好ましい。   Among these, as the polysilazane compound, perhydropolysilazane in which Rx, Ry, and Rz are all hydrogen atoms is preferable from the viewpoint of availability and the ability to form an ion-implanted layer having excellent gas barrier properties.

また、ポリシラザン化合物としては、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。   Moreover, as a polysilazane compound, the commercial item marketed as a glass coating material etc. can also be used as it is.

(アクリル系樹脂)
本発明の成形体のガスバリア層は、ポリシラザン化合物に加えて、アクリル系樹脂の少なくとも一種を含有する。アクリル系樹脂を配合することにより、耐折曲げ性に優れ、透明性が良好なガスバリア性成形体を得ることができる。
(Acrylic resin)
The gas barrier layer of the molded article of the present invention contains at least one acrylic resin in addition to the polysilazane compound. By blending the acrylic resin, a gas barrier molded article having excellent bending resistance and excellent transparency can be obtained.

本発明に用いるアクリル系樹脂は、分子内に、(メタ)アクリル酸系化合物由来の繰り返し単位を少なくとも含む(共)重合体である。ここで、「(共)重合体」は、「単独重合体又は共重合体」の意である(以下、同様)。また、「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸の意である(以下同様。)。   The acrylic resin used in the present invention is a (co) polymer containing at least a repeating unit derived from a (meth) acrylic acid compound in the molecule. Here, “(co) polymer” means “homopolymer or copolymer” (hereinafter the same). “(Meth) acrylic acid” means acrylic acid or methacrylic acid (the same shall apply hereinafter).

アクリル系樹脂としては、(i)(メタ)アクリル酸系化合物の単独重合体、(ii)(メタ)アクリル酸系化合物の2種以上から得られる共重合体、及び(iii)(メタ)アクリル酸系化合物と他の官能性単量体から得られる共重合体が挙げられる。アクリル系樹脂が(iii)の共重合体である場合、(メタ)アクリル酸系化合物由来の繰り返し単位が、全繰り返し単位に対し50モル%以上含まれているものが好ましい。   Examples of acrylic resins include (i) homopolymers of (meth) acrylic acid compounds, (ii) copolymers obtained from two or more of (meth) acrylic acid compounds, and (iii) (meth) acrylic. A copolymer obtained from an acid compound and another functional monomer may be mentioned. When the acrylic resin is a copolymer of (iii), it is preferable that the repeating unit derived from the (meth) acrylic acid compound is contained in an amount of 50 mol% or more based on all repeating units.

本発明においては、アクリル系樹脂として、これらの(共)重合体を1種単独で、あるいは2種以上を組み合わせて用いることができる。   In the present invention, these (co) polymers can be used alone or in combination of two or more as the acrylic resin.

前記(メタ)アクリル酸系化合物としては、(メタ)アクリル酸エステル、(メタ)アクリル酸のフッ素化エステル、(メタ)アクリル酸のヒドロキシアルキルエステル、(メタ)アクリル酸アミド、(メタ)アクリル酸アミノアルキルエステル、(メタ)アクリル酸のグリシジルエステル、(メタ)アクリル酸等が挙げられる。これらの中でも、(メタ)アクリル酸エステルが好ましく、メタクリル酸エステルがより好ましい。   Examples of the (meth) acrylic acid compound include (meth) acrylic acid ester, (meth) acrylic acid fluorinated ester, (meth) acrylic acid hydroxyalkyl ester, (meth) acrylic acid amide, (meth) acrylic acid Examples include aminoalkyl esters, glycidyl esters of (meth) acrylic acid, and (meth) acrylic acid. Among these, (meth) acrylic acid ester is preferable, and methacrylic acid ester is more preferable.

(メタ)アクリル酸エステルとしては、アルキル基の炭素数が1〜20の(メタ)アクリルアルキルエステル化合物が好ましく、アルキル基の炭素数が1〜10の(メタ)アクリルアルキルエステル化合物がより好ましい。   The (meth) acrylic acid ester is preferably a (meth) acrylic alkyl ester compound having 1 to 20 carbon atoms in the alkyl group, and more preferably a (meth) acrylic alkyl ester compound having 1 to 10 carbon atoms in the alkyl group.

(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸n−デシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル等が挙げられる。   Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth) acrylate. , N-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n (meth) acrylate -Heptyl, n-octyl (meth) acrylate, n-decyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate And phenylethyl (meth) acrylate.

(メタ)アクリル酸のフッ素化エステルとしては、(メタ)アクリル酸パーフルオロ−t−ブチル、パーフルオロイソプロピル(メタ)アクリレート、(メタ)アクリル酸ヘキサフルオロ−2−プロピル、(メタ)アクリル酸トリフルオロエチル等が挙げられる。
(メタ)アクリル酸のヒドロキシアルキルエステルとしては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等が挙げられる。
(メタ)アクリル酸アミドとしては、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N,N−ジメチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド等が挙げられる。
Examples of fluorinated esters of (meth) acrylic acid include perfluoro-t-butyl (meth) acrylate, perfluoroisopropyl (meth) acrylate, hexafluoro-2-propyl (meth) acrylate, and (meth) acrylic acid tri Fluoroethyl etc. are mentioned.
Examples of hydroxyalkyl esters of (meth) acrylic acid include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
As (meth) acrylic acid amide, (meth) acrylamide, N-methyl (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N -Phenyl (meth) acrylamide etc. are mentioned.

(メタ)アクリル酸アミノアルキルエステルとしては、N,N−ジエチルアミノエチル(メタ)アクリレート等が挙げられる。
(メタ)アクリル酸のグリシジルエステルとしては、グリシジル(メタ)アクリレート等が挙げられる。
Examples of (meth) acrylic acid aminoalkyl esters include N, N-diethylaminoethyl (meth) acrylate.
Examples of the glycidyl ester of (meth) acrylic acid include glycidyl (meth) acrylate.

他の官能性単量体としては、(メタ)アクリル酸系化合物と共重合可能なものであれば特に限定されない。例えば、アリルグリシジルエーテル等のエポキシ基含有単量体;スチレンスルホン酸、ビニルスルホン酸、及びそれらの塩(例えばナトリウム塩、カリウム塩、アンモニウム塩等)等の如きスルホン酸基又はその塩を含有する単量体;クロトン酸、イタコン酸、アクリル酸、マレイン酸、フマール酸、及びそれらの塩(例えばナトリウム塩、カリウム塩、アンモニウム塩等)等のカルボキシル基又はその塩を含有する単量体;
無水マレイン酸、無水イタコン酸等の無水物を含有する単量体;ビニルイソシアネート、アリルイソシアネート、スチレン、ビニルメチルエーテル、ビニルエチルエーテル、ビニルトリスアルコキシシラン、アルキルマレイン酸モノエステル、アルキルフマール酸モノエステル、(メタ)アクリロニトリル、アルキルイタコン酸モノエステル、塩化ビニリデン、酢酸ビニル、塩化ビニル;等が挙げられる。
これらの単量体は一種単独で、あるいは二種以上を適宜に組み合わせて用いることができる。
Other functional monomers are not particularly limited as long as they are copolymerizable with a (meth) acrylic acid compound. For example, an epoxy group-containing monomer such as allyl glycidyl ether; a sulfonic acid group such as styrene sulfonic acid, vinyl sulfonic acid, and salts thereof (for example, sodium salt, potassium salt, ammonium salt, etc.) or a salt thereof Monomer; a monomer containing a carboxyl group such as crotonic acid, itaconic acid, acrylic acid, maleic acid, fumaric acid, and salts thereof (for example, sodium salt, potassium salt, ammonium salt, etc.) or a salt thereof;
Monomers containing anhydrides such as maleic anhydride and itaconic anhydride; vinyl isocyanate, allyl isocyanate, styrene, vinyl methyl ether, vinyl ethyl ether, vinyl trisalkoxysilane, alkyl maleic acid monoester, alkyl fumaric acid monoester , (Meth) acrylonitrile, alkyl itaconate monoester, vinylidene chloride, vinyl acetate, vinyl chloride; and the like.
These monomers can be used individually by 1 type or in combination of 2 or more types as appropriate.

前記(i)の単独重合体は、(メタ)アクリル酸系化合物の一種を重合することにより、(ii)の共重合体は、(メタ)アクリル酸系化合物の2種以上からなるモノマー混合物を共重合することにより、また、(iii)の共重合体は、(メタ)アクリル酸系化合物と他の官能性単量体を含有するモノマー混合物を共重合することにより得ることができる。
(共)重合する方法は、特に限定されず、溶液重合法、乳化重合法、懸濁重合法等の公知の重合方法が採用できる。
The homopolymer of (i) is obtained by polymerizing one kind of (meth) acrylic acid compound, and the copolymer of (ii) is a monomer mixture composed of two or more kinds of (meth) acrylic acid compounds. By copolymerization, the copolymer (iii) can be obtained by copolymerizing a monomer mixture containing a (meth) acrylic acid compound and another functional monomer.
The (co) polymerization method is not particularly limited, and a known polymerization method such as a solution polymerization method, an emulsion polymerization method, or a suspension polymerization method can be employed.

また、本発明においては、アクリル系樹脂として、(メタ)アクリル酸エステル(共)重合体を架橋剤と混合して、少なくとも一部に架橋体を形成したものを用いることもできる。   Moreover, in this invention, what mixed the (meth) acrylic acid ester (co) polymer with the crosslinking agent and formed the crosslinked body in at least one part can also be used as acrylic resin.

用いる架橋剤としては、トリレンジイソシアネート、ヘキサメチレンジイソシアナート等、あるいはそれらのアダクト体等のイソシアネート系架橋剤;エチレングリコールグリシジルエーテル等のエポキシ系架橋剤;ヘキサ〔1−(2−メチル)−アジリジニル〕トリフオスファトリアジン等のアジリジン系架橋剤;アルミニウムキレート等のキレート系架橋剤;等が挙げられる。   Examples of the crosslinking agent used include isocyanate-based crosslinking agents such as tolylene diisocyanate and hexamethylene diisocyanate, or adducts thereof; epoxy-based crosslinking agents such as ethylene glycol glycidyl ether; hexa [1- (2-methyl)- Aziridinyl] aziridine-based cross-linking agents such as triphosphatriazine; chelate-based cross-linking agents such as aluminum chelates; and the like.

架橋剤の使用量は、(メタ)アクリル酸エステル(共)重合体の固形分100質量部に対して通常0.01〜10質量部、好ましくは0.05〜5質量部である。架橋剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。   The usage-amount of a crosslinking agent is 0.01-10 mass parts normally with respect to 100 mass parts of solid content of a (meth) acrylic acid ester (co) polymer, Preferably it is 0.05-5 mass parts. A crosslinking agent can be used individually by 1 type or in combination of 2 or more types.

これらのアクリル系樹脂の中でも、後述するアクリル系樹脂等含有層の形成に用いる層形成用溶液が、塗膜形成前にゲル化しにくくなり、容易に塗膜を形成することができる点と、ポリシラザン化合物との相溶性に優れる点から、上記(i)(メタ)アクリル酸系化合物の単独重合体、及び、(ii)(メタ)アクリル酸系化合物の2種以上から得られる共重合体が好ましく、(メタ)アクリル酸エステルの単独重合体、及び、(メタ)アクリル酸エステルの2種以上から得られる共重合体がより好ましい。   Among these acrylic resins, the layer forming solution used for forming the acrylic resin-containing layer described later is less likely to gel before forming the coating film, and can easily form the coating film, and polysilazane. From the viewpoint of excellent compatibility with the compound, a homopolymer of the above (i) (meth) acrylic acid compound and a copolymer obtained from two or more of (ii) (meth) acrylic acid compound are preferable. More preferred are homopolymers of (meth) acrylic acid esters and copolymers obtained from two or more of (meth) acrylic acid esters.

本発明に用いるアクリル系樹脂の重量平均分子量は1,000〜1,000,000であるのが好ましく、100,000〜1,000,000であるのがより好ましい。   The weight average molecular weight of the acrylic resin used in the present invention is preferably 1,000 to 1,000,000, and more preferably 100,000 to 1,000,000.

前記ガスバリア層中の、ポリシラザン化合物とアクリル系樹脂の合計含有量は、優れたガスバリア性等を有するイオン注入層を形成できる観点から、50質量%以上であるのが好ましく、70質量%以上であるのがより好ましい。   The total content of the polysilazane compound and the acrylic resin in the gas barrier layer is preferably 50% by mass or more and 70% by mass or more from the viewpoint of forming an ion implantation layer having excellent gas barrier properties. Is more preferable.

前記ガスバリア層中のアクリル系樹脂の含有量は、可撓性や透明性を重視する場合には、ポリシラザン化合物とアクリル系樹脂の合計量を100質量%として、0.1質量%以上70質量%以下であるのが好ましく、30質量%〜70質量%であるのがより好ましく、40質量%〜60質量%であるのがさらに好ましい。また、ガスバリア性を重視する場合には、アクリル系樹脂の含有量は、ポリシラザン化合物とアクリル系樹脂の合計量を100質量%として、50質量%以下であるのが好ましく、10質量%以下であるのがより好ましい。   The content of the acrylic resin in the gas barrier layer is 0.1% by mass or more and 70% by mass when the total amount of the polysilazane compound and the acrylic resin is 100% by mass when flexibility and transparency are important. The content is preferably 30% by mass to 70% by mass, and more preferably 40% by mass to 60% by mass. In the case where importance is attached to gas barrier properties, the content of the acrylic resin is preferably 50% by mass or less, preferably 10% by mass or less, where the total amount of the polysilazane compound and the acrylic resin is 100% by mass. Is more preferable.

また、前記ガスバリア層は、ポリシラザン化合物とアクリル系樹脂の他に、本発明の目的を阻害しない範囲で他の成分を含んでいてもよい。他の成分としては、他の高分子、硬化剤、老化防止剤、光安定剤、難燃剤、充填剤、顔料、レベリング剤、消泡剤、帯電防止剤、紫外線吸収剤、pH調整剤、分散剤、表面改質剤、可塑剤、乾燥促進剤、流れ止め剤等が挙げられる。   In addition to the polysilazane compound and the acrylic resin, the gas barrier layer may contain other components as long as the object of the present invention is not impaired. Other components include other polymers, curing agents, anti-aging agents, light stabilizers, flame retardants, fillers, pigments, leveling agents, antifoaming agents, antistatic agents, UV absorbers, pH adjusters, dispersions Agents, surface modifiers, plasticizers, drying accelerators, flow inhibitors and the like.

本発明の成形体は、40℃、相対湿度90%雰囲気下での水蒸気透過率が、1g/m2/day以下、好ましくは0.5g/m/day以下、より好ましくは0.1g/m/day以下であり、本発明の成形体はガスバリア性に優れる。なお、成形体の水蒸気等の透過率は、公知のガス透過率測定装置を使用して測定することができる。The molded article of the present invention has a water vapor transmission rate of 1 g / m 2 / day or less, preferably 0.5 g / m 2 / day or less, more preferably 0.1 g / m 2 at 40 ° C. and 90% relative humidity. m 2 / day or less, and the molded article of the present invention is excellent in gas barrier properties. In addition, the transmittance | permeability, such as water vapor | steam, of a molded object can be measured using a well-known gas-permeability measuring apparatus.

本発明の成形体は、ガスバリア層を有する成形体であって、前記ガスバリア層がポリシラザン化合物とアクリル系樹脂とを含む層(以下、「アクリル系樹脂等含有層」ということがある。)に、イオンが注入されて得られる層(以下、「イオン注入層」ということがある。)を有するものであってもよい。   The molded article of the present invention is a molded article having a gas barrier layer, wherein the gas barrier layer includes a layer containing a polysilazane compound and an acrylic resin (hereinafter, sometimes referred to as an “acrylic resin-containing layer”). It may have a layer obtained by ion implantation (hereinafter also referred to as “ion implantation layer”).

