JP3307471B2 - Composition for ceramic coating and coating method - Google Patents

Composition for ceramic coating and coating method

Info

Publication number
JP3307471B2
JP3307471B2 JP21426893A JP21426893A JP3307471B2 JP 3307471 B2 JP3307471 B2 JP 3307471B2 JP 21426893 A JP21426893 A JP 21426893A JP 21426893 A JP21426893 A JP 21426893A JP 3307471 B2 JP3307471 B2 JP 3307471B2
Authority
JP
Japan
Prior art keywords
polysilazane
group
silicon
nitrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21426893A
Other languages
Japanese (ja)
Other versions
JPH06306329A (en
Inventor
英樹 松尾
晴夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen General Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen General Sekiyu KK filed Critical Tonen General Sekiyu KK
Priority to JP21426893A priority Critical patent/JP3307471B2/en
Publication of JPH06306329A publication Critical patent/JPH06306329A/en
Application granted granted Critical
Publication of JP3307471B2 publication Critical patent/JP3307471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、変性ポリシラザンを必
須成分とし、耐熱性、耐摩耗性、耐食性に優れた被覆膜
を形成できる珪素−窒素−酸素−金属元素系又は珪素−
窒素−酸素−炭素−金属元素系セラミックコーティング
用組成物、及びこれを用いたコーティング方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a silicon-nitrogen-oxygen-metal element or a silicon-nitrogen-oxygen-metal element containing a modified polysilazane as an essential component and capable of forming a coating film having excellent heat resistance, abrasion resistance and corrosion resistance.
The present invention relates to a composition for a nitrogen-oxygen-carbon-metal element ceramic coating and a coating method using the same.

【0002】[0002]

【従来の技術】高度の耐熱、耐摩耗、耐食性を得るため
には、有機系塗料では不十分であり、セラミックス系コ
ーティングが用いられる。従来、セラミックス系コーテ
ィングの形成方法としては、PVD(スパッタ法等)、
CVD、ゾル−ゲル法、ポリチタノカルボシラン系塗
料、ポリ(ジシル)シラザン系塗料、ポリシラザン系塗
料、ポリメタロシラザン系塗料などが知られている。
2. Description of the Related Art In order to obtain high heat resistance, abrasion resistance and corrosion resistance, organic coatings are not sufficient, and ceramic coatings are used. Conventionally, as a method of forming a ceramic coating, PVD (sputtering method, etc.),
CVD, sol-gel methods, polytitanocarbosilane-based coatings, poly (disil) silazane-based coatings, polysilazane-based coatings, polymetallosilazane-based coatings, and the like are known.

【0003】[0003]

【発明が解決しようとする課題】上記の如きセラミック
ス系コーティング法が知られているが、いずれも問題が
ある。すなわち、PVD,CVD法では装置が高価であ
る。ゾル−ゲル法では、必要焼成温度が500℃以上と
高い。ポリチタノカルボシラン系塗料では低温焼成(4
00℃以下)における表面強度が不十分である。ポリ
(ジシル)シラザン系重合体を用いたものは、施工に難
があり、クラックが発生する。ポリシラザン、ポリメタ
ロシラザンコーティングでは、200〜500℃で焼成
できるが、300℃未満の焼成では膜質が必ずしも良好
でない。
The above-mentioned ceramic coating methods are known, but all have problems. That is, the apparatus is expensive in the PVD and CVD methods. In the sol-gel method, the required firing temperature is as high as 500 ° C. or higher. Low-temperature baking (4
(Less than 00 ° C.). Those using a poly (disil) silazane-based polymer have difficulty in construction and cause cracks. Polysilazane and polymetallosilazane coatings can be fired at 200 to 500 ° C, but firing at less than 300 ° C does not necessarily result in good film quality.

【0004】そこで、本発明は、上記の如き従来技術に
おける問題を解決し、低温(50℃〜350℃)焼成に
より、または焼成せずに50℃未満の温度で保持するこ
とにより、耐熱性、耐摩耗性、耐食性に優れ、クラック
のない緻密な塗膜を与えるコーティング用組成物とその
施工法を提供すること、特に、低温焼成という特長によ
り、従来不可能であった、電子部品、プラスチック等へ
のコーティングを可能とすることを目的とする。
Accordingly, the present invention solves the above-mentioned problems in the prior art, and provides heat resistance by firing at a low temperature (50 ° C. to 350 ° C.) or holding at a temperature lower than 50 ° C. without firing. To provide a coating composition that gives a dense coating film with excellent wear resistance and corrosion resistance and has no cracks, and a method for applying the coating composition. It is intended to be able to coat on.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために鋭意検討した結果、ポリシラザンに
金属を含むアセチルアセトナト錯体を付加させることに
より、該付加物の塗膜を空気中で焼成する際の硬化反応
が促進され、従来よりも低い焼成温度で良好な被覆が形
成されることを見出した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, by adding an acetylacetonato complex containing a metal to polysilazane, the coating film of the adduct was formed. It has been found that the curing reaction when firing in air is promoted, and a good coating is formed at a firing temperature lower than before.

【0006】こうして、本発明によれば、主として一般
式(I):
Thus, according to the present invention, mainly the general formula (I):

【0007】[0007]

【化2】 Embedded image

【0008】(但し、R1 ,R2 ,R3 はそれぞれ独立
に水素原子、アルキル基、アルケニル基、シクロアルキ
ル基、アリール基、またはこれらの基以外でケイ素に直
結する基が炭素である基、アルキルシリル基、アルキル
アミノ基、アルコキシ基を表わす。ただし、R1 ,R
2 ,R3 のうち少なくとも1つは水素原子である。)で
表わされる単位からなる主骨格を有する数平均分子量が
100〜5万のポリシラザンと一般式(CH3 COCH
COCH3n M〔式中、Mはn価の金属を表わす〕で
示されるアセチルアセトナト錯体を反応させて得られ
る、アセチルアセトナト錯体/ポリシラザン重量比が
0.000001〜2の範囲内かつ数平均分子量が約2
00〜50万のアセチルアセトナト錯体付加ポリシラザ
ンを少なくとも含有する珪素−窒素−酸素−金属元素系
又は珪素−窒素−酸素−炭素−金属元素系セラミック
ーティング用組成物が提供される。
(However, R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group other than these groups in which carbon is directly bonded to silicon.) , An alkylsilyl group, an alkylamino group, or an alkoxy group, provided that R 1 , R
At least one of R 2 and R 3 is a hydrogen atom. ) And a polysilazane having a number average molecular weight of 100 to 50,000 having a main skeleton composed of units represented by the following general formula (CH 3 COCH):
COCH 3 ) n M, wherein M represents an n-valent metal, wherein the weight ratio of acetylacetonato complex / polysilazane obtained by reacting the acetylacetonato complex is in the range of 0.000001 to 2 and Number average molecular weight is about 2
A silicon-nitrogen-oxygen-metal element system containing at least 100,000 to 500,000 acetylacetonato complex-added polysilazane
Alternatively , a composition for a silicon-nitrogen-oxygen-carbon-metal element ceramic coating is provided.

【0009】本発明で用いるアセチルアセトナト錯体付
加ポリシラザンの数平均分子量は200〜50万、好ま
しくは500〜10,000の範囲内である。本発明に
用いるアセチルアセトナト錯体付加ポリシラザンを製造
する方法は、ポリシラザンとアセチルアセトナト錯体を
無溶媒または溶媒中で、かつ反応に対して不活性な雰囲
気下で反応させることからなる。
The number average molecular weight of the acetylacetonato complex-added polysilazane used in the present invention is in the range of 200,000 to 500,000, preferably 500 to 10,000. The method for producing the acetylacetonato complex-added polysilazane used in the present invention comprises reacting polysilazane and an acetylacetonato complex in a solvent-free or solvent-free atmosphere under an inert atmosphere.

