JPWO2012014666A1 - 光走査装置および画像表示装置 - Google Patents

光走査装置および画像表示装置 Download PDF

Info

Publication number
JPWO2012014666A1
JPWO2012014666A1 JP2012526407A JP2012526407A JPWO2012014666A1 JP WO2012014666 A1 JPWO2012014666 A1 JP WO2012014666A1 JP 2012526407 A JP2012526407 A JP 2012526407A JP 2012526407 A JP2012526407 A JP 2012526407A JP WO2012014666 A1 JPWO2012014666 A1 JP WO2012014666A1
Authority
JP
Japan
Prior art keywords
optical scanning
scanning device
voltage
piezoelectric element
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012526407A
Other languages
English (en)
Other versions
JP5761194B2 (ja
Inventor
本田 雄士
雄士 本田
高梨 伸彰
伸彰 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2012526407A priority Critical patent/JP5761194B2/ja
Publication of JPWO2012014666A1 publication Critical patent/JPWO2012014666A1/ja
Application granted granted Critical
Publication of JP5761194B2 publication Critical patent/JP5761194B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

本発明の光走査装置は、入射した光を反射する可動ミラー(21)と、可動ミラー(21)の一端に連結された第1の梁部(22)と、可動ミラー(21)の他端に連結された第2の梁部(23)と、第1の梁部(22)を介して可動ミラー(21)を揺動させる応力を発生する第1の圧電素子(11)と、第1の梁部(22)を介して可動ミラー(21)を揺動させる応力を発生する第2の圧電素子(12)と、を有し、第1および第2の圧電素子(11、12)のそれぞれのパターンの長手方向が第1の梁部(22)の長手方向と一致し、第1および第2の圧電素子(11、12)は、第1および第2の梁部(22、23)に連結した支持板(3)の上に、絶縁性を保つ距離を空けて配置されている。