本発明の成形体は、ガスバリア層を有する成形体であって、前記ガスバリア層が、ポリシラザン化合物とアクリル系樹脂とを含み、40℃、相対湿度90%雰囲気下での水蒸気透過率が1g/m2/day以下のものであり、かつ、このものが前記イオン注入層を有するものであることが特に好ましい。The molded article of the present invention is a molded article having a gas barrier layer, wherein the gas barrier layer contains a polysilazane compound and an acrylic resin, and has a water vapor transmission rate of 1 g / m in an atmosphere of 40 ° C. and a relative humidity of 90%. 2 / day or less, and it is particularly preferable that this has the ion-implanted layer.

アクリル系樹脂等含有層を形成する方法としては、特に制約はなく、例えば、ポリシラザン化合物の少なくとも一種、アクリル系樹脂の少なくとも一種、所望により他の成分、及び溶剤等を含有する層形成用溶液を、適当な基材層の上に塗布し、得られた塗膜を適度に乾燥して形成する方法が挙げられる。   The method for forming the acrylic resin-containing layer is not particularly limited. For example, a layer forming solution containing at least one polysilazane compound, at least one acrylic resin, and optionally other components, a solvent, and the like is used. The method of apply | coating on an appropriate base material layer, and drying and forming the obtained coating film moderately is mentioned.

アクリル系樹脂等含有層の形成に用いるポリシラザン化合物及びアクリル系樹脂としては、上述したものと同様のものが挙げられる。   Examples of the polysilazane compound and acrylic resin used for forming the acrylic resin-containing layer include the same ones as described above.

前記層形成用溶液に用いる溶剤としては、ポリシラザン化合物とアクリル系樹脂の両方を安定的に溶解するものが好ましい。例えば、キシレン、トルエン、ブチルカルビトールアセテート、酢酸n−ブチル、酢酸エチル等のエステル類;セロソルブ、セロソルブアセテート等のグリコールエーテル類;アセトン、メチルエチルケトン等のケトン類;等が挙げられる。   As the solvent used for the layer forming solution, a solvent that stably dissolves both the polysilazane compound and the acrylic resin is preferable. Examples thereof include esters such as xylene, toluene, butyl carbitol acetate, n-butyl acetate and ethyl acetate; glycol ethers such as cellosolve and cellosolve acetate; ketones such as acetone and methyl ethyl ketone;

溶剤を使用する場合、前記アクリル系樹脂添加ポリシラザンの溶解度や溶剤の蒸発速度を調節するために、2種類以上の溶剤を混合してもよい。
溶剤の使用量(割合)は、コーティング方法、用いるポリシラザン化合物等の種類等にもよるが、通常、層形成用溶液の5〜99質量%、好ましくは5〜60質量%である。
When a solvent is used, two or more kinds of solvents may be mixed in order to adjust the solubility of the acrylic resin-added polysilazane and the evaporation rate of the solvent.
The amount (ratio) of the solvent used is usually 5 to 99% by mass, preferably 5 to 60% by mass, based on the coating method, the type of polysilazane compound used, and the like.

前記層形成用溶液の塗布に用いる塗工装置としては、スピンコーター、ナイフコーター、グラビアコーター等の公知の装置を使用することができる。   As a coating apparatus used for application of the layer forming solution, a known apparatus such as a spin coater, a knife coater, or a gravure coater can be used.

得られた塗膜の乾燥及び成形体のガスバリア性向上のため、塗膜を加熱することが好ましい。加熱は80〜150℃で、数十秒から数十分行う。   It is preferable to heat the coating film in order to dry the obtained coating film and improve the gas barrier property of the molded product. Heating is performed at 80 to 150 ° C. for several tens of seconds to several tens of minutes.

このような加熱によって、ポリシラザン化合物は架橋、縮合、場合によっては酸化、加水分解して硬化し、セラミックス相を形成し、アクリル系樹脂は熱軟化する。そして、Si−N結合あるいはSi−O結合を主体とするセラミックス相と、アクリル系相からなる有機質部分とが微細な構造レベルで(無機フィラー等を添加する複合材と比べて)複合化した緻密な膜を得ることができる。   By such heating, the polysilazane compound is cured by crosslinking, condensation, and in some cases, oxidation and hydrolysis to form a ceramic phase, and the acrylic resin is thermally softened. Further, a dense structure in which a ceramic phase mainly composed of Si—N bonds or Si—O bonds and an organic portion composed of an acrylic phase are combined at a fine structure level (compared to a composite material to which an inorganic filler or the like is added). Can be obtained.

形成されるアクリル系樹脂等含有層の厚みは、特に制限されないが、通常20nm〜100μm、好ましくは30〜500nm、より好ましくは40〜200nmである。
本発明においては、アクリル系樹脂等含有層の厚みがナノオーダーであっても、充分なガスバリア性能を有する成形体を得ることができる。
The thickness of the formed acrylic resin-containing layer is not particularly limited, but is usually 20 nm to 100 μm, preferably 30 to 500 nm, and more preferably 40 to 200 nm.
In the present invention, a molded article having sufficient gas barrier performance can be obtained even if the thickness of the acrylic resin-containing layer is nano-order.

本発明の成形体において、イオン注入層は、アクリル系樹脂等含有層中にイオンが注入されてなるものであれば、特に制約はない。   In the molded article of the present invention, the ion-implanted layer is not particularly limited as long as ions are implanted into the acrylic resin-containing layer.

注入されるイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガス、フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄、ケイ素化合物、炭化水素等のイオン;金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の導電性の金属のイオン;が挙げられる。   Examples of ions to be implanted include rare gases such as argon, helium, neon, krypton, and xenon, ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, silicon compounds, and hydrocarbons; gold, silver And ions of conductive metals such as copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.

なかでも、より簡便に注入することができ、特に優れたガスバリア性と透明性を有するイオン注入層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン、ケイ素化合物、及び炭化水素からなる群から選ばれる少なくとも一種のイオンが好ましい。   Among these, hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, krypton, silicon compounds, which can be implanted more easily and an ion implantation layer having particularly excellent gas barrier properties and transparency can be obtained. And at least one ion selected from the group consisting of hydrocarbons.

ケイ素化合物としては、シラン(SiH)又は有機ケイ素化合物が挙げられる。
有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトラt−ブトキシシラン等のテトラアルコキシシラン;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン等の無置換若しくは置換基を有するアルキルアルコキシシラン;
Examples of the silicon compound include silane (SiH 4 ) and organosilicon compounds.
Examples of the organosilicon compound include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, and tetra t-butoxysilane;
An alkylalkoxysilane having an unsubstituted or substituted group such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane;

ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアリールアルコキシシラン;
ヘキサメチルジシロキサン(HMDSO)等のジシロキサン;
ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、テトラキスジメチルアミノシラン、トリス(ジメチルアミノ)シラン等のアミノシラン;
ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラメチルジシラザン等のシラザン;
テトライソシアナートシラン等のシアナートシラン;
トリエトキシフルオロシラン等のハロゲノシラン;
ジアリルジメチルシラン、アリルトリメチルシラン等のアルケニルシラン;
ジ−t−ブチルシラン、1,3−ジシラブタン、ビス(トリメチルシリル)メタン、テトラメチルシラン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ベンジルトリメチルシラン等の無置換若しくは置換基を有するアルキルシラン;
ビス(トリメチルシリル)アセチレン、トリメチルシリルアセチレン、1−(トリメチルシリル)−1−プロピン等のシリルアルキン;
Arylalkoxysilanes such as diphenyldimethoxysilane and phenyltriethoxysilane;
Disiloxanes such as hexamethyldisiloxane (HMDSO);
Aminosilanes such as bis (dimethylamino) dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, diethylaminotrimethylsilane, dimethylaminodimethylsilane, tetrakisdimethylaminosilane, tris (dimethylamino) silane;
Silazanes such as hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetramethyldisilazane;
Cyanate silanes such as tetraisocyanate silane;
Halogenosilanes such as triethoxyfluorosilane;
Alkenylsilanes such as diallyldimethylsilane and allyltrimethylsilane;
Alkyl silanes having no substituents or substituents such as di-t-butylsilane, 1,3-disilabutane, bis (trimethylsilyl) methane, tetramethylsilane, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, benzyltrimethylsilane;
Silylalkynes such as bis (trimethylsilyl) acetylene, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne;

1,4−ビストリメチルシリル−1,3−ブタジエン、シクロペンタジエニルトリメチルシラン等のシリルアルケン;
フェニルジメチルシラン、フェニルトリメチルシラン等のアリールアルキルシラン;
プロパルギルトリメチルシラン等のアルキニルアルキルシラン;
ビニルトリメチルシラン等のアルケニルアルキルシラン;
ヘキサメチルジシラン等のジシラン;
オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン等のシロキサン;
N,O−ビス(トリメチルシリル)アセトアミド;
ビス(トリメチルシリル)カルボジイミド;
等が挙げられる。
Silylalkenes such as 1,4-bistrimethylsilyl-1,3-butadiene, cyclopentadienyltrimethylsilane;
Arylalkylsilanes such as phenyldimethylsilane and phenyltrimethylsilane;
Alkynylalkylsilanes such as propargyltrimethylsilane;
Alkenylalkylsilanes such as vinyltrimethylsilane;
Disilanes such as hexamethyldisilane;
Siloxanes such as octamethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, hexamethylcyclotetrasiloxane;
N, O-bis (trimethylsilyl) acetamide;
Bis (trimethylsilyl) carbodiimide;
Etc.

炭化水素としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン;エチレン、プロピレン、ブテン、ペンテン等のアルケン;ペンタジエン、ブタジエン等のアルカジエン;アセチレン、メチルアセチレン等のアルキン;ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレン等の芳香族炭化水素;シクロプロパン、シクロヘキサン等のシクロアルカン;シクロペンテン、シクロヘキセン等のシクロアルケン;等が挙げられる。
これらのイオンは、一種単独で、あるいは二種以上を組み合わせて用いることができる。
Examples of hydrocarbons include alkanes such as methane, ethane, propane, butane, pentane, and hexane; alkenes such as ethylene, propylene, butene, and pentene; alkadienes such as pentadiene and butadiene; alkynes such as acetylene and methylacetylene; benzene, toluene, Aromatic hydrocarbons such as xylene, indene, naphthalene and phenanthrene; cycloalkanes such as cyclopropane and cyclohexane; cycloalkenes such as cyclopentene and cyclohexene; and the like.
These ions can be used alone or in combination of two or more.

イオンの注入量は、形成する成形体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定すればよい。   What is necessary is just to determine the implantation amount of ion suitably according to the intended purpose (necessary gas barrier property, transparency, etc.) of the molded object to form.

イオンを注入する方法は特に限定されず、例えば、アクリル系樹脂等含有層(以下、「イオンが注入される層」ということがある。)を形成した後、この層にイオンを注入する方法が挙げられる。   A method for implanting ions is not particularly limited. For example, after a layer containing acrylic resin or the like (hereinafter, also referred to as “a layer into which ions are implanted”) is formed, ions are implanted into this layer. Can be mentioned.

イオンを注入する方法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法(プラズマイオン注入法)等が挙げられる。なかでも、本発明においては、簡便に優れたガスバリア性等を有する成形体が得られることから、後者のプラズマイオンを注入する方法が好ましい。   Examples of a method for implanting ions include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma (plasma ion implantation method), and the like. Among these, in the present invention, the latter method of implanting plasma ions is preferable because a molded article having excellent gas barrier properties and the like can be obtained easily.

プラズマイオン注入法は、例えば、プラズマ生成ガスを含む雰囲気下でプラズマを発生させ、イオンが注入される層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を、イオンが注入される層の表面部に注入して行うことができる。   In the plasma ion implantation method, for example, plasma is generated in an atmosphere containing a plasma generation gas, and a negative high voltage pulse is applied to a layer into which ions are implanted, whereby ions (positive ions) in the plasma are It can be performed by implanting into the surface portion of the layer into which ions are implanted.

イオン注入層が形成される部分の厚みは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、イオンが注入される層の厚み、成形体の使用目的等に応じて決定すればよいが、通常、10〜1000nmである。   The thickness of the portion where the ion-implanted layer is formed can be controlled by the implantation conditions such as the type of ion, applied voltage, treatment time, etc. Although it should just determine, it is 10-1000 nm normally.

イオンが注入されたことは、X線光電子分光分析(XPS)を用いて、表面から10nm付近の元素分析測定を行うことによって確認することができる。   The ion implantation can be confirmed by performing an elemental analysis measurement in the vicinity of 10 nm from the surface using X-ray photoelectron spectroscopy (XPS).

以上のようにして得られるイオン注入層は、水蒸気透過率等のガスの透過率が、イオンが注入されていないものに比して格段に小さく、ガスバリア性に優れる。例えば、水蒸気透過率は、40℃、相対湿度90%雰囲気下で、通常1g/m/day以下、好ましくは0.5g/m/day以下、より好ましくは0.1g/m/day以下である。The ion-implanted layer obtained as described above has a gas permeability such as a water vapor permeability that is much smaller than that in which ions are not implanted, and is excellent in gas barrier properties. For example, the water vapor transmission rate is usually 1 g / m 2 / day or less, preferably 0.5 g / m 2 / day or less, more preferably 0.1 g / m 2 / day in an atmosphere of 40 ° C. and 90% relative humidity. It is as follows.

本発明の成形体の形状は、特に制限されず、例えば、フィルム状、シート状、直方体状、多角柱状、筒状等が挙げられる。後述するごとき電子デバイス用部材として用いる場合には、フィルム状、シート状であることが好ましい。該フィルムの厚みは、目的とする電子デバイスの用途によって適宜決定することができる。   The shape of the molded body of the present invention is not particularly limited, and examples thereof include a film shape, a sheet shape, a rectangular parallelepiped shape, a polygonal column shape, and a cylindrical shape. When used as an electronic device member as described later, it is preferably a film or sheet. The thickness of the film can be appropriately determined depending on the intended use of the electronic device.

本発明の成形体は、イオン注入層のみからなるものであってもよいし、さらに他の層を含むものであってもよい。また、他の層は単層であっても、同種又は異種の2層以上であってもよい。
他の層としては、基材層、無機化合物層、衝撃吸収層、導電体層、プライマー層等が挙げられる。
The molded body of the present invention may be composed only of an ion-implanted layer, or may further include other layers. Further, the other layer may be a single layer or two or more layers of the same type or different types.
Examples of other layers include a base material layer, an inorganic compound layer, a shock absorbing layer, a conductor layer, and a primer layer.

本発明の成形体が他の層を含む積層体である場合、各層の積層順はどのようなものであってもよい。また、イオン注入層の配置位置は特に限定されないが、効率よく製造できること等の理由から、イオン注入層を表面に有するのが好ましい。さらに、イオン注入層は、他の層の片面のみに形成されていても、他の層の両面に形成されていてもよい。   When the molded body of the present invention is a laminate including other layers, the order of lamination of each layer may be any. Moreover, although the arrangement position of the ion implantation layer is not particularly limited, it is preferable to have the ion implantation layer on the surface for the reason that it can be efficiently manufactured. Furthermore, the ion implantation layer may be formed only on one side of the other layer, or may be formed on both sides of the other layer.

また、本発明の成形体が積層体である場合、積層体の厚みは、特に制限されず、目的とする電子デバイスの用途によって適宜決定することができる。   Moreover, when the molded object of this invention is a laminated body, the thickness in particular of a laminated body is not restrict | limited, It can determine suitably with the use of the target electronic device.

(基材層)
基材層の素材は、成形体の目的に合致するものであれば特に制限されず、例えば、
ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
(Base material layer)
The material of the base material layer is not particularly limited as long as it matches the purpose of the molded body, for example,
Polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, aromatic A polymer etc. are mentioned.