【0010】用いるポリシラザンは、分子内に少なくと
もSi−H結合、あるいはN−H結合を有するポリシラ
ザンであればよく、ポリシラザン単独は勿論のこと、ポ
リシラザンと他のポリマーとの共重合体やポリシラザン
と他の化合物との混合物でも利用できる。用いるポリシ
ラザンには、鎖状、環状、あるいは架橋構造を有するも
の、あるいは分子内にこれら複数の構造を同時に有する
ものがあり、これら単独でもあるいは混合物でも利用で
きる。
The polysilazane to be used may be any polysilazane having at least a Si—H bond or an N—H bond in the molecule. Not only polysilazane alone, but also a copolymer of polysilazane with another polymer or polysilazane with other polysilazane may be used. Can also be used as a mixture with the compound of formula (1). The polysilazane to be used includes a polysilazane having a chain, cyclic or cross-linked structure, and a polysilazane having a plurality of these structures in a molecule at the same time.

【0011】用いるポリシラザンの代表例としては下記
のようなものがあるが、これらに限定されるものではな
い。一般式(I)でR1 ,R2 、及びR3 に水素原子を
有するものは、ペルヒドロポリシラザンであり、その製
造法は例えば特開昭60−145903号公報、D.Seyf
erthらCommunication of Am.Cer.Soc., C-13,January
1983.に報告されている。これらの方法で得られ
るものは、種々の構造を有するポリマーの混合物である
が、基本的には分子内に鎖状部分と環状部分を含み、
The following are typical examples of the polysilazane to be used, but are not limited thereto. In the general formula (I), those having a hydrogen atom at R 1 , R 2 and R 3 are perhydropolysilazanes, and their production methods are described, for example, in JP-A-60-145903, D. Seyf
erth et al. Communication of Am. Cer. Soc., C-13, January
1983. Has been reported to. What is obtained by these methods is a mixture of polymers having various structures, but basically contains a chain portion and a cyclic portion in the molecule,

【0012】[0012]

【化3】 Embedded image

【0013】の化学的で表わすことができる。ペルヒド
ロポリシラザンの構造の一例を示すと下記の如くであ
る。
Can be represented by the following chemical formula: An example of the structure of perhydropolysilazane is as follows.

【0014】[0014]

【化4】 Embedded image

【0015】一般式(I)でR1 及びR2 に水素原子、
3 にメチル基を有するポリシラザンの製造方法は、D.
SeyferthらPolym.Prepr.,Am.Chem.Soc.,Div.Polym.Che
m,.25,10(1984) に報告されている。この
方法により得られるポリシラザンは、繰り返し単位が−
(SiH2 NCH3 )−の鎖状ポリマーと環状ポリマー
であり、いずれも架橋構造をもたない。
In the general formula (I), R 1 and R 2 represent a hydrogen atom,
A method for producing a polysilazane having a methyl group at R 3 is described in D.
Seyferth et al.Polym.Prepr., Am.Chem.Soc., Div.Polym.Che
m ,. 25 , 10 (1984). The polysilazane obtained by this method has a repeating unit of-
It is a chain polymer and a cyclic polymer of (SiH 2 NCH 3 ) —, and neither has a crosslinked structure.

【0016】一般式(I)でR1 及びR3 に水素原子、
2 に有機基を有するポリオルガノ(ヒドロ)シラザン
の製造法は、D.SeyferthらPolym.Prepr.,Am.Chem.Soc.,
Div.Polym.Chem.,25,10(1984)、特開昭61
−89230号公報に報告されている。これらの方法に
より得られるポリシラザンには、−(R2 SiHNH)
−を繰り返し単位として、主として重合度が3〜5の環
状構造を有するものや(R3 SiHNH)X 〔(R2
iH)1.5 N〕1-X (0.4<x<1)の化学式で示せ
る分子内に鎖状構造と環状構造を同時に有するものがあ
る。
In the general formula (I), R 1 and R 3 represent a hydrogen atom,
A method for producing a polyorgano (hydro) silazane having an organic group at R 2 is described in D. Seyferth et al., Polym. Prepr., Am. Chem. Soc.,
Div. Polym. Chem., 25 , 10 (1984);
-89230. The polysilazane obtained by these methods includes-(R 2 SiHNH)
-As a repeating unit having a cyclic structure having a degree of polymerization of 3 to 5 or (R 3 SiHNH) x [(R 2 S
iH) 1.5 N] 1-X (0.4 <x <1) Some molecules have both a chain structure and a cyclic structure in a molecule represented by the chemical formula.

【0017】一般式(I)でR1 に水素原子、R2 及び
3 に有機基を有するポリシラザン、またR1 及びR2
に有機基、R3 に水素原子を有するものは−(R1 2
SiNR3 )−を繰り返し単位として、主に重合度が3
〜5の環状構造を有している。次に用いるポリシラザン
の内、一般式(I)以外のものの代表例をあげる。
In the general formula (I), polysilazane having a hydrogen atom for R 1 and an organic group for R 2 and R 3 , and R 1 and R 2
Having an organic group and a hydrogen atom at R 3 is-(R 1 R 2
SiNR 3 ) — is a repeating unit and the degree of polymerization is mainly 3
-5 ring structures. Next, representative examples of the polysilazane used other than the general formula (I) will be given.

【0018】ポリオルガノ(ヒドロ)シラザンの中に
は、D.SeyferthらCommunication of Am.Cer.Soc., C-1
32, July 1984.が報告されている様な分子内に
架橋構造を有するものもある。一例を示すと下記の如く
である。
Among polyorgano (hydro) silazanes, D. Seyferth et al., Communication of Am. Cer. Soc., C-1.
32, July 1984. Some have a crosslinked structure in the molecule as reported. An example is as follows.

【0019】[0019]

【化5】 Embedded image

【0020】また、特開昭49−69717に報告され
ている様なR1 SiX3(X:ハロゲン)のアンモニア分
解によって得られる架橋構造を有するポリシラザン(R
1 Si(NH)X )、あるいはR1 SiX3 及びR2 2
iX2 の共アンモニア分解によって得られる下記の構造
を有するポリシラザンも出発材料として用いることがで
きる。
A polysilazane (R) having a crosslinked structure obtained by ammonia decomposition of R 1 SiX 3 (X: halogen) as reported in JP-A-49-69717.
1 Si (NH) X), or R 1 SiX 3 and R 2 2 S
Polysilazane having the following structure obtained by co-ammonium decomposition of iX 2 can also be used as a starting material.

【0021】[0021]

【化6】 Embedded image

【0022】用いるポリシラザンは、上記の如く一般式
(I)で表わされる単位からなる主骨格を有するが、一
般式(I)で表わされる単位は、上記にも明らかな如く
環状化することがあり、その場合にはその環状部分が末
端基となり、このような環状化がされない場合には、主
骨格の末端はR1 ,R2 ,R3 と同様の基又は水素であ
ることができる。
The polysilazane used has a main skeleton composed of the unit represented by the general formula (I) as described above, but the unit represented by the general formula (I) may be cyclized as is apparent from the above. In such a case, the cyclic portion becomes a terminal group, and when such cyclization is not carried out, the terminal of the main skeleton can be the same group as R 1 , R 2 , R 3 or hydrogen.

【0023】用いるポリシラザンの分子量に特に制約は
なく、入手可能なものを用いることができるが、アセチ
ルアセトナト錯体との反応性の点で、式(I)における
1,R2 、及びR3 は立体障害の小さい基が好まし
い。即ち、R1 ,R2 及びR3としては水素原子及びC
1 〜C5 のアルキル基が好ましく、水素原子及びC1
2 のアルキル基がさらに好ましい。用いるアセチルア
セトナト錯体は、アセチルアセトン(2,4−ペンタジ
オン)から酸解離により生じた陰イオンacac- が金
属原子に配位した錯体であり、一般的には式(CH3
OCHCOCH3n M 〔式中、Mはイオン価nの金
属を表す。〕で表わされる。好適な金属Mとしては、例
えば、ニッケル、白金、パラジウム、アルミニウム、ロ
ジウムなどを挙げることができる。例えば金属Mとして
ニッケルを用いた場合次式の如き構造を有する。
There is no particular limitation on the molecular weight of the polysilazane to be used, and any available polysilazane can be used. However, in view of reactivity with the acetylacetonato complex, R 1 , R 2 and R 3 in the formula (I) are used. Is preferably a group having small steric hindrance. That is, R 1 , R 2 and R 3 represent a hydrogen atom and C
Alkyl group is preferably from 1 -C 5, a hydrogen atom and C 1 ~
Alkyl C 2 is more preferred. The acetylacetonato complex to be used is a complex in which an anion acac generated by acid dissociation from acetylacetone (2,4-pentadione) is coordinated to a metal atom, and generally has a formula (CH 3 C)
OCHCOCH 3 ) n M wherein M represents a metal having an ionic value of n. ]. Suitable metals M include, for example, nickel, platinum, palladium, aluminum, rhodium and the like. For example, when nickel is used as the metal M, it has the following structure.