Description

本発明は、反射面を備えた可動部を有し、入射光と反射面との角度を変化させることにより、反射面による反射光を走査させる光走査装置、および画像表示装置に関する。
光を走査する光走査装置は、デジタル複写機、レーザープリンタ、バーコードリーダ、スキャナ、プロジェクタ等で広く用いられている。この光走査装置として、モーターを用いたポリゴンミラーやガルバノミラーなどが一般的に広く用いられてきた。
一方で近年の微細加工技術によって、MEMS(Micro Electro Mechanical Systems)技術を応用した光走査装置が大きな発展を遂げている。中でも、梁部を回転軸として可動ミラーを往復振動させることにより光を走査させる、MEMSによる光走査装置が注目を集めている。
MEMS技術によって形成される可動ミラーは、モーターを用いたポリゴンミラー等の回転による光走査装置と比較して、構造が簡単であること、半導体プロセスによる一体成形が可能であること、そのため小型化や低コスト化が容易であること、小型化により高速化が容易である等の利点がある。
これらのMEMS技術による光走査ミラーは、振れ角を大きくとるために、駆動周波数と構造体の共振周波数を一致させた共振ミラーが一般的である。ミラーの共振周波数frは、梁部のねじり弾性係数kとミラーの慣性モーメントをIとから、次式で与えられる。
fr=1/(2π)(k/I1/2 ・・・(1)
また、ミラーに加わる駆動力をTとすると、ミラーの振れ角θは、
θ=QT/k ・・・(2)
で与えられる。Qは系の品質係数であり、空気中での典型的な値は、100程度、真空中での典型的な値は数1000程度である。これにより共振駆動におけるミラーは、小さな駆動力であっても大きく振れることが可能である。
ミラーの振れ角θを拡大するためには、駆動力Tを増大させるか、品質係数Qを増大させる必要がある。
駆動力を得るために用いられる手法の一つとして、圧電素子を用いた方法がある。以下では、この圧電型駆動装置を用いた光走査素子に限定して述べる。圧電素子の長手方向とねじり梁の長手方向が直交方向であるか、平行方向であるかにより、次に述べる直交配置型と平行配置型とがある。
直交配置型の光走査装置の例が特許文献1から4に開示されている。特許文献1から4のそれぞれに開示された光走査装置は、ねじり梁に複数の基板部が連結され、それぞれの基板部には独立した圧電素子が搭載されている。このタイプの光走査装置は、それぞれの圧電素子に、独立した位相の電圧を印加することで、ねじり梁に対して回転方向の駆動力を生む点に特徴がある。
平行配置型の光走査装置の例が特許文献5および特許文献6に開示されている。特許文献5および特許文献6のそれぞれには、ミラーに連結されたねじり梁が二股に分かれた基板部に接続され、それぞれの基板部に圧電素子が搭載された光走査装置が提案されている。このタイプの光走査装置は、それぞれの圧電素子には独立した位相を持つ電圧が印加されることによって、光走査ミラーを駆動させている。
特許文献5および特許文献6のそれぞれに開示された光走査装置では、ねじり梁に回転力を与えるために搭載されたそれぞれの圧電素子の長手方向が、ねじり梁の長手方向と一致している点に特徴がある。特許文献5においては、第2のばね部の分岐幅が反射ミラー部の幅を超えないなどの制限が加えられている。これは、捻れ梁の回転方向の固有振動数より低い周波数範囲内における、捻れ梁の曲げ方向の振動モードの発生を抑制するためであることが、特許文献5に記載されている。以下に、特許文献1から6を示す。
特開2001−272626号公報 特開2007−199682号公報 特開2008−310295号公報 特開2005−128147号公報 特開2004−177543号公報 特開2008−145545号公報
特許文献1から4に開示された光走査装置の基板構造の場合、圧電素子の長手方向がねじり梁の長手方向と直交した方向に伸びているため、素子全体としての面積が大きくなるという問題があった。圧電素子を搭載する面積が制限されると、ミラー部に必要な回転を与えるだけの捻れ振動を与えるためには、圧電素子による駆動力が不十分になってしまう。
一方、特許文献5および特許文献6に開示された光走査装置の分岐構造の場合、圧電素子間に空孔を設ける必要があり、圧電素子を搭載できる面積が制限されるため、ミラー部に必要な回転を与えるための捻れ振動を発生するには、圧電素子による駆動力が不十分であるという問題があった。圧電素子による駆動力を大きくしようとすると、圧電素子を搭載できる面積を大きくする必要があり、光走査装置が大きくなってしまう。
本発明の目的の一つは、ミラー部の回転角を保証したまま、小型化を可能にした光走査装置および画像表示装置を提供することである。
本発明の一側面の光走査装置は、入射した光を反射する可動ミラーと、可動ミラーの一端に連結された第1の梁部と、可動ミラーの他端に連結された第2の梁部と、第1の電圧が印加されると、第1の梁部を介して可動ミラーを揺動させる応力を発生する第1の圧電素子と、第2の電圧が印加されると、第1の梁部を介して可動ミラーを揺動させる応力を発生する第2の圧電素子とを有し、第1および第2の圧電素子のそれぞれのパターンの長手方向が第1の梁部の長手方向と一致し、第1および第2の圧電素子は、第1および第2の梁部に連結した支持板の上に、絶縁性を保つ距離を空けて配置されている構成である。
また、本発明の一側面の画像表示装置は、水平走査素子および垂直走査素子の少なくともいずれかの素子として、上記本発明の光走査装置を備えた構成である。
図1は第1の実施形態における光走査装置の一構成例を示す平面図である。 図2は第1の実施形態における光走査装置の一構成例を示す断面図である。 図3は圧電素子に印加する駆動電圧の一例を示すグラフである。 図4は異なる圧電素子に印加する駆動電圧の位相と光走査角の関係を示すグラフである。 図5Aは第1の実施形態の光走査装置の製造方法を示す断面図である。 図5Bは第1の実施形態の光走査装置の製造方法を示す断面図である。 図5Cは第1の実施形態の光走査装置の製造方法を示す断面図である。 図5Dは第1の実施形態の光走査装置の製造方法を示す断面図である。 図5Eは第1の実施形態の光走査装置の製造方法を示す断面図である。 図6Aは第1の実施形態の光走査装置の製造方法を示す断面図である。 図6Bは第1の実施形態の光走査装置の製造方法を示す断面図である。 図6Cは第1の実施形態の光走査装置の製造方法を示す断面図である。 図6Dは第1の実施形態の光走査装置の製造方法を示す断面図である。 図6Eは第1の実施形態の光走査装置の製造方法を示す断面図である。 図7Aは第1の実施形態の光走査装置の製造方法を示す断面図である。 図7Bは第1の実施形態の光走査装置の製造方法を示す断面図である。 図7Cは第1の実施形態の光走査装置の製造方法を示す断面図である。 図7Dは第1の実施形態の光走査装置の製造方法を示す断面図である。 図7Eは第1の実施形態の光走査装置の製造方法を示す断面図である。 図8Aは第1の実施形態の光走査装置の製造方法を示す断面図である。 図8Bは第1の実施形態の光走査装置の製造方法を示す断面図である。 図8Cは第1の実施形態の光走査装置の製造方法を示す断面図である。 図8Dは第1の実施形態の光走査装置の製造方法を示す断面図である。 図9は第1の実施形態の光走査装置を用いた画像表示装置の一構成例を示すブロック図である。 図10は第2の実施形態における光走査装置の一構成例を示す平面図である。 図11は第3の実施形態における光走査装置の一構成例を示す平面図である。 図12は光走査角と駆動周波数の関係を示すグラフである。 図13は共振周波数の温度依存性を測定した結果を示すグラフである。 図14は第3の実施形態の光走査装置の調整部に印加する電圧V3を変化させたときのミラー部の共振周波数を示すグラフである。 図15は第4の実施形態における光走査装置の一構成例を示す平面図である。 図16は第4の実施形態における光走査装置の各圧電素子に印加する電圧を示すグラフである。 図17Aは、ミラー部に対する、2つの駆動部の駆動力に差がない場合を説明するための図である。 図17Bは、ミラー部に対する、2つの駆動部の駆動力に差がある場合を説明するための図である。 図18は、ミラー部を挟む2つの駆動部のうち、片方の駆動部の調整因子とスプリットとの関係を示すグラフである。
本発明の上述した目的および他の目的、ならびに特徴および利点を明確にすべく、図面を参照しながら、本発明の実施形態を以下に詳述する。
(第1の実施形態)
本実施形態における光走査装置は、上述の課題を解決するとともに、光走査の効率向上を可能にしたものである。
本実施形態の光走査装置の構成を説明する。図1は本実施形態における光走査装置の一構成例を示す平面図であり、図2はその断面図である。
光走査装置は、鏡面となる反射膜および可動板からなるミラー部21と、ミラー部の可動板に連結された2本のねじり梁部22、23と、これらのねじり梁部に連結され、ねじり梁部および可動板を支持する支持部3と、支持部を支持する枠体2と、ねじり梁部およびミラー部を駆動するための駆動部5、6とを有する。駆動部5、6は支持部3の上に設けられている。ミラー部21は、ねじり梁部22、23で支持されており、ねじり梁部22、23以外は空孔26、27で囲まれている。空孔26、27は、支持部3を貫通している。ミラー部21が可動ミラーに相当する。
ミラー部21の可動板、ねじり梁部22、23、および支持部3は適度な剛性を持つ材料で一体成形されており、材料としては、単結晶シリコン(Si)や弾性を有する金属等が好適である。例えば、支持部3がSi活性層で構成され、枠体2は支持部3よりも厚いSi支持層で構成されている。支持部3のSi活性層の厚さは用途によって適切なものを選択する必要があるが、数10μmのものが好適である。衝撃耐性等を上げるため、枠体2の厚さは500μm程度に厚くする必要がある。
図1に示す構成例では、可動板の形状を楕円柱とし、ねじり梁部22、23に直交する方向のサイズ(楕円の短軸長)をD1とし、ねじり梁部22、23の長手方向のサイズ(楕円の長軸長)をD2としている。また、ねじり梁部22、23のそれぞれの長手方向の長さをLとし、長手方向に対して垂直方向の長さである幅をWとしている。D1およびD2に適したサイズは1〜2mmである。LおよびWは、必要とされる共振周波数およびミラー回転角によって定められる。支持部3の長手方向の長さおよび幅は、必要とされる駆動力に依存するが、サイズを拡大することで、振動時の動作安定性が高まる。
駆動部5はねじり梁部22の付け根に設けられ、駆動部6はねじり梁部23の付け根に設けられている。駆動部5は圧電素子11、12を有し、駆動部6は圧電素子13、14を有する。圧電素子11〜14のパターンは長方形状である。
圧電素子11、12のそれぞれのパターンの長手方向がねじり梁部22の長手方向と一致している。圧電素子11、12は、少なくとも絶縁性を保つ距離を空けて同一の支持部3上に配置されている。圧電素子13、14のそれぞれのパターンの長手方向がねじり梁部23の長手方向と一致している。圧電素子13、14は、少なくとも絶縁性を保つ距離を空けて同一の支持部3上に配置されている。
圧電素子11と圧電素子12のそれぞれのパターンの長手方向がねじり梁部22の長手方向と一致しているだけでなく、圧電素子11と圧電素子12が少なくとも絶縁性を保つ距離で近づいて配置されており、これらの圧電素子の間に空孔を設ける必要がないため、光走査装置の平面積を小さくすることが可能となる。このことは、圧電素子13、14についても同様である。
図2を参照して圧電素子11〜14の構成を説明する。図2は、図1に示した平面図において、圧電素子11、13を切る断面の構造を示している。この場合、ミラー部21の両側には空孔26が図に表されるが、図2では、支持部3の内側の側壁を示している。
図2に示すように、圧電素子11は、下部電極101、圧電層102および上部電極103を有する。支持部3の最上層となる絶縁膜(不図示)の上に、下部電極101、圧電層102および上部電極103が順に形成されている。圧電素子12〜14のそれぞれについても、圧電素子11と同様に、下部電極101、圧電層102および上部電極103が設けられている。
上部電極103として、Al薄膜を材料とする電極パットが用いられる。本実施形態では、電極パッドの材料に、スパッタリング法で形成したAl薄膜を用いる場合で説明するが、圧電層102と十分な密着性とシリコン基板との導通が得られれば白金(Pt)等の他の材料を選択してもよい。また、電極パッドの材料膜の成膜方法についても、スパッタリング法に限らず、他の成膜方法であってもよい。下部電極101は、圧電素子が形成された領域の外に配線(不図示)を介して引き出され、電極パッド(不図示)と接続されている。
圧電素子12〜14毎に、上部電極103、圧電層102および下部電極101が別々に設けられている。そのため、各圧電素子に異なる電圧を印加することが可能である。ここでは、圧電素子11〜14の分極方向を膜に対して上向きとし、下部電極101に駆動電圧を印加し、上部電極103にGnd電圧(接地電位)を印加するものとする。圧電素子11、13の下部電極101に電圧V1(t)を印加し、圧電素子12、14の下部電極101に電圧V2(t)を印加する。
図3は駆動電圧V1(t)、V(2)の一例を示すグラフである。グラフの横軸が時間であり、縦軸が電圧である。図3に示すグラフでは、実線で示すV1(t)と破線で示すV2(t)は位相が180度ずれている。
次に、本実施形態の光走査装置の動作を説明する。
本実施形態では、圧電素子11および圧電素子13のそれぞれの下部電極101に電圧V1(t)=0.5Vp-p(1+sin(2πft)) [V]を印加し、圧電素子12および圧電素子14のそれぞれの下部電極101に電圧V2(t)=0.5Vp-p(1+sin(2πft+φ)) [V]を印加する。
図4は、Vp-p=2[V]の場合について、電圧V1と電圧V2の位相差φを0度から180度まで変化させたときの、反射光の走査角(ミラー回転角の2倍)を示すグラフである。グラフの横軸が位相差であり、縦軸が光走査角である。図4のグラフには、ミラー部21に偏心を付けた場合と付けない場合が表示されている。
ミラー部21に偏心を付けない場合について説明する。この場合、ミラー部21の重心位置は、ねじり梁部22、23の長手方向の中心軸上にある。ミラー部21に偏心を付けない場合では、図4に示すように、位相差φが0度から大きくなるにつれて、光走査角は、少しずつ大きくなり、位相差φが90度以上になると変化の傾きがさらに大きくなる。そして、光走査角は位相差φが180度のときに最大になっている。V1(t)=2[V]、V2(t)=0[V]のとき、平均印加電圧1Vのときと比較して、圧電素子11と圧電素子13がこれらのパターンの長手方向に伸び、圧電素子12と圧電素子14がこれらのパターンの長手方向に縮む。
これにより、図1に示したミラー部21において、ねじり梁部22、23の中心軸よりも上側部分が上昇し、下側部分が下降することになる。その結果、ねじり梁部22、23の長手方向の中心軸を中心に、ねじり梁部22からねじり梁部23の方向を見て時計回りに、ミラー部21が回転して反射膜が傾く。その反対に、V1(t)=0[V]、V2(t)=2[V]のとき、ミラー部21は、V1(t)=2[V]、V2(t)=0[V]のときとは逆方向に回転して反射膜が傾く。
ミラー部21に偏心を100μm付けた場合について説明する。この場合、ミラー部21の重心位置がねじり梁部22、23の長手方向の中心軸から垂直方向に100μmずれている。ミラー部21に偏心を100μm付けた場合では、図4に示すように、光走査角は位相差φが0度のときに最大になっている。V1(t)=V2(t)=2[V]のとき、圧電素子11〜14は同時に伸びることで、ミラー部21を揺動させ、ミラー部21に付与された偏心によって揺動力がミラー部21の回転力に転換される。その結果、ミラー部21の重心のある側が下降し、ねじり梁部22、23の長手方向の中心軸を中心にミラー部21が回転し、反射膜が傾く。
次に、上述した構成の光走査装置の製造方法を説明する。図5Aから図8Dは本実施形態の光走査装置の製造方法を示す断面図である。
図5Aに示すように、Si支持層31の上にSiO層32およびSi活性層33が順に積層されたSOI(Silicon on Insulator)基板を用意する。Si支持層31の膜厚は475μmであり、SiO層32の膜厚は2μmであり、Si活性層33の膜厚は50μmである。Si支持層31は枠体2を形成するための基板である。Si活性層33は、支持部3、ねじり梁部22、23、および可動板を形成するためのデバイス基板である。Si活性層33を酸化処理することで、Si活性層33の上面にシリコン酸化膜を形成するが、この図では、シリコン酸化膜を示すことを省略している。
続いて、下部電極101を形成するための導電性膜34と、圧電層102と、上部電極103を形成するための導電性膜36をスパッタリング法で、Si活性層33のシリコン酸化膜(不図示)上に順に形成する(図5B)。これらの膜の材料として、例えば、導電性膜34にPtが用いられ、圧電層102にPZT(チタン酸ジルコン酸鉛)が用いられ、導電性膜36に金(Au)が用いられる。
その後、導電性膜36の上にレジストを塗布し、リソグラフィ工程により、上部電極103のパターンを有するレジスト38を形成する(図5C)。以下では、基板上に塗布したレジストに対してリソグラフィ工程によりパターンを形成する処理を、「レジストパターニング」と称する。続いて、レジスト38をマスクにして導電性膜34の上面が露出するまで導電性膜36および圧電層102をエッチングする。これにより、圧電素子の上部電極103および圧電層102が形成される(図5D)。ここでは、レジスト38をマスクにして導電性膜36および圧電層102をエッチングしたので、エッチング後の上部電極103と圧電層102のパターンの面積は同じになる。その後、レジスト38を除去する(図5E)。
図6Aに示すように、レジストパターニングを行って、図2に示した下部電極101を形成するためのレジスト41を導電性膜34の上に形成する。続いて、レジスト41をマスクにして、Si活性層33の上面が露出するまで導電性膜34をエッチングする。これにより、下部電極101が形成される(図6B)。その後、レジスト41を除去する(図6C)。図6Cには、形成された圧電素子11、13の断面構造を示す。ここでは、圧電素子11、13の断面構造を示しているが、図1に示した圧電素子12、14も同時に形成される。
続いて、図6Dに示すように、レジストパターニングを行って、図1に示したミラー部21の鏡面に相当する部分に開口が設けられたレジスト42をSi活性層33の上に形成する。そして、蒸着法を用いて開口およびレジスト42の上に反射膜44を形成する(図6E)。反射膜44の材料として、アルミニウムや銀合金などが用いられる。
図7Aに示すように、レジストを除去することでレジスト上に堆積された膜も一緒に除去するリフトオフを行って、レジスト42上の反射膜44をレジスト42と一緒に除去する。これにより、図6Dに示したレジスト42の開口に相当する部位であって、Si活性層33の上に反射膜44が残る。そして、図7Bに示すように、レジストパターニングを行って、Si活性層33をパターニングするためのレジスト45をSi活性層33の上に形成する。