これらの中でも、透明性に優れ、汎用性があることから、ポリエステル、ポリアミド又はシクロオレフィン系ポリマーが好ましく、ポリエステル又はシクロオレフィン系ポリマーがより好ましい。   Among these, polyester, polyamide, or cycloolefin polymer is preferable, and polyester or cycloolefin polymer is more preferable because of excellent transparency and versatility.

ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
Examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
Examples of the polyamide include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.

シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。その具体例としては、アペル(三井化学社製のエチレン−シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。   Examples of cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Specific examples thereof include Apel (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), Arton (a norbornene polymer manufactured by JSR), Zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like. .

(無機化合物層)
無機化合物層は、無機化合物の一種又は二種以上からなる層である。無機化合物層を構成する無機化合物としては、一般的に真空成膜可能で、ガスバリア性を有するもの、例えば無機酸化物、無機窒化物、無機炭化物、無機硫化物、これらの複合体である無機酸化窒化物、無機酸化炭化物、無機窒化炭化物、無機酸化窒化炭化物等が挙げられる。本発明においては、これらの中でも、無機酸化物、無機窒化物、無機酸化窒化物が好ましい。
(Inorganic compound layer)
The inorganic compound layer is a layer made of one or more inorganic compounds. The inorganic compound that constitutes the inorganic compound layer is generally capable of vacuum film formation and has a gas barrier property, such as an inorganic oxide, an inorganic nitride, an inorganic carbide, an inorganic sulfide, or a composite of these. Examples thereof include nitrides, inorganic oxide carbides, inorganic nitride carbides, and inorganic oxynitride carbides. In the present invention, among these, inorganic oxides, inorganic nitrides, and inorganic oxynitrides are preferable.

無機酸化物としては、一般式MOxで表される金属酸化物が挙げられる。
式中、Mは金属元素を表す。xはMによってそれぞれ範囲が異なり、例えば、Mがケイ素(Si)であれば0.1〜2.0、アルミニウム(Al)であれば0.1〜1.5、マグネシウム(Mg)であれば0.1〜1.0、カルシウム(Ca)であれば0.1〜1.0、カリウム(K)であれば0.1〜0.5、スズ(Sn)であれば0.1〜2.0、ナトリウム(Na)であれば0.1〜0.5、ホウ素(B)であれば0.1〜1.5、チタン(Ti)であれば0.1〜2.0、鉛(Pb)であれば0.1〜1.0、ジルコニウム(Zr)であれば0.1〜2.0、イットリウム(Y)であれば、0.1〜1.5の範囲の値である。
Examples of the inorganic oxide include metal oxides represented by the general formula MOx.
In the formula, M represents a metal element. x varies depending on M, for example, 0.1 to 2.0 if M is silicon (Si), 0.1 to 1.5 if aluminum (Al), and magnesium (Mg). 0.1 to 1.0 for calcium (Ca), 0.1 to 0.5 for potassium (K), 0.1 to 2 for tin (Sn) 0.0, 0.1 for sodium (Na), 0.1-1.5 for boron (B), 0.1-2.0 for titanium (Ti), lead ( Pb) is 0.1 to 1.0, zirconium (Zr) is 0.1 to 2.0, and yttrium (Y) is 0.1 to 1.5.

これらの中でも、透明性等に優れることから、Mがケイ素であるケイ素酸化物、アルミニウムであるアルミニウム酸化物、チタンであるチタン酸化物が好ましく、ケイ素酸化物がより好ましい。なお、xの値としては、Mがケイ素であれば1.0〜2.0が、アルミニウムであれば0.5〜1.5が、チタンであれば1.3〜2.0の範囲のものが好ましい。   Among these, since it is excellent in transparency etc., the silicon oxide whose M is silicon, the aluminum oxide which is aluminum, and the titanium oxide which is titanium are preferable, and a silicon oxide is more preferable. The value of x ranges from 1.0 to 2.0 if M is silicon, 0.5 to 1.5 if aluminum, and 1.3 to 2.0 if titanium. Those are preferred.

無機窒化物としては、一般式MNyで表される金属窒化物が挙げられる。
式中、Mは金属元素を表す。yはMによってそれぞれ範囲が異なり、Mがケイ素(Si)であればy=0.1〜1.3、アルミニウム(Al)であればy=0.1〜1.1、チタン(Ti)であればy=0.1〜1.3、すず(Sn)であればy=0.1〜1.3の範囲の値である。
Examples of the inorganic nitride include metal nitrides represented by the general formula MNy.
In the formula, M represents a metal element. The range of y varies depending on M. If M is silicon (Si), y = 0.1 to 1.3, if aluminum (Al), y = 0.1 to 1.1, and titanium (Ti). If present, y = 0.1 to 1.3, and if tin (Sn), the value is in the range of y = 0.1 to 1.3.

これらの中でも、透明性等に優れることから、Mがケイ素であるケイ素窒化物、アルミニウムであるアルミニウム窒化物、チタンであるチタン窒化物、スズであるスズ窒化物が好ましく、ケイ素窒化物(SiN)がより好ましい。なお、yの値としては、Mがケイ素であればy=0.5〜1.3、アルミニウムであればy=0.3〜1.0、チタンであればy=0.5〜1.3、スズであればy=0.5〜1.3の範囲のものが好ましい。   Among these, because of excellent transparency and the like, silicon nitride in which M is silicon, aluminum nitride as aluminum, titanium nitride as titanium, and tin nitride as tin are preferable, and silicon nitride (SiN) Is more preferable. In addition, as a value of y, if M is silicon, y = 0.5 to 1.3, if aluminum, y = 0.3 to 1.0, and if titanium, y = 0.5 to 1. If it is 3, tin, the thing of the range of y = 0.5-1.3 is preferable.

無機酸化窒化物としては、一般式MOxNyで表される金属酸化窒化物が挙げられる。
式中、Mは金属元素を表す。x及びyの値は、Mによってそれぞれ範囲が異なる。すなわち、x、yは、例えば、Mがケイ素(Si)であればx=1.0〜2.0、y=0.1〜1.3、アルミニウム(Al)であればx=0.5〜1.0、y=0.1〜1.0、マグネシウム(Mg)であればx=0.1〜1.0、y=0.1〜0.6、カルシウム(Ca)であればx=0.1〜1.0、y=0.1〜0.5、カリウム(K)であればx=0.1〜0.5、y=0.1〜0.2、スズ(Sn)であればx=0.1〜2.0、y=0.1〜1.3、ナトリウム(Na)であればx=0.1〜0.5、y=0.1〜0.2、ホウ素(B)であればx=0.1〜1.0、y=0.1〜0.5、チタン(Ti)であればx=0.1〜2.0、y=0.1〜1.3、鉛(Pb)であればx=0.1〜1.0、y=0.1〜0.5、ジルコニウム(Zr)であればx=0.1〜2.0、y=0.1〜1.0、イットリウム(Y)であればx=0.1〜1.5、y=0.1〜1.0の範囲の値である。
Examples of inorganic oxynitrides include metal oxynitrides represented by the general formula MOxNy.
In the formula, M represents a metal element. The ranges of x and y values differ depending on M. That is, x and y are, for example, x = 1.0 to 2.0, y = 0.1 to 1.3 if M is silicon (Si), and x = 0.5 if aluminum (Al). -1.0, y = 0.1-1.0, if magnesium (Mg), x = 0.1-1.0, y = 0.1-0.6, if calcium (Ca), x = 0.1 to 1.0, y = 0.1 to 0.5, if potassium (K), x = 0.1 to 0.5, y = 0.1 to 0.2, tin (Sn) X = 0.1 to 2.0, y = 0.1 to 1.3, and sodium (Na) x = 0.1 to 0.5, y = 0.1 to 0.2, For boron (B), x = 0.1 to 1.0, y = 0.1 to 0.5, and for titanium (Ti), x = 0.1 to 2.0, y = 0.1 1.3, if lead (Pb), x = 0.1 to 1.0, y = 0.1 to 0.5, di In case of konium (Zr), x = 0.1 to 2.0, y = 0.1 to 1.0, and in case of yttrium (Y), x = 0.1 to 1.5, y = 0.1 The value is in the range of 1.0.

これらの中でも、透明性等に優れることから、Mがケイ素であるケイ素酸化窒化物、アルミニウムであるアルミニウム酸化窒化物、チタンであるチタン酸化窒化物が好ましく、ケイ素酸化窒化物がより好ましい。なお、x及びyの値としては、Mがケイ素であればx=1.0〜2.0、y=0.1〜1.3、アルミニウムであればx=0.5〜1.0、y=0.1〜1.0、チタンであればx=1.0〜2.0、y=0.1〜1.3の範囲のものが好ましい。
なお、金属酸化物、金属窒化物及び金属酸化窒化物には、2種類以上の金属が含まれていても良い。
Among these, since it is excellent in transparency and the like, silicon oxynitride where M is silicon, aluminum oxynitride which is aluminum, and titanium oxynitride which is titanium are preferable, and silicon oxynitride is more preferable. As values of x and y, if M is silicon, x = 1.0 to 2.0, y = 0.1 to 1.3, and if aluminum, x = 0.5 to 1.0, If y = 0.1 to 1.0 and titanium, x = 1.0 to 2.0 and y = 0.1 to 1.3 are preferable.
Note that the metal oxide, the metal nitride, and the metal oxynitride may contain two or more kinds of metals.

無機化合物層の形成方法としては特に制限はなく、例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法、ダイナミックイオンミキシング法等が挙げられる。なかでも、本発明においては、簡便にガスバリア性に優れた積層体が得られることから、マグネトロンスパッタリング法が好ましい。   There is no restriction | limiting in particular as a formation method of an inorganic compound layer, For example, a vapor deposition method, sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, a dynamic ion mixing method etc. are mentioned. Among these, in the present invention, a magnetron sputtering method is preferable because a laminate having an excellent gas barrier property can be easily obtained.

無機化合物層の厚さは、特に限定されないが、ガスバリア性が得られる観点から、10〜1000nmであることが好ましく、20〜500nmであることがより好ましく、50〜200nmであることが特に好ましい。   The thickness of the inorganic compound layer is not particularly limited, but is preferably 10 to 1000 nm, more preferably 20 to 500 nm, and particularly preferably 50 to 200 nm from the viewpoint of obtaining gas barrier properties.

(衝撃吸収層)
衝撃吸収層は、成形体に衝撃が加わった時に、割れを防止するためのものである。衝撃吸収層を形成する素材としては、特に限定されないが、例えば、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、オレフィン系樹脂、ゴム系材料等を用いることができる。これらの中でも、アクリル系樹脂、シリコーン系樹脂、ゴム系材料が好ましい。
(Shock absorbing layer)
The impact absorbing layer is for preventing cracking when an impact is applied to the molded body. Although it does not specifically limit as a raw material which forms a shock absorption layer, For example, acrylic resin, urethane type resin, silicone type resin, olefin type resin, rubber-type material etc. can be used. Among these, acrylic resins, silicone resins, and rubber materials are preferable.

アクリル系樹脂としては、前記イオン注入層の形成に用いるアクリル系樹脂として例示したのと同様のものが挙げられる。   Examples of the acrylic resin include those exemplified as the acrylic resin used for forming the ion implantation layer.

シリコーン系樹脂としては、ジメチルシロキサンを主成分とするものが挙げられる。
ゴム系材料としては、イソプレンゴム、スチレン−ブタジエンゴム、ポリイソブチレンゴム、スチレン−ブタジエン−スチレンゴム等を主成分とするものが挙げられる。
Examples of the silicone resin include those containing dimethylsiloxane as a main component.
Examples of the rubber-based material include those mainly composed of isoprene rubber, styrene-butadiene rubber, polyisobutylene rubber, styrene-butadiene-styrene rubber and the like.

衝撃吸収層には、各種添加剤、例えば、酸化防止剤、粘着付与剤、可塑剤、紫外線吸収剤、着色剤、帯電防止剤等の他の成分を含んでいてもよい。   The shock absorbing layer may contain other additives such as an antioxidant, a tackifier, a plasticizer, an ultraviolet absorber, a colorant, and an antistatic agent.

衝撃吸収層を形成する素材は、粘着剤、コート剤、封止剤等として市販されているものを使用することもでき、特に、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等の粘着剤が好ましい。   The material for forming the shock absorbing layer may be a commercially available material such as an adhesive, a coating agent, and a sealant, and in particular, an acrylic adhesive, a silicone adhesive, a rubber adhesive, etc. An adhesive is preferred.

衝撃吸収層の形成方法としては特に制限はなく、例えば、前記ポリオルガノシロキサン系化合物を含む層の形成方法と同様に、前記衝撃吸収層を形成する素材(粘着剤等)、及び、所望により、溶剤等の他の成分を含む衝撃吸収層形成溶液を、積層すべき層上に塗布し、得られた塗膜を乾燥し、必要に応じて加熱等して形成する方法が挙げられる。
また、別途、剥離基材上に衝撃吸収層を成膜し、得られた膜を、積層すべき層上に転写して積層してもよい。
衝撃吸収層の厚みは、通常1〜100μm、好ましくは5〜50μmである。
The method for forming the shock absorbing layer is not particularly limited. For example, as in the method for forming the layer containing the polyorganosiloxane compound, the material for forming the shock absorbing layer (such as an adhesive), and if desired, Examples include a method in which an impact absorbing layer forming solution containing other components such as a solvent is applied onto a layer to be laminated, and the resulting coating film is dried and heated as necessary.
Alternatively, a shock absorbing layer may be separately formed on the release substrate, and the obtained film may be transferred and stacked on the layer to be stacked.
The thickness of the shock absorbing layer is usually 1 to 100 μm, preferably 5 to 50 μm.

(導電体層)
導電体層を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。具体的には、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。導電体層は、これらの材料からなる層が複数積層されてなる積層体であってもよい。
これらの中でも、透明性の点から、導電性金属酸化物が好ましく、ITOが特に好ましい。
(Conductor layer)
Examples of the material constituting the conductor layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specifically, tin oxide (ATO) doped with antimony; tin oxide (FTO) doped with fluorine; conductive such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO) Metal such as gold, silver, chromium and nickel; mixtures of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; organic conductive materials such as polyaniline, polythiophene and polypyrrole Material, etc. The conductor layer may be a laminate in which a plurality of layers made of these materials are laminated.
Among these, a conductive metal oxide is preferable from the viewpoint of transparency, and ITO is particularly preferable.

導電体層の形成方法としては、例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。これらの中でも、簡便に導電体層が形成できることから、スパッタリング法が好ましい。   Examples of the method for forming the conductor layer include a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, and the like. Among these, the sputtering method is preferable because the conductor layer can be easily formed.

スパッタリング法は、真空槽内に放電ガス(アルゴン等)を導入し、ターゲットと基板との間に高周波電圧あるいは直流電圧を加えて放電ガスをプラズマ化し、該プラズマをターゲットに衝突させることでターゲット材料を飛ばし、基板に付着させて薄膜を得る方法である。ターゲットとしては、前記導電体層を形成する材料からなるものが使用される。   The sputtering method introduces a discharge gas (such as argon) into a vacuum chamber, applies a high-frequency voltage or a direct current voltage between the target and the substrate to turn the discharge gas into plasma, and collides the plasma with the target material. This is a method of obtaining a thin film by skipping and attaching to a substrate. As the target, a target made of a material for forming the conductor layer is used.

導電体層の厚さはその用途等に応じて適宜選択すればよい。通常10nm〜50μm、好ましくは20nm〜20μmである。
得られる導電体層の表面抵抗率は、通常1000Ω/□以下である。
What is necessary is just to select the thickness of a conductor layer suitably according to the use. The thickness is usually 10 nm to 50 μm, preferably 20 nm to 20 μm.
The surface resistivity of the obtained conductor layer is usually 1000Ω / □ or less.

形成された導電体層には、必要に応じてパターニングを行ってもよい。パターニングする方法としては、フォトリソグラフィー等による化学的エッチング、レーザ等を用いた物理的エッチング等、マスクを用いた真空蒸着法やスパッタリング法、リフトオフ法、印刷法等が挙げられる。   The formed conductor layer may be patterned as necessary. Examples of the patterning method include chemical etching by photolithography and the like, physical etching using a laser and the like, vacuum deposition method using a mask, sputtering method, lift-off method, printing method, and the like.

(プライマー層)
プライマー層は、層間密着性を高める役割を果たす。プライマー層を設けることにより、層間密着性及び表面平滑性に極めて優れる成形体を得ることができる。
(Primer layer)
The primer layer plays a role of improving interlayer adhesion. By providing the primer layer, it is possible to obtain a molded article having extremely excellent interlayer adhesion and surface smoothness.

プライマー層を構成する材料としては、特に限定されず、公知のものが使用できる。例えば、ケイ素含有化合物;光重合性モノマー及び/又は光重合性プレポリマーからなる光重合性化合物、及び少なくとも可視光域の光でラジカルを発生する重合開始剤を含む光重合性組成物;ポリエステル系樹脂、ポリウレタン系樹脂(特にポリアクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等とイソシアネート化合物との2液硬化型樹脂)、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル/酢酸ビニル共重合体、ポリビニルブチラール系樹脂、ニトロセルロース系樹脂等の樹脂類;アルキルチタネート;エチレンイミン;等が挙げられる。これらの材料は一種単独で、あるいは二種以上を組み合わせて用いることができる。   It does not specifically limit as a material which comprises a primer layer, A well-known thing can be used. For example, a photopolymerizable composition comprising a silicon-containing compound; a photopolymerizable compound comprising a photopolymerizable monomer and / or a photopolymerizable prepolymer, and a polymerization initiator that generates radicals at least in the visible light region; Resin, polyurethane resin (especially two-part curable resin of polyacryl polyol, polyester polyol, polyether polyol, etc. and isocyanate compound), acrylic resin, polycarbonate resin, vinyl chloride / vinyl acetate copolymer, polyvinyl butyral Resins such as resins and nitrocellulose resins; alkyl titanates; ethyleneimines; These materials can be used alone or in combination of two or more.

プライマー層は、プライマー層を構成する材料を適当な溶剤に溶解又は分散してなるプライマー層形成用溶液を、プライマー層と隣接する層の片面又は両面に塗付し、得られた塗膜を乾燥させ、所望により加熱することより形成することができる。   For the primer layer, a primer layer forming solution obtained by dissolving or dispersing the material constituting the primer layer in an appropriate solvent is applied to one or both sides of the layer adjacent to the primer layer, and the resulting coating film is dried. And can be formed by heating as desired.

プライマー層形成用溶液をプライマー層と隣接する層の片面又は両面に塗付する方法としては、通常の湿式コーティング方法を用いることができる。例えばディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。   As a method of applying the primer layer forming solution to one side or both sides of the layer adjacent to the primer layer, a normal wet coating method can be used. Examples include dipping method, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing method, spray coating, gravure offset method and the like.

プライマー層形成用溶液の塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。プライマー層の厚みは、通常、10〜1000nmである。   As a method for drying the coating film of the primer layer forming solution, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed. The thickness of the primer layer is usually 10 to 1000 nm.

また、得られたプライマー層に、後述する、イオン注入層にイオンを注入する方法と同様な方法によりイオン注入を行ってもよい。プライマー層にもイオン注入を行うことにより、より優れたガスバリア性フィルムを得ることができる。   Moreover, you may ion-implant by the method similar to the method of implanting ion to the ion implantation layer mentioned later to the obtained primer layer. By performing ion implantation also on the primer layer, a more excellent gas barrier film can be obtained.

本発明の成形体は、優れたガスバリア性、透明性を有し、また、その形状がフィルム状又はシート状(以下、「フィルム状」という。)の場合、耐折り曲げ性に優れ、かつ折り曲げ等を行ってもガスバリア性を維持するものが好ましい。   The molded article of the present invention has excellent gas barrier properties and transparency, and when the shape thereof is a film or sheet (hereinafter referred to as “film”), it has excellent bending resistance and is bent. Even if it performs, what maintains gas-barrier property is preferable.

本発明の成形体が優れた透明性を有していることは、本発明の成形体の可視光透過率が高いことから確認することができる。可視光透過率は波長550nmにおける透過率であり、80%以上が好ましい。成形体の可視光透過率は、公知の可視光透過率測定装置を使用して測定することができる。   That the molded article of the present invention has excellent transparency can be confirmed from the high visible light transmittance of the molded article of the present invention. The visible light transmittance is a transmittance at a wavelength of 550 nm and is preferably 80% or more. The visible light transmittance of the molded product can be measured using a known visible light transmittance measuring device.

本発明の成形体が耐折り曲げ性に優れ、折り曲げ等を行ってもガスバリア性を維持できることは、フィルム状の成形体をふたつに折り曲げて圧力をかけ、再び開いたときに折り曲げた部分が劣化しておらず、水蒸気透過率もほとんど低下しないことから確認することができる。本発明のフィルム状の成形体は、同じ厚みの無機膜に比較して、折り曲げ後もガスバリア性を維持することに優れている。   The molded article of the present invention has excellent folding resistance and can maintain gas barrier properties even when folded, etc. The fact that the folded part of the film-like molded article is subjected to pressure by applying two pressures and opened again is deteriorated. It can be confirmed from the fact that the water vapor transmission rate hardly decreases. The film-shaped molded article of the present invention is excellent in maintaining gas barrier properties even after folding, as compared with an inorganic film having the same thickness.

2)成形体の製造方法
本発明の成形体の製造方法は、アクリル系樹脂等含有層を表面部に有する成形物の、前記アクリル系樹脂等含有層に、イオンを注入する工程を有することを特徴とする。
2) Manufacturing method of molded object The manufacturing method of the molded object of this invention has the process of inject | pouring ion into the said acrylic resin content layer of the molding which has an acrylic resin content layer in the surface part. Features.

本発明の成形体の製造方法においては、アクリル系樹脂等含有層を表面部に有する長尺状の成形物を一定方向に搬送しながら、アクリル系樹脂等含有層にイオンを注入させて成形体を製造するのが好ましい。
この製造方法によれば、例えば、長尺状の成形物を巻き出しロールから巻き出し、それを一定方向に搬送しながらイオンを注入し、巻き取りロールで巻き取ることができるので、イオンが注入された成形体を連続的に製造することができる。
In the method for producing a molded body according to the present invention, the molded body is formed by injecting ions into the acrylic resin etc. containing layer while conveying a long shaped product having the acrylic resin etc. containing layer on the surface portion in a certain direction. Is preferably produced.
According to this manufacturing method, for example, a long shaped product is unwound from an unwinding roll, and ions are implanted while being conveyed in a certain direction, and can be wound up by a winding roll. The formed molded body can be continuously produced.

長尺状の成形物の形状はフィルム状であり、アクリル系樹脂等含有層のみからなるものでもよいし、アクリル系樹脂等含有層を表面部に有する、他の層を含む積層体であってもよい。   The shape of the long molded product is a film, may be composed only of a layer containing an acrylic resin or the like, or a laminate including other layers having a layer containing an acrylic resin or the like on the surface portion. Also good.

成形物の厚さは、巻き出し、巻き取り及び搬送の操作性の観点から、0.1μm〜500μmが好ましく、5μm〜300μmがより好ましい。   The thickness of the molded product is preferably 0.1 μm to 500 μm, and more preferably 5 μm to 300 μm, from the viewpoint of operability of unwinding, winding and conveyance.

アクリル系樹脂等含有層に、イオンを注入する方法は、特に限定されない。なかでも、プラズマイオン注入法により前記層の表面部にイオン注入層を形成する方法が好ましい。   The method for implanting ions into the acrylic resin-containing layer is not particularly limited. Among these, a method of forming an ion implantation layer on the surface portion of the layer by plasma ion implantation is preferable.

プラズマイオン注入法は、プラズマ中に曝した、アクリル系樹脂等含有層を表面に有する成形物に、負の高電圧パルスを印加することにより、プラズマ中のイオンを前記層の表面部に注入してイオン注入層を形成する方法である。   In the plasma ion implantation method, a negative high-voltage pulse is applied to a molded article that has been exposed to plasma and has a layer containing an acrylic resin or the like on its surface to inject ions in the plasma into the surface of the layer. This is a method of forming an ion implantation layer.

プラズマイオン注入法としては、(A)外部電界を用いて発生させたプラズマ中に存在するイオンを、前記層の表面部に注入する方法、又は(B)外部電界を用いることなく、前記層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、前記層の表面部に注入する方法が好ましい。   As the plasma ion implantation method, (A) a method in which ions existing in plasma generated using an external electric field are implanted into the surface portion of the layer, or (B) the layer is formed without using an external electric field. A method of injecting ions present in the plasma generated only by the electric field by the negative high voltage pulse to be applied to the surface portion of the layer is preferable.

前記(A)の方法においては、イオンを注入する際の圧力(プラズマイオン注入時の圧力)を0.01〜1Paとすることが好ましい。プラズマイオン注入時の圧力がこのような範囲にあるときに、簡便にかつ効率よく、ガスバリア性等に優れた均一なイオン注入層を形成することができる。   In the method (A), it is preferable that the pressure during ion implantation (pressure during plasma ion implantation) is 0.01 to 1 Pa. When the pressure at the time of plasma ion implantation is in such a range, a uniform ion implantation layer excellent in gas barrier properties and the like can be formed easily and efficiently.

前記(B)の方法は、減圧度を高くする必要がなく、処理操作が簡便であり、処理時間も大幅に短縮することができる。また、前記層全体にわたって均一に処理することができ、負の高電圧パルス印加時にプラズマ中のイオンを高エネルギーで層の表面部に連続的に注入することができる。さらに、radio frequency(高周波、以下、「RF」と略す。)や、マイクロ波等の高周波電力源等の特別の他の手段を要することなく、層に負の高電圧パルスを印加するだけで、層の表面部に良質のイオン注入層を均一に形成することができる。   In the method (B), it is not necessary to increase the degree of reduced pressure, the processing operation is simple, and the processing time can be greatly shortened. Further, the entire layer can be processed uniformly, and ions in the plasma can be continuously injected into the surface portion of the layer with high energy when a negative high voltage pulse is applied. Furthermore, without applying special other means such as radio frequency (hereinafter abbreviated as “RF”) or a high-frequency power source such as a microwave, just applying a negative high voltage pulse to the layer, A high-quality ion-implanted layer can be uniformly formed on the surface of the layer.

前記(A)及び(B)のいずれの方法においても、負の高電圧パルスを印加するとき、すなわちイオンを注入するときのパルス幅は、1〜15μsecであるのが好ましい。パルス幅がこのような範囲にあるときに、透明で均一なイオン注入層をより簡便にかつ効率よく形成することができる。   In any of the methods (A) and (B), the pulse width when applying a negative high voltage pulse, that is, when implanting ions, is preferably 1 to 15 μsec. When the pulse width is in such a range, a transparent and uniform ion implantation layer can be formed more easily and efficiently.

また、プラズマを発生させるときの印加電圧は、好ましくは−1kV〜−50kV、より好ましくは−1kV〜−30kV、特に好ましくは−5kV〜−20kVである。印加電圧が−1kVより大きい値でイオン注入を行うと、イオン注入量(ドーズ量)が不十分となり、所望の性能が得られない。一方、−50kVより小さい値でイオン注入を行うと、イオン注入時に成形体が帯電し、また成形体への着色等の不具合が生じ、好ましくない。   The applied voltage when generating plasma is preferably -1 kV to -50 kV, more preferably -1 kV to -30 kV, and particularly preferably -5 kV to -20 kV. When ion implantation is performed with an applied voltage greater than −1 kV, the ion implantation amount (dose amount) becomes insufficient, and desired performance cannot be obtained. On the other hand, if the ion implantation is performed at a value smaller than −50 kV, the molded body is charged at the time of ion implantation, and problems such as coloring of the molded body occur.

プラズマイオンを生成する原料ガスとしては、前記1)成形体の項で例示したのと同様のものが挙げられる。   Examples of the source gas for generating plasma ions include the same as those exemplified in the section of 1) molded body.

層の表面部にプラズマ中のイオンを注入する際には、プラズマイオン注入装置を用いる。
プラズマイオン注入装置としては、具体的には、(α)イオンが注入される層に負の高電圧パルスを印加するフィードスルーに高周波電力を重畳して、イオンが注入される層の周囲を均等にプラズマで囲み、プラズマ中のイオンを誘引、注入、衝突、堆積させる装置(特開2001-26887号公報)、(β)チャンバー内にアンテナを設け、高周波電力を与えてプラズマを発生させてイオンが注入される層周囲にプラズマが到達後、イオンが注入される層に正と負のパルスを交互に印加することで、正のパルスでプラズマ中の電子を誘引衝突させてイオンが注入される層を加熱し、パルス定数を制御して温度制御を行いつつ、負のパルスを印加してプラズマ中のイオンを誘引、注入させる装置(特開2001−156013号公報)、(γ)マイクロ波等の高周波電力源等の外部電界を用いてプラズマを発生させ、高電圧パルスを印加してプラズマ中のイオンを誘引、注入させるプラズマイオン注入装置、(δ)外部電界を用いることなく高電圧パルスの印加により発生する電界のみで発生するプラズマ中のイオンを注入するプラズマイオン注入装置等が挙げられる。
When ions in plasma are implanted into the surface portion of the layer, a plasma ion implantation apparatus is used.
Specifically, as a plasma ion implantation apparatus, (α) a high-frequency power is superimposed on a feedthrough that applies a negative high voltage pulse to a layer into which ions are implanted, and the periphery of the layer into which ions are implanted is evenly distributed. An apparatus for enclosing, enclosing, and injecting, colliding and depositing ions in plasma (Japanese Patent Laid-Open No. 2001-26887), (β) An antenna is provided in the chamber, and high-frequency power is applied to generate plasma to generate ions After the plasma reaches around the layer where ions are implanted, positive and negative pulses are alternately applied to the layer where ions are implanted, so that the electrons in the plasma are attracted and collided with the positive pulses. An apparatus for attracting and injecting ions in plasma by applying a negative pulse while heating the layer and controlling the temperature by controlling the pulse constant (Japanese Patent Laid-Open No. 2001-156013), (γ) A plasma ion implantation apparatus that generates plasma using an external electric field such as a high-frequency power source such as a microwave and applies a high voltage pulse to attract and inject ions in the plasma. (Δ) High without using an external electric field Examples thereof include a plasma ion implantation apparatus that implants ions in plasma generated only by an electric field generated by application of a voltage pulse.

これらの中でも、処理操作が簡便であり、処理時間も大幅に短縮でき、連続使用に適していることから、(γ)又は(δ)のプラズマイオン注入装置を用いるのが好ましい。
以下、前記(γ)及び(δ)のプラズマイオン注入装置を用いる方法について、図面を参照しながら詳細に説明する。
Among these, it is preferable to use the plasma ion implantation apparatus (γ) or (δ) because the processing operation is simple, the processing time can be greatly shortened, and it is suitable for continuous use.
Hereinafter, a method using the plasma ion implantation apparatuses (γ) and (δ) will be described in detail with reference to the drawings.

図1は、前記(γ)のプラズマイオン注入装置を備える連続的プラズマイオン注入装置の概要を示す図である。
図1(a)において、1aはアクリル系樹脂等含有層を表面部に有する長尺フィルム状の成形物(以下、「フィルム」という。)、11aはチャンバー、20aはターボ分子ポンプ、3aはイオン注入される前のフィルム1aを送り出す巻き出しロール、5aはイオン注入されたフィルム(成形体)1aをロール状に巻き取る巻取りロール、2aは高電圧印加回転キャン、6aはフィルムの送り出しロール、10aはガス導入口、7aは高電圧パルス電源、4aはプラズマ放電用電極(外部電界)である。図1(b)は、前記高電圧印加回転キャン2aの斜視図であり、15は高電圧導入端子(フィードスルー)である。
FIG. 1 is a diagram showing an outline of a continuous plasma ion implantation apparatus including the plasma ion implantation apparatus (γ).
In FIG. 1 (a), 1a is a long film-like molded product (hereinafter referred to as “film”) having an acrylic resin-containing layer on its surface, 11a is a chamber, 20a is a turbo molecular pump, and 3a is an ion. Unwinding roll for feeding out the film 1a before being injected, 5a is a winding roll for winding the ion-implanted film (molded body) 1a into a roll shape, 2a is a high-voltage applied rotation can, 6a is a film feeding roll, 10a is a gas inlet, 7a is a high voltage pulse power supply, and 4a is a plasma discharge electrode (external electric field). FIG. 1B is a perspective view of the high-voltage applying rotation can 2a, and 15 is a high-voltage introduction terminal (feedthrough).

用いるイオンが注入される層を表面部に有する長尺状のフィルム1aは、基材層上に、アクリル系樹脂等含有層を形成したフィルムである。   The long film 1a having a layer into which ions to be used are implanted is a film in which a layer containing an acrylic resin or the like is formed on a base material layer.

図1に示す連続的プラズマイオン注入装置においては、フィルム1aは、チャンバー11a内において、巻き出しロール3aから図1中矢印X方向に搬送され、高電圧印加回転キャン2aを通過して、巻き取りロール5aに巻き取られる。フィルム1aの巻取りの方法や、フィルム1aを搬送する方法等は特に制約はないが、本実施形態においては、高電圧印加回転キャン2aを一定速度で回転させることにより、フィルム1aの搬送を行っている。また、高電圧印加回転キャン2aの回転は、高電圧導入端子15の中心軸13をモーターにより回転させることにより行われる。   In the continuous plasma ion implantation apparatus shown in FIG. 1, the film 1a is transported in the chamber 11a from the unwinding roll 3a in the direction of the arrow X in FIG. It is wound up on a roll 5a. There are no particular restrictions on the method for winding the film 1a, the method for transporting the film 1a, etc. In this embodiment, the film 1a is transported by rotating the high voltage application rotating can 2a at a constant speed. ing. The rotation of the high voltage application rotation can 2a is performed by rotating the central shaft 13 of the high voltage introduction terminal 15 by a motor.

高電圧導入端子15、及びフィルム1aが接触する複数の送り出し用ロール6a等は絶縁体からなり、例えば、アルミナの表面をポリテトラフルオロエチレン等の樹脂で被覆して形成されている。また、高電圧印加回転キャン2aは導体からなり、例えば、ステンレスで形成することができる。   The high voltage introduction terminal 15 and the plurality of delivery rolls 6a with which the film 1a comes into contact are made of an insulator, for example, formed by coating the surface of alumina with a resin such as polytetrafluoroethylene. Moreover, the high voltage application rotation can 2a is made of a conductor, and can be formed of stainless steel, for example.

フィルム1aの搬送速度は適宜設定できる。フィルム1aが巻き出しロール3aから搬送され、巻き取りロール5aに巻き取られるまでの間にフィルム1aの表面部(アクリル系樹脂等含有層)にイオン注入され、所望のイオン注入層が形成されるだけの時間が確保される速度であれば、特に制約されない。フィルムの巻取り速度(搬送速度)は、印加電圧、装置規模等にもよるが、通常0.1〜3m/min、好ましくは0.2〜2.5m/minである。   The conveyance speed of the film 1a can be set as appropriate. The film 1a is transferred from the unwinding roll 3a and is ion-implanted into the surface portion (acrylic resin-containing layer) of the film 1a until the film 1a is wound on the winding roll 5a, thereby forming a desired ion-implanted layer. There is no particular limitation as long as it is a speed at which only time is secured. The film winding speed (conveyance speed) is usually 0.1 to 3 m / min, preferably 0.2 to 2.5 m / min, although it depends on the applied voltage, the apparatus scale, and the like.

まず、チャンバー11a内をロータリーポンプに接続されたターボ分子ポンプ20aにより排気して減圧とする。減圧度は、通常1×10−4Pa〜1Pa、好ましくは1×10−3Pa〜1×10−2Paである。First, the chamber 11a is evacuated by a turbo molecular pump 20a connected to a rotary pump to reduce the pressure. The degree of reduced pressure is usually 1 × 10 −4 Pa to 1 Pa, preferably 1 × 10 −3 Pa to 1 × 10 −2 Pa.

次に、ガス導入口10aよりチャンバー11a内に、イオン注入用のガス(以下、「イオン注入用ガス」ということがある。)を導入して、チャンバー11a内を減圧イオン注入用ガス雰囲気とする。なお、イオン注入用ガスはプラズマ生成ガスでもある。   Next, a gas for ion implantation (hereinafter sometimes referred to as “ion implantation gas”) is introduced into the chamber 11a from the gas inlet 10a, and the inside of the chamber 11a is set to a reduced pressure ion implantation gas atmosphere. . The ion implantation gas is also a plasma generation gas.

次いで、プラズマ放電用電極4(外部電界)によりプラズマを発生させる。プラズマを発生させる方法としては、マイクロ波やRF等の高周波電力源等による公知の方法が挙げられる。   Next, plasma is generated by the plasma discharge electrode 4 (external electric field). As a method for generating plasma, a known method using a high-frequency power source such as a microwave or RF may be used.

一方、高電圧導入端子15を介して高電圧印加回転キャン2aに接続されている高電圧パルス電源7aにより、負の高電圧パルス9aが印加される。高電圧印加回転キャン2aに負の高電圧パルスが印加されると、プラズマ中のイオンが誘因され、高電圧印加回転キャン2aの周囲のフィルムの表面に注入され(図1(a)中、矢印Y)、フィルム状の成形体1bが得られる。   On the other hand, a negative high voltage pulse 9a is applied by a high voltage pulse power source 7a connected to the high voltage application rotation can 2a via a high voltage introduction terminal 15. When a negative high-voltage pulse is applied to the high-voltage application rotation can 2a, ions in the plasma are induced and injected into the surface of the film around the high-voltage application rotation can 2a (in FIG. 1A, the arrow Y) A film-like molded body 1b is obtained.

前述のように、イオンを注入する際の圧力(チャンバー11a内のプラズマガスの圧力)は、0.01〜1Paであるのが好ましく、イオンを注入するときのパルス幅は、1〜15μsecであるのが好ましく、高電圧印加回転キャン2aに負の高電圧を印加する際の印加電圧は、−1kV〜−50kVであるのが好ましい。   As described above, the pressure when implanting ions (the pressure of the plasma gas in the chamber 11a) is preferably 0.01 to 1 Pa, and the pulse width when implanting ions is 1 to 15 μsec. Preferably, the applied voltage when applying a negative high voltage to the high voltage applying rotation can 2a is preferably -1 kV to -50 kV.

次に、図2に示す連続的プラズマイオン注入装置を使用して、アクリル系樹脂等含有層を表面部に有するフィルムの、前記アクリル系樹脂等含有層にイオンを注入する方法を説明する。   Next, a method of implanting ions into the acrylic resin-containing layer of the film having the acrylic resin-containing layer on the surface using the continuous plasma ion implantation apparatus shown in FIG. 2 will be described.

図2に示す装置は、前記(δ)のプラズマイオン注入装置を備える。このプラズマイオン注入装置は、外部電界(すなわち、図1におけるプラズマ放電用電極4)を用いることなく印加する高電圧パルスによる電界のみでプラズマを発生させるものである。   The apparatus shown in FIG. 2 includes the plasma ion implantation apparatus (δ). This plasma ion implantation apparatus generates plasma only by an electric field by a high voltage pulse applied without using an external electric field (that is, plasma discharge electrode 4 in FIG. 1).

図2に示す連続的プラズマイオン注入装置においては、フィルム(フィルム状の成形物)1cは、前記図1の装置と同様に高電圧印加回転キャン2bを回転させることによって巻き出しロール3bから図2中矢印X方向に搬送され、巻き取りロール5bに巻き取られる。   In the continuous plasma ion implantation apparatus shown in FIG. 2, the film (film-like molded product) 1c is removed from the unwinding roll 3b by rotating the high voltage application rotating can 2b in the same manner as the apparatus of FIG. It is conveyed in the direction of the middle arrow X and is taken up by the take-up roll 5b.

図2に示す連続的プラズマイオン注入装置では、前記フィルムのアクリル系樹脂等含有層の表面部へのイオン注入は次のように行われる。   In the continuous plasma ion implantation apparatus shown in FIG. 2, ion implantation into the surface portion of the acrylic resin-containing layer of the film is performed as follows.

まず、図1に示すプラズマイオン注入装置と同様にしてチャンバー11b内にフィルム1cを設置し、チャンバー11b内をロータリーポンプに接続されているターボ分子ポンプ20bにより排気して減圧とする。そこへ、ガス導入口10bよりチャンバー11b内に、イオン注入用ガスを導入して、チャンバー11b内を減圧イオン注入用ガス雰囲気とする。   First, similarly to the plasma ion implantation apparatus shown in FIG. 1, the film 1c is installed in the chamber 11b, and the inside of the chamber 11b is evacuated by the turbo molecular pump 20b connected to the rotary pump to reduce the pressure. Thereto, an ion implantation gas is introduced into the chamber 11b from the gas introduction port 10b, and the inside of the chamber 11b is made a reduced pressure ion implantation gas atmosphere.

イオンを注入する際の圧力(チャンバー11b内のプラズマガスの圧力)は、10Pa以下、好ましくは0.01〜5Pa、より好ましくは0.01〜1Paである。   The pressure at the time of ion implantation (the pressure of the plasma gas in the chamber 11b) is 10 Pa or less, preferably 0.01 to 5 Pa, more preferably 0.01 to 1 Pa.

次に、フィルム1cを、図2中Xの方向に搬送させながら、高電圧導入端子(図示せず)を介して高電圧印加回転キャン2bに接続されている高電圧パルス電源7bから高電圧パルス9bを印加する。   Next, the high voltage pulse power supply 7b connected to the high voltage application rotation can 2b through the high voltage introduction terminal (not shown) is conveyed while the film 1c is conveyed in the direction of X in FIG. Apply 9b.

高電圧印加回転キャン2bに負の高電圧が印加されると、高電圧印加回転キャン2bの周囲のフィルム1cに沿ってプラズマが発生し、そのプラズマ中のイオンが誘因され、高電圧印加回転キャン2bの周囲の成形体フィルム1cの表面に注入される(図2中、矢印Y)。フィルム1cのアクリル系樹脂等含有層の表面部にイオンが注入されると、フィルム表面部にイオン注入層が形成され、フィルム状の成形体1dが得られる。   When a negative high voltage is applied to the high-voltage application rotation can 2b, plasma is generated along the film 1c around the high-voltage application rotation can 2b, and ions in the plasma are induced, and the high-voltage application rotation can 2b is induced. It is injected into the surface of the molded product film 1c around 2b (arrow Y in FIG. 2). When ions are implanted into the surface portion of the acrylic resin-containing layer of the film 1c, an ion-implanted layer is formed on the film surface portion, and a film-like molded body 1d is obtained.

高電圧印加回転キャン2bに負の高電圧を印加する際の印加電圧、パルス幅及びイオンを注入する際の圧力は、図1に示す連続的プラズマイオン注入装置の場合と同様である。   The applied voltage when applying a negative high voltage to the high-voltage applying rotation can 2b, the pulse width, and the pressure when implanting ions are the same as those in the continuous plasma ion implantation apparatus shown in FIG.

図2に示すプラズマイオン注入装置では、プラズマを発生させるプラズマ発生手段を高電圧パルス電源によって兼用しているため、RFやマイクロ波等の高周波電力源等の特別の他の手段を要することなく、負の高電圧パルスを印加するだけで、プラズマを発生させ、フィルムのアクリル系樹脂等含有層の表面部にプラズマ中のイオンを注入し、イオン注入層を連続的に形成し、フィルムの表面部にイオン注入層が形成された成形体を量産することができる。   In the plasma ion implantation apparatus shown in FIG. 2, since the plasma generating means for generating plasma is also used by the high voltage pulse power source, no special other means such as a high frequency power source such as RF or microwave is required. By simply applying a negative high voltage pulse, plasma is generated, ions in the plasma are implanted into the surface portion of the acrylic resin-containing layer of the film, and an ion-implanted layer is formed continuously, and the surface portion of the film In addition, it is possible to mass-produce molded bodies in which an ion-implanted layer is formed.

3)電子デバイス用部材及び電子デバイス
本発明の電子デバイス用部材は、本発明の成形体からなることを特徴とする。従って、本発明の電子デバイス用部材は、優れたガスバリア性を有しているので、水蒸気等のガスによる素子の劣化を防ぐことができる。また、光の透過性が高いので、液晶ディスプレイ、ELディスプレイ等のディスプレイ部材;太陽電池用バックシート;等として好適である。
3) Electronic device member and electronic device The electronic device member of the present invention is characterized by comprising the molded article of the present invention. Therefore, since the electronic device member of the present invention has excellent gas barrier properties, it is possible to prevent deterioration of the element due to gas such as water vapor. Moreover, since the light transmittance is high, it is suitable as a display member such as a liquid crystal display or an EL display;

本発明の電子デバイスは、本発明の電子デバイス用部材を備える。具体例としては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
本発明の電子デバイスは、本発明の成形体からなる電子デバイス用部材を備えているので、優れたガスバリア性と透明性を有する。
The electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery.
Since the electronic device of the present invention includes the electronic device member comprising the molded article of the present invention, it has excellent gas barrier properties and transparency.

以下、実施例を挙げて本発明をさらに詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
なお、以下において、PMMAはメタアクリル酸メチルの単独重合体であるポリメチルメタクリレートのことである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
In the following, PMMA refers to polymethyl methacrylate which is a homopolymer of methyl methacrylate.

用いたプラズマイオン注入装置、水蒸気透過率測定装置と測定条件、可視光透過率測定装置、及び折り曲げ試験の方法及びXPSによるガスバリア層の表層部の元素分析の測定装置は以下の通りである。なお、用いたプラズマイオン注入装置は外部電界を用いてイオンを注入する装置である。   The plasma ion implantation apparatus, the water vapor transmission rate measurement apparatus and measurement conditions, the visible light transmission measurement apparatus, the bending test method, and the measurement apparatus for elemental analysis of the surface layer portion of the gas barrier layer by XPS are as follows. The plasma ion implantation apparatus used is an apparatus for implanting ions using an external electric field.

(XPSによる元素分析)
ガスバリア層表層部における原子の存在割合の測定は、X線光電子分光分析装置(XPS:X−ray Photoelectron Spectroscopy)を使用して下記に示す測定条件で行った。
測定装置:「PHI Quantera SXM」アルバックファイ社製
X線源:AlKα
X線ビーム径:100μm
電力値:25W
電圧:15kV
取り出し角度:45°
真空度:5.0×10−8Pa
(Elemental analysis by XPS)
The measurement of the abundance ratio of atoms in the surface part of the gas barrier layer was carried out under the following measurement conditions using an X-ray photoelectron spectroscopy analyzer (XPS: X-ray Photoelectron Spectroscopy).
Measuring device: “PHI Quantera SXM” ULVAC-PHI X-ray source: AlKα
X-ray beam diameter: 100 μm
Electric power value: 25W
Voltage: 15kV
Extraction angle: 45 °
Degree of vacuum: 5.0 × 10 −8 Pa

(プラズマイオン注入装置)
RF電源:日本電子社製、型番号「RF」56000
高電圧パルス電源:栗田製作所社製、「PV−3−HSHV−0835」
(Plasma ion implantation system)
RF power source: JEOL Ltd., model number “RF” 56000
High-voltage pulse power supply: “PV-3-HSHV-0835” manufactured by Kurita Manufacturing Co., Ltd.

(水蒸気透過率の測定)
ガス透過率測定装置:水蒸気透過率が0.01g/m2/day以上のとき、LYSSY社製、「L89−500」を用い、水蒸気透過率が0.01g/m2/day未満のとき、TECHNOLOX社製、「deltaperm」を用いた。
測定条件:相対湿度90%、40℃
(Measurement of water vapor transmission rate)
Gas permeability measuring device: When the water vapor permeability is 0.01 g / m 2 / day or more, “L89-500” manufactured by LYSSY is used, and when the water vapor permeability is less than 0.01 g / m 2 / day, “Deltaperm” manufactured by TECHNOLOX was used.
Measurement conditions: 90% relative humidity, 40 ° C

(可視光線透過率、ヘイズの測定)
可視光透過率測定装置:島津製作所社製、「UV−3101PC」
測定波長:550nm
(Measurement of visible light transmittance and haze)
Visible light transmittance measuring device: “UV-3101PC” manufactured by Shimadzu Corporation
Measurement wavelength: 550 nm

(折り曲げ試験)
得られた成形体のイオン注入面(比較例1はペルヒドロポリシラザンを含む層側、比較例4は窒化ケイ素膜側)を外側にし、中央部分で半分に折り曲げてラミネーター(フジプラ社製、「LAMIPACKER LPC1502」)の2本のロール間を、ラミネート速度5m/min、温度23℃の条件で通した後、折り曲げた部分を顕微鏡で観察(100倍)してクラック発生の有無を観察した。クラックの発生が認められなかった場合を「なし」、クラックの発生が認められた場合を「あり」と評価した。
また、折り曲げ試験前後の水蒸気透過率を測定した。
(Bending test)
An ion-implanted surface of the obtained molded body (Comparative Example 1 is a layer containing perhydropolysilazane, Comparative Example 4 is a silicon nitride film side) is outside, and is bent in half at a central portion to obtain a laminator (manufactured by Fuji Plastics, “LAMIPACKER After passing between two rolls of LPC1502 ") under the conditions of a laminating speed of 5 m / min and a temperature of 23 ° C, the bent portion was observed with a microscope (100 times) to observe the presence or absence of cracks. The case where crack generation was not recognized was evaluated as “none”, and the case where crack generation was observed was evaluated as “present”.
Moreover, the water vapor transmission rate before and after the bending test was measured.

(塗工液安定性の確認)
ペルヒドロポリシラザンと樹脂を含む混合液につき、混合後6時間以内にゲル化して製膜不可能な場合を安定性「不良」、ゲル化せず製膜可能な場合を安定性「良好」と評価した。
(Confirmation of coating solution stability)
For a mixed solution containing perhydropolysilazane and a resin, if the film cannot be formed due to gelation within 6 hours after mixing, the stability is evaluated as “bad”, and if the film can be formed without gelation, the stability is evaluated as “good”. did.

(実施例1)
基材層としてのポリエチレンテレフタレートフィルム(三菱樹脂社製、「PET38 T−100」、厚さ38μm、以下、「PETフィルム」という。)に、ポリシラザン化合物としてのペルヒドロポリシラザンを主成分とするコーティング剤(クラリアントジャパン社製、「アクアミカNL110−20」)と、アクリル系樹脂としてのPMMA(Aldrich社製、Mw=120,000)のジオキサン溶液との混合液を塗布し、120℃で2分間加熱してPETフィルム上にペルヒドロポリシラザンとPMMAを含む厚さ150nm(膜厚)の層を形成して成形物を得た。
PMMAの添加量は全固形分(ポリシラザン化合物とアクリル系樹脂の合計量)を100質量%として、0.1質量%〔PMMA:ペルヒドロポリシラザン=0.1:99.9(質量比)〕とした。
次に、前記成形物のペルヒドロポリシラザンとPMMAを含む層の表面に、図1に示すプラズマイオン注入装置を用いて、アルゴン(Ar)を以下に示す条件にてプラズマイオン注入して成形体1を作製した。
Example 1
A coating agent mainly composed of perhydropolysilazane as a polysilazane compound on a polyethylene terephthalate film (“PET38 T-100”, thickness 38 μm, hereinafter referred to as “PET film”, manufactured by Mitsubishi Plastics) as a base material layer (Clariant Japan, "Aquamica NL110-20") and a mixed solution of PMMA (Aldrich, Mw = 120,000) dioxane solution as an acrylic resin is applied and heated at 120 ° C for 2 minutes. Then, a 150 nm (thickness) layer containing perhydropolysilazane and PMMA was formed on the PET film to obtain a molded product.
The amount of PMMA added is 0.1% by mass (PMMA: perhydropolysilazane = 0.1: 99.9 (mass ratio)), where the total solid content (total amount of polysilazane compound and acrylic resin) is 100% by mass. did.
Next, using the plasma ion implantation apparatus shown in FIG. 1, argon (Ar) is plasma-implanted on the surface of the layer containing perhydropolysilazane and PMMA of the molded product under the conditions shown below. Was made.

〈プラズマイオン注入の条件〉
・プラズマ生成ガス:アルゴン
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:−10kV
・RF電源:周波数 13.56MHz、印加電力 1000W
・チャンバー内圧:0.2Pa
・パルス幅:5μsec
・処理時間(イオン注入時間):5分間
・搬送速度:0.2m/分
<Conditions for plasma ion implantation>
-Plasma generation gas: Argon-Gas flow rate: 100 sccm
・ Duty ratio: 0.5%
・ Repetition frequency: 1000Hz
-Applied voltage: -10 kV
-RF power supply: frequency 13.56 MHz, applied power 1000 W
-Chamber internal pressure: 0.2 Pa
・ Pulse width: 5μsec
・ Processing time (ion implantation time): 5 minutes ・ Conveying speed: 0.2 m / min

(実施例2)
実施例1において、PMMAの添加量を、全固形分の0.1質量%ではなく1質量%〔PMMA:ペルヒドロポリシラザン=1:99(質量比)〕とした以外は、実施例1と同様にして成形体2を作製した。
(Example 2)
Example 1 is the same as Example 1 except that the amount of PMMA added is 1% by mass instead of 0.1% by mass of the total solid content [PMMA: perhydropolysilazane = 1: 99 (mass ratio)]. Thus, a molded body 2 was produced.

(実施例3)
実施例1において、PMMAの添加量を、全固形分の0.1質量%ではなく10質量%〔PMMA:ペルヒドロポリシラザン=10:90(質量比)〕とした以外は、実施例1と同様にして成形体3を作製した。
(Example 3)
Example 1 is the same as Example 1 except that the amount of PMMA added is 10% by mass instead of 0.1% by mass of the total solid content [PMMA: perhydropolysilazane = 10: 90 (mass ratio)]. Thus, a molded body 3 was produced.

(実施例4)
実施例1において、PMMAの添加量を、全固形分の0.1質量%ではなく30質量%〔PMMA:ペルヒドロポリシラザン=30:70(質量比)〕とした以外は、実施例1と同様にして成形体4を作製した。
Example 4
Example 1 was the same as Example 1 except that the amount of PMMA added was 30% by mass instead of 0.1% by mass of the total solid content [PMMA: perhydropolysilazane = 30: 70 (mass ratio)]. Thus, a molded body 4 was produced.

(実施例5)
実施例1において、PMMAの添加量を、全固形分の0.1質量%ではなく40質量%〔PMMA:ペルヒドロポリシラザン=40:60(質量比)〕とした以外は、実施例1と同様にして成形体5を作製した。
(Example 5)
Example 1 was the same as Example 1 except that the amount of PMMA added was 40% by mass (PMMA: perhydropolysilazane = 40: 60 (mass ratio)) instead of 0.1% by mass of the total solid content. Thus, a molded body 5 was produced.

(実施例6)
実施例1において、PMMAの添加量を、全固形分の0.1質量%ではなく50質量%〔PMMA:ペルヒドロポリシラザン=50:50(質量比)〕とした以外は、実施例1と同様にして成形体6を作製した。
(Example 6)
Example 1 was the same as Example 1 except that the amount of PMMA added was 50% by mass (PMMA: perhydropolysilazane = 50: 50 (mass ratio)) instead of 0.1% by mass of the total solid content. Thus, a molded body 6 was produced.

(実施例7)
実施例1において、PMMAの添加量を、全固形分の0.1質量%ではなく60質量%〔PMMA:ペルヒドロポリシラザン=60:40(質量比)〕とした以外は、実施例1と同様にして成形体7を作製した。
(Example 7)
Example 1 was the same as Example 1 except that the amount of PMMA added was 60% by mass (PMMA: perhydropolysilazane = 60: 40 (mass ratio)) instead of 0.1% by mass of the total solid content. Thus, a molded body 7 was produced.

(実施例8)
実施例1において、PMMAの添加量を、全固形分の0.1質量%ではなく70質量%〔PMMA:ペルヒドロポリシラザン=70:30(質量比)〕とした以外は、実施例1と同様にして成形体8を作製した。
(Example 8)
Example 1 was the same as Example 1 except that the amount of PMMA added was 70% by mass (PMMA: perhydropolysilazane = 70: 30 (mass ratio)) instead of 0.1% by mass of the total solid content. Thus, a molded body 8 was produced.

(実施例9)
実施例6において、PMMAの替わりにポリメタクリル酸イソブチル(Aldrich社製、Mw=130,000)を使用する以外は、実施例6と同様にして成形体17を作製した。
Example 9
In Example 6, a molded body 17 was produced in the same manner as in Example 6 except that polybutyl methacrylate (Aldrich, Mw = 130,000) was used instead of PMMA.

(実施例10)
実施例6において、PMMAの替わりにポリメタクリル酸シクロヘキシル(Aldrich社製、Mw=65,000)を使用する以外は、実施例6と同様にして成形体18を作製した。
(Example 10)
In Example 6, a molded body 18 was produced in the same manner as in Example 6 except that polycyclohexyl methacrylate (manufactured by Aldrich, Mw = 65,000) was used instead of PMMA.

(比較例1)
イオン注入を行わない以外は、実施例6と同様にして成形体を作製した。すなわち、PETフィルム上にペルヒドロポリシラザンとPMMAを含む層を形成し、このものを成形体9とした。
(Comparative Example 1)
A molded body was produced in the same manner as in Example 6 except that ion implantation was not performed. That is, a layer containing perhydropolysilazane and PMMA was formed on a PET film, and this was used as a molded body 9.

(比較例2)
実施例1において、ペルヒドロポリシラザンを使用しない以外は、実施例1と同様にして成形体を作製した。すなわち、PMMAの添加量を、全固形分の0.1質量%ではなく100質量%〔PMMA:ペルヒドロポリシラザン=100:0(質量比)〕とした以外は、実施例1と同様にして成形体10を作製した。
(Comparative Example 2)
A molded body was produced in the same manner as in Example 1 except that perhydropolysilazane was not used in Example 1. That is, molding was carried out in the same manner as in Example 1 except that the amount of PMMA added was 100% by mass instead of 0.1% by mass of the total solids [PMMA: perhydropolysilazane = 100: 0 (mass ratio)]. A body 10 was produced.

(比較例3)
PETフィルム上に、ペルヒドロポリシラザンとPMMAとを含む層を形成しない以外は、実施例1と同様にして成形体を作製した。すなわち、PETフィルムの表面にアルゴン(Ar)を実施例1と同様の条件にてプラズマイオン注入して成形体11を作製した。
(Comparative Example 3)
A molded body was produced in the same manner as in Example 1 except that a layer containing perhydropolysilazane and PMMA was not formed on the PET film. That is, argon (Ar) was ion-implanted into the surface of the PET film under the same conditions as in Example 1 to produce a molded body 11.

(比較例4)
PETフィルムに、スパッタリング法により、厚さ60nmの窒化ケイ素(SiN)の膜を形成して、成形体12を作製した。
(Comparative Example 4)
A molded body 12 was produced by forming a silicon nitride (SiN) film having a thickness of 60 nm on a PET film by a sputtering method.

(比較例5)
実施例6において、PMMAの替わりにポリウレタン(樹脂A:DIC社製、パンデックスT5265M)を使用する以外は、実施例6と同様にして成形体13を作製した。
(Comparative Example 5)
In Example 6, a molded body 13 was produced in the same manner as in Example 6 except that polyurethane (resin A: manufactured by DIC, Pandex T5265M) was used instead of PMMA.

(比較例6)
実施例6において、PMMAの替わりにポリエチレン(樹脂B:日本ポリエチレン社製、カーネルKJ640T)を使用する以外は、実施例6と同様にして成形体14を作製した。
(Comparative Example 6)
A molded body 14 was produced in the same manner as in Example 6 except that polyethylene (resin B: manufactured by Nippon Polyethylene Co., Ltd., kernel KJ640T) was used instead of PMMA.

(比較例7)
実施例6において、PMMAの替わりにポリカーボネート(樹脂C:Aldrich社製)を使用する以外は、実施例6と同様にして成形体15を作製した。
(Comparative Example 7)
In Example 6, a molded body 15 was produced in the same manner as in Example 6 except that polycarbonate (resin C: manufactured by Aldrich) was used instead of PMMA.

(参考例1)
実施例1において、PMMAを使用しない以外は、実施例1と同様にして成形体を作製した。すなわち、PMMAの添加量を、全固形分の0.1質量%ではなく0質量%〔PMMA:ペルヒドロポリシラザン=0:100(質量比)〕とした以外は、実施例1と同様にして成形体16を作製した。
(Reference Example 1)
A molded body was produced in the same manner as in Example 1 except that PMMA was not used in Example 1. That is, molding was carried out in the same manner as in Example 1 except that the amount of PMMA added was 0% by mass instead of 0.1% by mass of the total solid content [PMMA: perhydropolysilazane = 0: 100 (mass ratio)]. A body 16 was produced.

実施例1〜10、比較例1〜7及び参考例1で得られた成形体1〜18について、アクリル系樹脂の添加量(質量%、第1表中、「%」と表記)、注入したイオン種(第1表中、「イオン注入」と表記)、PET上に形成した層の膜厚(nm)を第1表にまとめた。なお、第1表中、比較例4の「注1」は、PETフィルムに、スパッタリング法により、厚さ60nmの窒化ケイ素(SiN)の膜を形成して、成形体12を作製したことを示す。   About the molded objects 1-18 obtained in Examples 1-10, Comparative Examples 1-7, and Reference Example 1, the addition amount of acrylic resin (mass%, expressed as “%” in Table 1) was injected. Table 1 summarizes the ion species (denoted as “ion implantation” in Table 1) and the film thickness (nm) of the layer formed on the PET. In Table 1, “Note 1” in Comparative Example 4 indicates that a molded body 12 was produced by forming a silicon nitride (SiN) film having a thickness of 60 nm on a PET film by a sputtering method. .

また、実施例1〜10、比較例2、3及び参考例1で得られた成形体1〜8、10、11、16、17、18について、X線光電子分光分析装置(アルバックファイ社製)を用いて、表面から10nm付近の元素分析測定を行うことにより、それぞれのイオンが注入されたことを確認した。測定結果を下記第1表に示した。第1表中、ガスバリア層表層部における、炭素原子、窒素原子、酸素原子及びケイ素原子の存在割合(%)は、炭素原子、窒素原子、酸素原子及びケイ素原子の合計を100としたときの、各原子の存在割合である。   Moreover, about the molded objects 1-8, 10, 11, 16, 17, and 18 obtained in Examples 1-10, Comparative Examples 2, 3 and Reference Example 1, X-ray photoelectron spectrometer (manufactured by ULVAC-PHI). Was used to perform elemental analysis measurement in the vicinity of 10 nm from the surface to confirm that each ion was implanted. The measurement results are shown in Table 1 below. In Table 1, the existence ratio (%) of carbon atoms, nitrogen atoms, oxygen atoms and silicon atoms in the surface layer portion of the gas barrier layer is 100, where the total of carbon atoms, nitrogen atoms, oxygen atoms and silicon atoms is 100. The abundance ratio of each atom.

Figure 2012023389
Figure 2012023389

(塗工液安定性試験)
次に、実施例1〜10、比較例1、2、5〜7及び参考例1につき、ペルヒドロポリシラザンと樹脂を含む混合液の塗工液安定性試験を実施した。結果を下記第2表に示す。
(Coating fluid stability test)
Next, for Examples 1 to 10, Comparative Examples 1, 2, 5 to 7, and Reference Example 1, a coating solution stability test of a mixed solution containing perhydropolysilazane and a resin was performed. The results are shown in Table 2 below.

(全光線透過率・ヘイズの測定)
実施例1〜10、比較例1〜4、6及び参考例1で得られた成形体1〜12、14、16、17、18につき、全光線透過率・ヘイズを測定した。結果を下記第2表に示す。
(Measurement of total light transmittance and haze)
The total light transmittance and haze of each of the molded products 1 to 12, 14, 16, 17, and 18 obtained in Examples 1 to 10, Comparative Examples 1 to 4, 6 and Reference Example 1 were measured. The results are shown in Table 2 below.

(折り曲げ試験)
また、成形体1〜12、14、16、17、18について、折り曲げ試験を行い、クラックの発生の有無を確認した。結果を第2表に示す。
(Bending test)
Moreover, about the molded object 1-12, 14, 16, 17, 18, the bending test was done and the presence or absence of the generation | occurrence | production of a crack was confirmed. The results are shown in Table 2.

(水蒸気透過率)
さらに、折り曲げ試験前後における成形体1〜12、14、16、17、18について、水蒸気透過率(g/m/day)を測定した。結果を第2表に示す。
(Water vapor transmission rate)
Furthermore, the water vapor transmission rate (g / m 2 / day) was measured for the compacts 1 to 12, 14, 16, 17, and 18 before and after the bending test. The results are shown in Table 2.

Figure 2012023389
Figure 2012023389

第2表から、実施例1〜10においては、ペルヒドロポリシラザンと樹脂を含む混合液の塗工液安定性に優れており、得られる成形体1〜8、17、18は、比較例1〜3、6の成形体9〜11、14に比して、水蒸気透過率が小さく、高いガスバリア性を有していた。また、可視光線透過率も高く、ヘイズ値も小さく、透明性に優れていた。比較例5及び7は、塗工液安定性が悪く、成形体が得られなかった。   From Table 2, in Examples 1-10, it is excellent in the coating liquid stability of the liquid mixture containing perhydropolysilazane and resin, and the molded objects 1-8, 17, and 18 obtained are Comparative Examples 1- Compared to the molded products 9 to 11 and 14 of 3 and 6, the water vapor permeability was small and the gas barrier property was high. Further, the visible light transmittance was high, the haze value was small, and the transparency was excellent. In Comparative Examples 5 and 7, the coating solution stability was poor, and no molded product was obtained.

また、実施例1〜10の成形体1〜8、17、18は、折り曲げ試験後においてクラックの発生がみられず、水蒸気透過率も小さいままであり、耐折り曲げ性に優れていることがわかる。   In addition, it can be seen that the molded products 1 to 8, 17 and 18 of Examples 1 to 10 are free from cracks after the bending test, have a low water vapor transmission rate, and have excellent bending resistance. .

1a、1c・・・フィルム状の成形物
1b、1d・・・フィルム状の成形体
2a、2b・・・回転キャン
3a、3b・・・巻き出しロール
4・・・プラズマ放電用電極
5a、5b・・・巻き取りロール
6a、6b・・・送り出し用ロール
7a、7b・・・パルス電源
9a、9b・・・高電圧パルス
10a、10b・・・ガス導入口
11a、11b・・・チャンバー
13・・・中心軸
15・・・高電圧導入端子
20a、20b・・・ターボ分子ポンプ
DESCRIPTION OF SYMBOLS 1a, 1c ... Film-shaped molded object 1b, 1d ... Film-shaped molded object 2a, 2b ... Rotation can 3a, 3b ... Unwinding roll 4 ... Electrode 5a, 5b for plasma discharge ... take-up rolls 6a, 6b ... delivery rolls 7a, 7b ... pulse power supplies 9a, 9b ... high voltage pulses 10a, 10b ... gas inlets 11a, 11b ... chamber 13 ..Central shaft 15 ... high voltage introduction terminals 20a, 20b ... turbo molecular pump

Claims (13)

ガスバリア層を有する成形体であって、該ガスバリア層が、少なくとも、炭素原子、酸素原子及びケイ素原子を含む材料から構成されてなる表層部を有し、該表層部における、炭素原子、酸素原子、窒素原子及びケイ素原子の存在量全体に対する、炭素原子の存在割合が0%超70%以下、酸素原子の存在割合が10%以上70%以下、窒素原子の存在割合が0%以上35%以下、ケイ素原子の存在割合が20%以上55%以下であることを特徴とする成形体。   A molded body having a gas barrier layer, the gas barrier layer having at least a surface layer portion composed of a material containing carbon atoms, oxygen atoms and silicon atoms, wherein the carbon atoms, oxygen atoms, With respect to the total abundance of nitrogen atoms and silicon atoms, the abundance ratio of carbon atoms is more than 0% and 70% or less, the abundance ratio of oxygen atoms is 10% or more and 70% or less, the abundance ratio of nitrogen atoms is 0% or more and 35% or less, A molded body characterized in that the silicon atom content is 20% or more and 55% or less. 前記ガスバリア層が、ポリシラザン化合物とアクリル系樹脂とを含む層であり、40℃、相対湿度90%雰囲気下での水蒸気透過率が、1g/m2/day以下のものであることを特徴とする請求項1に記載の成形体。The gas barrier layer is a layer containing a polysilazane compound and an acrylic resin, and has a water vapor transmission rate of 1 g / m 2 / day or less in an atmosphere of 40 ° C. and a relative humidity of 90%. The molded product according to claim 1. アクリル系樹脂の含有量が、ポリシラザン化合物及びアクリル系樹脂の合計量に対して、0.1質量%以上70質量%以下である請求項2に記載の成形体。   The molded body according to claim 2, wherein the content of the acrylic resin is 0.1% by mass or more and 70% by mass or less based on the total amount of the polysilazane compound and the acrylic resin. 前記ガスバリア層がポリシラザン化合物とアクリル系樹脂とを含む層にイオンが注入されて得られる層を有することを特徴とする請求項1に記載の成形体。   The molded body according to claim 1, wherein the gas barrier layer has a layer obtained by implanting ions into a layer containing a polysilazane compound and an acrylic resin. 前記イオンが、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン、ケイ素化合物及び炭化水素からなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする請求項4に記載の成形体。   5. The ion according to claim 4, wherein at least one gas selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, krypton, silicon compound, and hydrocarbon is ionized. The molded product according to 1. 前記ポリシラザン化合物とアクリル系樹脂とを含む層に、プラズマイオン注入法によりイオンが注入されて得られる層を有することを特徴とする請求項4に記載の成形体。   The molded article according to claim 4, further comprising a layer obtained by implanting ions into the layer containing the polysilazane compound and the acrylic resin by a plasma ion implantation method. 前記ポリシラザン化合物が、ペルヒドロポリシラザンであることを特徴とする請求項2に記載の成形体。   The molded article according to claim 2, wherein the polysilazane compound is perhydropolysilazane. 請求項1〜7のいずれかに記載の成形体を製造する方法であって、ポリシラザン化合物とアクリル系樹脂とを含む層を表面部に有する成形物の、前記ポリシラザン系化合物とアクリル系樹脂とを含む層の表面部に、イオンを注入する工程を有する成形体の製造方法。   A method for producing the molded article according to any one of claims 1 to 7, wherein the polysilazane compound and the acrylic resin of a molded article having a layer containing a polysilazane compound and an acrylic resin on a surface portion. The manufacturing method of the molded object which has the process of inject | pouring ion into the surface part of the layer to contain. ポリシラザン系化合物とアクリル系樹脂とを含む層を表面部に有する成形物の、前記ポリシラザン系化合物とアクリル系樹脂とを含む層の表面部に、水素、窒素、酸素、アルゴン、ヘリウム、キセノン、ネオン、クリプトン、ケイ素化合物及び炭化水素からなる群から選ばれる少なくとも一種のガスのイオンを注入する工程を有する請求項8に記載の成形体の製造方法   A molded article having a layer containing a polysilazane compound and an acrylic resin on the surface thereof, hydrogen, nitrogen, oxygen, argon, helium, xenon, neon on the surface of the layer containing the polysilazane compound and the acrylic resin. A method for producing a molded article according to claim 8, further comprising the step of injecting ions of at least one gas selected from the group consisting of krypton, silicon compounds, and hydrocarbons. 前記イオンを注入する工程が、プラズマイオン注入法によりイオンを注入する工程であることを特徴とする請求項8に記載の成形体の製造方法。   The method for producing a molded body according to claim 8, wherein the step of implanting ions is a step of implanting ions by a plasma ion implantation method. ポリシラザン化合物とアクリル系樹脂とを含む層を表面部に有する、長尺状の成形物を、一定方向に搬送しながら、前記ポリシラザン化合物とアクリル系樹脂とを含む層に、イオンを注入することを特徴とする請求項1〜7のいずれかに記載の成形体の製造方法。   Implanting ions into the layer containing the polysilazane compound and the acrylic resin while conveying a long shaped molded article having a layer containing the polysilazane compound and the acrylic resin on the surface in a certain direction. The manufacturing method of the molded object in any one of Claims 1-7 characterized by the above-mentioned. 請求項1〜7のいずれかに記載の成形体からなる電子デバイス用部材。   The member for electronic devices which consists of a molded object in any one of Claims 1-7. 請求項12に記載の電子デバイス用部材を備える電子デバイス。   An electronic device comprising the electronic device member according to claim 12.
JP2012529536A 2010-08-20 2011-07-27 Molded body, manufacturing method thereof, member for electronic device, and electronic device Active JP5750441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529536A JP5750441B2 (en) 2010-08-20 2011-07-27 Molded body, manufacturing method thereof, member for electronic device, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010185633 2010-08-20
JP2010185633 2010-08-20
PCT/JP2011/067046 WO2012023389A1 (en) 2010-08-20 2011-07-27 Molding, production method therefor, part for electronic devices and electronic device
JP2012529536A JP5750441B2 (en) 2010-08-20 2011-07-27 Molded body, manufacturing method thereof, member for electronic device, and electronic device

Publications (2)

Publication Number Publication Date
JPWO2012023389A1 true JPWO2012023389A1 (en) 2013-10-28
JP5750441B2 JP5750441B2 (en) 2015-07-22

Family

ID=45605050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012529536A Active JP5750441B2 (en) 2010-08-20 2011-07-27 Molded body, manufacturing method thereof, member for electronic device, and electronic device

Country Status (7)

Country Link
US (1) US9556513B2 (en)
EP (1) EP2607412A4 (en)
JP (1) JP5750441B2 (en)
KR (1) KR101825930B1 (en)
CN (1) CN103249767B (en)
TW (1) TWI535871B (en)
WO (1) WO2012023389A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2823961B1 (en) * 2012-03-06 2019-05-01 LINTEC Corporation Gas barrier film laminate, adhesive film, and electronic component
WO2013175911A1 (en) * 2012-05-21 2013-11-28 リンテック株式会社 Gas barrier sheet, and production method for gas barrier sheet
KR20160103807A (en) 2015-02-25 2016-09-02 엘에스엠트론 주식회사 Apparatus for inductively coupled plasma-chemical vapor deposition
WO2017099239A1 (en) * 2015-12-11 2017-06-15 コニカミノルタ株式会社 Gas barrier film and method for producing same

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145903A (en) 1983-12-29 1985-08-01 Toa Nenryo Kogyo Kk Synthesis of inorganic polysilazane
JPS62220330A (en) 1986-03-24 1987-09-28 東洋メタライジング株式会社 Antistatic gas barrier film
JP2507714B2 (en) 1986-09-24 1996-06-19 東然株式会社 Novel polytitanosilazane and method for producing the same
US4842941A (en) 1987-04-06 1989-06-27 General Electric Company Method for forming abrasion-resistant polycarbonate articles, and articles of manufacture produced thereby
JP2613787B2 (en) 1987-08-13 1997-05-28 財団法人石油産業活性化センター Inorganic silazane high polymer, production method thereof and use thereof
JP2760555B2 (en) 1988-03-24 1998-06-04 東燃株式会社 Polyborosilazane and method for producing the same
JP2700233B2 (en) 1988-12-26 1998-01-19 財団法人石油産業活性化センター Copolymerized silazane and its production method
JPH02195024A (en) 1989-01-20 1990-08-01 Zeller Corp Flexible internal sealing menber of universal coupling
JP3042537B2 (en) 1990-06-30 2000-05-15 東燃株式会社 Modified polysilazane and method for producing the same
US5143747A (en) 1991-02-12 1992-09-01 Hughes Aircraft Company Die improved tooling for metal working
JP3283276B2 (en) 1991-12-04 2002-05-20 東燃ゼネラル石油株式会社 Modified polysilazane and method for producing the same
JPH05185568A (en) 1992-01-14 1993-07-27 Diafoil Co Ltd Film for liquid crystal display panel
JPH05238827A (en) 1992-02-26 1993-09-17 Tonen Corp Coating composition and coating process
EP0578046B1 (en) 1992-07-10 1996-11-06 Asahi Glass Company Ltd. Transparent conductive film, and target and material for vapor deposition to be used for its production
JPH0664105A (en) 1992-08-12 1994-03-08 Mitsui Toatsu Chem Inc Gas barrier transparent conductive laminate
JP3453805B2 (en) 1992-09-11 2003-10-06 旭硝子株式会社 Transparent conductive film
JPH06122852A (en) 1992-10-09 1994-05-06 Tonen Corp Coating composition and method for coating using the same
FR2701256B1 (en) 1993-02-08 1995-04-28 Europ Propulsion Process for obtaining a ceramic material based on Sialon by reduction of an aluminosilicate precursor and application to the formation of ceramic coating on a refractory substrate.
JP3307471B2 (en) 1993-02-24 2002-07-24 東燃ゼネラル石油株式会社 Composition for ceramic coating and coating method
JP3385060B2 (en) 1993-04-20 2003-03-10 東燃ゼネラル石油株式会社 Method for forming silicon-nitrogen-oxygen- (carbon) -metal ceramic coating film
JP3414488B2 (en) 1994-04-28 2003-06-09 東燃ゼネラル石油株式会社 Method for producing transparent organic / inorganic hybrid membrane
JPH0845452A (en) 1994-08-01 1996-02-16 Takamisawa Denki Seisakusho:Kk Ion balance measuring device and measuring method for the balance
JP3515255B2 (en) 1994-12-20 2004-04-05 株式会社東芝 Transparent conductive substrate, method for manufacturing transparent conductive substrate, and display device
US5907382A (en) 1994-12-20 1999-05-25 Kabushiki Kaisha Toshiba Transparent conductive substrate and display apparatus
JP3484550B2 (en) 1994-12-22 2004-01-06 大日本印刷株式会社 Retort packaging film
JPH0910687A (en) 1995-03-31 1997-01-14 Tonen Corp Production of silicon dioxide based ceramic coating film
JP3489269B2 (en) 1995-04-28 2004-01-19 東洋製罐株式会社 Gas barrier transparent packaging material and method for producing the same
JP4070828B2 (en) 1995-07-13 2008-04-02 Azエレクトロニックマテリアルズ株式会社 Composition for forming siliceous ceramic, method for forming the same, and ceramic film
JP3562065B2 (en) 1995-10-30 2004-09-08 日新電機株式会社 High gas barrier polymer article and method for producing the same
US5965629A (en) * 1996-04-19 1999-10-12 Korea Institute Of Science And Technology Process for modifying surfaces of materials, and materials having surfaces modified thereby
KR100479000B1 (en) 1996-05-15 2005-08-01 세이코 엡슨 가부시키가이샤 Manufacturing method of thin film device, liquid crystal panel and electronic device and thin film device
DE69813523T2 (en) 1997-02-14 2003-11-13 Mitsubishi Chemical Corp., Tokio/Tokyo POLYALCOXYSILOXANE COMPOUNDS, METHOD FOR THE PRODUCTION AND COATING COMPOSITIONS CONTAINING THESE COMPOUNDS
JP4144042B2 (en) 1997-03-06 2008-09-03 東洋製罐株式会社 Gas barrier plastic packaging material and manufacturing method thereof
JP4019334B2 (en) 1997-03-07 2007-12-12 東レ株式会社 Polyester film for gas barrier
JP3951348B2 (en) 1997-03-14 2007-08-01 東洋製罐株式会社 Laminate with excellent gas barrier properties and flexibility
US6194328B1 (en) 1998-12-09 2001-02-27 Advanced Micro Devices, Inc. H2 diffusion barrier formation by nitrogen incorporation in oxide layer
JP3484094B2 (en) 1999-02-26 2004-01-06 グンゼ株式会社 Silica-coated plastic film and method for producing the same
JP4205241B2 (en) 1999-03-04 2009-01-07 住友化学株式会社 Laminated body
US20060017162A1 (en) 1999-03-12 2006-01-26 Shoji Seta Semiconductor device and manufacturing method of the same
JP4270632B2 (en) 1999-03-12 2009-06-03 株式会社東芝 Manufacturing method of semiconductor device using dry etching
US6849923B2 (en) 1999-03-12 2005-02-01 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of the same
JP2000340166A (en) 1999-05-27 2000-12-08 Sony Corp Film forming method and film formed material
JP2000338901A (en) 1999-06-01 2000-12-08 Matsushita Electric Ind Co Ltd Manufacture of flexible display substrate
JP3555928B2 (en) 1999-07-12 2004-08-18 独立行政法人産業技術総合研究所 Surface modification method and surface modification device
DE19940858A1 (en) * 1999-08-27 2001-03-01 Basf Coatings Ag Sol-gel coating for single-layer or multi-layer coatings
JP2001119051A (en) 1999-10-19 2001-04-27 Dainippon Printing Co Ltd Rear-surface protecting sheet for solar cell module and solar cell module using the same
JP3517749B2 (en) 1999-11-26 2004-04-12 独立行政法人産業技術総合研究所 Surface modification equipment
JP2001220509A (en) 2000-02-07 2001-08-14 Shin Etsu Chem Co Ltd Hardening composition
US6416817B1 (en) 2000-03-03 2002-07-09 Dow Corning Sa Barrier coatings having bis-silanes
JP2002018246A (en) 2000-07-07 2002-01-22 Sony Corp Barrier film
JP5291275B2 (en) 2000-07-27 2013-09-18 有限会社コンタミネーション・コントロール・サービス Member provided with coating film and method for producing coating film
US6665033B2 (en) 2000-11-30 2003-12-16 International Business Machines Corporation Method for forming alignment layer by ion beam surface modification
TW570876B (en) 2001-05-11 2004-01-11 Toyo Seikan Kaisha Ltd Silicon oxide film
GB0113751D0 (en) 2001-06-06 2001-07-25 Dow Corning Surface treatment
JP4669631B2 (en) 2001-06-18 2011-04-13 矢崎総業株式会社 Printed circuit and flexible wiring patterning method
JP2003118029A (en) 2001-10-16 2003-04-23 Asahi Glass Co Ltd Gas-barrier organic base material and electroluminescent element using the base material
JP2003154596A (en) 2001-11-22 2003-05-27 Nitto Denko Corp Transparent gas-barrier film, transparent conductive electrode base material, display element, solar cell, or face-shaped emitter using the film
US20030228475A1 (en) 2002-04-18 2003-12-11 Minoru Komada Barrier film and laminated material, container for wrapping and image display medium using the same, and manufacturing method for barrier film
JP2003347570A (en) 2002-05-27 2003-12-05 Mitsubishi Plastics Ind Ltd Protective sheet for back side of solar battery
US7015640B2 (en) 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
US7449246B2 (en) 2004-06-30 2008-11-11 General Electric Company Barrier coatings
JP2004107541A (en) 2002-09-19 2004-04-08 Fuji Photo Film Co Ltd Polymer composition comprising organic material-modified philosilicate, film, gas barrier film and substrate and image display element using those
JP4185341B2 (en) 2002-09-25 2008-11-26 パイオニア株式会社 Multilayer barrier film structure, organic electroluminescence display panel, and manufacturing method
US7288311B2 (en) * 2003-02-10 2007-10-30 Dai Nippon Printing Co., Ltd. Barrier film
JP2004322489A (en) 2003-04-25 2004-11-18 Pioneer Electronic Corp Gas-barrier substrate and its production method
JP2004352966A (en) 2003-05-28 2004-12-16 Dengiken:Kk Electrical/electronic insulating sheet
JP2005088431A (en) 2003-09-18 2005-04-07 Dainippon Printing Co Ltd Barrier film
JP2005104025A (en) 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Laminated film with gas barrier properties and image display element using this laminated film
JP2005119160A (en) 2003-10-17 2005-05-12 Dainippon Printing Co Ltd Gas barrier film and its manufacturing method
JP2005119155A (en) 2003-10-17 2005-05-12 Dainippon Printing Co Ltd Gas barrier film and its manufacturing method
US20070268089A1 (en) 2003-10-31 2007-11-22 Mckenzie David R Plasma Immersion Ion Implantation Using Conductive Mesh
JP4531380B2 (en) 2003-12-15 2010-08-25 大日本印刷株式会社 Gas barrier sheet
DE102004004177B4 (en) 2004-01-28 2006-03-02 AxynTeC Dünnschichttechnik GmbH Process for producing thin layers and its use
JP4852822B2 (en) 2004-02-17 2012-01-11 大日本印刷株式会社 Barrier film and laminated material using the same
JP4494824B2 (en) 2004-02-24 2010-06-30 株式会社クラレ Method for producing film for display device
JP2006052376A (en) 2004-02-27 2006-02-23 Lintec Corp Method for producing polymer molded product, polymer molded product and apparatus for producing the same
JP5039907B2 (en) 2004-03-09 2012-10-03 エグザテック・リミテッド・ライアビリティー・カンパニー Plasma coating apparatus for nonplanar substrates.
EP1749860A4 (en) 2004-05-14 2009-12-23 Dow Corning Toray Co Ltd Free films made of cured organopolysiloxane resins, process for production thereof, and laminated films
US20050287307A1 (en) 2004-06-23 2005-12-29 Varian Semiconductor Equipment Associates, Inc. Etch and deposition control for plasma implantation
US20090110892A1 (en) 2004-06-30 2009-04-30 General Electric Company System and method for making a graded barrier coating
JP2006035737A (en) 2004-07-29 2006-02-09 Teijin Ltd Gas barrier polymer laminated film suitable for display
WO2006015756A1 (en) 2004-08-03 2006-02-16 Chemetall Gmbh Process for coating metallic surfaces with an anti-corrosive coating
JP2006070238A (en) 2004-08-05 2006-03-16 Lintec Corp Method for continuous surface modification of polymer film, apparatus for continuous surface modification and polymer film in which ion injection layer is formed
JP2006123307A (en) 2004-10-28 2006-05-18 Dainippon Printing Co Ltd Gas barrier laminate
JP2006123306A (en) 2004-10-28 2006-05-18 Dainippon Printing Co Ltd Gas barrier laminate
WO2006063388A1 (en) 2004-12-13 2006-06-22 University Of South Australia Craze resistant plastic article and method of production
JP2006192858A (en) 2005-01-17 2006-07-27 Dainippon Printing Co Ltd Barrier film
US7906217B2 (en) 2005-02-22 2011-03-15 Toyo Seikan Kaisha, Ltd. Vapor deposited film by plasma CVD method
JP4624152B2 (en) 2005-03-24 2011-02-02 富士フイルム株式会社 Plastic film, gas barrier film, and image display element using the same
JP2007022075A (en) 2005-06-14 2007-02-01 Asahi Kasei Corp Layer structure and its manufacturing method
JP2007042616A (en) 2005-06-29 2007-02-15 Asahi Kasei Corp Light emitting element, display device and manufacturing method thereof
US7341766B2 (en) 2005-07-29 2008-03-11 Dai Nippon Printing Co., Ltd. Gas barrier clear film, and display substrate and display using the same
JP2007065644A (en) 2005-08-03 2007-03-15 Asahi Kasei Corp Substrate for display, display and manufacturing method of them
AU2006298297B2 (en) 2005-09-30 2012-03-08 Toray Industries, Inc. Encapsulation film for photovoltaic module and photovoltaic module
EP2154183A1 (en) 2005-10-05 2010-02-17 Dow Corning Corporation Coated substrates and methods for their preparation
JP2007237588A (en) * 2006-03-09 2007-09-20 Kyodo Printing Co Ltd Gas-barrier film and method for producing the film
JP2007283726A (en) 2006-04-20 2007-11-01 Bridgestone Corp Shaped article and manufacturing method for the same
JP2008015500A (en) 2006-06-09 2008-01-24 Fujifilm Corp Protection film for polarizing plate
JP4725735B2 (en) 2006-08-25 2011-07-13 Jsr株式会社 Method for producing silica film laminated film for gas barrier
JP4830733B2 (en) 2006-09-07 2011-12-07 凸版印刷株式会社 Gas barrier film and manufacturing method thereof
JP2008174792A (en) 2007-01-18 2008-07-31 Plasma Ion Assist Co Ltd Hydrophilizing modification method for fluorine base synthetic resin, and article obtained thereby
EP2123445A4 (en) 2007-02-05 2012-04-11 Konica Minolta Holdings Inc Transparent gas barrier film and method for producing the same
US8846187B2 (en) 2007-02-06 2014-09-30 Konica Minolta Holdings, Inc. Transparent gas barrier film and method for producing transparent gas barrier film
JP2008204683A (en) 2007-02-19 2008-09-04 Toppan Printing Co Ltd Transparent conductive film
JP2008235165A (en) 2007-03-23 2008-10-02 Konica Minolta Holdings Inc Method of manufacturing roll-like resin film having transparent conductive film
JP4917942B2 (en) 2007-03-30 2012-04-18 リンテック株式会社 High smooth gas barrier film and method for producing the same
JP4917943B2 (en) 2007-03-30 2012-04-18 リンテック株式会社 Method for producing gas barrier film
JP4978297B2 (en) 2007-04-25 2012-07-18 凸版印刷株式会社 Transparent conductive gas barrier film
US8101288B2 (en) 2007-06-11 2012-01-24 Fujifilm Corporation Gas barrier film and organic device using the same
JP2009110897A (en) 2007-11-01 2009-05-21 Toray Ind Inc Transparent conductive film
JP4969479B2 (en) 2008-02-20 2012-07-04 尾池工業株式会社 Manufacturing method of substrate with transparent conductive film
KR101445878B1 (en) 2008-04-04 2014-09-29 삼성전자주식회사 Protecting film and encapsulation material comprising the same
JP2009252574A (en) * 2008-04-08 2009-10-29 Toyota Industries Corp El device
JP5551885B2 (en) 2008-05-01 2014-07-16 日揮触媒化成株式会社 Method for forming low dielectric constant silica-based coating and low dielectric constant silica-based coating obtained from the method
WO2010002182A2 (en) * 2008-06-30 2010-01-07 Kolon Industries, Inc. Plastic substrate and device including the same
CN102159395B (en) * 2008-08-19 2014-09-10 琳得科株式会社 Moulded article, method for producing same, electronic device member, and electronic device
US8673070B2 (en) 2008-08-29 2014-03-18 National Institute Of Advanced Industrial Science And Technology Process for producing silicon oxide thin film or silicon oxynitride compound thin film and thin film obtained by the process
CN102245379B (en) 2008-12-12 2015-06-24 琳得科株式会社 Laminate, method for producing same, electronic device member, and electronic device
JP5566130B2 (en) * 2009-02-26 2014-08-06 キヤノン株式会社 Method for manufacturing liquid discharge head
CN103642060B (en) * 2009-03-17 2016-05-25 琳得科株式会社 Formed body, its manufacture method, electronic device member and electronic equipment
TWI522404B (en) 2009-03-26 2016-02-21 Lintec Corp A molded body, a manufacturing method thereof, an electronic device element, and an electronic device
US20120108761A1 (en) 2009-05-22 2012-05-03 Lintec Corporation Formed article, method of producing same, electronic device member, and electronic device
KR101489551B1 (en) 2009-05-22 2015-02-03 린텍 가부시키가이샤 Molded object, process for producing same, member for electronic device, and electronic device
JP5612277B2 (en) 2009-06-16 2014-10-22 リンテック株式会社 Gas barrier film and electronic device member
EP2556954B1 (en) 2010-03-31 2019-09-25 Lintec Corporation Transparent conductive film and electronic device using transparent conductive film
WO2012032907A1 (en) 2010-09-07 2012-03-15 リンテック株式会社 Adhesive sheet and electronic device

Also Published As

Publication number Publication date
WO2012023389A1 (en) 2012-02-23
CN103249767A (en) 2013-08-14
EP2607412A1 (en) 2013-06-26
EP2607412A4 (en) 2014-04-30
CN103249767B (en) 2015-05-06
JP5750441B2 (en) 2015-07-22
US9556513B2 (en) 2017-01-31
TW201221668A (en) 2012-06-01
KR20130111530A (en) 2013-10-10
US20130202899A1 (en) 2013-08-08
KR101825930B1 (en) 2018-02-06
TWI535871B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5704610B2 (en) Molded body, manufacturing method thereof, electronic device member and electronic device
JP5326052B2 (en) GAS BARRIER FILM, PROCESS FOR PRODUCING THE SAME, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE
JP5612277B2 (en) Gas barrier film and electronic device member
WO2013015096A1 (en) Gas barrier film laminate and electronic component
KR101943665B1 (en) Formed body, production method thereof, electronic device member and electronic device
JP5343058B2 (en) Transparent conductive film, method for producing the same, member for electronic device, and electronic device
WO2010134611A1 (en) Molded object, process for producing same, member for electronic device, and electronic device
JP5389255B2 (en) Molded body, manufacturing method thereof, member for electronic device, and electronic device
JP5379530B2 (en) Molded body, manufacturing method thereof, electronic device member and electronic device
JP5697230B2 (en) Molded body, manufacturing method thereof, member for electronic device, and electronic device
JP5750441B2 (en) Molded body, manufacturing method thereof, member for electronic device, and electronic device
JP5918488B2 (en) Gas barrier film laminate and electronic member
JP5781350B2 (en) GAS BARRIER LAMINATE, ITS MANUFACTURING METHOD, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE
JP5726859B2 (en) Molded body, manufacturing method thereof, member for electronic device, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150518

R150 Certificate of patent or registration of utility model

Ref document number: 5750441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250