【0024】[0024]

【化7】 Embedded image

【0025】ポリシラザンとアセチルアセトナト錯体と
の混合比は、アセチルアセトナト錯体/ポリシラザン重
量比が0.000001から2になるように、好ましく
は0.001から1になるように、さらに好ましくは
0.01から0.5になる様に加える。アセチルアセト
ナト錯体の添加量をこれより増やすとポリシラザンの分
子量が上がり過ぎてゲル化し、また、少ないと十分な効
果が得られない。
The mixing ratio of the polysilazane and the acetylacetonate complex is such that the weight ratio of the acetylacetonato complex / polysilazane is from 0.000001 to 2, preferably from 0.001 to 1, and more preferably from 0 to 1. Add from 0.01 to 0.5. If the amount of the acetylacetonate complex is increased beyond this range, the molecular weight of the polysilazane becomes too high to cause gelation, and if the amount is small, sufficient effects cannot be obtained.

【0026】反応は、無溶媒で行なうこともできるが、
有機溶媒を使用する時に比べて、反応制御が難しく、ゲ
ル状物質が生成する場合もあるので、一般に有機溶媒を
用いた方が良い。溶媒としては、芳香族炭化水素、脂肪
族炭化水素、脂環式炭化水素の炭化水素溶媒、ハロゲン
化炭化水素、脂肪族エーテル、脂環式エーテル類、芳香
族アミン類が使用できる。好ましい溶媒としては、例え
ばベンゼン、トルエン、キシレン、塩化メチレン、クロ
ロホルム、n−ヘキサン、エチルエーテル、テトラヒド
ロフラン、ピリジン、メチルピリジン等があり、特に好
ましい溶媒としてはキシレン、ピリジン、メチルピリジ
ン等があげられる。また反応に対して不活性な雰囲気、
例えば、窒素、アルゴン等の雰囲気中において反応を行
なうことが好ましいが、空気中のような酸化性雰囲気中
でも可能である。
The reaction can be carried out without solvent,
In general, it is better to use an organic solvent because the reaction control is more difficult than in the case of using an organic solvent and a gel-like substance may be generated. As the solvent, a hydrocarbon solvent of an aromatic hydrocarbon, an aliphatic hydrocarbon, an alicyclic hydrocarbon, a halogenated hydrocarbon, an aliphatic ether, an alicyclic ether, or an aromatic amine can be used. Preferred solvents include, for example, benzene, toluene, xylene, methylene chloride, chloroform, n-hexane, ethyl ether, tetrahydrofuran, pyridine, methylpyridine and the like, and particularly preferred solvents include xylene, pyridine, methylpyridine and the like. Atmosphere inert to the reaction,
For example, the reaction is preferably performed in an atmosphere of nitrogen, argon, or the like, but may be performed in an oxidizing atmosphere such as air.

【0027】反応温度は広い範囲にわたって変更するこ
とができ、例えば有機溶媒を使用する場合には、その有
機溶媒の沸点以下の温度に加熱してもよいが、数平均分
子量の高い固体を得るには、引続き有機溶媒の沸点以上
に加熱して有機溶媒を留去させて反応を行なうこともで
きる。反応温度は、一般に150℃以下にするのが好ま
しい。
The reaction temperature can be varied over a wide range. For example, when an organic solvent is used, it may be heated to a temperature lower than the boiling point of the organic solvent, but it is necessary to obtain a solid having a high number average molecular weight. The reaction can also be carried out by subsequently heating the organic solvent to a boiling point or higher to distill off the organic solvent. In general, the reaction temperature is preferably set to 150 ° C. or lower.

【0028】反応時間は特に重要ではないが、通常、1
〜50時間程度である。反応は一般に常圧付近で行なう
のが好ましい。本発明において、前記アセチルアセトナ
ト錯体付加ポリシラザンを用いてコーティング用組成物
を調製するには、通常アセチルアセトナト錯体付加ポリ
シラザンを溶剤に溶解させればよい。
Although the reaction time is not particularly important, it is usually 1
It is about 50 hours. In general, the reaction is preferably carried out at around normal pressure. In the present invention, in order to prepare a coating composition using the acetylacetonato complex-added polysilazane, the acetylacetonato complex-added polysilazane may be usually dissolved in a solvent.

【0029】溶剤としては、脂肪族炭化水素、脂環式炭
化水素、芳香族炭化水素の炭化水素溶媒、ハロゲン化メ
タン、ハロゲン化エタン、ハロゲン化ベンゼン等のハロ
ゲン化炭化水素、脂肪族エーテル、脂環式エーテル等の
エーテル類が使用できる。好ましい溶媒は、塩化メチレ
ン、クロロホルム、四塩化炭素、ブロモホルム、塩化エ
チレン、塩化エチリデン、トリクロロエタン、テトラク
ロロエタン等のハロゲン化炭化水素、エチルエーテル、
イソプロピルエーテル、エチルブチルエーテル、ブチル
エーテル、1,2−ジオキシエタン、ジオキサン、ジメ
チルジオキサン、テトラヒドロフラン、テトラヒドロピ
ラン等のエーテル類、ペンタンヘキサン、イソヘキサ
ン、メチルペンタン、ヘプタン、イソヘプタン、オクタ
ン、イソオクタン、シクロペンタン、メチルシクロペン
タン、シクロヘキサン、メチルシクロヘキサン、ベンゼ
ン、トルエン、キシレン、エチルベンゼン等の炭化水素
等である。
Examples of the solvent include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbon hydrocarbon solvents, halogenated hydrocarbons such as halogenated methane, halogenated ethane, and halogenated benzene; aliphatic ethers; Ethers such as cyclic ethers can be used. Preferred solvents are methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride, trichloroethane, halogenated hydrocarbons such as tetrachloroethane, ethyl ether,
Ethers such as isopropyl ether, ethyl butyl ether, butyl ether, 1,2-dioxyethane, dioxane, dimethyl dioxane, tetrahydrofuran, tetrahydropyran, pentanehexane, isohexane, methylpentane, heptane, isoheptane, octane, isooctane, cyclopentane, methylcyclopentane And hydrocarbons such as cyclohexane, methylcyclohexane, benzene, toluene, xylene, and ethylbenzene.

【0030】これらの溶剤を使用する場合、前記アセチ
ルアセトナト錯体付加ポリシラザンの溶解度や溶剤の蒸
発速度を調節するために、2種類以上の溶剤を混合して
もよい。溶剤の使用量(割合)は採用するコーティング
方法により作業性がよくなるように選択され、またアセ
チルアセトナト錯体付加ポリシラザンの平均分子量、分
子量分布、その構造によって異なるので、コーティング
用組成物中溶剤は90重量%程度まで混合することがで
き、好ましくは10〜50重量%の範囲で混合すること
ができる。
When these solvents are used, two or more kinds of solvents may be mixed to adjust the solubility of the acetylacetonato complex-added polysilazane and the evaporation rate of the solvent. The amount (proportion) of the solvent used is selected so as to improve the workability depending on the coating method to be used, and it depends on the average molecular weight, molecular weight distribution and structure of the acetylacetonato complex-added polysilazane. It is possible to mix up to about 10% by weight, preferably 10 to 50% by weight.

【0031】また溶剤濃度はアセチルアセトナト錯体付
加ポリシラザンの平均分子量、分子量分布、その構造に
よって異なるが、通常0〜90重量%の範囲で良い結果
が得られる。また、本発明においては、必要に応じて適
当な充填剤を加えてもよい。充填剤の例としてはシリ
カ、アルミナ、ジルコニア、マイカを始めとする酸化物
系無機物あるいは炭化珪素、窒化珪素等の非酸化物系無
機物の微粉等が挙げられる。また用途によってはアルミ
ニウム、亜鉛、銅等の金属粉末の添加も可能である。さ
らに充填剤の例を詳しく述べれば、ケイ砂、石英、ノバ
キュライト、ケイ藻土などのシリカ系:合成無定形シリ
カ:カオリナイト、雲母、滑石、ウオラストナイト、ア
スベスト、ケイ酸カルシウム、ケイ酸アルミニウム等の
ケイ酸塩:ガラス粉末、ガラス球、中空ガラス球、ガラ
スフレーク、泡ガラス球等のガラス体:窒化ホウ素、炭
化ホウ素、窒化アルミニウム、炭化アルミニウム、窒化
ケイ素、炭化ケイ素、ホウ化チタン、窒化チタン、炭化
チタン等の非酸化物系無機物:炭酸カルシウム:酸化亜
鉛、アルミナ、マグネシア、酸化チタン、酸化ベリリウ
ム等の金属酸化物:硫酸バリウム、二硫化モリブデン、
二硫化タングステン、弗化炭素その他無機物:アルミニ
ウム、ブロンズ、鉛、ステンレススチール、亜鉛等の金
属粉末:カーボンブラック、コークス、黒鉛、熱分解炭
素、中空カーボン球等のカーボン体等があげられる。
The concentration of the solvent depends on the average molecular weight, molecular weight distribution and structure of the polysilazane to which the acetylacetonato complex is added, but good results are usually obtained in the range of 0 to 90% by weight. In the present invention, a suitable filler may be added as needed. Examples of the filler include fine powders of oxide-based inorganic substances such as silica, alumina, zirconia, and mica, and non-oxide-based inorganic substances such as silicon carbide and silicon nitride. Depending on the application, metal powder such as aluminum, zinc, and copper can be added. Further examples of fillers include silica silica, quartz, novacurite, diatomaceous earth, and other silica-based materials: synthetic amorphous silica: kaolinite, mica, talc, wollastonite, asbestos, calcium silicate, aluminum silicate Glass bodies such as glass powder, glass spheres, hollow glass spheres, glass flakes, foam glass spheres: boron nitride, boron carbide, aluminum nitride, aluminum carbide, silicon nitride, silicon carbide, titanium boride, nitride Non-oxide inorganic substances such as titanium and titanium carbide: calcium carbonate: metal oxides such as zinc oxide, alumina, magnesia, titanium oxide, beryllium oxide: barium sulfate, molybdenum disulfide,
Tungsten disulfide, carbon fluoride, and other inorganic substances: metal powders such as aluminum, bronze, lead, stainless steel, and zinc; and carbon bodies such as carbon black, coke, graphite, pyrolytic carbon, and hollow carbon spheres.

【0032】これら充填剤は、針状(ウィスカーを含
む。)、粒状、鱗片状等種々の形状のものを単独又は2
種以上混合して用いることができる。又、これら充填剤
の粒子の大きさは1回に塗布可能な膜厚よりも小さいこ
とが望ましい。また充填剤の添加量はアセチルアセトナ
ト錯体付加ポリシラザン1重量部に対し、0.05重量
部〜10重量部の範囲であり、特に好ましい添加量は
0.2重量部〜3重量部の範囲である。又、充填剤の表
面をカップリング剤処理、蒸着、メッキ等で表面処理し
て使用してもよい。
These fillers may be used alone or in various shapes such as needles (including whiskers), granules, and scales.
A mixture of more than one species can be used. Further, it is desirable that the particle size of these fillers is smaller than the film thickness that can be applied at one time. The addition amount of the filler is in the range of 0.05 part by weight to 10 parts by weight based on 1 part by weight of the acetylacetonato complex-added polysilazane, and the particularly preferable addition amount is in the range of 0.2 part by weight to 3 parts by weight. is there. Further, the surface of the filler may be surface-treated by coupling agent treatment, vapor deposition, plating or the like before use.

【0033】コーティング用組成物には、必要に応じて
各種顔料、レベリング剤、消泡剤、帯電防止剤、紫外線
吸収剤、pH調整剤、分散剤、表面改質剤、可塑剤、乾燥
促進剤、流れ止め剤を加えてもよい。本発明によれば、
同様にして、上記の如きコーティング用組成物を用いた
コーティング方法が提供され、このコーティング方法は
上記のコーティング用組成物を基盤に1回又は2回以上
繰り返し塗布した後、焼成し珪素−窒素−酸素−金属元
素系又は珪素−窒素−酸素−炭素−金属元素系セラミッ
クスから成る被覆膜を形成させることを特徴とするもの
である。
The coating composition may contain various pigments, leveling agents, defoamers, antistatic agents, ultraviolet absorbers, pH adjusters, dispersants, surface modifiers, plasticizers, drying accelerators, if necessary. An anti-flow agent may be added. According to the present invention,
Similarly, there is provided a coating method using the coating composition as described above. This coating method is repeatedly applied once or twice or more to the above-mentioned coating composition on a substrate, and then baked to obtain silicon-nitrogen- The present invention is characterized in that a coating film made of an oxygen-metal element-based or silicon-nitrogen-oxygen-carbon-metal-element ceramic is formed.

【0034】また本発明は上記のごとく焼成した被覆膜
を50℃未満の条件で長時間保持し、被覆膜の性質を向
上させることを特徴とするコーティング方法を提供す
る。更に本発明は上記のごときコーティング用組成物を
基板に1回または2回以上繰り返し塗布した後、被覆膜
を50℃未満の条件で長時間保持し、珪素−窒素−酸素
−金属元素系又は珪素−窒素−酸素−炭素−金属元素系
セラミックスから成る被覆膜を形成させることを特徴と
するコーティング方法を提供する。
Further, the present invention provides a coating method characterized in that the coating film fired as described above is held for a long time under a condition of less than 50 ° C. to improve the properties of the coating film. Further, the present invention, after repeatedly applying the coating composition as described above to the substrate once or twice or more, holding the coating film under a condition of less than 50 ° C for a long time, silicon-nitrogen-oxygen-metal element system or A coating method characterized by forming a coating film made of silicon-nitrogen-oxygen-carbon-metal element ceramics.

【0035】コーティング組成物を塗布する基盤は、特
に限定されず、金属、セラミックス、プラスチックス等
のいずれでもよい。コーティングとしての塗布手段とし
ては、通常の塗布方法、つまり浸漬、ロール塗り、バー
塗り、刷毛塗り、スプレー塗り、フロー塗り等が用いら
れる。又、塗布前に基盤をヤスリがけ、脱脂、各種ブラ
スト等で表面処理しておくとコーティング組成物の付着
性能は向上する。
The substrate on which the coating composition is applied is not particularly limited, and may be any of metals, ceramics, plastics and the like. As a coating means as a coating, a usual coating method, that is, dipping, roll coating, bar coating, brush coating, spray coating, flow coating or the like is used. In addition, if the substrate is sanded, degreased, or surface-treated with various types of blasting before application, the adhesion performance of the coating composition is improved.

【0036】このような方法でコーティングし、充分乾
燥させた後、加熱・焼成する。この焼成によってアセチ
ルアセトナト錯体付加ポリシラザンは架橋、縮合、ある
いは、焼成雰囲気によっては酸化、加水分解して硬化
し、強靱な被覆を形成する。上記焼成条件はアセチルア
セトナト錯体付加ポリシラザンの分子量や構造によって
異なる。昇温速度は特に限定しないが、0.5〜10℃
/分の緩やかな昇温速度が好ましい。好ましい焼成温度
は250℃〜350℃の範囲である。焼成雰囲気は酸素
中、空気中あるいは不活性ガス等のいずれであってもよ
いが、空気中がより好ましい。空気中での焼成によりア
セチルアセトナト錯体付加ポリシラザンの酸化、あるい
は空気中に共存する水蒸気による加水分解が進行し、上
記のような低い焼成温度てSi−O結合あるいはSi−
N結合を主体とする強靱な被覆の形成が可能となる。
After coating by such a method and sufficiently drying, heating and baking are performed. The acetylacetonato complex-added polysilazane is crosslinked, condensed, or oxidized, hydrolyzed and cured depending on the calcination atmosphere by this calcination to form a tough coating. The calcination conditions vary depending on the molecular weight and structure of the polysilazane to which the acetylacetonato complex is added. The heating rate is not particularly limited, but is 0.5 to 10 ° C.
A slow heating rate per minute is preferred. Preferred firing temperatures range from 250 ° C to 350 ° C. The firing atmosphere may be any of oxygen, air, or an inert gas, but air is more preferable. Oxidation of the acetylacetonate complex-added polysilazane or hydrolysis by water vapor coexisting in the air proceeds by firing in air, and the Si—O bond or Si—
A tough coating mainly composed of N bonds can be formed.

【0037】コーティングするアセチルアセトナト錯体
付加ポリシラザンの種類によっては、限られた焼成条件
ではセラミックスへの転化が不完全である場合があり、
この場合には焼成後の被覆膜を50℃未満の条件で長時
間保持し、被覆膜の性質を向上させることが可能であ
る。この場合の保持雰囲気は空気中が好ましく、また水
蒸気圧を高めた湿潤空気中でも更に好ましい。保持する
時間は特に限定されるものではないが、10分以上30
日以内が現実的に適当である。また保持温度は特に限定
されるものではないが、0℃以上50℃未満が現実的に
適当である。ここで50℃以上で保持することも当然有
効であるが、本文では50℃以上での加熱操作を「焼
成」と定義している。即ち、ある温度で一定時間焼成し
た後、温度を例えば50℃に下げて長時間焼成すること
も有効であるが、この操作は前述の「加熱・焼成」操作
の一類型である。
Depending on the type of acetylacetonate complex-added polysilazane to be coated, conversion to ceramics may be incomplete under limited firing conditions,
In this case, it is possible to hold the fired coating film under a condition of less than 50 ° C. for a long time to improve the properties of the coating film. In this case, the holding atmosphere is preferably in air, and more preferably in humid air having an increased water vapor pressure. The holding time is not particularly limited, but is 10 minutes or more and 30 minutes or more.
Within days is practically appropriate. Further, the holding temperature is not particularly limited, but a temperature of 0 ° C. or more and less than 50 ° C. is practically appropriate. Although it is naturally effective to maintain the temperature at 50 ° C. or higher, the heating operation at 50 ° C. or higher is defined as “firing” in the text. That is, after baking at a certain temperature for a certain period of time, it is effective to perform baking for a long time by lowering the temperature to, for example, 50 ° C., but this operation is a type of the “heating and baking” operation described above.

【0038】この空気中での保持によりアセチルアセト
ナト錯体付加ポリシラザンの酸化、あるいは空気中に共
存する水蒸気による加水分解が更に進行し、セラミック
スへの転化が完了して、性質のより向上した、より強靱
な被覆膜の形成が可能となる。以上の方法によれば焼成
温度が低下でき、高い焼成温度に起因する種々の問題を
軽減することができる。
Oxidation of the acetylacetonato complex-added polysilazane or hydrolysis by water vapor coexisting in the air is further promoted by the holding in air, and the conversion into ceramics is completed, and the properties are further improved. A tough coating film can be formed. According to the above method, the firing temperature can be lowered, and various problems caused by the high firing temperature can be reduced.

【0039】更に、コーティングするアセチルアセトナ
ト錯体付加ポリシラザンの種類によっては、50℃以上
での焼成を全く行なわず、塗布後の被覆膜を50℃未満
の条件で長時間保持し、被覆膜の性質を向上させること
が可能である。この場合の保持雰囲気は空気中が好まし
く、また水蒸気圧を高めた湿潤空気中でも更に好まし
い。保持する時間は特に限定されるものではないが、1
0分以上30日以内が現実的に適当である。また保持温
度は特に限定されるものではないが、0℃以上50℃未
満が現実的に適当である。ここで50℃以上で保持する
ことも当然有効であるが、本文では50℃以上での加熱
操作を「焼成」と定義している。この空気中での保持に
よりアセチルアセトナト錯体付加ポリシラザンの酸化、
あるいは空気中に共存する水蒸気による加水分解が進行
し、セラミックスへの転化が完了して、Si−O結合あ
るいはSi−N結合を主体とした強靱な被覆膜の形成が
可能となる。以上の方法によれば高い焼成温度に起因す
る種々の問題を大幅に軽減することができ、場合によっ
ては室温付近でのセラミックスへの転化が可能となる。
Further, depending on the type of the acetylacetonato complex-added polysilazane to be coated, calcination at 50 ° C. or higher is not performed at all, and the coated film after application is held at a temperature lower than 50 ° C. for a long time. Can be improved. In this case, the holding atmosphere is preferably in air, and more preferably in humid air having an increased water vapor pressure. The holding time is not particularly limited.
It is practically appropriate that the time is from 0 minutes to 30 days. Further, the holding temperature is not particularly limited, but a temperature of 0 ° C. or more and less than 50 ° C. is practically appropriate. Although it is naturally effective to maintain the temperature at 50 ° C. or higher, the heating operation at 50 ° C. or higher is defined as “firing” in the text. Oxidation of acetylacetonato complex-added polysilazane by holding in this air,
Alternatively, hydrolysis by water vapor coexisting in the air proceeds, and conversion to ceramics is completed, and a tough coating film mainly composed of Si—O bonds or Si—N bonds can be formed. According to the above method, various problems caused by a high firing temperature can be significantly reduced, and in some cases, conversion to ceramics at around room temperature becomes possible.

【0040】[0040]

〔原料ペルヒドロポリシラザンの製造〕[Production of raw material perhydropolysilazane]

内容積11の四つ口フラスコにガス吹きこみ管、メカニ
カルスターラー、ジュワーコンデンサーを装置した。反
応器内部を脱酸素した乾燥窒素で置換した後、四つ口フ
ラスコに脱気した乾燥ピリジン490mlを入れ、これを
氷冷した。次にジクロロシラン51.6gを加えると白
色固体状のアダクト(SiH2 Cl・2C5 5 N)が
生成した。反応混合物を氷冷し、攪拌しながら、水酸化
ナトリウム管及び活性炭管を通して精製したアンモニア
51.0gを吹き込んで加熱した。
A four-necked flask having an inner volume of 11 was equipped with a gas blow-in tube, a mechanical stirrer, and a dewar condenser. After the inside of the reactor was replaced with deoxygenated dry nitrogen, 490 ml of degassed dry pyridine was placed in a four-necked flask and cooled with ice. Next, when 51.6 g of dichlorosilane was added, an adduct (SiH 2 Cl.2C 5 H 5 N) as a white solid was formed. The reaction mixture was ice-cooled, and heated with stirring while blowing 51.0 g of purified ammonia through a sodium hydroxide tube and an activated carbon tube.

【0041】反応終了後、反応混合物を遠心分離し、乾
燥ピリジンを用いて洗浄した後、更に窒素雰囲気下でろ
過してろ液850mlを得た。ろ液5mlから溶媒を減去留
去すると樹脂状固体ペルヒドロポリシラザン0.1gが
得られた。得られたポリマーの数平均分子量は、凝固点
降下法(溶媒:乾燥ベンゼン)により測定したところ、
903であった。IR(赤外吸収)スペクトル(溶媒:
乾燥o−キシレン;ペルヒドロポリシラザンの濃度:1
0.2g/1)は、波数(cm-1)3340(見かけの吸
光係数ε=0.5571g-1cm-1)、及び1175のN
Hに基づく吸収;2160(ε=3.14)のSiHに
基づく吸収;1020〜820のSiH及びSiNSi
に基づく吸収を示した。 1HNMR(プロトン核磁気共
鳴)スペクトル(60MHz 、溶媒CDCl3 /基準物質
TMS)は、いずれも幅広い吸収を示している。即ち、
δ4.8及び4.4(br.,SiH);1.5(b
r.,NH)の吸収が観測された。
After completion of the reaction, the reaction mixture was centrifuged, washed with dry pyridine, and filtered under a nitrogen atmosphere to obtain 850 ml of a filtrate. The solvent was distilled off from 5 ml of the filtrate to obtain 0.1 g of resinous solid perhydropolysilazane. The number average molecular weight of the obtained polymer was measured by freezing point depression method (solvent: dry benzene).
903. IR (infrared absorption) spectrum (solvent:
Concentration of dry o-xylene; perhydropolysilazane: 1
0.2 g / 1) has a wave number (cm -1 ) of 3340 (apparent extinction coefficient ε = 0.5571 g -1 cm -1 ) and an N of 1175
Absorption based on H; Absorption based on SiH at 2160 (ε = 3.14); SiH and SiNSi from 1024 to 820
Based on the absorption. 1 H NMR (proton nuclear magnetic resonance) spectra (60 MHz, solvent CDCl 3 / standard substance TMS) all show broad absorption. That is,
δ 4.8 and 4.4 (br., SiH); 1.5 (b
r. , NH) was observed.

【0042】比較例1 (焼成時のセラミックス化の評価)一般にポリシラザン
の焼成時には、Si−R1 ,N−R2 (R1 ,R2 は水
素原子、またはアルキル基等を示す)結合の切断と、S
i−N,Si−O結合の生成(後者は酸化性雰囲気下で
の焼成時に限る)が起こり、ポリシラザンは窒化珪素、
シリコンオキシナイトライド、シリカなどのセラミック
スに転化する。この過程をセラミックス化と称する。本
比較例または実施例では焼成を大気雰囲気下で行なった
ためポリシラザンは主にシリカに変化したが、このセラ
ミックス化の進行の半定量的評価をIR法にて行なっ
た。
Comparative Example 1 (Evaluation of ceramic formation during firing) In general, during firing of polysilazane, breaking of Si—R 1 , N—R 2 (R 1 and R 2 represent hydrogen atoms or alkyl groups) bonds And S
The formation of i-N, Si-O bonds (the latter is limited to firing in an oxidizing atmosphere) occurs, and polysilazane is silicon nitride,
Converted to ceramics such as silicon oxynitride and silica. This process is called ceramicization. In this Comparative Example or Example, the polysilazane was mainly changed to silica because the calcination was performed in the air atmosphere. However, semi-quantitative evaluation of the progress of the ceramic formation was performed by the IR method.

【0043】SiH残存率=(加熱後のSiH吸光度/
加熱前のSiN吸光度)×100(%) SiO/SiN比=加熱後のSiO吸光度/加熱後のS
iN吸光度 両者の数値はセラミックス化進行の指標となるものであ
り、SiH残存率が小さいほど、またSiO/SiN比
が大きいほどセラミックス化が進んでいる事を示す。
SiH residual rate = (SiH absorbance after heating /
SiN absorbance before heating) × 100 (%) SiO / SiN ratio = SiO absorbance after heating / S after heating
iN Absorbance Both values are indicators of the progress of ceramic formation. The smaller the residual ratio of SiH and the larger the ratio of SiO / SiN, the more advanced the ceramic formation.

【0044】なおここでSiN,SiO,SiHの特性
吸収はそれぞれ約840,1160,2160cm-1のも
のを用いた。また吸光度は、 吸光度=log(Io /I) にて算出した。(Io ,Iの定義は図1参照)
Here, the characteristic absorption of SiN, SiO and SiH was about 840, 1160 and 2160 cm -1 , respectively. The absorbance was calculated as follows: Absorbance = log ( Io / I). (See Figure 1 for definitions of I o and I)

【0045】実施例1 東燃製ペルヒドロポリシラザンType−1(PHPS
−1;数平均分子量600〜900)の4.4%ピリジ
ン溶液113.6gにパラジウムアセチルアセトネート
(Strem Chemicals.Inc.製、純度99%)0.05gを
添加し、窒素雰囲気中、50℃で2時間攪拌しながら反
応を行った。この溶液を減圧し溶媒を除去した後、キシ
レンにて希釈し、10%キシレン溶液とした。本溶液の
数平均分子量はGPCにより測定したところ1267で
あった。また、そのIRスペクトル分析の結果パラジウ
ムアセチルアセトネートとの反応前と比較して波数(cm
-1)2960,2940のCHに基づく吸収が確認され
た。また、 1HNMRスペクトル(CDCl3 )分析の
結果δ=1.4の吸収が確認された。この溶液をコーテ
ィング液とし、直径4インチ、厚さ0.5mmのシリコン
ウェハー上にスピンコーターを用いて塗布(1000rp
m 、20秒)し、大気雰囲気下350℃で1時間加熱
し、膜厚3132Åの塗膜を得た。この塗膜のセラミッ
クス化の進行度をIRで評価したところ、(評価法はグ
リシドール系と同様)SiH残存率6%、SiO/Si
N比=6.1であった(図2)。更にこの塗膜を49%
フッ酸(ダイキン工業株式会社製)18ml、61%硝酸
(小宗化学株式会社製)1763mlの混合溶液で処理し
たところ、エッチングレートは1078Å/min.であっ
た。一方パラジウムアセチルアセトネートを付加しない
ポリシラザンのコーティング液を同様のプロセスで施
工、評価したところ、SiH残存率21%、SiO/S
iN比=1.1、エッチングレートは2335Å/min.
以上であった。(図3)。(表1参照)
Example 1 Tonen's Perhydropolysilazane Type-1 (PHPS
−1; 0.05 g of palladium acetylacetonate (manufactured by Strem Chemicals. Inc., purity 99%) was added to 113.6 g of a 4.4% pyridine solution having a number average molecular weight of 600 to 900), and the mixture was heated at 50 ° C. in a nitrogen atmosphere. The reaction was carried out with stirring for 2 hours. This solution was decompressed to remove the solvent, and then diluted with xylene to obtain a 10% xylene solution. The number average molecular weight of this solution was 1,267 as measured by GPC. As a result of the IR spectrum analysis, the wave number (cm) was larger than that before the reaction with palladium acetylacetonate.
-1 ) Absorption based on CH of 2960 and 2940 was confirmed. In addition, as a result of 1 HNMR spectrum (CDCl 3 ) analysis, absorption of δ = 1.4 was confirmed. This solution was used as a coating solution and applied onto a silicon wafer having a diameter of 4 inches and a thickness of 0.5 mm using a spin coater (1000 rp).
m, 20 seconds), and heated at 350 ° C. for 1 hour in an air atmosphere to obtain a coating film having a thickness of 3132 °. The progress of ceramicization of this coating film was evaluated by IR. (The evaluation method was the same as for the glycidol system.) SiH residual ratio 6%, SiO / Si
The N ratio was 6.1 (FIG. 2). In addition, 49%
When treated with a mixed solution of 18 ml of hydrofluoric acid (manufactured by Daikin Industries, Ltd.) and 1763 ml of 61% nitric acid (manufactured by Komune Chemical Co., Ltd.), the etching rate was 1078 ° / min. On the other hand, when a coating solution of polysilazane to which palladium acetylacetonate was not added was applied and evaluated by the same process, the residual ratio of SiH was 21%, and SiO / S
iN ratio = 1.1, etching rate is 2335 ° / min.
That was all. (FIG. 3). (See Table 1)

【0046】実施例2 白金アセチルアセトネートを用いて実施例1と全く同様
に反応、施工、評価を行った。この溶液の数平均分子量
は1086であった。また、そのIRスペクトル分析の
結果白金アセチルアセトネートとの反応前と比較して波
数(cm-1)2960,2940のCHに基づく吸収が確
認された。また、 1HNMRスペクトル(CDCl3
分析の結果δ=1.4の吸収が確認された。更に、加熱
後の塗膜は膜厚3435Å、SiH残存率6%、SiO
/SiN比=3.14、エッチングレートは1290Å
/min.であった。(表1参照)
Example 2 Using platinum acetylacetonate, the reaction, construction and evaluation were carried out in exactly the same manner as in Example 1. The number average molecular weight of this solution was 1086. In addition, as a result of the IR spectrum analysis, absorption based on CH at wave numbers (cm -1 ) of 2960 and 2940 was confirmed as compared with before the reaction with platinum acetylacetonate. In addition, 1 H NMR spectrum (CDCl 3 )
As a result of the analysis, an absorption at δ = 1.4 was confirmed. Further, the coating film after heating has a thickness of 3435 °, a residual ratio of SiH of 6%, SiO 2
/ SiN ratio = 3.14, etching rate 1290 °
/ Min. (See Table 1)

【0047】実施例3 ロジウムアセチルアセトネートを用いて実施例1と全く
同様に反応、施工、評価を行った。この溶液の数平均分
子量は901であった。加熱後の塗膜は膜厚3693
Å、SiH残存率2%、SiO/SiN比=3.18、
エッチングレートは1086Å/min.であった。(表1
参照)
Example 3 Using rhodium acetylacetonate, the reaction, construction and evaluation were carried out in exactly the same manner as in Example 1. The number average molecular weight of this solution was 901. The coated film after heating has a thickness of 3693.
Å, SiH residual ratio 2%, SiO / SiN ratio = 3.18,
The etching rate was 1086 ° / min. (Table 1
reference)

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【発明の効果】本発明によれば、耐熱性、耐摩耗性、耐
食性に優れ、基材との密着性の良い珪素−窒素−酸素−
金属元素系又は珪素−窒素−酸素−炭素−金属元素系セ
ラミック被覆が、従来にない低温での焼成で得られる。
本発明の組成物は、金属、セラミックス等はもちろん、
高温処理に不適なプラスチック材料、電子部品等の表面
保護剤として好適である。特にプラスチックのハードコ
ーティング剤、合成樹脂フィルムや容器のガス透過抑制
用コーティング剤、半導体の保護膜や絶縁膜、即ちパシ
ベーション膜、層間絶縁膜、チップコート膜など、また
半導体の封止剤、液晶表示体のアンダーコート膜や配向
膜としても利用することができる。
According to the present invention, silicon-nitrogen-oxygen is excellent in heat resistance, abrasion resistance and corrosion resistance and has good adhesion to a substrate.
Metal element or silicon-nitrogen-oxygen-carbon-metal element
Lamic coatings are obtained by unprecedented firing at low temperatures.
The composition of the present invention includes not only metals and ceramics, but also
It is suitable as a surface protective agent for plastic materials and electronic components that are unsuitable for high-temperature treatment. In particular, hard coating agents for plastics, coating agents for suppressing gas permeation of synthetic resin films and containers, protective films and insulating films for semiconductors, such as passivation films, interlayer insulating films, chip coat films, etc., semiconductor sealants, and liquid crystal displays It can also be used as a body undercoat film or alignment film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較例のセラミックスを評価したIRスペクト
ル図である。
FIG. 1 is an IR spectrum diagram for evaluating a ceramic of a comparative example.

【図2】実施例1のセラミックスを評価したIRスペク
トル図である。
FIG. 2 is an IR spectrum showing the ceramics of Example 1 evaluated.

【図3】実施例1のセラミックスを評価したIRスペク
トル図である。
FIG. 3 is an IR spectrum diagram for evaluating the ceramics of Example 1.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C09D 1/00 - 201/10 C08G 77/62 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C09D 1/00-201/10 C08G 77/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主として一般式(I): 【化1】 (但し、R1 ,R2 ,R3 はそれぞれ独立に水素原子、
アルキル基、アルケニル基、シクロアルキル基、アリー
ル基、またはこれらの基以外でケイ素に直結する基が炭
素である基、アルキルシリル基、アルキルアミノ基、ア
ルコキシ基を表わす。ただし、R1 ,R2 ,R3 のうち
少なくとも1つは水素原子である。)で表わされる単位
からなる主骨格を有する数平均分子量が100〜5万の
ポリシラザンと、一般式 (CH3 COCHCOCH3n M〔式中、Mはイオン
価nの金属を表わす〕 で示されるアセチルアセトナト錯体を反応させて得られ
る、アセチルアセトナト錯体/ポリシラザン重量比が
0.000001〜2の範囲内かつ数平均分子量が約2
00〜50万のアセチルアセトナト錯体付加ポリシラザ
ンを少なくとも含有する珪素−窒素−酸素−金属元素系
又は珪素−窒素−酸素−炭素−金属元素系セラミック
ーティング用組成物。
1. A compound of the general formula (I): (However, R 1 , R 2 and R 3 are each independently a hydrogen atom,
An alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group in which, other than these groups, a group directly bonded to silicon is carbon, an alkylsilyl group, an alkylamino group, or an alkoxy group. However, at least one of R 1 , R 2 and R 3 is a hydrogen atom. A polysilazane having a number average molecular weight of 100 to 50,000 having a main skeleton composed of units represented by the following formula: and a general formula (CH 3 COCHCOCH 3 ) n M wherein M represents a metal having an ionic value of n. The acetylacetonate complex / polysilazane weight ratio obtained by reacting the acetylacetonate complex is in the range of 0.000001 to 2 and the number average molecular weight is about 2
A silicon-nitrogen-oxygen-metal element system containing at least 100,000 to 500,000 acetylacetonato complex-added polysilazane
Alternatively , a composition for a silicon-nitrogen-oxygen-carbon-metal element ceramic coating .
【請求項2】 前記アセチルアセトナト錯体の金属Mが
ニッケル、白金、パラジウム、アルミニウム、ロジウム
から選択される少なくとも1種である請求項1記載の
素−窒素−酸素−金属元素系又は珪素−窒素−酸素−炭
素−金属元素系セラミックコーティング用組成物。
Wherein silicofluoride of said metal M is nickel acetylacetonate complexes, platinum, palladium, aluminum, according to claim 1, wherein at least one selected from rhodium
Element-nitrogen-oxygen-metal element system or silicon-nitrogen-oxygen-char
An element-metal element-based ceramic coating composition.
【請求項3】 請求項1又は2記載のコーティング用組
成物を基板に1回または2回以上繰り返し塗布した後、
50℃以上の温度で焼成し珪素−窒素−酸素−金属元素
系又は珪素−窒素−酸素−炭素−金属元素系セラミック
スから成る被覆膜を形成させることを特徴とするコーテ
ィング方法。
3. After repeatedly applying the coating composition according to claim 1 or 2 to a substrate one or more times,
A coating method comprising sintering at a temperature of 50 ° C. or higher to form a coating film made of silicon-nitrogen-oxygen-metal element ceramic or silicon-nitrogen-oxygen-carbon-metal element ceramic.
JP21426893A 1993-02-24 1993-08-30 Composition for ceramic coating and coating method Expired - Lifetime JP3307471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21426893A JP3307471B2 (en) 1993-02-24 1993-08-30 Composition for ceramic coating and coating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-35604 1993-02-24
JP3560493 1993-02-24
JP21426893A JP3307471B2 (en) 1993-02-24 1993-08-30 Composition for ceramic coating and coating method

Publications (2)

Publication Number Publication Date
JPH06306329A JPH06306329A (en) 1994-11-01
JP3307471B2 true JP3307471B2 (en) 2002-07-24

Family

ID=26374586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21426893A Expired - Lifetime JP3307471B2 (en) 1993-02-24 1993-08-30 Composition for ceramic coating and coating method

Country Status (1)

Country Link
JP (1) JP3307471B2 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747623A (en) * 1994-10-14 1998-05-05 Tonen Corporation Method and composition for forming ceramics and article coated with the ceramics
JPH09157544A (en) * 1995-12-05 1997-06-17 Tonen Corp Production of substrate provided with silica coating film and substrate provided with silica coating film produced thereby
JPH09183663A (en) * 1995-10-30 1997-07-15 Tonen Corp Method of applying sio2 based ceramic on plastic film
JP3479648B2 (en) 2001-12-27 2003-12-15 クラリアント インターナショナル リミテッド Polysilazane treatment solvent and method for treating polysilazane using this solvent
DE102004001288A1 (en) * 2004-01-07 2005-08-11 Clariant International Limited Hydrophilic polysilazane-based coating
JP2006054353A (en) * 2004-08-13 2006-02-23 Az Electronic Materials Kk Siliceous film having little flat-band shift and its manufacturing method
JPWO2006019157A1 (en) 2004-08-20 2008-05-08 独立行政法人産業技術総合研究所 Semiconductor device and manufacturing method thereof
DE102004054661A1 (en) * 2004-11-12 2006-05-18 Clariant International Limited Use of polysilazanes for coating metal strips
TW200621918A (en) * 2004-11-23 2006-07-01 Clariant Int Ltd Polysilazane-based coating and the use thereof for coating films, especially polymer films
JP5630948B2 (en) * 2007-07-04 2014-11-26 日亜化学工業株式会社 Light emitting device
EP2410005B1 (en) 2009-03-17 2017-02-08 LINTEC Corporation Molded article, process for producing the molded article, member for electronic device, and electronic device
JP5697230B2 (en) 2010-03-31 2015-04-08 リンテック株式会社 Molded body, manufacturing method thereof, member for electronic device, and electronic device
CN102811853B (en) 2010-03-31 2015-05-20 琳得科株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
EP2596874A4 (en) 2010-07-22 2015-10-21 Konica Minolta Holdings Inc Method for producing gas barrier film
CN103025518B (en) 2010-07-27 2014-10-15 柯尼卡美能达控股株式会社 Gas barrier film, process for production of gas barrier film, and electronic device
EP2607412A4 (en) 2010-08-20 2014-04-30 Lintec Corp Molding, production method therefor, part for electronic devices and electronic device
WO2012026362A1 (en) 2010-08-25 2012-03-01 コニカミノルタホールディングス株式会社 Method for manufacturing gas barrier film, and organic photoelectric conversion element
EP2615144B1 (en) 2010-09-07 2018-10-17 Lintec Corporation Adhesive sheet and electronic device
US9603268B2 (en) 2010-11-19 2017-03-21 Konica Minolta, Inc. Gas barrier film, method of producing a gas barrier film, and electronic device
WO2012090665A1 (en) 2010-12-27 2012-07-05 コニカミノルタホールディングス株式会社 Method for manufacturing gas-barrier film, gas-barrier film, and electronic device
EP2660041B1 (en) 2010-12-27 2015-06-17 Konica Minolta, Inc. Gas-barrier film and electronic device
JP5734675B2 (en) * 2011-01-17 2015-06-17 三井化学株式会社 Laminated body and method for producing the same
EP2732966B1 (en) 2011-07-15 2016-03-02 Konica Minolta, Inc. Gas barrier film and method for producing same
TWI552883B (en) 2011-07-25 2016-10-11 Lintec Corp Gas barrier film laminates and electronic components
CN107953623A (en) 2011-11-04 2018-04-24 琳得科株式会社 Gas barrier film and its manufacture method, gas barrier film stack, use for electronic equipment component and electronic device
EP2786808A4 (en) 2011-11-30 2016-05-25 Lintec Corp Manufacturing method for gas barrier film, and electronic member or optical member provided with gas barrier film
JP5900512B2 (en) 2011-12-16 2016-04-06 コニカミノルタ株式会社 Method for producing gas barrier film
KR20140113717A (en) 2012-02-15 2014-09-24 코니카 미놀타 가부시키가이샤 Functional film, method for producing same, and electronic device comprising functional film
WO2013133256A1 (en) 2012-03-06 2013-09-12 リンテック株式会社 Gas barrier film laminate, adhesive film, and electronic component
JP6304712B2 (en) 2012-03-22 2018-04-04 リンテック株式会社 Transparent conductive laminate and electronic device or module
EP2832539B1 (en) 2012-03-30 2016-05-04 Lintec Corporation Gas barrier film laminate, member for electronic device, and electronic device
EP2842737A4 (en) 2012-04-25 2015-12-16 Konica Minolta Inc Gas barrier film, substrate for electronic device, and electronic device
EP2851192A4 (en) 2012-05-14 2015-12-23 Konica Minolta Inc Gas barrier film, manufacturing method for gas barrier film, and electronic device
JP6252493B2 (en) * 2013-01-11 2017-12-27 コニカミノルタ株式会社 Gas barrier film
WO2014119750A1 (en) * 2013-01-31 2014-08-07 コニカミノルタ株式会社 Gas barrier film
KR20150106963A (en) 2013-03-06 2015-09-22 제이엑스 닛코닛세키 에네루기 가부시키가이샤 Method of manufacturing member having relief structure, and member having relief structure manufactured thereby
US10323317B2 (en) 2013-03-29 2019-06-18 Lintec Corporation Gas barrier laminate, member for electronic device, and electronic device
TWI624363B (en) 2013-03-29 2018-05-21 Lintec Corp Laminated body, manufacturing method thereof, member for electronic device, and electronic device
EP2990197A4 (en) 2013-04-26 2016-11-02 Jx Nippon Oil & Energy Corp Substrate having rugged structure obtained from hydrophobic sol/gel material
AU2014294412B2 (en) 2013-07-26 2017-08-03 Jx Nippon Oil & Energy Corporation Method for manufacturing substrate having textured structure
WO2015020011A1 (en) * 2013-08-07 2015-02-12 コニカミノルタ株式会社 Gas barrier film
CN105453697B (en) 2013-08-14 2018-04-17 吉坤日矿日石能源株式会社 The manufacture method of light-emitting component and light-emitting component
WO2015029732A1 (en) * 2013-08-27 2015-03-05 コニカミノルタ株式会社 Gas barrier film and process for manufacturing gas barrier film
WO2015053405A1 (en) * 2013-10-10 2015-04-16 コニカミノルタ株式会社 Method for manufacturing gas barrier film
EP3089550A4 (en) 2013-12-27 2017-09-06 JX Nippon Oil & Energy Corporation Light-emitting element
US9823392B2 (en) 2014-01-10 2017-11-21 Jx Nippon Oil & Energy Corporation Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
EP3127696B1 (en) 2014-03-31 2024-05-01 LINTEC Corporation Elongated gas barrier laminate and method for producing same
JP6438678B2 (en) 2014-05-14 2018-12-19 Jxtgエネルギー株式会社 Film member having an uneven structure
TWI691412B (en) 2014-06-04 2020-04-21 日商琳得科股份有限公司 Air-resistive laminate, method for manufacturing the same, element for electronic device, and electronic device
JP6402518B2 (en) * 2014-07-16 2018-10-10 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
JP6295864B2 (en) * 2014-07-16 2018-03-20 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
CN106796317B (en) 2014-10-10 2019-12-03 捷客斯能源株式会社 The manufacturing method of optical phase difference component, the composite optical member for having optical phase difference component and optical phase difference component
JP2016172829A (en) 2015-03-17 2016-09-29 コニカミノルタ株式会社 Coated semiconductor nanoparticle and method for producing the same
US10967618B2 (en) 2016-03-18 2021-04-06 Lintec Corporation Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
KR102330884B1 (en) 2016-03-29 2021-11-25 린텍 가부시키가이샤 Gas barrier laminate, member for electronic device, and electronic device
WO2018100028A1 (en) * 2016-12-02 2018-06-07 Merck Patent Gmbh Method for preparing an optoelectronic device from a crosslinkable polymer composition
JP6995111B2 (en) 2017-03-28 2022-01-14 リンテック株式会社 Gas barrier laminate
WO2019078069A1 (en) 2017-10-20 2019-04-25 リンテック株式会社 Base material for gas-barrier films, gas-barrier film, member for electronic devices, and electronic device
WO2020138206A1 (en) 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate

Also Published As

Publication number Publication date
JPH06306329A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
JP3307471B2 (en) Composition for ceramic coating and coating method
JP3385060B2 (en) Method for forming silicon-nitrogen-oxygen- (carbon) -metal ceramic coating film
JP3212400B2 (en) Composition for ceramic coating and coating method
JP3370408B2 (en) Manufacturing method of ceramic coating
JPH06122852A (en) Coating composition and method for coating using the same
JP4070828B2 (en) Composition for forming siliceous ceramic, method for forming the same, and ceramic film
JPH05238827A (en) Coating composition and coating process
JP3666915B2 (en) Low temperature forming method of ceramics
US6083860A (en) Method and composition for forming ceramics and article coated with the ceramics
US4822697A (en) Platinum and rhodium catalysis of low temperature formation multilayer ceramics
JP2613787B2 (en) Inorganic silazane high polymer, production method thereof and use thereof
US4898907A (en) Compositions of platinum and rhodium catalyst in combination with hydrogen silsesquioxane resin
EP0750337A2 (en) Electronic coating materials using mixed polymers
JPH0642475B2 (en) Method for forming multilayer ceramic coating
US20060134336A1 (en) Novel polycarbosilane and method of producing the same, film-forming composition, and film and method of forming the same
JPH06103690B2 (en) Method for forming a ceramic coating on a substrate
JPH04153283A (en) Heat-resistant insulating coating material
JPH01138107A (en) Modified polysilazane, its production and use thereof
JP3904691B2 (en) Polysilazane-containing composition and method for forming siliceous film
JP3919862B2 (en) Method for forming low dielectric constant siliceous film and siliceous film
JPH06140657A (en) Solar cell
JP3696311B2 (en) Polysilazane composition, method for preparing polysilazane solution, coating composition using the composition, and plastic with ceramic coating obtained by using the coating composition
JP4101322B2 (en) Low dielectric constant ceramic material and manufacturing method thereof
JPH09157544A (en) Production of substrate provided with silica coating film and substrate provided with silica coating film produced thereby
JPH0827425A (en) Composition for coating, ceramic film and production of film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140517

Year of fee payment: 12