続いて、レジスト45をマスクにして、SiO層32の上面が露出するまでSi活性層33をエッチングする(図7C)。Si活性層33に対するエッチングの前に、例えば、BOE(Buffered Oxide Etching)による酸化膜除去を行ってもよい。Si活性層33の上面に自然酸化膜が生成されている場合、自然酸化膜が除去され、Si活性層33のエッチングがスムーズに行われる。Si活性層33に対するエッチングの後、レジスト45を除去する(図7D)。これにより、支持部3およびミラー部21が形成される。この図7Dに示す断面部分には示されていないが、ミラー部21は支持部3と接続されている。さらに、Si支持層31の裏面からのエッチングに備えて、図7Eに示すように、ミラー部21、圧電素子11〜14および支持部3を覆う保護膜46をSiO層32の上に形成する。
図8Aに示すように、レジストパターニングを行って、Si支持層31の裏面側にレジスト47を形成する。続いて、レジスト47をマスクにして、SiO層32の裏面が露出するまでSi支持層31をエッチングする(図8B)。これにより、枠体2が形成される。その後、レジスト47をマスクにして、SiO層32をエッチングする。これにより、支持部3と枠体2との間に残ったSiO層32によるBOX層48が形成される(図8C)。さらに、レジスト47および保護膜46を除去する(図8D)。その後、ダイシングを行って、光走査装置を個々に分離する。
次に、上述した構成の光走査装置を用いた画像表示装置の構成および動作を説明する。図9は本実施形態の光走査装置を用いた画像表示装置の一構成例を示すブロック図である。
図9に示すように、画像表示装置は、外部から供給される映像信号に応じて変調された光束を生成する光束生成装置50と、光束生成装置50で生成された光を平行光化するコリメート光学系60と、光束を合成する合成光学系70と、合成光学系70で合成された光を画像表示するために水平方向に走査する水平走査部80と、水平走査部80で水平方向に走査された光束を垂直方向に走査する垂直走査部90と、水平走査同期回路81および垂直走査同期回路91と、水平方向と垂直方向に走査された光束をスクリーン上に出射する光学系(不図示)とを有する。
光束生成装置50は、信号処理回路51と、信号処理回路51から出力される3つの映像信号(R、G、B)をそれぞれ光束にする光源部52とを有する。信号処理回路51は、映像信号が入力されると、画像を構成するための要素として、入力された映像信号に基づいて、赤(R)、緑(G)および青(B)の各映像信号を生成して光源部52に送信する。また、信号処理回路50は、入力された映像信号による水平同期信号を水平走査同期回路81を介して水平走査部80に出力し、入力された映像信号による垂直同期信号を垂直走査同期回路91を介して垂直走査部90に出力する。
光源部52は、赤色レーザー駆動系と、緑色レーザー駆動系と、青色レーザー駆動系とを有する。赤色レーザー駆動系は、赤色の光束を発生する赤色レーザー53と、赤色レーザー53を駆動するための赤色レーザー駆動回路54とを有する。緑色レーザー駆動系は、緑色の光束を発生する緑色レーザー55と、緑色レーザー55を駆動するための緑色レーザー駆動回路56とを有する。青色レーザー駆動系は、青色の光束を発生する青色レーザー57と、青色レーザー57を駆動するための青色レーザー駆動回路58とを有する。
赤色、緑色および青色の各レーザーとして、例えば、半導体レーザー、または第2高調波発生機構(SHG:Second-Harmonic Generation)付き固定レーザーを用いればよい。
合成光学系70は、赤、緑および青のそれぞれに対応してダイクロイックミラー71〜73を有する。ダイクロイックミラー71〜73により、赤、緑および青のそれぞれのレーザー光が波長に関して選択的に反射または透過される。
光束生成装置50の各レーザーから出射した赤、緑および青のそれぞれの光束は、コリメート光学系60によって平行光化された後、合成光学系70のダイクロイックミラー71〜73のそれぞれに入射される。ダイクロイックミラー71〜73のそれぞれに入射した赤、緑および青のそれぞれの光束は、波長選択的に反射または透過して集光され、水平走査部80に出力される。
水平走査部80は、合成光学系70から入射された光束を画像として投影するために、水平方向に走査する。垂直走査部90は、合成光学系70から入射された光束を画像として投影するために、垂直方向に走査する。この水平走査部80と信号処理回路51とは水平光走査装置として機能し、垂直走査部90と信号処理回路51とは垂直光走査装置として機能する。
水平走査部80は、光束を水平方向に走査する水平走査素子84と、水平走査素子84を駆動させる水平走査駆動回路82と、水平走査素子84の共振周波数を調整する共振周波数調整回路83とを有する。垂直走査部90は、光束を垂直方向に走査する垂直走査素子94と、垂直走査素子94を駆動させる垂直走査駆動回路90とを有する。なお、水平走査駆動回路82は信号処理回路51から出力される水平同期信号に基づいて駆動し、垂直走査駆動回路92は信号処理回路51から出力される垂直同期信号に基づいて駆動する。
図1に示した光走査装置を図9に示す水平走査素子84として使用する。この場合、図1に示したミラー部21が水平走査素子84の水平方向ミラー(Hミラー)としての役目を果たす。また、水平走査素子84に限らず、図1に示した光走査装置を図9に示す垂直走査素子94に使用してもよい。この場合、図1に示したミラー部21が垂直走査素子94の垂直方向ミラー(Vミラー)としての役目を果たす。
本実施形態の光走査装置では、ミラー部を効率的に回転させることができる。その理由を、以下に説明する。
基本的には、ミラー部の慣性モーメントを下げる必要があり、偏心が極力小さい構造が有利である。しかし、圧電素子に加える印加電圧の位相が同一である場合、ミラー部の偏心が小さい場合は回転角を大きくできない。反対に、ミラー部の偏心が大きいと、慣性モーメントが増加するためねじり梁の剛性を高める必要が生じ、その結果ミラー回転角が低減する。一方、本実施形態の光走査装置では、ミラー部に偏心がない場合でも、各圧電素子に印加する電圧の位相を任意に調整可能であるためミラー回転角を効率的に最大化することができる。また、ミラー部を効率的に回転させるように、各圧電素子に印加する電圧の位相を調整することで、低消費電力化を図れる。
また、本実施形態によれば、複数の圧電素子への印加電圧に位相差をつけることで、ミラー部駆動時の破壊に対する耐性を向上することができる。特に、破壊を引き起こし易い、ねじり梁部の付け根における応力低減の効果が顕著であり、シミュレーションによれば、同相駆動時(φ=0度)の700[MPa]の最大応力を、逆相駆動時(φ=180度)では400[MPa]程度まで低減することができる。
また、本実施形態によれば、同一のねじり梁部の付け根に並列に設けられた複数の圧電素子を、素子間に空孔を設けずに、できるだけ近づけて同じ支持板上に配置することで、ミラー部駆動時のねじり梁部の付け根における破壊に対する耐性を向上させることができる。2つの圧電素子が0.8mm程度分岐した基板上に配置されている場合、シミュレーションによれば、ミラー回転時にねじり梁部の根元に640[MPa]程度の最大応力が発生する。2つの圧電素子が0.2mm程度分岐した基板上に配置されている場合も、ミラー回転時にねじり梁部の根元に510[MPa]程度の最大応力が発生する。一方、本実施形態のように分岐されていない場合は、410[MPa]程度の最大応力に抑えることができる。
さらに、本実施形態によれば、圧電素子とミラー部が近傍に配置されるため、素子全体の面積および体積を小型化することが可能となる。本実施形態の構造のように小型化しても、ミラー部を回転させるための駆動部の十分な剛性を確保しつつ、かつ、ミラー部に十分な回転を与えるだけの十分な駆動力を発生することが可能である。
画像表示装置については、本実施形態の光走査装置を、図9に示した水平走査素子84もしくは垂直走査素子94、またはそれらの両方の素子に用いることで、画像表示装置本体の大きさを小型化することが可能となる。
(第2の実施形態)
本実施形態の光走査装置は、第1の実施形態で説明した構成よりも小型化を可能にしたものである。
本実施形態の光走査装置の構成を説明する。図10は本実施形態における光走査装置の一構成例を示す平面図である。なお、第1の実施形態と同様な構成については同一の符号を付し、その詳細な説明を省略する。本実施形態の光走査装置の断面図およびその説明は、図2および図2の説明と同様であるため省略する。
図10に示すように、本実施形態の光走査装置は、図1に示した光走査装置において、駆動部6が設けられていない構成である。そのため、本実施形態の光走査装置は、図1に示した光走査装置と比べて、駆動部6が設けられていない分、光走査装置の長手方向のサイズが短くてすむ。
次に、本実施形態の光走査装置の動作を説明する。
本実施形態では、圧電素子11の下部電極101に電圧V1(t)を印加し、圧電素子12の下部電極101に電圧V2(t)を印加するものとする。電圧V1(t)および電圧V2(t)は、図3のグラフに示した電圧と同様である。電圧V1(t)と電圧V2(t)には位相差が180度あり、これらの電圧は、ねじり梁部22、23の長手方向の軸まわりにミラー部21を回転させるための駆動力を圧電素子11および圧電素子12に与える。
例えば、V1(t)=10(1+sin(2πft)) [V]とし、V2(t)=10(1-sin(2πft)) [V]とする。V1(t)=20[V]、V2(t)=0[V]のとき、平均印加電圧10Vのときと比較して、圧電素子11がこのパターンの長手方向に伸び、圧電素子12がこのパターンの長手方向に縮む。これにより、図10に示したミラー部21において、ねじり梁部22、23の中心軸よりも上側部分が上昇し、下側部分が下降する。その結果、ねじり梁部22、23の長手方向の中心軸を中心に、ねじり梁部22からねじり梁部23の方向を見て時計回りに、ミラー部21が回転して反射膜が傾く。その反対に、V1(t)=0[V]、V2(t)=20[V]のとき、ミラー部21は、V1(t)=20[V]、V2(t)=0[V]のときとは逆方向に回転して反射膜が傾く。
本実施形態によれば、ミラー部21に連結したねじり梁部22側にのみ圧電素子が設けられているため、第1の実施形態よりも、光走査装置全体を小型化することが可能となる。また、本実施形態においても、第1の実施形態と同様な利点を有する。
(第3の実施形態)
本実施形態の光走査装置は、ミラー部の共振周波数の調整を可能にしたものである。
本実施形態の光走査装置の構成を説明する。図11は本実施形態における光走査装置の一構成例を示す平面図である。なお、第1の実施形態と同様な構成については同一の符号を付し、その詳細な説明を省略する。本実施形態の光走査装置の断面図およびその説明は、図2および図2の説明と同様であるため省略する。
図11に示すように、本実施形態の光走査装置は、図1に示した光走査装置において、ミラー部21の共振周波数を調整する、調整部7および調整部8が設けられた構成である。圧電素子11および圧電素子12の間に、圧電素子15からなる調整部7が設けられている。圧電素子13および圧電素子14の間に、圧電素子16からなる調整部8が設けられている。
圧電素子15、16のそれぞれは、図2を参照して説明したように、下部電極101、圧電層102および上部電極103を有する構成である。圧電素子15、16においても、圧電層102が膜に関して上方に分極し、下部電極101に駆動電圧が印加され、上部電極103にGnd電圧が印加されることは、圧電素子11〜14と同様である。
図11に示すように、ねじり梁部22の支持部3との連結部に圧電素子15が搭載され、ねじり梁部23の支持部3との連結部に圧電素子16が搭載されている。圧電素子15、16の下部電極101に同一の静電圧(DC電圧)V3が印加されると、圧電素子15、16は、2本のねじり梁部22、23に対して応力を与えてねじり梁の剛性を調整することで、ミラー部21の共振周波数を調整する。
圧電素子15は、圧電素子11、12と同様に、そのパターンの長手方向がねじり梁部22の長手方向と一致している。圧電素子15は、圧電素子11および圧電素子12のそれぞれと、少なくとも絶縁性を保つ距離を空けて同一の支持部3上に配置されている。圧電素子16は、圧電素子13、14と同様に、そのパターンの長手方向がねじり梁部23の長手方向と一致している。圧電素子16は、圧電素子13および圧電素子14のそれぞれと、少なくとも絶縁性を保つ距離を空けて同一の支持部3上に配置されている。
本実施形態では、圧電素子11〜16が設けられているが、各圧電素子のパターンの長手方向をねじり梁部22、23の長手方向と一致しているだけでなく、圧電素子間を少なくとも絶縁性を保つ距離で最小の長さにしているため、圧電素子間に空孔を設ける必要がなく、光走査装置の平面積を小さくすることが可能となる。
また、圧電素子11および圧電素子12の間には空孔ではなく、圧電素子15が設けられ、圧電素子13および圧電素子14の間に空孔ではなく、圧電素子16設けられているため、後で詳細に説明するように、ミラー部21の共振周波数の調整が可能となる。
さらに、図11に示す構成例では、圧電素子11〜14について、第1の実施形態の場合に比べて、各パターンの長手方向に対して垂直方向の長さである幅を短くしている。そのため、圧電素子11と圧電素子12の間に圧電素子15が設けられ、圧電素子13と圧電素子14の間に圧電素子16が設けられても、これらの圧電素子の全体の幅が抑制され、光走査装置の幅が拡大するのを抑制できる。
次に、本実施形態の光走査装置の動作を説明する。
本実施形態では、圧電素子11および圧電素子13の下部電極101に電圧V1(t)を印加し、圧電素子12および圧電素子14の下部電極101に電圧V2(t)を印加する。また、圧電素子15および圧電素子16の下部電極101には、同一のDC電圧V3[V]を印加する。電圧V1(t)および電圧V2(t)は、図3のグラフに示した電圧と同様である。ミラー部21には偏心がないものとする。そのため、電圧V1(t)と電圧V2(t)とが位相差φ=180度のときに、ミラー部21の回転角は最大となる。例えば、V1(t)= 1+sin(2πft) [V]、V2(t)= 1-sin(2πft) [V]を印加することで、ミラー部21の振れ角は最大になる。
ここで、調整部7、8の動作を説明する前に、ミラー部21の共振周波数の調整が画像表示装置による描画にとって重要であることを、図12を参照して説明する。図12は光走査角と駆動周波数の関係を示すグラフである。グラフの縦軸が光走査角であり、横軸が駆動周波数である。
初期状態において、ミラー部21の共振周波数をfrとし、光走査角をθ0とし、駆動周波数fDを共振周波数から少しずらせた値に設定してあるものとする。温度上昇などで共振周波数frがΔfrだけずれてfr’に変化したとき(図12には、その変化が減少の場合を示す)、駆動周波数fDでの光走査角はθ0’に大きく下がるため、図9に示した画像表示装置による投射画像のサイズが大きく低減する。これは、描画特性上大きな問題であり、共振周波数が下がらないように調整する必要がある。
図13は共振周波数の温度依存性を測定した結果を示すグラフである。実験は、一般的な光走査装置を測定系に置いて行った。グラフの縦軸は共振周波数であり、横軸は測定系の温度である。図13に示すように、測定系の温度が30度から60度に上昇すると、共振周波数はfrからfr’まで下がる。光走査装置のねじり梁部および支持部などの材料に、一般的なSi材料を用いた場合では、共振周波数は0.5%程度減少した。
図10に示した光走査装置において、圧電素子15と圧電素子16に所定の電圧V3を印加すれば、電圧V3の大きさに対応して必要な応力をねじり梁部22、23に与えることが可能となり、梁部の剛性を調整することができる。その結果、共振周波数を変化させることができる。
共振周波数を調整可能であることを、本実施形態の光走査装置を用いた実験結果で説明する。図14は電圧V3を変化させたときのミラー部の共振周波数を示すグラフである。グラフの縦軸は共振周波数であり、横軸は電圧V3の値である。実線は電圧V3をプラス電圧→0V→マイナス電圧に変化させた場合であり、破線は電圧V3をマイナス電圧→0V→プラス電圧に変化させた場合である。
圧電素子15および圧電素子16の下部電極101に印加する電圧V3をプラス電圧から0[V]まで下げ、さらに、マイナス電圧でその絶対値を大きくしていくと、図14の実線に示すように、V3=-30[V]のとき、ミラー部21の共振周波数をfr’からfrに上昇させることができた。このようにして、温度変化などによる共振周波数の変化を補償することができ、画像表示装置の投射性能の劣化を抑えることができる。なお、図12を参照して、共振周波数frが減少する場合を説明したが、増加する場合についても同様に共振周波数変化を補償することが可能である。
特許文献5および特許文献6に開示された構造では、圧電素子を搭載した駆動部自体の剛性が低下するため、回転振動時に、ミラー回転角の低下を排除できないという問題があった。これに対して、本実施形態によれば、光走査装置を小型にできることの利点を損なわず、簡単な構造でミラー部の共振周波数を調整することができ、その結果、画像表示装置の投射画角を保持できる。また、本実施形態においても、第1の実施形態と同様な利点を有する。
(第4の実施形態)
本実施形態の光走査装置は、ミラー部に生じる不要な振動モードを排除することを可能にしたものである。
図15は本実施形態における光走査装置の一構成例を示す平面図である。図15において、第1の実施形態と同様な構成については同一の符号を付している。図15を参照すると、本実施形態の光走査装置の構成は、図1に示した光走査装置と同様であり、断面構造も図2に示した構造と同様になる。一方、本実施形態の光走査装置は、第1の実施形態とは、動作が異なる。そのため、本実施形態では、光走査装置の構成について詳細な説明を省略し、光走査装置の動作を詳細に説明する。
本実施形態の光走査装置の動作を説明する。
図16は、圧電素子11〜14の各圧電素子に印加する電圧を示すグラフである。本実施形態では、圧電素子11に電圧V1(t)を印加し、圧電素子12に電圧V2(t)を印加し、圧電素子13に電圧V3(t)を印加し、圧電素子14に電圧V4(t)を印加する。
図16に示すように、V1(t)およびV3(t)は位相が一致しているが、最大電圧値が異なっている。V2(t)およびV4(t)は位相が一致しているが、最大電圧値が異なっている。図15を参照すると、ねじり梁部22、23の長手方向の中心軸を境にして、図15の上側の圧電素子11、13に印加する電圧の位相が一致し、図15の下側の圧電素子12、14に印加する電圧の位相が一致していることがわかる。また、図16に示すように、V1(t)およびV3(t)の位相とV2(t)およびV4(t)の位相とが180度異なっている。
ここでは、ミラー部21には偏心がないものとしているため、V1(t)とV2(t)の位相差を180度にすると、V3(t)とV4(t)の位相差も180度となり、図4で説明したように、ミラー部21の回転角は最大となる。また、本実施形態では、圧電素子に印加する電圧の絶対値を圧電素子毎に設定することで、ミラー部21に対する駆動力の調整を行うことが可能である。
例えば、V1(t)からV4(t)を、
V1(t)=0.5Vp-p(1+sin(2πft)) [V]、 V2(t)=0.5Vp-p(1-sin(2πft)) [V]、
V3(t)=0.5αVp-p(1+sin(2πft)) [V]、 V4(t)=0.5αVp-p(1-sin(2πft)) [V]
とする。V3(t)およびV4(t)における因子αの値を1以外の値に設定することで、ミラー部21に対して、図15の左側の駆動部5による駆動力と図15の右側の駆動部6による駆動力とに差をつけることが可能である。因子αの値として、例えば、0.1から10の範囲において、いずれかの値を選択することが可能である。
次に、ミラー部21に対する駆動力の調整による効果を説明する。
図17Aは、ミラー部21に対する、駆動部5、6の駆動力に差がない場合を説明するための図である。図17Bは、ミラー部21に対する、駆動部5、6の駆動力に差がある場合を説明するための図である。ただし、図17Aおよび図17Bは、駆動力の調整を行う前の状態を示しており、例えば、上述のV3(t)およびV4(t)の式における因子αの値が1の場合とする。
ミラー部21に対して、駆動部5による駆動力と駆動部6による駆動力とに差がない場合、図17Aの下側に示すように、ミラー部21には、ねじり梁部22、23に関して捻れ振動以外のモードは起きない。その結果、図17Aの上側に示すように、鏡面で反射した走査光は一重で往復し、走査光の軌跡はある範囲の線分となる。
一方、ミラー部21に対して、駆動部5による駆動力と駆動部6による駆動力とに差がある場合、図17Bの下側に示すように、捻れ振動の方向に直交する方向に、鏡面に対する曲げ振動が起こる。その結果、図17Bの上側に示すように、走査光の軌跡は二重に分離する。図17Bの上側の図では、走査光の軌跡は2本の曲線で表され、これらの曲線の両端が結合され、これらの曲線で挟まれた領域は端から中央に近づくほど膨らんでいる。
この2本の曲線のうち、上側の曲線を走査光の往路による軌跡とすると、下側の曲線は走査光の復路による軌跡に相当する。上側の曲線と下側の曲線との距離を、以下では、分離幅と称する。分離幅がゼロであれば、図17Aに示した理想状態となる。走査光の軌跡で表される分離幅の大きさは、鏡面から離れるほど大きくなってしまう。そのため、分離幅の大きさを、鏡面を反射して上側の曲線を走査する光の方向と鏡面を反射して下側の曲線を走査する光の方向との角度で表現するのがよい。この角度を、以下では、スプリットと称する。
図17Bに示すような曲げ振動が起きる理由を説明する。駆動部5、6の設計をミラー部21に対して左右対称になるように行っても、圧電素子のサイズばらつきや特性ばらつきにより、左右の駆動力を厳密に一致させることは困難である。そのため、実際に作製した光走査装置における、左右の駆動力には、ある程度の差が現れると考えられる。左右の駆動力の差が大きい場合、図17Bに示したように、走査光が二重になってしまう。往復の走査光の両方を画像表示装置における描画に用いると、実現したい画像が得られないことになる。
この問題に対して、左右の駆動部5、6のそれぞれによる駆動力を調整できれば、上述した、これらの駆動力の差をゼロに近づけることが原理的に可能となる。図18は、ミラー部を挟む2つの駆動部のうち、片方の駆動部の調整因子とスプリットとの関係を示すグラフである。
具体的には、図18は、図15に示した圧電素子13、14に印加する電圧の絶対値に関する因子αを変化させたときの結果を示す。グラフの横軸は因子αの値であり、縦軸はスプリットである。図15において、圧電素子13、14は、ミラー部21の右側の駆動部6に相当する。図18に示すように、実験に用いた光走査装置の場合では、α=0.7程度で走査光の分離幅をゼロにすることに成功している。そのため、この場合の描画特性に劣化は見られなかった。
本実施形態では、V3(t)およびV4(t)の電圧の絶対値に関する因子を調整することで、ミラー部21の曲げ振動を制御する場合を説明したが、V3(t)およびV4(t)の代わりに、V1(t)およびV2(t)の電圧の絶対値に関する因子を調整してもよい。
特許文献5および特許文献6に開示された構造では、圧電素子を搭載した駆動部自体の剛性が低下するため、回転振動時に発生する、想定外の振動モードを排除できないという問題があった。
これに対して、本実施形態によれば、光走査装置を小型にできるという利点を損なわず、走査光が二重になった場合であっても、簡単な構造で、二重の走査光間の幅を調整することができ、その幅をゼロにすることが可能である。その結果、画像表示装置の投射に適した走査光を得ることが可能になる。曲げ振動を制御することで、支持部3の剛性を保つことが可能となる。ミラー部21の回転動作に妨げとなる曲げ振動を制御することで、ミラー部21の無駄な動作が低減され、低消費電力化を図れる。また、本実施形態においても、第1の実施形態と同様な利点を有する。
上述した、いずれの実施形態においても、小型で、可動部の変位が大きい光走査装置を提供でき、可動部に鏡面を搭載することで、光偏向角度の大きな光走査装置を提供できる。また、複数の圧電素子のそれぞれに印加する電圧の位相を任意に調整することで、低消費電力化を図れる。
本発明の効果の一例として、ミラー部の回転角を十分に確保したまま、装置全体を小型化できる。
なお、第2から第4の実施形態の光走査装置を、第1の実施形態で説明した画像表示装置に用いてもよい。また、第1から第4の実施形態のそれぞれで説明した光走査装置を組み合わせてもよい。
また、第1の実施形態において、圧電素子11、12のそれぞれの圧電層102を別々に設けていたが、圧電素子11、12のそれぞれの圧電層102を分離せずに、圧電素子11、12の間の領域にも連続して形成された圧電層であってもよい。このことは、第2の実施形態についても同様である。また、圧電素子11、12と同様に、圧電素子13、14についても、これらの素子間の領域にも連続して形成された圧電層であってもよい。このことは、第4の実施形態についても同様である。さらに、第3の実施形態において、圧電素子11、12、15の圧電層が共通であってもよく、圧電素子13、14、16の圧電層が共通であってもよい。
また、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
(付記1)入射した光を反射する可動ミラーと、前記可動ミラーの一端に連結された第1の梁部と、前記可動ミラーの他端に連結された第2の梁部と、第1の電圧が印加されると、前記第1の梁部を介して前記可動ミラーを揺動させる応力を発生する第1の圧電素子と、第2の電圧が印加されると、前記第1の梁部を介して前記可動ミラーを揺動させる応力を発生する第2の圧電素子と、を有し、前記第1および前記第2の圧電素子のそれぞれのパターンの長手方向が前記第1の梁部の長手方向と一致し、前記第1および前記第2の圧電素子は、前記第1および前記第2の梁部に連結した支持板の上に、絶縁性を保つ距離を空けて配置されている、光走査装置。
(付記2)前記第1の電圧が印加されると、前記第2の梁部を介して前記可動ミラーを揺動させる応力を発生する第3の圧電素子と、前記第2の電圧が印加されると、前記第2の梁部を介して前記可動ミラーを揺動させる応力を発生する第4の圧電素子と、をさらに有し、前記第3および前記第4の圧電素子のそれぞれのパターンの長手方向が前記第2の梁部の長手方向と一致し、前記第3および前記第4の圧電素子は、これらの素子の間に空孔が設けられていない前記支持板の上に、絶縁性を保つ距離を空けて配置されている、付記1に記載の光走査装置。
(付記3)前記第1および前記第2の圧電素子は、前記第1の梁部の長手方向の中心軸を伸ばした直線に対して、線対称の位置に設けられ、前記第3および前記第4の圧電素子は、前記第2の梁部の長手方向の中心軸を伸ばした直線に対して、線対称の位置に設けられている、付記2に記載の光走査装置。
(付記4)前記第1または前記2の梁部の長手方向の中心軸を伸ばした直線を、平面を2つの領域に分割する境界線とすると、前記第1および前記第3の圧電素子は、前記2つの領域のうち、一方の領域に設けられ、前記第2および前記第4の圧電素子は、前記2つの領域のうち、前記一方の領域とは異なる他方の領域に設けられている、付記3に記載の光走査装置。
(付記5)前記可動ミラーの重心が前記第1および前記第2の梁部の長手方向の中心軸から垂直方向に所定の距離だけ離れた位置にあり、前記第1の電圧と前記第2の電圧は位相が一致している、付記1に記載の光走査装置。
なお、この出願は、2010年7月29日に出願された日本出願の特願2010−170756の内容が全て取り込まれており、この日本出願を基礎として優先権を主張するものである。
2 枠体
3 支持部
5、6 駆動部
7、8 調整部
11〜16 圧電素子
21 ミラー部
22、23 ねじり梁部
101 下部電極
102 圧電層
103 上部電極
例えば、V1(t)= 0.5V p-p (1+sin(2πft)) [V]とし、V2(t)= 0.5V p-p (1-sin(2πft)) [V]とする。V1(t)= 2 [V]、V2(t)=0[V]のとき、平均印加電圧Vのときと比較して、圧電素子11がこのパターンの長手方向に伸び、圧電素子12がこのパターンの長手方向に縮む。これにより、図10に示したミラー部21において、ねじり梁部22、23の中心軸よりも上側部分が上昇し、下側部分が下降する。その結果、ねじり梁部22、23の長手方向の中心軸を中心に、ねじり梁部22からねじり梁部23の方向を見て時計回りに、ミラー部21が回転して反射膜が傾く。その反対に、V1(t)=0[V]、V2(t)= 2 [V]のとき、ミラー部21は、V1(t)= 2 [V]、V2(t)=0[V]のときとは逆方向に回転して反射膜が傾く。
11に示した光走査装置において、圧電素子15と圧電素子16に所定の電圧V3を印加すれば、電圧V3の大きさに対応して必要な応力をねじり梁部22、23に与えることが可能となり、梁部の剛性を調整することができる。その結果、共振周波数を変化させることができる。

Claims (11)

  1. 入射した光を反射する可動ミラーと、
    前記可動ミラーの一端に連結された第1の梁部と、
    前記可動ミラーの他端に連結された第2の梁部と、
    第1の電圧が印加されると、前記第1の梁部を介して前記可動ミラーを揺動させる応力を発生する第1の圧電素子と、
    第2の電圧が印加されると、前記第1の梁部を介して前記可動ミラーを揺動させる応力を発生する第2の圧電素子と、を有し、
    前記第1および前記第2の圧電素子のそれぞれのパターンの長手方向が前記第1の梁部の長手方向と一致し、
    前記第1および前記第2の圧電素子は、前記第1および前記第2の梁部に連結した支持板の上に、絶縁性を保つ距離を空けて配置されていることを特徴とする光走査装置。
  2. 請求項1記載の光走査装置において、
    前記第1および前記第2の圧電素子は、これらの素子の間に空孔が設けられていないことを特徴とする光走査装置。
  3. 請求項1または2記載の光走査装置において、
    前記第1の電圧が印加されると、前記第2の梁部を介して前記可動ミラーを揺動させる応力を発生する第3の圧電素子と、
    前記第2の電圧が印加されると、前記第2の梁部を介して前記可動ミラーを揺動させる応力を発生する第4の圧電素子と、をさらに有し、
    前記第3および前記第4の圧電素子のそれぞれのパターンの長手方向が前記第2の梁部の長手方向と一致し、
    前記第3および前記第4の圧電素子は、これらの素子の間に空孔が設けられていない前記支持板の上に、絶縁性を保つ距離を空けて配置されていることを特徴とする光走査装置。
  4. 請求項3記載の光走査装置において、
    前記第1と前記第2の圧電素子の間に設けられ、第3の電圧が印加されると、前記第1の梁部を介して前記可動ミラーを揺動させる応力を発生する第5の圧電素子と、
    前記第3と前記第4の圧電素子の間に設けられ、前記第3の電圧が印加されると、前記第2の梁部を介して前記可動ミラーを揺動させる応力を発生する第6の圧電素子と、
    をさらに有することを特徴とする光走査装置。
  5. 請求項4記載の光走査装置において、
    前記第5および前記第6の圧電素子のそれぞれのパターンの長手方向が前記第1または前記第2の梁部の長手方向と一致し、
    前記第5および前記第6の圧電素子のそれぞれは、隣り合う他の圧電素子との間に空孔が設けられていない前記支持板の上に、隣り合う他の圧電素子と絶縁性を保つ距離を空けて配置されていることを特徴とする光走査装置。
  6. 請求項4または5記載の光走査装置において、
    前記第3の電圧が静電圧であることを特徴とする光走査装置。
  7. 請求項1または2記載の光走査装置において、
    第3の電圧が印加されると、前記第2の梁部を介して前記可動ミラーを揺動させる応力を発生する第3の圧電素子と、
    第4の電圧が印加されると、前記第2の梁部を介して前記可動ミラーを揺動させる応力を発生する第4の圧電素子と、をさらに有し、
    前記第3および前記第4の圧電素子のそれぞれのパターンの長手方向が前記第2の梁部の長手方向と一致し、
    前記第3および前記第4の圧電素子は、これらの素子の間に空孔が設けられていない前記支持板の上に、絶縁性を保つ距離を空けて配置されていることを特徴とする光走査装置。
  8. 請求項7記載の光走査装置において、
    前記第1の電圧と前記第3の電圧の位相が一致し、前記第2の電圧と前記第4の電圧の位相が一致し、
    前記第1および前記第2の電圧の絶対値、または前記第3および前記第4の電圧の絶対値を調整することで、前記第1または前記2の梁部の長手方向に対する、前記可動ミラーの曲げ振動を制御することを特徴とする光走査装置。
  9. 請求項1から8のいずれか1項記載の光走査装置において、
    前記第1の電圧と前記第2の電圧は位相が90度以上異なることを特徴とする光走査装置。
  10. 請求項9記載の光走査装置において、
    前記第1の電圧と前記第2の電圧は位相が180度異なることを特徴とする光走査装置。
  11. 水平走査素子および垂直走査素子のうち、少なくともいずれかの素子として請求項1から10のいずれか1項の光走査装置を備えた画像表示装置。
JP2012526407A 2010-07-29 2011-07-11 光走査装置および画像表示装置 Expired - Fee Related JP5761194B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012526407A JP5761194B2 (ja) 2010-07-29 2011-07-11 光走査装置および画像表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010170756 2010-07-29
JP2010170756 2010-07-29
PCT/JP2011/065811 WO2012014666A1 (ja) 2010-07-29 2011-07-11 光走査装置および画像表示装置
JP2012526407A JP5761194B2 (ja) 2010-07-29 2011-07-11 光走査装置および画像表示装置

Publications (2)

Publication Number Publication Date
JPWO2012014666A1 true JPWO2012014666A1 (ja) 2013-09-12
JP5761194B2 JP5761194B2 (ja) 2015-08-12

Family

ID=45529883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012526407A Expired - Fee Related JP5761194B2 (ja) 2010-07-29 2011-07-11 光走査装置および画像表示装置

Country Status (4)

Country Link
US (1) US9158108B2 (ja)
JP (1) JP5761194B2 (ja)
CN (1) CN103038694A (ja)
WO (1) WO2012014666A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503681A1 (en) * 2009-11-19 2012-09-26 Pioneer Corporation Drive apparatus
JP5500016B2 (ja) * 2010-09-09 2014-05-21 株式会社リコー 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP6201528B2 (ja) 2012-11-15 2017-09-27 株式会社リコー 光偏向装置、画像形成装置、ヘッドアップディスプレイ及び車両
JP6123290B2 (ja) * 2012-12-26 2017-05-10 株式会社リコー 圧電アクチュエータ装置、2次元走査装置、画像形成装置、及び画像投影装置
JP5916667B2 (ja) * 2013-07-17 2016-05-11 富士フイルム株式会社 ミラー駆動装置及びその駆動方法
JP5916668B2 (ja) * 2013-07-17 2016-05-11 富士フイルム株式会社 ミラー駆動装置及びその駆動方法
EP2851733B1 (en) * 2013-08-28 2016-12-21 Ricoh Company Ltd. Optical deflection device and image forming apparatus
DE102013217111A1 (de) * 2013-08-28 2015-03-19 Robert Bosch Gmbh Mikromechanisches Bauteil und Verfahren zur Herstellung eines mikromechanischen Bauteils
JP6330321B2 (ja) * 2013-12-26 2018-05-30 セイコーエプソン株式会社 光スキャナー、画像表示装置およびヘッドマウントディスプレイ
JP6743353B2 (ja) * 2014-07-29 2020-08-19 株式会社リコー 光偏向器、光走査装置、画像形成装置、画像投影装置及びヘッドアップディスプレイ
WO2016052547A1 (ja) 2014-09-30 2016-04-07 富士フイルム株式会社 ミラー駆動装置及びその駆動方法
WO2016052548A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 ミラー駆動装置及びその駆動方法
ITUB20156009A1 (it) * 2015-11-30 2017-05-30 St Microelectronics Srl Riflettore mems biassiale risonante con attuatori piezoelettrici e sistema mems proiettivo includente il medesimo
CN108761773A (zh) * 2018-06-15 2018-11-06 重庆大学 一种压电非均匀折叠梁驱动的moems扫描光栅微镜
WO2020020876A1 (en) * 2018-07-26 2020-01-30 Blickfeld GmbH Reduced nonlinearities for resonant deflection of a scanning mirror
WO2020110747A1 (ja) * 2018-11-30 2020-06-04 パイオニア株式会社 駆動装置
IT201900004797A1 (it) * 2019-03-29 2020-09-29 St Microelectronics Srl Dispositivo mems di tipo risonante avente una struttura orientabile comandata piezoelettricamente, in particolare un microspecchio
USD905519S1 (en) * 2019-05-14 2020-12-22 Guangzhou Yihua Electronic Equipment Co., Ltd. Hot air blowing tool for melting solder
CN113126414B (zh) * 2019-12-31 2022-10-14 中芯集成电路(宁波)有限公司 一种光学扫描投影机构
CN113126278B (zh) * 2019-12-31 2022-10-14 中芯集成电路(宁波)有限公司 扫描机构及扫描机构的形成方法
US20220404611A1 (en) * 2021-06-21 2022-12-22 Microsoft Technology Licensing, Llc Power efficiency optimization method of lc resonant driver for mems mirrors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272626A (ja) * 2000-03-23 2001-10-05 Olympus Optical Co Ltd 光スキャナ
JP3956839B2 (ja) * 2002-11-26 2007-08-08 ブラザー工業株式会社 光走査装置および光走査装置を備えた画像形成装置
JP2005128147A (ja) 2003-10-22 2005-05-19 Stanley Electric Co Ltd 光偏向器及び光学装置
JP4935013B2 (ja) 2005-07-21 2012-05-23 ブラザー工業株式会社 光走査装置、画像表示装置及び光スキャナの共振周波数変更方法並びに反射ミラー位置の補正方法
JP2007199682A (ja) 2005-12-27 2007-08-09 Konica Minolta Holdings Inc 光偏向器および光ビーム走査装置
JP2007268374A (ja) 2006-03-30 2007-10-18 Brother Ind Ltd 振動素子、振動素子の製造方法、光走査装置、画像形成装置及び画像表示装置
JP4910668B2 (ja) 2006-12-06 2012-04-04 セイコーエプソン株式会社 光学デバイス、光スキャナ、および画像形成装置
JP5098319B2 (ja) 2006-12-12 2012-12-12 コニカミノルタホールディングス株式会社 光スキャナ装置
JP5292880B2 (ja) 2007-05-15 2013-09-18 コニカミノルタ株式会社 画像表示装置
JP5172364B2 (ja) * 2008-01-16 2013-03-27 スタンレー電気株式会社 光偏向器
JP2009195053A (ja) * 2008-02-15 2009-08-27 Brother Ind Ltd アクチュエータ
JP2010237520A (ja) * 2009-03-31 2010-10-21 Brother Ind Ltd 光スキャナ

Also Published As

Publication number Publication date
US20130128328A1 (en) 2013-05-23
US9158108B2 (en) 2015-10-13
WO2012014666A1 (ja) 2012-02-02
CN103038694A (zh) 2013-04-10
JP5761194B2 (ja) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5761194B2 (ja) 光走査装置および画像表示装置
JP6447683B2 (ja) 走査型微小電気機械反射鏡システム、光検出及び測距(lidar)装置、及び走査型微小電気機械反射鏡システムの作動方法
US8891148B2 (en) Optical scanning device
EP3009395B1 (en) Light deflector, two-dimensional image display apparatus, optical scanner, and image forming apparatus
JP2005128147A (ja) 光偏向器及び光学装置
JP5614167B2 (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP6988062B2 (ja) 光偏向器、光走査装置、画像投影装置、画像形成装置、および移動体
WO2010035469A1 (ja) 光スキャナ及びこの光スキャナを備えた画像表示装置
JP2011018026A (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2005148459A (ja) 2次元光スキャナ及び光学装置
JP2008020701A (ja) 2次元光スキャナ、それを用いた光学装置および2次元光スキャナの製造方法
JP4972781B2 (ja) マイクロスキャナ及びそれを備えた光走査装置。
KR20130040794A (ko) 광학 반사 소자
WO2012115264A1 (ja) 光走査装置
JP2016151681A (ja) Mems光スキャナ
US8681408B2 (en) Optical scanning device, image forming apparatus, and image projection device
JP2016114798A (ja) 光偏向器及び光偏向器の製造方法
JP2021026154A (ja) 光偏向器、光走査システム、画像投影装置、画像形成装置、レーザレーダ
JP2011069954A (ja) 光スキャナ
JP4910902B2 (ja) マイクロスキャナ及びそれを備えた光走査装置。
JP2013160891A (ja) 振動ミラー素子およびプロジェクタ機能を有する電子機器
JP6648443B2 (ja) 光偏向器、2次元画像表示装置、光走査装置及び画像形成装置
JP6003529B2 (ja) 圧電光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2011197605A (ja) 2次元光スキャナ
JP2008129280A (ja) アクチュエータ、アクチュエータの製造方法、光スキャナおよび画像形成装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R150 Certificate of patent or registration of utility model

Ref document number: 5761194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees