JP2008204683A - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
JP2008204683A
JP2008204683A JP2007037540A JP2007037540A JP2008204683A JP 2008204683 A JP2008204683 A JP 2008204683A JP 2007037540 A JP2007037540 A JP 2007037540A JP 2007037540 A JP2007037540 A JP 2007037540A JP 2008204683 A JP2008204683 A JP 2008204683A
Authority
JP
Japan
Prior art keywords
transparent conductive
thin film
film
ion implantation
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007037540A
Other languages
Japanese (ja)
Inventor
Keisuke Mizuno
敬介 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2007037540A priority Critical patent/JP2008204683A/en
Publication of JP2008204683A publication Critical patent/JP2008204683A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film which is rich in sliding durability to constitute an upper (movable) transparent electrode of a touch panel utilized in information terminal input, and a transparent conductive film in a film display or the like using an LCD and an organic EL element. <P>SOLUTION: On at least one face of a transparent plastic film base material, an ion implantation layer is formed by a plasma implantation method, and on its implantation layer, a transparent conductive thin film made of a non-crystalline oxide thin film is laminated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、情報端末入力に利用されているタッチパネルの上部(可動)透明電極やLCDや有機EL素子を用いたフィルムディスプレイなどにおける透明電極を構成する透明導電性フィルムに関するものである。   The present invention relates to a transparent conductive film constituting a transparent electrode in an upper (movable) transparent electrode of a touch panel used for information terminal input or a film display using an LCD or an organic EL element.

透明なプラスチックフィルム基材上に、透明でかつ電気抵抗が小さい導電性薄膜を積層してなる透明導電性フィルムは、その導電性を利用した用途、例えば、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイなどのようなフラットパネルディスプレイや、タッチパネルの透明電極などに広く使用されている。   A transparent conductive film formed by laminating a transparent conductive film having a low electrical resistance on a transparent plastic film substrate is used for applications utilizing the conductivity, such as a liquid crystal display or an electroluminescence (EL) display. It is widely used for flat panel displays such as the above and transparent electrodes for touch panels.

一方、近年、携帯情報端末や、タッチパネル付きノートパソコン、タッチパネル付き携帯ゲーム機などが普及し、これらに用いられている透明導電性フィルムにおいては、より優れた摺動耐久性を有していることが望まれている。   On the other hand, in recent years, portable information terminals, notebook computers with touch panels, portable game machines with touch panels, etc. have become widespread, and transparent conductive films used for these have better sliding durability. Is desired.

このようなタッチパネルは、ペンや指先などで入力しようとすると、その固定電極側の透明導電性薄膜と可動電極(フィルム電極)側の透明導電性薄膜同士が接触するようになっているが、入力時の荷重、特にペン入力による荷重で透明導電性薄膜にクラック、剥離などの破壊が生じないようにするための優れたペン摺動耐久性を有していることが要望されている。   Such a touch panel is designed so that the transparent conductive thin film on the fixed electrode side and the transparent conductive thin film on the movable electrode (film electrode) side come into contact with each other when trying to input with a pen or fingertip. It is required that the transparent conductive thin film has excellent pen sliding durability so that the transparent conductive thin film is not broken, such as cracking or peeling, with a load of time, particularly a load due to pen input.

このような要望に鑑み、従来から、タッチパネルなどを構成する透明導電性フィルムの摺動耐久性を向上させるべく、その透明導電性薄膜の硬度を上げることが種々検討されてきている。   In view of such a demand, conventionally, various studies have been made to increase the hardness of the transparent conductive thin film in order to improve the sliding durability of the transparent conductive film constituting the touch panel or the like.

透明導電性薄膜の硬度を上げるためには、例えば、薄膜を構成する酸化物を結晶化することが有効であると考えられている。透明導電性薄膜を結晶化させるためには、特許文献1にあるように、非結晶性の透明導電性薄膜をプラスチックフィルム基材上に成膜した後、得られた積層フィルムを透明導電性薄膜の結晶化温度以上に加熱するという手法がある。その他には透明導電性薄膜を成膜する時に、薄膜が形成されるプラスチックフィルム基材の温度を薄膜の結晶化温度以上に加熱するという手法もある。しかしながら、これらの手法は、高温付加によるプラスチックフィルム基材への悪影響が懸念されるため、加熱を全く必要としないプロセスにより透明導電性薄膜の硬度を上げる方法の開発が強く望まれている。   In order to increase the hardness of the transparent conductive thin film, for example, it is considered effective to crystallize an oxide constituting the thin film. In order to crystallize a transparent conductive thin film, as disclosed in Patent Document 1, after forming an amorphous transparent conductive thin film on a plastic film substrate, the obtained laminated film is formed into a transparent conductive thin film. There is a method of heating above the crystallization temperature. In addition, when forming a transparent conductive thin film, there is a method of heating the temperature of the plastic film substrate on which the thin film is formed to a temperature higher than the crystallization temperature of the thin film. However, since these methods are feared to have an adverse effect on the plastic film substrate due to high temperature application, development of a method for increasing the hardness of the transparent conductive thin film by a process that does not require any heating is strongly desired.

一方、結晶性の透明導電性薄膜は、電極のパターン化の際に行われる酸によるエッチングの後に残渣として残ってしまうことがあり、この残渣がLCDなどの電極における表示欠陥を生じさせることが危惧される。結晶性の透明導電性薄膜が積層されてなる透明導電性フィルムは、透明導電性薄膜にパターニングを必要とする用途には不適切であるので、硬度の問題は有するものの非結晶性の透明導電性薄膜を有する透明導電性フィルムは有用なものであると考えられている。   On the other hand, a crystalline transparent conductive thin film may remain as a residue after etching with an acid performed during electrode patterning, and there is a concern that this residue may cause display defects in electrodes such as LCDs. It is. A transparent conductive film formed by laminating a crystalline transparent conductive thin film is not suitable for applications that require patterning on the transparent conductive thin film, so that it has a problem of hardness but is non-crystalline transparent conductive. A transparent conductive film having a thin film is considered useful.

そこで、透明導電性フィルム自体の硬度を上げて摺動耐久性を向上させる目的で、プラスチックフィルム基材表面に樹脂により硬度の高いハードコート層を設けた後、透明導電性薄膜を成膜するという手法も用いられているが、透明導電性薄膜が非結晶性である場合は、若干耐摺動耐久性の向上が見られるものの、十分な摺動耐久性を得ることができなかった。   Therefore, for the purpose of increasing the hardness of the transparent conductive film itself and improving the sliding durability, a transparent hard thin film is formed after providing a hard coat layer with a high hardness with a resin on the surface of the plastic film substrate. Although a technique is also used, when the transparent conductive thin film is non-crystalline, although a slight improvement in sliding durability was observed, sufficient sliding durability could not be obtained.

その他に、プラスチックフィルム基材と透明導電性薄膜との密着性を向上させて高い摺動耐久性を得ようという試みもなされている。例えば透明導電性薄膜形成前にプラスチックフィルム基材表面にプラズマ処理を施すという手法である。しかしながら、密着性は向上するものの、その上に非結晶性の透明導電性薄膜を設ける場合においては、十分な摺動耐久性を得ることができなかった。
特許第2525475号公報
In addition, attempts have been made to improve the adhesion between the plastic film substrate and the transparent conductive thin film to obtain high sliding durability. For example, a plasma treatment is performed on the surface of the plastic film substrate before forming the transparent conductive thin film. However, although the adhesiveness is improved, when a non-crystalline transparent conductive thin film is provided thereon, sufficient sliding durability cannot be obtained.
Japanese Patent No. 2525475

本発明は、かかる従来技術の問題点を解決するものであり、透明なプラスチック基材の少なくとも一方の面に非結晶性の酸化物薄膜からなる透明導電性薄膜が積層されてなる透明導電性フィルムであって、パターニング特性に優れて、かつ高い摺動耐久性を有する透明導電性フィルムを提供することを課題とする。   The present invention solves the problems of the prior art, and is a transparent conductive film in which a transparent conductive thin film made of an amorphous oxide thin film is laminated on at least one surface of a transparent plastic substrate. Then, it is an object to provide a transparent conductive film having excellent patterning characteristics and high sliding durability.

本発明は、上記の目的を達成するためになされたものであって、請求項1に記載の発明は、透明なプラスチックフィルム基材の少なくとも一方の面に、プラズマイオン注入法によってイオン注入層が形成されており、そのイオン注入層の上には非結晶性の酸化物薄膜からなる透明導電性薄膜が積層されていることを特徴とする透明導電性フィルムである。   The present invention has been made to achieve the above object, and the invention according to claim 1 is characterized in that an ion implantation layer is formed on at least one surface of a transparent plastic film substrate by plasma ion implantation. The transparent conductive film is characterized in that a transparent conductive thin film made of an amorphous oxide thin film is laminated on the ion-implanted layer.

また、請求項2記載の発明は、請求項1に記載の透明導電性フィルムにおいて、前記イオン注入層が、プラズマソースとして希ガス、水素、窒素、酸素、アンモニアガスのうち少なくとも一種類のガスを用い、プラズマイオン注入法によって形成されたものであり、かつ、その厚さが、1nm〜150nmであることを特徴とする。   According to a second aspect of the present invention, in the transparent conductive film according to the first aspect, the ion implantation layer uses at least one kind of gas among a rare gas, hydrogen, nitrogen, oxygen, and ammonia gas as a plasma source. It is formed by plasma ion implantation and has a thickness of 1 nm to 150 nm.

さらにまた、請求項3記載の発明は、請求項1または2に記載の透明導電性フィルムにおいて、前記透明導電性薄膜が、酸化インジウムスズ(ITO)または酸化亜鉛を主成分とした酸化物薄膜であることを特徴とする。   Furthermore, the invention described in claim 3 is the transparent conductive film according to claim 1 or 2, wherein the transparent conductive thin film is an oxide thin film mainly composed of indium tin oxide (ITO) or zinc oxide. It is characterized by being.

本発明の透明導電性フィルムは、非結晶性の透明導電性薄膜を有していて、しかも結晶性の透明導電性薄膜を用いた透明導電性フィルムと同等の摺動耐久性を有する。このような摺動耐久性の獲得は、プラスチックフィルム基材と透明導電性薄膜との間にプラズマイオン注入法によりイオン注入層が介在するからである。すなわち、そのイオン注入層においては、イオン注入によってプラスチックフィルム基材の基本構造の結合が切断され、新たに強固な結合が生成されるので、イオン注入層が設けられていないプラスチックフィルム基材よりも高密度な層が表面に位置するようになるからである。要するに、このような表面の高密度化は、イオン注入層上に設けた透明導電性薄膜を、それが非結晶であるにもかかわらず高密度な薄膜とし、また、従来のプラズマ処理と同様にイオン注入により生じた水酸基等の効果によりプラスチックフィルム基材と透明導電性薄膜との間の密着性を強固なものとし、これらの協働により摺動耐久性を向上させることが可能になるのである。   The transparent conductive film of the present invention has an amorphous transparent conductive thin film, and has sliding durability equivalent to that of a transparent conductive film using a crystalline transparent conductive thin film. Such sliding durability is obtained because an ion implantation layer is interposed between the plastic film substrate and the transparent conductive thin film by a plasma ion implantation method. That is, in the ion-implanted layer, the bond of the basic structure of the plastic film substrate is cut by ion implantation, and a new strong bond is generated. Therefore, the ion-implanted layer is more than the plastic film substrate not provided with the ion-implanted layer. This is because a high-density layer is located on the surface. In short, the densification of the surface in this way makes the transparent conductive thin film provided on the ion-implanted layer a high-density thin film despite the fact that it is non-crystalline, and is similar to the conventional plasma treatment. By the effect of hydroxyl groups generated by ion implantation, the adhesiveness between the plastic film substrate and the transparent conductive thin film is strengthened, and it becomes possible to improve the sliding durability by their cooperation. .

また、透明導電性フィルムの非結晶性の透明導電性薄膜は、電極のパターン化の際に行われる酸によるエッチングにより残渣として残ってしまうことがなく、パターニング特性にも優れている。   Moreover, the non-crystalline transparent conductive thin film of the transparent conductive film does not remain as a residue by etching with an acid performed when the electrode is patterned, and is excellent in patterning characteristics.

以下本発明の実施の形態を図面を用いながら詳細に説明する。本発明の透明導電性フィルムは、図1の拡大断面構成説明図に示すように、透明なプラスチックフィルム基材(1
)の上面には、イオン注入層(2)が形成されていて、さらにこのイオン注入層(2)上には非結晶性の酸化物薄膜からなる透明導電性薄膜(3)が積層されてなるものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The transparent conductive film of the present invention has a transparent plastic film substrate (1
) Is formed with an ion-implanted layer (2), and a transparent conductive thin film (3) made of an amorphous oxide thin film is laminated on the ion-implanted layer (2). Is.

本発明の透明導電性フィルムを構成する透明なプラスチックフィルム基材(1)としては、ポリエチレンテレフタレート(PET)に代表されるポリエステルフィルムや、ポリカーボネートフィルム、またはエンジニアリングプラスチックなどからなる透明なプラスチックフィルムが挙げられる。なお、本発明の透明導電性フィルムは、例えば、タッチパネルやディスプレイの表面に位置するため、これらのプラスチックフィルム基材(1)は透明性を有することが必要条件となる。また、プラスチックフィルム基材(1)の厚さは、一般的に100μm〜200μm程度のものが用いられるが、特にこの厚さに限定されるものではない。   Examples of the transparent plastic film substrate (1) constituting the transparent conductive film of the present invention include a polyester film typified by polyethylene terephthalate (PET), a polycarbonate film, or a transparent plastic film made of engineering plastic. It is done. In addition, since the transparent conductive film of this invention is located in the surface of a touch panel or a display, for example, it becomes a necessary condition that these plastic film base materials (1) have transparency. Further, the thickness of the plastic film substrate (1) is generally about 100 μm to 200 μm, but is not particularly limited to this thickness.

このようなプラスチックフィルム基材(1)上面のイオン注入層(2)は、プラズマイオン注入法によって形成されるものである。このイオン注入層(2)の形成に当たっては、プラスチックフィルム基材(1)に印加するパルス電圧は5kV〜20kVが適している。パルス電圧が5kVより低いとプラスチックフィルム基材(1)のイオンが注入される部分が浅くなり、十分な効果を得ることが難しくなる。また、パルス電圧が20kVより高いと、プラスチックフィルム基材(1)が熱を保持するようになり、高温付加による悪影響が懸念される。また、パルス幅は20μsec以下が適している。20μsecより長い場合、プラスチックフィルム基材(1)がチャージアップするため、イオンを十分に注入することが難しくなる。   Such an ion implantation layer (2) on the upper surface of the plastic film substrate (1) is formed by a plasma ion implantation method. In forming the ion-implanted layer (2), the pulse voltage applied to the plastic film substrate (1) is suitably 5 kV to 20 kV. If the pulse voltage is lower than 5 kV, the portion of the plastic film substrate (1) into which ions are implanted becomes shallow, making it difficult to obtain a sufficient effect. On the other hand, if the pulse voltage is higher than 20 kV, the plastic film substrate (1) retains heat, and there is a concern about adverse effects due to high temperature application. The pulse width is suitably 20 μsec or less. If it is longer than 20 μsec, the plastic film substrate (1) is charged up, so that it is difficult to sufficiently implant ions.

プラズマイオン注入法によるイオン注入に使用するプラズマソースとしては、希ガス、水素、窒素、酸素、アンモニアガスのうち少なくとも一種類のガスを用いることが好ましい。上記したプラズマソースを用いることで、プラスチックフィルム基材(1)表面がより活性化され、後述する透明導電性薄膜(3)との密着が良くなる。十分な密度を有するイオン注入層(2)をより短時間で形成するためには、プラズマソースとしてはイオン注入深度が比較的浅く、プラズマの安定性が良好なアルゴンを用いることが特に好ましい。   As a plasma source used for ion implantation by the plasma ion implantation method, it is preferable to use at least one kind of gas among rare gas, hydrogen, nitrogen, oxygen, and ammonia gas. By using the plasma source described above, the surface of the plastic film substrate (1) is more activated, and the adhesion with the transparent conductive thin film (3) described later is improved. In order to form the ion implantation layer (2) having a sufficient density in a shorter time, it is particularly preferable to use argon having a relatively shallow ion implantation depth and good plasma stability as the plasma source.

イオン注入層(2)の厚さは、1nm〜150nm程度が好ましい。1nm未満であると十分な強度を得ることが難しくなり、150nmを超えると所期の透明性が確保し難くなってしまう。   The thickness of the ion implantation layer (2) is preferably about 1 nm to 150 nm. If it is less than 1 nm, it will be difficult to obtain sufficient strength, and if it exceeds 150 nm, it will be difficult to ensure the desired transparency.

一方、このようなイオン注入層(2)上に設けられている透明導電性薄膜(3)は、非結晶性の酸化物薄膜からなり、例えば、透明性に優れ、抵抗値が低い酸化インジウムスズ(ITO)または酸化亜鉛を主成分とした酸化物薄膜からなるものである。また、酸化錫を主成分とした酸化物薄膜であってもよい。また、膜質コントロール(例えば、抵抗率調整の際など)のために様々な添加元素が加えてあってもよい。この膜厚は、本発明の透明導電性フィルムが使用されるタッチパネルやディスプレイの品質要求によって異なってくるが、一般的に10nm〜150nm程度が好ましい。10nm未満だと抵抗値が高くなり過ぎ、また十分な強度を得られ難くなり、150nmを超えると十分な透明性を確保することがし難くなる。   On the other hand, the transparent conductive thin film (3) provided on such an ion implantation layer (2) is made of an amorphous oxide thin film, for example, indium tin oxide having excellent transparency and low resistance. (ITO) or an oxide thin film mainly composed of zinc oxide. Moreover, the oxide thin film which has a tin oxide as a main component may be sufficient. Various additive elements may be added for film quality control (for example, when adjusting resistivity). The film thickness varies depending on the quality requirements of the touch panel and display in which the transparent conductive film of the present invention is used, but is generally preferably about 10 nm to 150 nm. If it is less than 10 nm, the resistance value becomes too high and it becomes difficult to obtain sufficient strength, and if it exceeds 150 nm, it becomes difficult to ensure sufficient transparency.

この透明導電性薄膜(3)の成膜方法としては、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、イオンプレーティング法、CVD法などが挙げられるが、必ずしもこれらに限定されるものではない。   Examples of the film forming method for the transparent conductive thin film (3) include, but are not necessarily limited to, a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, and a CVD method.

次に実施例により、本発明を具体的に説明する。   Next, an Example demonstrates this invention concretely.

厚さ100μmのPETフィルム基材(東レ株式会社製、T60)の一方の面に、印加電圧は20kVでパルス幅は20μsecとして、プラズマイオン注入法によって40秒間のアルゴンイオン注入を行い、厚さが30nmのイオン注入層を得た。その後、このイオン注入層上にDCマグネトロンスパッタ法によって20nmの物理的膜厚を有するITO薄膜を成膜温度0℃で成膜し、実施例1に係る透明導電性フィルムを得た。   On one surface of a 100 μm thick PET film substrate (T60, manufactured by Toray Industries, Inc.), an applied voltage is 20 kV, a pulse width is 20 μsec, and argon ions are implanted for 40 seconds by plasma ion implantation. A 30 nm ion-implanted layer was obtained. Thereafter, an ITO thin film having a physical film thickness of 20 nm was formed on this ion-implanted layer by a DC magnetron sputtering method at a film formation temperature of 0 ° C. to obtain a transparent conductive film according to Example 1.

得られた透明導電性フィルムに対し、三菱油化株式会社製の電気抵抗測定器(Loresta HP)を用いてITO薄膜の表面抵抗値を測定したところ315Ω/□であった。また、株式会社日立製作所製の光学測定器(U 4000)を用いて光線透過率を測定したところ、550nmにおいて87%の光線透過率を示した。さらに、株式会社リガク製のX線分析器(Rint−UltimaIII)を用いてITO薄膜をX線回折分析したところ、ITO起因のピークは観測されず、成膜されたITO薄膜は非結晶性の薄膜であることがわかった。   It was 315 ohms / square when the surface resistance value of the ITO thin film was measured with respect to the obtained transparent conductive film using the electrical resistance measuring device (Loresta HP) made from Mitsubishi Yuka Corporation. Further, when the light transmittance was measured using an optical measuring instrument (U 4000) manufactured by Hitachi, Ltd., it showed a light transmittance of 87% at 550 nm. Further, when an ITO thin film was subjected to X-ray diffraction analysis using an X-ray analyzer (Rint-UltimaIII) manufactured by Rigaku Corporation, no peak due to ITO was observed, and the formed ITO thin film was an amorphous thin film. I found out that

次に、透明導電性フィルムをスペーサーを介して透明導電性薄膜付硝子と貼り合わせた後、透明導電性フィルムに対して摺動試験(シャープ株式会社製のポリアセタールペン使用;250g荷重、5万往復)を行い、試験後にリニアリティの評価を行った。   Next, the transparent conductive film was bonded to the glass with a transparent conductive thin film through a spacer, and then a sliding test (using a polyacetal pen manufactured by Sharp Corporation; 250 g load, 50,000 reciprocations) ) And the linearity was evaluated after the test.

本明細書でいうリニアリティとは、得られた透明導電性フィルムの80mm×80mmの小片に対し、透明な導電性薄膜形成面の両端辺に幅5mmの電極パターンを銀ペーストで形成して作成したサンプルの電極間に定電圧電源から5Vを印加し、しかる後にサンプルの中心部50mm×50mmの範囲を縦横1mmの間隔で、(x1,y1)〜(x50,y50)の2500点において電圧Vi,j,J(i,j=1〜50)を測定し、その測定結果と各電圧測定点での理論電圧Ui,j=V1,1+(V50,50−V1,1)/50×(J−1)とのズレをΔi,j=(Vi,j−Ui,j)/Ui,jで定義した時の、Δi,jの絶対値の最大値のことである。この値が、1.5%以下であれば耐摺動性が良好な透明導電性フィルムであると判断した。   The linearity referred to in the present specification is created by forming an electrode pattern having a width of 5 mm on both ends of a transparent conductive thin film forming surface with a silver paste for a small piece of 80 mm × 80 mm of the obtained transparent conductive film. A voltage of 5 V is applied from the constant voltage power source between the electrodes of the sample, and then the voltage Vi, at 2500 points (x1, y1) to (x50, y50) in the center portion of the sample 50 mm × 50 mm at intervals of 1 mm vertically and horizontally. j, J (i, j = 1 to 50) are measured, and the measurement results and the theoretical voltage Ui at each voltage measurement point, j = V1, 1+ (V50, 50−V1, 1) / 50 × (J− This is the maximum absolute value of Δi, j when the deviation from 1) is defined as Δi, j = (Vi, j−Ui, j) / Ui, j. If this value was 1.5% or less, it was judged that the film was a transparent conductive film having good sliding resistance.

実施例1に係る透明導電性フィルムのリニアリティは1.5%以下であり、充分な耐摺動性を示した。   The linearity of the transparent conductive film according to Example 1 was 1.5% or less, and showed sufficient sliding resistance.

厚さ100μmのPETフィルム基材(東レ株式会社製、T60)の一方の面に、印加電圧は20kVでパルス幅は20μsecとして、プラズマイオン注入法によって40秒間のアルゴンイオン注入を行い、厚さが150nmのイオン注入層を得た。その後、このイオン注入層上にDCマグネトロンスパッタ法によって20nmの物理的膜厚を有するITO薄膜を成膜温度0℃で成膜し、実施例2に係る透明導電性フィルムを得た。   On one surface of a 100 μm thick PET film substrate (T60, manufactured by Toray Industries, Inc.), an applied voltage is 20 kV, a pulse width is 20 μsec, and argon ions are implanted for 40 seconds by plasma ion implantation. A 150 nm ion-implanted layer was obtained. Thereafter, an ITO thin film having a physical film thickness of 20 nm was formed on this ion-implanted layer by a DC magnetron sputtering method at a film formation temperature of 0 ° C. to obtain a transparent conductive film according to Example 2.

得られた透明積層フィルムに対し、三菱油化株式会社製の電気抵抗測定器(Loresta HP)を用いてITOの表面抵抗値を測定したところ320Ω/□であった。また、株式会社日立製作所製の光学測定器(U 4000)を用いて光線透過率を測定したところ、550nmの光線透過率は86%であった。さらに、株式会社リガク製のX線分析器(Rint−UltimaIII)を用いてITO薄膜をX線回折で測定したところ、ITO起因のピークは観測されず、成膜されたITO薄膜は非結晶性の薄膜であることがわかった。   It was 320 ohms / square when the surface resistance value of ITO was measured with respect to the obtained transparent laminated film using the electrical resistance measuring device (Loresta HP) made from Mitsubishi Yuka Corporation. Further, when the light transmittance was measured using an optical measuring instrument (U 4000) manufactured by Hitachi, Ltd., the light transmittance at 550 nm was 86%. Furthermore, when an ITO thin film was measured by X-ray diffraction using an X-ray analyzer (Rint-UltimaIII) manufactured by Rigaku Corporation, no peak due to ITO was observed, and the formed ITO thin film was non-crystalline. It turned out to be a thin film.

次に、透明導電性フィルムをスペーサーを介し透明導電性薄膜付硝子と貼り合わせた後、透明導電性フィルムに対して実施例1と同様な方法で摺動試験を行い、試験後にリニアリティの評価を行った。リニアリティは1.5%以下であった。   Next, after the transparent conductive film is bonded to the glass with the transparent conductive thin film through a spacer, a sliding test is performed on the transparent conductive film in the same manner as in Example 1, and the linearity is evaluated after the test. went. The linearity was 1.5% or less.

厚さ100μmのPETフィルム基材(東レ株式会社製、T60)の一方の面に、印加電圧は20kVでパルス幅は20μsecとして、プラズマイオン注入法によって40秒間のアルゴンイオン注入を行い、厚さが70nmのイオン注入層を得た。その後、そのイオン注入層上にDCマグネトロンスパッタ法によって20nmの物理的膜厚を有するITO薄膜を成膜温度0℃で成膜し、実施例2に係る透明導電性フィルムを得た。   On one surface of a 100 μm thick PET film substrate (T60, manufactured by Toray Industries, Inc.), an applied voltage is 20 kV, a pulse width is 20 μsec, and argon ions are implanted for 40 seconds by plasma ion implantation. A 70 nm ion-implanted layer was obtained. Thereafter, an ITO thin film having a physical film thickness of 20 nm was formed on the ion-implanted layer by a DC magnetron sputtering method at a film formation temperature of 0 ° C. to obtain a transparent conductive film according to Example 2.

得られた透明導電性フィルムに対し、三菱油化株式会社製の電気抵抗測定器(Loresta HP)を用いてITOの表面抵抗値を測定したところ317Ω/□であった。また、株式会社日立製作所製の光学測定器(U 4000)を用いて光線透過率を測定したところ、550nmの光線透過率は87%であった。さらに、株式会社リガク製のX線分析器(Rint−UltimaIII)を用いてITO薄膜をX線回折で測定したところ、ITO起因のピークは観測されず、成膜されたITO薄膜は非結晶性の薄膜であることがわかった。   It was 317 ohm / square when the surface resistance value of ITO was measured with respect to the obtained transparent conductive film using the electrical resistance measuring device (Loresta HP) made from Mitsubishi Yuka. Further, when the light transmittance was measured using an optical measuring instrument (U 4000) manufactured by Hitachi, Ltd., the light transmittance at 550 nm was 87%. Furthermore, when an ITO thin film was measured by X-ray diffraction using an X-ray analyzer (Rint-UltimaIII) manufactured by Rigaku Corporation, no peak due to ITO was observed, and the formed ITO thin film was non-crystalline. It turned out to be a thin film.

次に、透明導電性フィルムをスペーサーを介し透明導電性薄膜付硝子と貼り合わせた後、透明導電性フィルムに対して実施例1と同様の方法で摺動試験を行い、試験後にリニアリティの評価を行った。リニアリティは1.5%以下であった。   Next, after laminating the transparent conductive film with a glass with a transparent conductive thin film through a spacer, a sliding test is performed on the transparent conductive film in the same manner as in Example 1, and the linearity is evaluated after the test. went. The linearity was 1.5% or less.

上記実施例1で用いた厚さ100μmのPETフィルム基材の表面に、その表面硬度を上げる目的で、熱硬化性のポリシロキサン樹脂の薄膜を10μmの厚さで塗布し、ハードコート層を設けた。ハードコート層の鉛筆硬度は3Hであった。その後、DCマグネトロンスパッタ法によって実施例と同様のITO薄膜をハードコート層上に設け、比較のための実施例4に係る透明導電性フィルムを作成し、これに対して摺動試験を上記の方法と同様に行ったところ、リニアリティが3.0%となり、充分な耐摺動性を有していないものであることが分かった。   A thin film of thermosetting polysiloxane resin is applied to the surface of the PET film substrate having a thickness of 100 μm used in Example 1 with a thickness of 10 μm to increase the surface hardness, and a hard coat layer is provided. It was. The pencil hardness of the hard coat layer was 3H. Thereafter, an ITO thin film similar to that of the example was provided on the hard coat layer by DC magnetron sputtering, and a transparent conductive film according to Example 4 for comparison was prepared. As a result, it was found that the linearity was 3.0% and the film did not have sufficient sliding resistance.

上記実施例1で用いた厚さ100μmのPETフィルム基材の一方の面に、RFプラズマを用いてプラズマ処理した後、その処理面上に実施例1と同様の方法でITO薄膜を設け、比較のための実施例5に係る透明導電性フィルムを作成し、これに対して摺動試験を上記の方法と同様に行ったところ、リニアリティが3.6%となり、充分な耐摺動性を有していないものであることが分かった。   After one side of the 100 μm-thick PET film substrate used in Example 1 was subjected to plasma treatment using RF plasma, an ITO thin film was provided on the treated surface in the same manner as in Example 1 for comparison. When a transparent conductive film according to Example 5 was prepared and a sliding test was performed in the same manner as described above, the linearity was 3.6% and sufficient sliding resistance was obtained. I found out that it was not.

実施例1で用いた厚さ100μmのPETフィルム基材の一方の面に、印加電圧は150kVでパルス幅は20μsecとして、プラズマイオン注入法によって40秒間のアルゴンイオン注入を行い、厚さが200nmのイオン注入層を得た。その後、そのイオン注入層上にDCマグネトロンスパッタ法によって20nmの物理的膜厚を有するITO薄膜を成膜温度0℃で成膜し、比較のための実施例6に係る透明導電性フィルムを得た。   On one surface of a 100 μm thick PET film substrate used in Example 1, an applied voltage was 150 kV and a pulse width was 20 μsec. Argon ion implantation was performed for 40 seconds by plasma ion implantation, and the thickness was 200 nm. An ion-implanted layer was obtained. Thereafter, an ITO thin film having a physical film thickness of 20 nm was formed on the ion-implanted layer by a DC magnetron sputtering method at a film formation temperature of 0 ° C. to obtain a transparent conductive film according to Example 6 for comparison. .

得られた透明導電性フィルムに対し、三菱油化株式会社製の電気抵抗測定器(Loresta HP)を用いてITOの表面抵抗値を測定したところ350Ω/□であった。また、株式会社日立製作所製の光学測定器(U 4000)を用いて光線透過率を測定したところ、550nmの光線透過率は75%であった。さらに、株式会社リガク製のX線分析器(Rint−UltimaIII)を用いてITO薄膜をX線回折で測定したところ、ITO起因のピークは観測されず、非結晶性のITO薄膜であることがわかった。   It was 350 ohms / square when the surface resistance value of ITO was measured with respect to the obtained transparent conductive film using the electrical resistance measuring device (Loresta HP) made from Mitsubishi Yuka. Further, when the light transmittance was measured using an optical measuring instrument (U 4000) manufactured by Hitachi, Ltd., the light transmittance at 550 nm was 75%. Furthermore, when an ITO thin film was measured by X-ray diffraction using an X-ray analyzer (Rint-UltimaIII) manufactured by Rigaku Corporation, no peak due to ITO was observed and it was found to be an amorphous ITO thin film. It was.

次に、透明導電性フィルムをスペーサーを介し透明導電性薄膜付硝子と貼り合わせた後
、透明導電性フィルムに対して実施例1と同様の方法で摺動試験を行い、試験後にリニアリティの評価を行った。リニアリティは1.5%以上であった。
Next, after laminating the transparent conductive film with a glass with a transparent conductive thin film through a spacer, a sliding test is performed on the transparent conductive film in the same manner as in Example 1, and the linearity is evaluated after the test. went. The linearity was 1.5% or more.

実施例1で用いた厚さ100μmのPETフィルム基材の一方の面に、印加電圧は0.5kVでパルス幅は20μsecとして、プラズマイオン注入法によって40秒間のアルゴンイオン注入を行い、厚さが0.5nmのイオン注入層を得た。その後、そのイオン注入層の上にDCマグネトロンスパッタ法によって20nmの物理的膜厚を有するITO薄膜を成膜温度0℃で成膜し、比較のための実施例7に係る透明導電性フィルムを得た。   On one surface of the 100 μm thick PET film substrate used in Example 1, an applied voltage was 0.5 kV and a pulse width was 20 μsec. Argon ion implantation was performed for 40 seconds by plasma ion implantation, and the thickness was increased. A 0.5 nm ion-implanted layer was obtained. Thereafter, an ITO thin film having a physical film thickness of 20 nm was formed on the ion-implanted layer by DC magnetron sputtering at a film formation temperature of 0 ° C., and a transparent conductive film according to Example 7 for comparison was obtained. It was.

得られた透明導電性フィルムに対し、三菱油化株式会社製の電気抵抗計測器(Loresta HP)を用いてITOの表面抵抗値を測定したところ315Ω/□であった。また、株式会社日立製作所製の光学測定器(U 4000)を用いて光線透過率を測定したところ、550nmの光線透過率は88%であった。さらに、株式会社リガク製のX線分析器(Rint−UltimaIII)を用いてITO薄膜をX線回折で測定したところ、ITO起因のピークは観測されず、成膜されたITO薄膜は非結晶性の薄膜であることがわかった。   It was 315 ohms / square when the surface resistance value of ITO was measured with respect to the obtained transparent conductive film using the electrical resistance measuring device (Loresta HP) made from Mitsubishi Yuka. Further, when the light transmittance was measured using an optical measuring instrument (U 4000) manufactured by Hitachi, Ltd., the light transmittance at 550 nm was 88%. Furthermore, when an ITO thin film was measured by X-ray diffraction using an X-ray analyzer (Rint-UltimaIII) manufactured by Rigaku Corporation, no peak due to ITO was observed, and the formed ITO thin film was non-crystalline. It turned out to be a thin film.

次に、透明導電性フィルムをスペーサーを介し透明導電性薄膜付硝子と貼り合わせた後、透明導電性フィルムに対して実施例1と同様の方法で摺動試験を行い、試験後にリニアリティの評価を行った。リニアリティは1.5%以上であった。   Next, after laminating the transparent conductive film with a glass with a transparent conductive thin film through a spacer, a sliding test is performed on the transparent conductive film in the same manner as in Example 1, and the linearity is evaluated after the test. went. The linearity was 1.5% or more.

本発明の透明導電性フィルムの概略の断面構成を示す説明図である。It is explanatory drawing which shows the general | schematic cross-section structure of the transparent conductive film of this invention.

符号の説明Explanation of symbols

1 プラスチックフィルム基材
2 イオン注入層
3 透明導電性薄膜
DESCRIPTION OF SYMBOLS 1 Plastic film base material 2 Ion implantation layer 3 Transparent electroconductive thin film

Claims (3)

透明なプラスチックフィルム基材の少なくとも一方の面に、プラズマイオン注入法によってイオン注入層が形成されており、そのイオン注入層の上には非結晶性の酸化物薄膜からなる透明導電性薄膜が積層されていることを特徴とする透明導電性フィルム。   An ion implantation layer is formed on at least one surface of a transparent plastic film substrate by a plasma ion implantation method, and a transparent conductive thin film made of an amorphous oxide thin film is laminated on the ion implantation layer. A transparent conductive film characterized by being made. 前記イオン注入層が、プラズマソースとして希ガス、水素、窒素、酸素、アンモニアガスのうち少なくとも一種類のガスを用い、プラズマイオン注入法によって形成されたものであり、かつ、その厚さが、1nm〜150nmであることを特徴とする請求項1に記載の透明導電性フィルム。   The ion implantation layer is formed by a plasma ion implantation method using at least one kind of gas of rare gas, hydrogen, nitrogen, oxygen, and ammonia gas as a plasma source, and has a thickness of 1 nm. The transparent conductive film according to claim 1, wherein the film is ˜150 nm. 前記透明導電性薄膜が、酸化インジウムスズ(ITO)または酸化亜鉛を主成分とした酸化物薄膜であることを特徴とする請求項1または2に記載の透明導電性フィルム。   The transparent conductive film according to claim 1, wherein the transparent conductive thin film is an oxide thin film containing indium tin oxide (ITO) or zinc oxide as a main component.
JP2007037540A 2007-02-19 2007-02-19 Transparent conductive film Pending JP2008204683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037540A JP2008204683A (en) 2007-02-19 2007-02-19 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037540A JP2008204683A (en) 2007-02-19 2007-02-19 Transparent conductive film

Publications (1)

Publication Number Publication Date
JP2008204683A true JP2008204683A (en) 2008-09-04

Family

ID=39781977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037540A Pending JP2008204683A (en) 2007-02-19 2007-02-19 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP2008204683A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067857A1 (en) * 2008-12-12 2010-06-17 リンテック株式会社 Laminate, method for producing same, electronic device member, and electronic device
CN102074281A (en) * 2010-12-21 2011-05-25 苏州禾盛新型材料股份有限公司 RF plasma transparent conductive film
WO2011122497A1 (en) * 2010-03-31 2011-10-06 リンテック株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
WO2012039355A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Gas-barrier film, process for producing same, member for electronic device, and electronic device
WO2012039357A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Formed body, production method thereof, electronic device member and electronic device
WO2012039387A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Formed body, production method thereof, electronic device member and electronic device
WO2012093530A1 (en) 2011-01-06 2012-07-12 リンテック株式会社 Transparent conductive laminate body and organic thin film device
US8865810B2 (en) 2009-03-26 2014-10-21 Lintec Corporation Formed article, method for producing same, electronic device member, and electronic device
TWI491500B (en) * 2009-02-16 2015-07-11 Lintec Corp A manufacturing method of a laminated body, a structure for an electronic device, and an electronic device
US9340869B2 (en) 2008-08-19 2016-05-17 Lintec Corporation Formed article, method for producing the same, electronic device member, and electronic device
US9365922B2 (en) 2009-05-22 2016-06-14 Lintec Corporation Formed article, method of producing same, electronic device member, and electronic device
JP2016118942A (en) * 2014-12-22 2016-06-30 グンゼ株式会社 Transparent conductive film, and touch panel
US9540519B2 (en) 2010-03-31 2017-01-10 Lintec Corporation Formed article, method for producing same, electronic device member, and electronic device
US9556513B2 (en) 2010-08-20 2017-01-31 Lintec Corporation Molding, production method therefor, part for electronic devices and electronic device
CN107299328A (en) * 2017-08-11 2017-10-27 苏州南尔材料科技有限公司 A kind of preparation method of neodymium strontium cobalt thin film

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340869B2 (en) 2008-08-19 2016-05-17 Lintec Corporation Formed article, method for producing the same, electronic device member, and electronic device
WO2010067857A1 (en) * 2008-12-12 2010-06-17 リンテック株式会社 Laminate, method for producing same, electronic device member, and electronic device
KR101688239B1 (en) 2008-12-12 2016-12-20 린텍 가부시키가이샤 Laminate, method for producing same, electronic device member, and electronic device
KR20110094049A (en) * 2008-12-12 2011-08-19 린텍 가부시키가이샤 Laminate, method for producing same, electronic device member, and electronic device
JP5666311B2 (en) * 2008-12-12 2015-02-12 リンテック株式会社 LAMINATE, MANUFACTURING METHOD THEREFOR, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE
TWI491500B (en) * 2009-02-16 2015-07-11 Lintec Corp A manufacturing method of a laminated body, a structure for an electronic device, and an electronic device
US8865810B2 (en) 2009-03-26 2014-10-21 Lintec Corporation Formed article, method for producing same, electronic device member, and electronic device
US9365922B2 (en) 2009-05-22 2016-06-14 Lintec Corporation Formed article, method of producing same, electronic device member, and electronic device
KR101382429B1 (en) * 2010-03-31 2014-04-08 린텍 가부시키가이샤 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
CN102811853B (en) * 2010-03-31 2015-05-20 琳得科株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
US9540519B2 (en) 2010-03-31 2017-01-10 Lintec Corporation Formed article, method for producing same, electronic device member, and electronic device
WO2011122497A1 (en) * 2010-03-31 2011-10-06 リンテック株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
JP5404915B2 (en) * 2010-03-31 2014-02-05 リンテック株式会社 Transparent conductive film, method for producing the same, and electronic device using transparent conductive film
CN102811853A (en) * 2010-03-31 2012-12-05 琳得科株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
US9556513B2 (en) 2010-08-20 2017-01-31 Lintec Corporation Molding, production method therefor, part for electronic devices and electronic device
WO2012039387A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Formed body, production method thereof, electronic device member and electronic device
WO2012039355A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Gas-barrier film, process for producing same, member for electronic device, and electronic device
TWI457235B (en) * 2010-09-21 2014-10-21 Lintec Corp A gas barrier film, a manufacturing method thereof, an electronic device element, and an electronic device
KR101871009B1 (en) 2010-09-21 2018-06-25 린텍 가부시키가이샤 Formed body, production method thereof, electronic device member and electronic device
CN103201109A (en) * 2010-09-21 2013-07-10 琳得科株式会社 Gas-barrier film, process for producing same, member for electronic device, and electronic device
US8771834B2 (en) 2010-09-21 2014-07-08 Lintec Corporation Formed body, production method thereof, electronic device member and electronic device
WO2012039357A1 (en) * 2010-09-21 2012-03-29 リンテック株式会社 Formed body, production method thereof, electronic device member and electronic device
US8846200B2 (en) 2010-09-21 2014-09-30 Lintec Corporation Gas-barrier film, process for producing same, member for electronic device, and electronic device
JP5326052B2 (en) * 2010-09-21 2013-10-30 リンテック株式会社 GAS BARRIER FILM, PROCESS FOR PRODUCING THE SAME, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE
CN103209834A (en) * 2010-09-21 2013-07-17 琳得科株式会社 Formed body, production method thereof, electronic device member and electronic device
JP5992331B2 (en) * 2010-09-21 2016-09-14 リンテック株式会社 Molded body, manufacturing method thereof, electronic device member and electronic device
CN103282196A (en) * 2010-09-21 2013-09-04 琳得科株式会社 Formed body, production method thereof, electronic device member and electronic device
CN102074281A (en) * 2010-12-21 2011-05-25 苏州禾盛新型材料股份有限公司 RF plasma transparent conductive film
WO2012093530A1 (en) 2011-01-06 2012-07-12 リンテック株式会社 Transparent conductive laminate body and organic thin film device
JP2016118942A (en) * 2014-12-22 2016-06-30 グンゼ株式会社 Transparent conductive film, and touch panel
CN107299328A (en) * 2017-08-11 2017-10-27 苏州南尔材料科技有限公司 A kind of preparation method of neodymium strontium cobalt thin film

Similar Documents

Publication Publication Date Title
JP2008204683A (en) Transparent conductive film
JP3819927B2 (en) Transparent conductive film
JP5380161B2 (en) Transparent conductive film and electronic device using the same
TWI380455B (en) Thin film transistor
TW201230078A (en) Transparent conductive film, method for production thereof and touch panel therewith
JP4978297B2 (en) Transparent conductive gas barrier film
JP4896854B2 (en) Method for producing transparent conductive film
CN103927049A (en) Touch screen and manufacturing method thereof
BRPI1012893A2 (en) process of obtaining a coated substrate on a first face of at least one transparent, electroconductive thin layer based on at least one oxide, coated substrate and photovoltaic cell or glass, solar panel, viewing screen or electrochromic pane
JPWO2012161095A1 (en) Conductive film material, conductive film laminate, electronic device, and manufacturing method thereof
Choi et al. Flexible electrochromic films based on CVD-graphene electrodes
WO2014115770A1 (en) Transparent electroconductive substrate and method for producing same
JP4687733B2 (en) Transparent electrode, transparent conductive substrate and transparent touch panel
CN105529275A (en) Thin film transistor and manufacturing method thereof
JP5115194B2 (en) Electrically conductive material
JP2016514879A (en) Touch panel, method for producing the same, and AG-PD-ND alloy for touch panel
Hu et al. Ultra‐low resistivity copper mesh as embedded current collector layer for inkjet‐printed flexible electrochromic device realizing fast response and uniform coloration
KR20130107460A (en) Conductive film, touch pannel and display device including the same
KR101359403B1 (en) Method for forming a transparent conductive layer
JP2010251307A (en) Method for manufacturing transparent electrode
JP2007234397A (en) Transparent electrode and its forming method
JP4132191B2 (en) Electrode member for resistive film type transparent touch panel
CN110648783A (en) ITO thin film and transparent conductive thin film
JP5468801B2 (en) Substrate with transparent electrode and manufacturing method thereof
JP2009295325A (en) Conductive paste for electrode and transparent touch panel