JP4978297B2 - Transparent conductive gas barrier film - Google Patents

Transparent conductive gas barrier film Download PDF

Info

Publication number
JP4978297B2
JP4978297B2 JP2007115057A JP2007115057A JP4978297B2 JP 4978297 B2 JP4978297 B2 JP 4978297B2 JP 2007115057 A JP2007115057 A JP 2007115057A JP 2007115057 A JP2007115057 A JP 2007115057A JP 4978297 B2 JP4978297 B2 JP 4978297B2
Authority
JP
Japan
Prior art keywords
layer
transparent conductive
gas barrier
ion implantation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007115057A
Other languages
Japanese (ja)
Other versions
JP2008270115A (en
Inventor
敬介 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2007115057A priority Critical patent/JP4978297B2/en
Publication of JP2008270115A publication Critical patent/JP2008270115A/en
Application granted granted Critical
Publication of JP4978297B2 publication Critical patent/JP4978297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばLCDや有機EL素子を用いたフィルムディスプレイの電極として用いられる耐溶剤性に優れた透明導電性フィルムに関するものである。   The present invention relates to a transparent conductive film excellent in solvent resistance used as an electrode of a film display using, for example, an LCD or an organic EL element.

近年、液晶ディスプレイ(LCD)やエレクトロルミネッセンス(EL)ディスプレイなどのようなフラットパネルディスプレイが、広く普及してきた。
これらの情報機器の携帯性を向上するため、より一層の薄型化・軽量化、耐破損性が求められている。従来、LCD、タッチパネルの透明導電性基板として、重く、厚く、割れやすいガラス基板が用いられて来たが、これに代わる材料として、透明導電性樹脂基板が提案されている。しかし、透明導電性樹脂基板は、耐久性、耐溶剤性、ガスバリア性等の基本特性がガラス基板より劣っている。
In recent years, flat panel displays such as liquid crystal displays (LCD) and electroluminescence (EL) displays have become widespread.
In order to improve the portability of these information devices, further reduction in thickness / weight and damage resistance are required. Conventionally, glass substrates that are heavy, thick, and easy to break have been used as transparent conductive substrates for LCDs and touch panels, but transparent conductive resin substrates have been proposed as an alternative material. However, the transparent conductive resin substrate is inferior to the glass substrate in basic characteristics such as durability, solvent resistance, and gas barrier properties.

例えば、透明導電性樹脂基板を、LCD用電極基板として利用しようとした場合、金属酸化物層を設けることにより、ガスバリア性は付与できる。しかし、液晶配向膜形成過程で、液晶配向膜の前駆材料をN−メチルピロリドン(NMP)等の溶剤に溶解した塗工液をコーティングする際に、上記溶剤に透明導電性樹脂基板が、白化、膨潤等の損傷を受ける。そこで、基板の上記溶剤による白化を防止するために、基板上に高分子膜を塗布し、耐溶剤性を付与することが一般的に行われている(特許文献1)。   For example, when a transparent conductive resin substrate is to be used as an electrode substrate for LCD, gas barrier properties can be imparted by providing a metal oxide layer. However, in the process of forming the liquid crystal alignment film, when the coating liquid prepared by dissolving the precursor material of the liquid crystal alignment film in a solvent such as N-methylpyrrolidone (NMP) is coated, the transparent conductive resin substrate is whitened in the solvent, Damage such as swelling. Therefore, in order to prevent whitening of the substrate due to the solvent, it is generally performed to apply a polymer film on the substrate to impart solvent resistance (Patent Document 1).

しかしながら、上記従来の技術では、少なくとも3層成膜する必要があることに加えて、有機層/無機層/有機層という積層のため無機層は真空プロセス、有機層は大気中プロセスと、成膜プロセスが全く違う工程を順に通すことによるコストアップは避けることができない。
よってできるだけ単一プロセスで各層を形成することができる膜構成が望まれている。しかし、ディスプレイ基板として使用に耐えうるガスバリア層を形成するには今のところ真空プロセス以外にない。有機層を真空プロセスで形成可能なものに置換することが望まれている。
特許第3667933号公報
However, in the above conventional technique, in addition to the necessity of forming at least three layers, the inorganic layer is a vacuum process and the organic layer is an atmospheric process because of the organic layer / inorganic layer / organic layer stacking. It is inevitable that the cost will increase due to the process passing through completely different processes.
Therefore, a film configuration capable of forming each layer by a single process as much as possible is desired. However, there is currently no vacuum process other than the vacuum process to form a gas barrier layer that can be used as a display substrate. It is desirable to replace the organic layer with one that can be formed by a vacuum process.
Japanese Patent No. 3666733

本発明の目的は、かかる従来技術の問題点を解決し、真空プロセスのみの単一プロセスによって製造可能であるとともに、耐溶剤性に優れた透明導電性フィルムを提供することにある。   An object of the present invention is to solve the problems of the prior art and to provide a transparent conductive film which can be produced by a single process only of a vacuum process and has excellent solvent resistance.

請求項1に記載の発明は、プラスチックフィルムの少なくとも一方の面に、プラズマイオン注入法によって層厚が15nm以上150nm以下であるイオン注入層が形成されており、前記イオン注入層の上にガスバリア層、透明導電層を順次形成してなることを特徴とする透明導電性ガスバリアフィルムである。
請求項2に記載の発明は、前記イオン注入層は、プラズマソースとして希ガス、水素、窒素、アンモニアガスのうち少なくとも一種類のガスを用いて形成されたものであることを特徴とする請求項1に記載の透明導電性ガスバリアフィルムである。
請求項3に記載の発明は、前記イオン注入層のC=C結合(Bc=c)とC−C結合(Bc−c)との比である、Bc=c/Bc−cが0.2以上であることを特徴とする請求項1または2に記載の透明導電性フィルムである。
According to the first aspect of the present invention, an ion implantation layer having a layer thickness of 15 nm or more and 150 nm or less is formed on at least one surface of the plastic film by a plasma ion implantation method, and a gas barrier layer is formed on the ion implantation layer. The transparent conductive gas barrier film is formed by sequentially forming transparent conductive layers.
The invention according to claim 2 is characterized in that the ion implantation layer is formed using at least one kind of gas among a rare gas, hydrogen, nitrogen, and ammonia gas as a plasma source. 1. The transparent conductive gas barrier film according to 1.
The invention according to claim 3 is a ratio of C = C bond (Bc = c) and CC bond (Bc-c) of the ion implantation layer, and Bc = c / Bc-c is 0.2. It is the above, It is a transparent conductive film of Claim 1 or 2.

本発明の透明導電性フィルムは、プラスチックフィルムの少なくとも一方の面に、プラズマイオン注入法によって層厚が15nm以上150nm以下であるイオン注入層が形成されており、前記イオン注入層の上にガスバリア層、透明導電層を順次形成してなることを特徴としている。従来技術は上述のように、耐溶剤性を高めるためにアクリレートのような耐溶剤性の高い高分子膜を形成した後、ガスバリア層及び透明導電性薄膜を形成していたが、本発明では、上記イオン注入層が耐溶剤性を付与するものであり、従来技術と同等の性能を提供する。イオン注入層においてはイオン注入によってプラスチックの基本構造の結合が切断され新たに炭素の二重結合が形成されることによって、プラスチック表面に溶剤に対して可溶ではない炭素の二重結合が多く含まれた薄膜が形成され、これが耐溶剤性に寄与する。
このように本発明によれば、真空プロセスのみの単一プロセスによって製造可能であるとともに、耐溶剤性に優れた透明導電性フィルムを提供することができる。
In the transparent conductive film of the present invention, an ion implantation layer having a layer thickness of 15 nm or more and 150 nm or less is formed on at least one surface of a plastic film by a plasma ion implantation method, and a gas barrier layer is formed on the ion implantation layer. The transparent conductive layer is sequentially formed. As described above, the prior art has formed a gas barrier layer and a transparent conductive thin film after forming a polymer film having high solvent resistance such as acrylate in order to improve solvent resistance. The ion-implanted layer imparts solvent resistance and provides performance equivalent to that of the prior art. In the ion-implanted layer, the bond of the plastic basic structure is cut by ion implantation and new carbon double bonds are formed, so that there are many carbon double bonds that are not soluble in the solvent on the plastic surface. A thin film is formed, which contributes to solvent resistance.
As described above, according to the present invention, it is possible to provide a transparent conductive film that can be manufactured by a single process including only a vacuum process and is excellent in solvent resistance.

以下、本発明の実施の形態を図面を用いながら詳細に説明する。
図1は、本発明の透明導電性ガスバリアフィルムの一形態の断面図である。図1の形態の透明導電性ガスバリアフィルムは、プラスチックフィルム(1)上に、イオン注入層(2)が形成され、さらにガスバリア層(3)および透明導電層(4)が順次形成されている。このイオン注入層(2)はプラズマイオン注入法によって形成されており、その上に形成されているガスバリア層(3)は例えば、DC及びRFマグネトロンスパッタリング法もしくはCVD法によって形成されており、透明導電層(4)は例えば、DCスパッタリング方式により形成された膜である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of one embodiment of the transparent conductive gas barrier film of the present invention. In the transparent conductive gas barrier film in the form of FIG. 1, an ion implantation layer (2) is formed on a plastic film (1), and a gas barrier layer (3) and a transparent conductive layer (4) are sequentially formed. This ion implantation layer (2) is formed by a plasma ion implantation method, and the gas barrier layer (3) formed thereon is formed by, for example, a DC and RF magnetron sputtering method or a CVD method. The layer (4) is, for example, a film formed by a DC sputtering method.

本発明の透明導電性フィルムを構成するプラスチックフィルム(1)としては、例えばポリエチレンテレフタレート(PET)に代表されるポリエステルフィルムや、ポリカーボネートフィルム、ポリアリレートフィルムやポリエーテルサルフォンフィルム等のエンジニアリングプラスチックフィルムなどが挙げられる。特にLCD用途に用いる場合は、複屈折率の少ないプラスチックフィルムが好ましい。なお本発明の透明導電性フィルムは、ディスプレイ全面に貼りつける形になるので,このプラスチックフィルム(1)は透明性を有することが必要条件となる。 基材の厚さは特に限定はしないが、100ミクロン〜200ミクロン程度が適している。   Examples of the plastic film (1) constituting the transparent conductive film of the present invention include a polyester film represented by polyethylene terephthalate (PET), an engineering plastic film such as a polycarbonate film, a polyarylate film, and a polyethersulfone film. Is mentioned. In particular, when used for LCD, a plastic film having a low birefringence is preferable. In addition, since the transparent conductive film of this invention becomes a form affixed on the display whole surface, it becomes a necessary condition that this plastic film (1) has transparency. The thickness of the substrate is not particularly limited, but about 100 to 200 microns is suitable.

また、イオン注入層(2)は、プラズマイオン注入法によって形成されている。プラズマイオン注入条件は、プラスチックフィルム(1)に印加するパルス電圧が5kV〜20kV、パルス幅が10μsec〜20μsec程度の条件が適している。また、イオン注入に使用するプラズマソースとしては希ガス、水素、窒素、アンモニアガスのうち少なくとも一種類のガスが好ましい。上記したプラズマソースを用いることで、プラスチックフィルム(1)表面がより活性化され、後述するガスバリア層との密着が良くなる。十分な密度を有するイオン注入層をより短時間で形成するためには、プラズマソースとしてはイオン注入深度が比較的浅く、プラズマの安定性が良好なアルゴンを用いることが特に好ましい。
またイオン注入層(2)層の層厚は15nm以上150nm以下が好ましい。15nm未満では充分な耐溶剤性が得られない。また150nmを超えると、良好な透明性を得られない可能性が高い。
さらに好ましいイオン注入層(2)層の層厚は30nm以上70nm以下である。
The ion implantation layer (2) is formed by a plasma ion implantation method. As the plasma ion implantation conditions, a pulse voltage applied to the plastic film (1) of 5 kV to 20 kV and a pulse width of about 10 μsec to 20 μsec are suitable. Further, as a plasma source used for ion implantation, at least one kind of gas among rare gas, hydrogen, nitrogen, and ammonia gas is preferable. By using the plasma source described above, the surface of the plastic film (1) is more activated, and adhesion with a gas barrier layer described later is improved. In order to form an ion-implanted layer having a sufficient density in a shorter time, it is particularly preferable to use argon with a relatively shallow ion implantation depth and good plasma stability as the plasma source.
The layer thickness of the ion implantation layer (2) is preferably 15 nm or more and 150 nm or less. If it is less than 15 nm, sufficient solvent resistance cannot be obtained. Moreover, when it exceeds 150 nm, possibility that favorable transparency will not be acquired is high.
The layer thickness of the more preferable ion implantation layer (2) is 30 nm or more and 70 nm or less.

また本発明によれば、イオン注入層のC=C結合(Bc=c)とC−C結合(Bc−c)との比である、Bc=c/Bc−cが0.2以上であることが好ましい。この値が0.2以上であることにより、アモルファス化が進み、耐溶剤性が向上し、硬度も増す。Bc=c/Bc−cは、化学修飾法を用いて測定することができる。Bc=cを検出する場合は、臭素をクロロホルムで希釈したものにサンプルを浸すことにより、サンプル表面にあるC=CをC-Brで置換し、それをXPSを用いて測定することにより、C-CとC-Brの比が測定できこれがすなわち、C-C結合とC=C結合の比となる。
さらに好ましいBc=c/Bc−cは0.2〜0.5である。
Further, according to the present invention, Bc = c / Bc-c, which is a ratio of C = C bond (Bc = c) and CC bond (Bc-c) of the ion implantation layer, is 0.2 or more. It is preferable. When this value is 0.2 or more, amorphization progresses, solvent resistance is improved, and hardness is increased. Bc = c / Bc-c can be measured using a chemical modification method. When detecting Bc = c, the sample is immersed in a solution of bromine diluted with chloroform, C = C on the sample surface is replaced with C-Br, and it is measured using XPS. And C-Br ratio can be measured, that is, the ratio of CC bond to C = C bond.
More preferable Bc = c / Bc-c is 0.2 to 0.5.

本発明におけるガスバリア層(3)は、高い透明性と高いガスバリア性能を有していれば特に限定されないが、DCスパッタリング法やCVD法で形成された、酸化珪素薄膜や、酸窒化珪素が好んで用いられる。   The gas barrier layer (3) in the present invention is not particularly limited as long as it has high transparency and high gas barrier performance, but a silicon oxide thin film or silicon oxynitride formed by a DC sputtering method or a CVD method is preferred. Used.

本発明における透明導電層(4)の材料としては、酸化インジウムスズ(ITO)が特に多く用いられているが、酸化亜鉛や酸化錫等、高い透明性と高い導電性を有していれば特に限定されない。   As the material of the transparent conductive layer (4) in the present invention, indium tin oxide (ITO) is used in particular, especially if it has high transparency and high conductivity such as zinc oxide and tin oxide. It is not limited.

以下、実施例および比較例により、本発明をさらに具体的に説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not restrict | limited to the following example.

〈実施例1〉
厚さ100μmのPETフィルム(東レ社製、T60)基材にアルゴンイオン注入層を設けた。その際、基材に印加した電圧は20kVでパルス幅は20μ秒であった。40秒間、アルゴンイオン注入を行ったところ、約30nmのイオン注入層を得た。このイオン注入層上に、NMPを数滴垂らし80℃5分間保持後、水洗し外観変化を見たところ、滴下前と変化は見られなかった。この際、イオン注入層のBc=c/Bc−cは0.5であった。その後、ガスバリア層としてDCマグネトロンスパッタ法によって20nmの物理的膜厚を有する酸化珪素薄膜を形成した。この積層体の酸素透過速度をMOCON社製OXTRANにて30℃、70%RHの条件下で測定したところ0.2cc/m2/dayであり、水蒸気透過速度を同じくMOCON社製PERMATRANにて40℃、90%RHの条件下で測定したところ0.2g/m2/dayであり、良好なガスバリア性能を有していた。その後、ガスバリア層上にITO薄膜をDCマグネトロンスパッタ法によって150nm成膜した。この際、表面抵抗値は35Ω/□であった。以上の積層体を再び同様にNMP処理を行ったところ外観に変化は見られなかった。
<Example 1>
An argon ion-implanted layer was provided on a 100 μm-thick PET film (Toray Industries, T60) substrate. At that time, the voltage applied to the substrate was 20 kV and the pulse width was 20 μsec. When argon ion implantation was performed for 40 seconds, an ion implantation layer of about 30 nm was obtained. On this ion-implanted layer, a few drops of NMP were dropped and held at 80 ° C. for 5 minutes, then washed with water and the appearance was changed. At this time, Bc = c / Bc-c of the ion implantation layer was 0.5. Thereafter, a silicon oxide thin film having a physical film thickness of 20 nm was formed as a gas barrier layer by DC magnetron sputtering. The oxygen transmission rate of this laminate was measured with MOCON OXTRAN at 30 ° C and 70% RH and found to be 0.2 cc / m 2 / day, and the water vapor transmission rate was 40 ° C with MOCON PERMATRAN. When measured under the condition of 90% RH, it was 0.2 g / m 2 / day and had good gas barrier performance. Thereafter, an ITO thin film was formed on the gas barrier layer to a thickness of 150 nm by DC magnetron sputtering. At this time, the surface resistance value was 35Ω / □. When the above laminate was similarly subjected to NMP treatment again, no change in appearance was observed.

<実施例2>
厚さ188μmのポリカーボネートフィルム(帝人社製、パンライト)基材に、窒素イオン注入層を設けた。その際、基材に印加した電圧は5kVでパルス幅は20μ秒であった。40秒間、窒素イオン注入を行ったところ、約15nmのイオン注入層を得た。この積層体上に、NMPを数滴垂らし80℃5分間保持後、水洗し外観変化を見たところ、滴下前と変化は見られなかった。この際、イオン注入層のBc=c/Bc−cは0.2であった。その後、ガスバリア層としてDCマグネトロンスパッタ法によって20nmの物理的膜厚を有する酸化珪素薄膜を形成した。この積層体の酸素透過速度をMOCON社製OXTRANにて30℃、70%RHの条件下で測定したところ0.15cc/m2/dayであり、水蒸気透過速度を同じくMOCON社製PERMATRANにて40℃、90%RHの条件下で測定したところ0.12g/m2/dayであり、良好なガスバリア性能を有していた。その後、同様にITO薄膜をDCマグネトロンスパッタ法によって150nm成膜した。この際、表面抵抗値は35Ω/□であった。以上の積層体を再び同様にNMP処理を行ったところ外観に変化は見られなかった。
<Example 2>
A nitrogen ion-implanted layer was provided on a polycarbonate film substrate (Panlite, manufactured by Teijin Limited) having a thickness of 188 μm. At that time, the voltage applied to the substrate was 5 kV and the pulse width was 20 μsec. When nitrogen ion implantation was performed for 40 seconds, an ion implantation layer of about 15 nm was obtained. On this laminate, several drops of NMP were dropped and kept at 80 ° C. for 5 minutes, then washed with water and the appearance was changed. At this time, Bc = c / Bc-c of the ion implantation layer was 0.2. Thereafter, a silicon oxide thin film having a physical film thickness of 20 nm was formed as a gas barrier layer by DC magnetron sputtering. The oxygen transmission rate of this laminate was measured at 30 ° C. and 70% RH using an OXTRAN manufactured by MOCON, and found to be 0.15 cc / m 2 / day, and the water vapor transmission rate was 40 ° C. using PERMATRAN manufactured by MOCON. When measured under the condition of 90% RH, it was 0.12 g / m 2 / day and had good gas barrier performance. Thereafter, similarly, an ITO thin film was formed to a thickness of 150 nm by a DC magnetron sputtering method. At this time, the surface resistance value was 35Ω / □. When the above laminate was similarly subjected to NMP treatment again, no change in appearance was observed.

<実施例3>
厚さ188μmのポリカーボネート(帝人社製、パンライト)基材に、水素イオン注入層を設けた。その際、基材に印加した電圧は20kVでパルス幅は20μ秒であった。300秒間、水素イオン注入を行ったところ、約150nmのイオン注入層を得た。この積層体上に、NMPを数滴垂らし80℃5分間保持後、水洗し外観変化を見たところ、滴下前と変化は見られなかった。この際、イオン注入層のBc=c/Bc−cは0.35であった。その後、ガスバリア層としてDCマグネトロンスパッタ法によって20nmの物理的膜厚を有する酸化珪素薄膜を形成した。この積層体の酸素透過速度をMOCON社製OXTRANにて30℃、70%RHの条件下で測定したところ0.15cc/m2/dayであり、水蒸気透過速度を同じくMOCON社製PERMATRANにて40℃、90%RHの条件下で測定したところ0.12g/m2/dayであり、良好なガスバリア性能を有していた。その後、同様にITO薄膜をDCマグネトロンスパッタ法によって150nm成膜した。この際、表面抵抗値は35Ω/□であった。以上の積層体を再び同様にNMP処理を行ったところ外観に変化は見られなかった。
<Example 3>
A hydrogen ion-implanted layer was provided on a polycarbonate substrate (Panlite, Teijin Ltd.) having a thickness of 188 μm. At that time, the voltage applied to the substrate was 20 kV and the pulse width was 20 μsec. When hydrogen ion implantation was performed for 300 seconds, an ion implantation layer of about 150 nm was obtained. On this laminate, several drops of NMP were dropped and kept at 80 ° C. for 5 minutes, then washed with water and the appearance was changed. At this time, Bc = c / Bc-c of the ion implantation layer was 0.35. Thereafter, a silicon oxide thin film having a physical film thickness of 20 nm was formed as a gas barrier layer by DC magnetron sputtering. The oxygen transmission rate of this laminate was measured at 30 ° C. and 70% RH using an OXTRAN manufactured by MOCON, and found to be 0.15 cc / m 2 / day, and the water vapor transmission rate was 40 ° C. using PERMATRAN manufactured by MOCON. When measured under the condition of 90% RH, it was 0.12 g / m 2 / day and had good gas barrier performance. Thereafter, similarly, an ITO thin film was formed to a thickness of 150 nm by a DC magnetron sputtering method. At this time, the surface resistance value was 35Ω / □. When the above laminate was similarly subjected to NMP treatment again, no change in appearance was observed.

〈比較例1〉
厚さ188μmのポリカーボネート(帝人社製、パンライト)基材に、アルゴンイオン注入層を設けた。その際、基材に印加した電圧は1kVでパルス幅は20μ秒であった。40秒間、水素イオン注入を行ったところ、7.5nmのイオン注入層を得た。この積層体上に、NMPを数滴垂らし80℃5分間保持後、水洗し外観変化を見たところ、白濁が見られた。この際、イオン注入層のBc=c/Bc−cは0.1であった。その後、ガスバリア層としてDCマグネトロンスパッタ法によって20nmの物理的膜厚を有する酸化珪素薄膜を形成した。この積層体の酸素透過速度をMOCON社製OXTRANにて30℃、70%RHの条件下で測定したところ0.15cc/m2/dayであり、水蒸気透過速度を同じくMOCON社製PERMATRANにて40℃、90%RHの条件下で測定したところ0.12g/m2/dayであり、良好なガスバリア性能を有していた。その後、同様にITO薄膜をDCマグネトロンスパッタ法によって150nm成膜した。この際、表面抵抗値は35Ω/□であった。以上の積層体を再び同様にNMP処理を行ったところやはり白濁が見られた。
<Comparative example 1>
An argon ion-implanted layer was provided on a polycarbonate substrate (Panlite, manufactured by Teijin Limited) having a thickness of 188 μm. At that time, the voltage applied to the substrate was 1 kV and the pulse width was 20 μsec. When hydrogen ion implantation was performed for 40 seconds, a 7.5 nm ion-implanted layer was obtained. On this laminate, several drops of NMP were dropped and kept at 80 ° C. for 5 minutes, then washed with water and the appearance changed. As a result, white turbidity was observed. At this time, Bc = c / Bc-c of the ion implantation layer was 0.1. Thereafter, a silicon oxide thin film having a physical film thickness of 20 nm was formed as a gas barrier layer by DC magnetron sputtering. The oxygen transmission rate of this laminate was measured at 30 ° C. and 70% RH using an OXTRAN manufactured by MOCON, and found to be 0.15 cc / m 2 / day, and the water vapor transmission rate was 40 ° C. using PERMATRAN manufactured by MOCON. When measured under the condition of 90% RH, it was 0.12 g / m 2 / day and had good gas barrier performance. Thereafter, similarly, an ITO thin film was formed to a thickness of 150 nm by a DC magnetron sputtering method. At this time, the surface resistance value was 35Ω / □. When the above laminate was again subjected to NMP treatment, white turbidity was still observed.

本発明の透明導電性フィルムは、真空プロセスのみを用いて形成でき、コスト性に優れるとともに、耐溶剤性にも優れるので、例えばLCDや有機EL素子を用いたフィルムディスプレイの電極として有用である。   The transparent conductive film of the present invention can be formed using only a vacuum process, and is excellent in cost and solvent resistance. Therefore, the transparent conductive film is useful as an electrode of a film display using, for example, an LCD or an organic EL element.

本発明の透明導電性ガスバリアフィルムの一形態の断面図である。It is sectional drawing of one form of the transparent conductive gas barrier film of this invention.

符号の説明Explanation of symbols

(1) プラスチックフィルム
(2) イオン注入層
(3) ガスバリア層
(4) 透明導電層
(1) Plastic film (2) Ion implantation layer (3) Gas barrier layer (4) Transparent conductive layer

Claims (3)

プラスチックフィルムの少なくとも一方の面に、プラズマイオン注入法によって層厚が15nm以上150nm以下であるイオン注入層が形成されており、前記イオン注入層の上にガスバリア層、透明導電層を順次形成してなることを特徴とする透明導電性ガスバリアフィルム。   An ion implantation layer having a layer thickness of 15 nm or more and 150 nm or less is formed on at least one surface of the plastic film by plasma ion implantation, and a gas barrier layer and a transparent conductive layer are sequentially formed on the ion implantation layer. A transparent conductive gas barrier film characterized by comprising: 前記イオン注入層は、プラズマソースとして希ガス、水素、窒素、アンモニアガスのうち少なくとも一種類のガスを用いて形成されたものであることを特徴とする請求項1に記載の透明導電性ガスバリアフィルム。   2. The transparent conductive gas barrier film according to claim 1, wherein the ion-implanted layer is formed using at least one of a rare gas, hydrogen, nitrogen, and ammonia gas as a plasma source. . 前記イオン注入層のC=C結合(Bc=c)とC−C結合(Bc−c)との比である、Bc=c/Bc−cが0.2以上であることを特徴とする請求項1または2に記載の透明導電性フィルム。   Bc = c / Bc-c, which is a ratio of C = C bond (Bc = c) and CC bond (Bc-c) of the ion-implanted layer, is 0.2 or more. Item 3. The transparent conductive film according to Item 1 or 2.
JP2007115057A 2007-04-25 2007-04-25 Transparent conductive gas barrier film Expired - Fee Related JP4978297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115057A JP4978297B2 (en) 2007-04-25 2007-04-25 Transparent conductive gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115057A JP4978297B2 (en) 2007-04-25 2007-04-25 Transparent conductive gas barrier film

Publications (2)

Publication Number Publication Date
JP2008270115A JP2008270115A (en) 2008-11-06
JP4978297B2 true JP4978297B2 (en) 2012-07-18

Family

ID=40049340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115057A Expired - Fee Related JP4978297B2 (en) 2007-04-25 2007-04-25 Transparent conductive gas barrier film

Country Status (1)

Country Link
JP (1) JP4978297B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502202B1 (en) 2008-08-19 2015-03-12 린텍 가부시키가이샤 Moulded article, method for producing the same, electronic device member, and electronic device
TWI491500B (en) 2009-02-16 2015-07-11 Lintec Corp A manufacturing method of a laminated body, a structure for an electronic device, and an electronic device
JP5379530B2 (en) 2009-03-26 2013-12-25 リンテック株式会社 Molded body, manufacturing method thereof, electronic device member and electronic device
KR101489551B1 (en) 2009-05-22 2015-02-03 린텍 가부시키가이샤 Molded object, process for producing same, member for electronic device, and electronic device
KR101344227B1 (en) 2010-02-19 2013-12-23 린텍 가부시키가이샤 Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
JP5697230B2 (en) 2010-03-31 2015-04-08 リンテック株式会社 Molded body, manufacturing method thereof, member for electronic device, and electronic device
CN102811853B (en) * 2010-03-31 2015-05-20 琳得科株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
WO2012023389A1 (en) 2010-08-20 2012-02-23 リンテック株式会社 Molding, production method therefor, part for electronic devices and electronic device
TWI535561B (en) 2010-09-21 2016-06-01 Lintec Corp A molded body, a manufacturing method thereof, an electronic device element, and an electronic device
TWI457235B (en) 2010-09-21 2014-10-21 Lintec Corp A gas barrier film, a manufacturing method thereof, an electronic device element, and an electronic device
CN102074281A (en) * 2010-12-21 2011-05-25 苏州禾盛新型材料股份有限公司 RF plasma transparent conductive film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724954A (en) * 1993-07-14 1995-01-27 Mitsui Toatsu Chem Inc Electrically-conductive polarizing film
JP4372966B2 (en) * 2000-05-16 2009-11-25 大日本印刷株式会社 Barrier film and laminated material using the same
JP2004127719A (en) * 2002-10-02 2004-04-22 Nippon Hoso Kyokai <Nhk> Transparent conductive film and display device
JP2006052376A (en) * 2004-02-27 2006-02-23 Lintec Corp Method for producing polymer molded product, polymer molded product and apparatus for producing the same

Also Published As

Publication number Publication date
JP2008270115A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4978297B2 (en) Transparent conductive gas barrier film
JP3819927B2 (en) Transparent conductive film
JP4528651B2 (en) Transparent conductive film and touch panel
US9761815B2 (en) Flexible substrate, OLED device and defect detecting method for the same
EP2128191B1 (en) Barrier laminate, gas barrier film, device, and method for producing barrier laminate
US20090200938A2 (en) Flexible organic light emitting devices
JP2008204683A (en) Transparent conductive film
WO2006019184A1 (en) Transparent conductive multilayer body and transparent touch panel
CN102223760A (en) Flexible substrate, flexible AMOLED (Active Matrix/Organic Light Emitting Diode) and flexible PMOLED (Passive Matrix/Organic Light Emitting Diode)
CN101391498A (en) Gas-barrier film and organic device comprising same
JP2007063417A (en) Film and method for producing film, and film with gas-barrier layer, film with transparent electroconductive layer and image display device
EP2141190B1 (en) Barrier laminate, gas barrier film, device and method for producing barrier laminate
JP5156336B2 (en) Transparent conductive film
JP5181539B2 (en) Method for producing transparent conductive film, touch panel having film obtained by the method, and display device having the touch panel
JP2006232960A (en) Optical film and image display device
JP2006249116A (en) Polyimide and optical film using the same
CN105039910A (en) Flexible transparent conducting thin film
JP2007136800A (en) Gas-barrier laminated film and image display element using the same
CN101510563B (en) Flexible thin-film transistor and preparation method thereof
JPH11174424A (en) Substrate for liquid crystal display panel
JP2009187687A (en) Method of manufacturing transparent conductive film, touch panel which has film obtained by the method, and display device which has the touch panel
JPH08201791A (en) Transparent electrode substrate
JP4029620B2 (en) Laminated body, transparent conductive gas barrier film, and method for producing transparent conductive gas barrier film
JP5430251B2 (en) Substrate with transparent electrode and method for producing substrate with transparent electrode
US9081245B2 (en) Electrochromic device with improved transparent conductor and method for forming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees