JPWO2010074299A1 - リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池 - Google Patents

リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池 Download PDF

Info

Publication number
JPWO2010074299A1
JPWO2010074299A1 JP2010544201A JP2010544201A JPWO2010074299A1 JP WO2010074299 A1 JPWO2010074299 A1 JP WO2010074299A1 JP 2010544201 A JP2010544201 A JP 2010544201A JP 2010544201 A JP2010544201 A JP 2010544201A JP WO2010074299 A1 JPWO2010074299 A1 JP WO2010074299A1
Authority
JP
Japan
Prior art keywords
plate
particles
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010544201A
Other languages
English (en)
Other versions
JP4703785B2 (ja
Inventor
隆太 杉浦
隆太 杉浦
小林 伸行
伸行 小林
昌平 横山
昌平 横山
七瀧 努
七瀧  努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010544201A priority Critical patent/JP4703785B2/ja
Application granted granted Critical
Publication of JP4703785B2 publication Critical patent/JP4703785B2/ja
Publication of JPWO2010074299A1 publication Critical patent/JPWO2010074299A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

リチウムイオンの出入りが良好に行われる結晶面((003)面以外の面:例えば(101)面や(104)面)を、より多く電解質に露出させることで、電池容量等の特性を向上する。層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子であって、(003)面が、粒子板面方向と交差する方向に配向していて、気孔率が10%以下である。また、粒子板面が平滑であると仮定した場合にその平面形状及び厚さから規定される当該粒子の仮想的表面積(α)に対する、BET比表面積の測定値から求められる当該粒子の実測表面積(β)との比β/αが、3以上10以下である。

Description

本発明は、層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子(板状粒子の定義は後述する)、及び上述の板状粒子を含む正極を備えたリチウム二次電池に関する。
リチウム二次電池(リチウムイオン二次電池と称されることもある)の正極材料として、コバルト系の正極活物質が広く用いられている。このコバルト系の正極活物質(典型的にはLiCoO)は、いわゆるα−NaFeO型の層状岩塩構造を有している。このコバルト系の正極活物質においては、(003)面以外の結晶面(例えば(101)面や(104)面)にて、リチウムイオン(Li)の出入りが生じる。かかるリチウムイオンの出入りによって、充放電動作が行われる。
この種の電池の正極活物質においては、リチウムイオンの出入りが良好に行われる結晶面((003)面以外の面:例えば(101)面や(104)面)が、より多く電解質に露出することで、電池容量等の特性が向上する。本発明は、かかる課題を解決するためになされたものである。
本発明の、リチウム二次電池の正極活物質用の板状粒子は、層状岩塩構造を有し、気孔率が10%以下であり、(003)面が粒子の板面(板面の定義は後述する)と交差するように配向しているものである。気孔率は、3〜10%であることが好ましい。気孔率が3%未満となることは、以下の理由により好ましくない:充放電に伴う体積膨張収縮により、粒内にて、結晶の方位が異なる領域の境界に応力が集中する。これにより、クラックが発生し、容量が低下しやすくなる。また、気孔率が10%を超えることは、体積あたりの充放電容量が減少する点で好ましくない。
具体的には、例えば、この粒子は、(003)以外の面(例えば(104)面)が前記板面と平行に配向するように形成されている。この場合の配向度については、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、1以下となることが好適である。これにより、リチウムイオンの取り出しが行いやすくなるため、充放電特性の向上が顕著となる。
但し、[003]/[104]が0.005未満となると、サイクル特性が下がる。これは、配向度が高すぎる(すなわち結晶の向きが揃いすぎる)と、リチウムイオンの出入りに伴う結晶の体積変化によって、粒子や膜が割れやすくなるためである、と考えられる(なお、このサイクル特性劣化の理由の詳細については明らかではない。)。
ここで、「層状岩塩構造」とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα−NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。また、「(104)面が前記板面と平行となるように配向する」は、(104)面の法線方向である[104]軸が前記板面の法線方向と平行となるように、(104)面が配向する、とも言い換えることができる。
上述の特徴を換言すると、本発明の、リチウム二次電池の正極活物質用の板状粒子においては、層状岩塩構造における[003]軸が、粒子の前記板面の法線と交差する方向となる。すなわち、この粒子は、[003]軸と交差する結晶軸(例えば[104]軸)が前記板面と直交する方向となるように形成されている。
また、「板状粒子」とは、外形形状が板状である粒子のことをいう。「板状」という概念は、本明細書にて特段の説明を加えなくても社会通念上明確ではあるが、敢えて付言すると、例えば、以下のように定義づけられる。
すなわち、「板状」とは、粒子を水平面(重力が作用する方向である鉛直方向と直交する平面)上に安定的に(外部からの衝撃(当該粒子が前記水平面から飛翔してしまうような強力な衝撃は除く)を受けてもさらに転倒することがないような態様で)載置した状態で、前記水平面と直交する第一の平面及び第二の平面(前記第一の平面と前記第二の平面とは交差し、典型的には直交する。)による当該粒子の断面を観察した場合に、いずれの断面においても、前記水平面に沿った(前記水平面と平行、あるいは前記水平面とのなす角度がα度(0<α<45)となる)方向である幅方向における寸法(かかる寸法は粒子の「幅」と称される。)の方が、当該幅方向と直交する方向である厚さ方向における寸法(かかる寸法は粒子の「厚さ」と称される。)よりも大きい状態をいう。なお、上述の「厚さ」は、前記水平面と当該粒子との間の空隙部分を含まない。
本発明の板状粒子は、通常、平板状に形成される。ここで、「平板状」とは、粒子を水平面上に安定的に載置した状態で、前記水平面と当該粒子との間に形成される空隙の高さが、粒子の厚さよりも小さい状態をいうものとする。これ以上屈曲したものは、この種の板状粒子では通常生じないため、本発明の板状粒子に対しては、上述の定義が適切なものとなる。
粒子を水平面上に安定的に載置した状態において、前記厚さ方向は、必ずしも前記鉛直方向と平行な方向になるとは限らない。例えば、粒子を水平面上に安定的に載置した状態における、前記第一の平面又は前記第二の平面による当該粒子の断面形状を、(1)長方形、(2)菱形、(3)楕円形、のいずれの形状に最も近似するかを分類した場合を想定する。この粒子断面形状が(1)長方形に近似するとき、前記幅方向は上述の状態における前記水平面と平行な方向となり、前記厚さ方向は上述の状態における前記鉛直方向と平行な方向となる。
一方、(2)菱形や(3)楕円形のときは、前記幅方向は上述の状態における前記水平面と若干の角度(45度以下:典型的には数〜20度程度)をなすこととなる。このときは、前記幅方向は、当該断面による外形線上の2点であって互いの距離が最も長くなるもの同士を結んだ方向となる(かかる定義は上述の(1)長方形の場合は、対角線となってしまうために適切ではない)。
また、粒子の「板面」とは、粒子を水平面上に安定的に載置した状態における、当該水平面と対向する面、又は、当該水平面からみて当該粒子よりも上方に位置し当該水平面と平行な仮想平面と対向する面をいう。粒子の「板面」は、板状粒子における最も広い面であるため、「主面(principal surface)」と称されることもある。なお、この板面(主面)と交差する(典型的には直交する)面、すなわち、前記厚さ方向と垂直な方向である板面方向(あるいは面内方向)と交差する面は、粒子を水平面上に安定的に載置した状態における、当該粒子の平面視(当該粒子を水平面上に安定的に載置した状態で前記鉛直方向における上方から見た場合)における端縁に生じることから、「端面」と称される。
もっとも、本発明におけるリチウム二次電池の正極活物質用の板状粒子は、その粒子断面形状が上述の(1)長方形に近似することが多い。このため、本発明におけるリチウム二次電池の正極活物質用の板状粒子においては、前記厚さ方向は、粒子を水平面上に安定的に載置した状態における前記鉛直方向と平行な方向と云っても差し支えない。同様に、本発明におけるリチウム二次電池の正極活物質用の板状粒子においては、粒子の「板面」は、粒子の前記厚さ方向と直交する表面と云っても差し支えない。
また、この粒子は、2μm以上、100μm以下(例えば20μm以下)の厚さに形成され得る。
本発明のリチウム二次電池は、本発明の正極活物質用の板状粒子を正極活物質として含む正極と、炭素質材料又はリチウム吸蔵物質を負極活物質として含む負極と、前記正極と前記負極との間に介在するように設けられた電解質と、を備えている。
そして、リチウム二次電池の正極を構成するに際しては、例えば、かかる正極活物質用の板状粒子を所定のバインダー中に分散することで、正極活物質層が形成される。そして、この正極活物質層と所定の正極集電体との積層体によって、前記正極が構成される。すなわち、この場合の前記正極は、前記板状粒子を含む前記正極活物質層と、前記正極集電体と、が重ね合わせられることによって構成されている。
本発明の特徴は、上述の構造を有する、リチウム二次電池の板状粒子が、以下の構造を有することにある:前記板面が平滑であると仮定した場合にその平面形状及び厚さから規定される当該粒子の仮想的表面積(α)に対する、BET比表面積の測定値から求められる当該粒子の実測表面積(β)との比β/αが、3以上10以下である。
本発明の、リチウム二次電池の正極活物質用の板状粒子は、いわゆる「一軸配向」するように形成され得る。すなわち、当該板状粒子は、前記板面と平行となるように配向した(hkl)面とは異なる面である(h’k’l’)面が、複数の方向を向くように形成され得る。換言すれば、当該板状粒子においては、[hkl]軸(例えば[104]軸)は常に一定の方向(前記厚さ方向)を向きつつ、[h’k’l’]軸(例えば[003]軸)は[hkl]軸のまわりを回転するように現れる。
この場合、当該板状粒子は、前記板面においては、同一の結晶軸[hkl]を有している。一方、前記厚さ方向と垂直な板面方向(面内方向)においては、[h’k’l’]軸は複数の(様々なすなわちランダムな)方向を向く。換言すれば、当該板状粒子は、[h’k’l’]軸が同一方向となる領域が平面視にて二次元的に多数配列されていて、隣り合う領域同士では[h’k’l’]軸が異なる方向を向いている、という状態となる。
これにより、リチウムイオンの出入りに伴う結晶の体積変化による、粒子におけるクラックの発生が抑制され、充放電サイクルにおいて電池性能が劣化しにくくなる。特に、厚さが比較的大きい場合(例えば2〜100μm、好ましくは5〜50μm、さらに好ましくは5〜20μm)に、クラックの発生の抑制効果が顕著である。その理由は、完全には解明されていないが、以下のように推定される。
層状岩塩構造の正極活物質は、リチウムイオンの出入りの際に、各結晶方位において異なる体積膨張収縮率を持つ。よって、前記板面に同じ結晶面(例えば(104)面)を露出させつつ、当該板状粒子を、面内の方位が異なる複数の領域に二次元的に分割することで、体積膨張による応力を境界部分で吸収したり、応力が小さくなるようにそれぞれの領域を膨張あるいは収縮させたりすることができるようになる。この結果、リチウムイオンの出入りを活発にしつつ、粒子におけるクラックの発生を抑制することができる、と考えられる。
かかる構造は、X線回折装置や透過電子顕微鏡等によって確認可能である。例えば、X線回折においては、極点図を描いた際、その回折図形がスポット状ではなく、リング状となることから確認できる。
それぞれの領域の大きさは、前記面内方向の長さとして0.5μm〜20μmが好ましい。20μmを超えると、その領域内でクラックが発生しやすくなる。0.5μmより小さいと、リチウムイオンの移動しにくい領域の境界部が多く含まれ、出力特性が劣化する。
なお、当該板状粒子あるいは正極活物質膜は、多層構造(前記厚さ方向に複数の層を積層した構造)に構成され得る。この場合、各層において上述の配向状態を有していてもよく、少なくとも表層(前記板面を有する層)において上述の配向状態を有していてもよい。
本発明のリチウム二次電池の板状粒子においては、(003)面が前記板面と交差するように配向する。加えて、本発明のリチウム二次電池の板状粒子においては、上述の比β/αが3以上となることで、リチウムイオンの出入りに寄与する表面積を増加させるような凹凸が当該板面に形成される。これにより、リチウムイオンの出入りが良好に行われる結晶面をより多く電解質に露出させることができ、以て電池容量等の特性が向上する。
ここで、上述の比β/αが3以上の場合、配向に起因してリチウムイオンの出入りに寄与する表面積の割合が大きくなる効果と、凹凸の形成に起因して粒子表面積が大きくなる効果とが、相乗的に働くものと考えられる。一方、上述の比β/αが10を超えると、逆に特性が低下する。これは、凹凸の高低が大きくなりすぎる、あるいは凹凸が細かくなりすぎることで、電解液が拡散しにくくなったり、電子伝導の抵抗が大きくなったりしてしまうためであると考えられる。
図1Aは、本発明の一実施形態であるリチウム二次電池の概略構成を示す断面図である。
図1Bは、図1Aに示されている正極の拡大断面図である。
図2Aは、図1に示されている正極活物質用板状粒子の拡大斜視図である。
図2Bは、比較例の正極活物質粒子の拡大斜視図である。
図2Cは、比較例の正極活物質粒子の拡大斜視図である。
図3Aは、図2Aに示されている正極活物質用板状粒子(LiCoO粒子)の表面(板面)の走査電子顕微鏡写真である。
図3Bは、図2Aに示されている正極活物質用板状粒子(LiCoO粒子)の断面(研磨済み)の走査電子顕微鏡写真である。
図4Aは、図2Aに示されている正極活物質用板状粒子の拡大斜視図である。
図4Bは、図2Aに示されている正極活物質用板状粒子の拡大斜視図である。
図5は、図1Bに示されている正極の変形例の構成を示す断面図である。
以下、本発明の好適な実施形態を、実施例及び比較例を用いつつ説明する。なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。よって、後述するように、本発明が、以下に説明する実施形態や実施例の具体的構成に何ら限定されるものではないことは、全く当然である。本実施形態や実施例に対して施され得る各種の変更(modification)の例示は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、主として末尾にまとめて記載されている。
<リチウム二次電池の構成>
図1Aは、本発明の一実施形態が適用されたリチウム二次電池10の概略構成を示す断面図である。
図1Aを参照すると、本実施形態のリチウム二次電池10は、いわゆる液体型であって、電池ケース11と、セパレータ12と、電解質13と、負極14と、正極15と、を備えている。
セパレータ12は、電池ケース11内を二分するように設けられている。電池ケース11内には、液体の電解質13が収容されているとともに、負極14及び正極15がセパレータ12を隔てて対向するように設けられている。
電解質13としては、例えば、電気特性や取り扱い易さから、有機溶媒等の非水系溶媒にリチウム塩等の電解質塩を溶解させた、非水溶媒系の電解液が好適に用いられる。もっとも、ポリマー電解質、ゲル電解質、有機固体電解質、無機固体電解質も、電解質13として問題なく用いることができる。
非水電解液の溶媒としては、特に限定されないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピオンカーボネート等の鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の誘電率の高い環状エステル;鎖状エステルと環状エステルの混合溶媒;等を用いることができ、鎖状エステルを主溶媒とした環状エステルとの混合溶媒が特に適している。
非水電解液の調製にあたって上述の溶媒に溶解させる電解質塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(RfSO)(Rf′SO)、LiC(RfSO、LiC2n+1SO(n≧2)、LiN(RfOSO[ここでRfとRf′はフルオロアルキル基]、等を用いることができる。これらは、それぞれ単独で用いられてもよく、2種以上が併用されてもよい。上述の電解質塩の中でも、炭素数2以上の含フッ素有機リチウム塩が特に好ましい。この含フッ素有機リチウム塩は、アニオン性が大きく、かつイオン分離しやすいので、上述の溶媒に溶解し易いからである。非水電解液中における電解質塩の濃度は、特に限定されないが、例えば、0.3mol/l以上、より好ましくは0.4mol/l以上であって、1.7mol/l以下、より好ましくは1.5mol/l以下であることが望ましい。
負極14に係る負極活物質は、リチウムイオンを吸蔵、放出できるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素質材料が用いられる。また、金属リチウムや、ケイ素,スズ、インジウム等を含む合金、リチウムに近い低電位で充放電できるケイ素,スズ等の酸化物、Li2.6Co0.4N等のリチウムとコバルトとの窒化物、等のリチウム吸蔵物質も、負極活物質として用いることができる。さらに、黒鉛の一部は、リチウムと合金化し得る金属や酸化物などと置き換えることもできる。負極活物質として黒鉛を用いた場合には、満充電時の電圧をリチウム基準で約0.1Vとみなすことができるため、電池電圧に0.1Vを加えた電圧で正極15の電位を便宜上計算することができることから、正極15の充電電位が制御しやすく好ましい。
図1Bは、図1Aに示されている正極15の拡大断面図である。図1Bを参照すると、正極15は、正極集電体15aと、正極活物質層15bと、を備えている。正極活物質層15bは、結着材15b1と、正極活物質用板状粒子15b2と、から構成されている。
なお、図1A及び図1Bに示されているリチウム二次電池10及び正極15の基本的な構成(電池ケース11、セパレータ12、電解質13、負極14、正極集電体15a、及び結着材15b1を構成する材質を含む。)は周知であるので、本明細書においては、その詳細な説明は省略されている。
本発明の一実施形態である正極活物質用板状粒子15b2は、コバルト及びリチウムを含有し層状岩塩構造を有する粒子、より詳しくは、LiCoO粒子であって、気孔率が10%以下であり、厚さが2μm以上(2ないし100μm程度)の板状に形成されている。
図2Aは、図1に示されている正極活物質用板状粒子15b2の拡大斜視図である。図2B及び図2Cは、比較例の正極活物質粒子の拡大斜視図である。
図2Aに示されているように、正極活物質用板状粒子15b2は、厚さ方向(図中上下方向)と直交する表面である板面(上側表面A及び下側表面B:以下「上側表面A」及び「下側表面B」をそれぞれ「板面A」及び「板面B」と称する。)と交差するように(003)面が配向するように形成されている。
すなわち、正極活物質用板状粒子15b2は、(003)以外の面(例えば(104)面)が粒子の板面A又はBと平行となるように配向するように形成されている。
さらに換言すれば、正極活物質用板状粒子15b2は、両板面A及びBにて、(003)以外の面(例えば(101)面や(104)面)が露出するように形成されている。具体的には、正極活物質用板状粒子15b2は、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、0.005以上1以下となるように形成されている。なお、板面方向(面内方向)と交差する端面Cには、(003)面(図中黒色で塗りつぶされた面)が露出していても構わない。
これに対し、図2Bに示されている比較例(従来)の粒子は、薄板状ではなく等方形状に形成されている。また、図2Cに示されている比較例(従来)の薄板状粒子あるいは活物質膜は、粒子の厚さ方向における両面(板面A及びB)に(003)が露出するように形成されている。
図3Aは、図2Aに示されている正極活物質用板状粒子(LiCoO粒子)15b2の表面(図2Aにおける板面A又はB)の走査電子顕微鏡写真である。図3Bは、図2Aに示されている正極活物質用板状粒子(LiCoO粒子)15b2の断面(化学研磨済み)の走査電子顕微鏡写真である。図3A及び図3Bに示されているように、正極活物質用板状粒子15b2の表面(特に両板面A及びB)には、リチウムイオンの出入りに寄与する表面積を増加させるような凹凸が形成されている。
すなわち、正極活物質用板状粒子15b2は、以下の構造を有するように形成されている:両板面A及びBが平滑であると仮定した場合にその平面形状及び厚さから規定される当該粒子の仮想的表面積(α)に対する、BET比表面積の測定値から求められる当該粒子の実測表面積(β)との比β/αが、3以上10以下である。
また、本実施形態の正極活物質用板状粒子15b2は、図3Bに示されているように、きわめて緻密な構造(気孔率10%未満)を有している。
図4A及び図4Bは、図2Aに示されている正極活物質用板状粒子15b2の拡大斜視図である。図4Aに示されているように、本実施形態の正極活物質用板状粒子15b2は、いわゆる「一軸配向」するように形成されている。
すなわち、図4Aに示されている本実施形態の正極活物質用板状粒子15b2は、(003)以外の、リチウムイオンの出入りが良好に行われる特定の面(例えば(104)面)が粒子の板面A及びBと常に平行であって、且つ、それ以外の面がランダムな方向を向くように形成されている。換言すれば、この正極活物質用板状粒子15b2は、板面A及びBに上述の特定の面を露出する一方、それ以外の面の向きが異なる、複数の領域r11,r12,r13,r14,・・・,r21,r22,・・・に分割された構造を有している。
これらの領域r11,r12,r13,r14,・・・,r21,r22,・・・においては、上述の特定の面(hkl)の法線に対応する[hkl]軸は同一方向(厚さ方向すなわち図中上下方向)となる一方、それ以外の面(h’k’l’)の法線に対応する[h’k’l’]軸の向きはバラバラとなっている。すなわち、隣り合う領域同士(例えばr11とr12)は、[h’k’l’]軸の向きが異なるようになっている。
なお、図2Aに示されている正極活物質用板状粒子15b2は、図4Aに示されているような一層構造ではなく、図4Bに示されているような多層構造(積層構造)となる場合がある。この場合、少なくとも、板面(上側表面)Aを有する表層(図中最上層)、及び板面(下側表面)Bを有する表層(図中最下層)にて、上述のように、複数の領域r11,r12,r13,r14,・・・,r21,r22,・・・に分割された構造を有している(なお、図中最上層と最下層との間の中間層も同様の構成を有していてもよい。但し、この場合、各層における上述の[hkl]軸は異なる。)。
上述のような「一軸配向」状態は、以下の2つの方法のうちのいずれか一方によって確認可能である。
板状粒子について、その板面の片面もしくは両面を、FIB(収束イオンビーム)にて厚さを80nm程度まで薄片加工し、板面を透過型電子顕微鏡にて観察した。その制限視野電子線回折像において、板面に垂直な方向に[104]軸を有している箇所を10箇所以上観測し、それらの箇所の板面内の方位がランダムであることを確認した。
また、板状粒子を、スライドガラスの基板上に、互いに重なることなく、粒子板面が当該ガラス基板の板面と面接触した状態で載置した。具体的には、エタノール2gに板状粒子0.1gを加えたものを、超音波分散機(超音波洗浄機)で30分間分散させ、この分散液を25mm×50mmのガラス基板に2000rpmでスピンコートすることで、ガラス基板に板状粒子を載置した。続いて、ガラス基板に載置された粒子を粘着テープに写し取ったものを樹脂埋めし、板状粒子の断面研磨面が観察できるように研磨した。仕上げ研磨として、コロイダルシリカ(0.05μm)を研磨剤とし、振動型回転研磨機にて研磨を行った。このようにして作成したサンプルに対し、電子後方散乱回折像法(EBSD)にて、粒子1個の断面の結晶方位解析を行った。すると、板面に垂直な方向に[104]軸を有し(すなわち板面に沿って(104)面を有し)、一方[104]と異なる(交差する)結晶軸がランダムである、複数の領域に、粒子板面が分割されていることが確認された。
<正極活物質用板状粒子の製造方法の概要>
上述のような構造の正極活物質用板状粒子15b2の製造方法の概要について、以下に説明する。
1.原料粒子の準備
原料粒子としては、合成後の組成が層状岩塩構造を有する正極活物質LiMOとなるように、Li、Co、Ni、Mnなどの化合物の粒子を適宜混合したものが用いられる。あるいは、原料粒子として、LiMOの組成からなるもの(合成済みのもの)を用いることができる。
あるいは、必要に応じて、リチウム化合物を含まない、Co、Ni、Mnなどの各化合物の粒子を混合した粒子又は(Co,Ni,Mn)Oの組成からなる粒子を用いることができる。この場合、成形体の焼成工程の後、焼成された成形体とリチウム化合物とをさらに反応させることでLiMOが得られる(詳細は後述する)。
粒成長を促進する、もしくは焼成中に揮発する分を補償する目的で、リチウム化合物を0.5〜30mol%過剰に入れてもよい。また、粒成長を促進する目的で、酸化ビスマスなどの低融点酸化物、ホウケイ酸ガラスなどの低融点ガラスを0.001〜30wt%添加してもよい。
2.原料粒子の成形工程
原料粒子を、厚さが100μm以下のシート状の自立した成形体に成形する。ここで、「自立した成形体」における「自立した」は、後述の「独立したシート」における「独立した」と同義である。すなわち、「自立した成形体」は、典型的には、それ単体でシート状の成形体の形状を保つことができるものである。なお、それ単体ではシート状の成形体の形状を保つことができないものであっても、何らかの基板上に貼り付けたり成膜したりして焼成前又は焼成後に、この基板から剥離したものも、「自立した成形体」に含まれる。
成形体の成形方法としては、例えば、原料粒子を含むスラリーを用いたドクターブレード法が用いられ得る。また、成形体の成形には、熱したドラム上へ原料を含むスラリーを塗布し、乾燥させたものをスクレイパーで掻きとる、ドラムドライヤーが用いられ得る。また、成形体の成形には、熱した円板面へスラリーを塗布し、これを乾燥させてスクレイパーで掻きとる、ディスクドライヤーを用いることもできる。また、スプレードライヤーの条件を適宜設定することで得られる中空の造粒体も、曲率をもったシート状成形体とみることができるので、成形体として好適に用いることができる。さらに、原料粒子を含む坏土を用いた押出成形法も成形体の成形方法として利用可能である。
ドクターブレード法を用いる場合、可撓性を有する板(例えばPETフィルムなどの有機ポリマー板など)にスラリーを塗布し、塗布したスラリーを乾燥固化して成形体とし、この成形体と板とを剥離することにより、板状多結晶粒子の焼成前の成形体を作製してもよい。成形前にスラリーや坏土を調製するときには、無機粒子を適当な分散媒に分散させ、バインダーや可塑剤などを適宜加えてもよい。また、スラリーは、粘度が500〜4000cPとなるように調製するのが好ましく、減圧化で脱泡するのが好ましい。
成形体の厚さは、50μm以下に形成することがより好ましく、20μm以下に形成することが更に好ましい。また、成形体の厚さは、2μm以上とするのが好ましい。厚さが2μm以上であれば、自立したシート状の成形体を作成しやすい。このシート状の成形体の厚さは、略そのまま板状粒子の厚さとなることから、板状粒子の用途に合わせて適宜設定される。
3.成形体の焼成工程
この焼成工程においては、成形工程で得られた成形体は、例えば、成形されたそのままの状態(シート状態)で、セッターに載せて焼成される。あるいは、焼成工程は、シート状の成形体を適宜切断、破砕したものを、鞘に入れて焼成するものであってもよい。
原料粒子が合成前の混合粒子である場合は、この焼成工程において、合成、さらには、焼結及び粒成長が生じる。本発明では、成形体が厚さ100μm以下のシート状であるため、厚さ方向の粒成長が限られる。このため、成形体の厚さ方向に結晶粒が1個となるまで粒成長した後は、成形体の面内方向にのみ粒成長が進む。このとき、エネルギー的に安定な特定の結晶面がシート表面(板面)に広がる。したがって、特定の結晶面がシート表面(板面)と平行になるように配向した膜状のシート(自立膜)が得られる。
原料粒子をLiMOとした場合、リチウムイオンの出入りが良好に行われる結晶面である(101)面や(104)面を、シート表面(板面)に露出するように配向させることができる。一方、原料粒子を、リチウムを含まないもの(例えばスピネル構造のM)とした場合、リチウム化合物と反応させてLiMOとしたときに(104)面となる、(h00)面を、シート表面(板面)に露出するように配向させることができる。
焼成温度は、800℃〜1350℃が好ましい。800℃より低温では、粒成長が不十分で、配向度が低くなる。一方、1350℃より高温では、分解・揮発が進んでしまう。焼成時間は、1〜50時間の間とするのが好ましい。1時間より短いと、配向度が低くなる。一方、50時間より長いと、消費エネルギーが大きくなりすぎる。焼成雰囲気は、焼成中に分解が進まないように適宜設定される。リチウムの揮発が進むような場合は、炭酸リチウムなどを同じ鞘内に配置してリチウム雰囲気とすることが好ましい。焼成中に酸素の放出や、さらには還元が進むような場合、酸素分圧の高い雰囲気で焼成することが好ましい。
4.解砕工程及びリチウム導入工程
焼成後のシート状の成形体を、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることで、当該シートが多数の板状粒子に解砕される。なお、解砕工程は、リチウム導入工程の後に行われてもよい。
リチウム化合物を含まない原料粒子から、焼成により配向したシート、あるいはこれを解砕した板状粒子を得た場合、これとリチウム化合物(硝酸リチウムや炭酸リチウムなど)を反応させることで、リチウムイオンの出入りが良好に行われる結晶面が板面に露出するように配向した、正極活物質膜が得られる。例えば、配向シートあるいは粒子に、硝酸リチウムを、LiとMとのモル比Li/Mが1以上となるようにふりかけて、熱処理することで、リチウム導入が行われる。ここで、熱処理温度は、600℃〜800℃が好ましい。600℃より低温では、反応が十分に進まない。800℃より高温では、配向性が低下する。
<正極活物質用板状粒子の製造方法の具体例>
上述のような構造の正極活物質用板状粒子15b2は、具体的には、以下の製造方法によって、容易かつ確実に形成される。
<<シート形成工程>>
CoとBiとを含有し20μm以下の厚さのグリーンシートを形成し、このグリーンシートを900℃ないし1300℃の範囲内の温度で所定時間焼成することで、(h00)面が板面と平行となるように配向した(以下これを単に「(h00)配向」と表現することがある)多数の板状のCo粒子からなる、独立した膜状のシート(この「独立したシートは「自立膜」すなわち形成後に単体で取り扱い可能な膜と同義である)が形成される。なお、この焼成の際に、ビスマスは揮発することでシートから除去され、Coは還元されてCoOに相変態する。
ここで、「独立した」シートとは、焼成後に他の支持体から独立して単体で取り扱い可能なシートのことをいう。すなわち、「独立した」シートには、焼成により他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能あるいは分離困難となった)ものは含まれない。
このように膜状に形成されたグリーンシートにおいては、粒子板面方向すなわち面内方向(厚さ方向と直交する方向)に比べて、厚さ方向に存在する材料の量がきわめて少ない。
このため、厚さ方向に複数個の粒子がある初期段階には、ランダムな方向に粒成長する。一方、粒成長が進み厚さ方向の材料が消費されると、粒成長方向は面内の二次元方向に制限される。これにより、面方向への粒成長が確実に促進される。
特に、グリーンシートを可能な限り薄く形成したり(例えば数μm以下)、厚さが100μm程度(例えば20μm程度)の比較的厚めであっても粒成長を可能な限り大きく促進したりすることで、面方向への粒成長がより確実に促進される。
また、このとき、表面エネルギーの最も低い結晶面をグリーンシートの面内に持つ粒子のみが選択的に面内方向へ扁平状(板状)に粒成長する。その結果、シート焼成により、アスペクト比が大きく、特定の結晶面(ここでは(h00)面)が粒子の板面と平行となるように配向したCoOからなる板状結晶粒子が得られる。
さらに、温度が下がる過程で、CoOからCoに酸化される。その際に、CoOの配向方位が引き継がれることで、特定の結晶面(ここでは(h00)面)が粒子の板面と平行となるように配向したCo板状結晶粒子が得られる。
かかるCoOからCoへの酸化の際に、配向度が低下しやすい。これは、CoOとCoの結晶構造及びCo−Oの原子間距離が大きく異なることから、酸化すなわち酸素原子が挿入される際に結晶構造が乱れやすいためである。したがって、配向度をなるべく低下しないように適宜条件を選択することが好ましい。例えば、降温速度を小さくすることや、所定の温度で保持することや、酸素分圧を小さくすることが好ましい。
したがって、かかるグリーンシートを焼成することで、特定の結晶面が粒子の板面と平行となるように配向した薄板状の多数の粒子が、粒界部にて面方向に結合した自立膜が得られる(本出願人に係る特願2007−283184号参照)。すなわち、実質的に厚さ方向についての結晶粒子の個数が1個となるような自立膜が形成される。ここで、「実質的に厚さ方向についての結晶粒子の個数が1個」の意義は、面方向に隣り合う結晶粒子の一部分(例えば端部)が厚さ方向に互いに重なり合うことを排除しない。この自立膜は、上述のような薄板状の多数の粒子が隙間なく結合した、緻密なセラミックスシートとなり得る。
<<解砕工程>>
上述のシート形成工程によって得られた膜状のシート(自立膜)は、粒界部にて解砕しやすい状態となっている。そこで、上述のシート形成工程によって得られた膜状のシートを、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることで、上述のシートが多数のCo粒子に解砕される。
<<リチウム導入工程>>
上述の解砕工程によって得られた、(h00)配向した(「(h00)配向」の意義は上記の通り)Co粒子と、LiCOと、を混合して、所定時間加熱することで、Co粒子にリチウムが導入される。これにより、(104)配向したLiCoO粒子である正極活物質用板状粒子15b2が得られる。
なお、解砕工程は、リチウム導入工程の後に行われてもよい。
リチウム導入する際のリチウム源としては、炭酸リチウム以外にも、例えば、硝酸リチウム、酢酸リチウム、塩化リチウム、シュウ酸リチウム、クエン酸リチウム等の各種リチウム塩や、リチウムメトキシド、リチウムエトキシド等のリチウムアルコキシドも用いることができる。
リチウム導入する際の条件、すなわち、混合比、加熱温度、加熱時間、雰囲気等は、リチウム源として用いる材料の融点や分解温度、反応性等を考慮して適宜設定することが、LiCoO粒子の配向性を高める上で重要である。
例えば、(h00)配向したCo粒子とリチウム源との混合物が、非常に活性な状態で反応すると、Co粒子の配向性を乱すことがあるので好ましくない。ここでいう活性とは、例えば、リチウム源が過剰量となるとともに液体状態となり、Co粒子の結晶に対してリチウムイオンが進入していくだけでなく、Co粒子がリチウム源からなる液体への溶解および再析出が起こるような場合をいう。
なお、上述のシート形成工程によって得られた膜状のシート(自立膜)に対して、解砕工程を経ずにリチウム導入工程を行った後、得られたLiCoO膜を解砕することによっても、(104)配向したLiCoO粒子である正極活物質用板状粒子15b2が得られる。
以下、上述の製造方法及びかかる製造方法によって製造された膜あるいは粒子の実施例について、評価結果とともに詳細に説明する。
[実施例1]
<<製造方法>>
まず、以下の方法によって、スラリーを調製した:Co粉末(粒径1−5μm、正同化学工業株式会社製)を粉砕して作製したCo原料粒子(粒径0.3μm)に20wt%の割合でBi(粒径0.3μm、太陽鉱工株式会社製)を添加したもの100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、4000cPの粘度に調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。
上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが10μmとなるように、シート状に成形した。
PETフィルムから剥がしたシート状の成形体を、カッターで70mm角に切り出し、突起の大きさが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置し、1200℃で5時間焼成後、降温速度50℃/hにて降温し、セッターに溶着していない部分を取り出した。
このようにして得られたCoセラミックスシートに、LiCO粉末(関東化学株式会社製)を、Li/Co=1.0となるようにふりかけ、坩堝中にて750℃、3時間加熱処理することで、厚さ10μmのLiCoOセラミックスシート(自立膜)が得られた。
得られたLiCoOセラミックスシートを、平均開口径50μmのポリエステル製のふるい(メッシュ)に載せ、ヘラで軽く押し付けながらメッシュを通過させて解砕することで、粉末状のLiCoO(正極活物質用板状粒子15b2に相当する)が得られた。
<<評価結果>>
かかる実施例1の正極活物質用板状粒子15b2の表面(板面)を走査電子顕微鏡によって観察したところ、図3A及び図3Bと同様であった。なお、図3A及び図3Bのものは、リチウム導入時に、LiNO粉末(関東化学株式会社製)を用い、750℃、3時間処理したものである。
板状粒子の厚さの測定は以下の方法で行った。まず、多数の板状粒子が、重なることなく、板面がスライドガラスの面と面接触した状態とした。具体的には、エタノール2gに板状粒子0.1gを加えたものを、超音波分散機(超音波洗浄機)で30分間分散させ、これを25mm×50mmのガラス基板に2000rpmでスピンコートした。ガラス基板に載った粒子を粘着テープに写し取ったものを樹脂埋めし、板状粒子の断面が観察できるように研磨した。走査電子顕微鏡を用いて、実施例1の正極活物質用板状粒子15b2の粒子厚さ(端面すなわち側面が観察面と平行になっている粒子10個についての平均値)を測定したところ、約10μmであった。
また、実施例1の正極活物質用板状粒子15b2の気孔率を測定したところ、約4%であった。ここで、気孔率は、以下のようにして測定した:断面試料作成装置(日本電子株式会社製 SM−09010)を用いて化学研磨を行い、走査電子顕微鏡観察の画像処理結果から、粒子5個について、それぞれの気孔率を算出し、その平均値を気孔率測定値とした。
また、実施例1の正極活物質用板状粒子15b2について、上述の仮想的表面積(α)に対する実測表面積(β)との比β/αを測定したところ、約5となった。ここで、仮想的表面積(α)及び実測表面積(β)は、以下のようにして測定した。
多数の板状粒子が、互いに重なることなく、各々の板面が平板状の試料台と面接触した状態となるように、多数の板状粒子を試料台にセットし、走査電子顕微鏡観察した。粒子のセットは、上述の板状粒子の厚さ測定と同様にして行った(スライドガラスの代わりに試料台とした)。板状粒子が20〜40個入る視野で、画像処理によって総面積を算出し、それを粒子個数で割った値を板面積とした。この板面積を2倍した値と、外周長さと粒子厚さとの積と、の和を、仮想的表面積(α)とした。ここで、上述の外周長さは、以下のようにして求めた:粒子をすべて円板状と仮定し、上述の板面積から仮想半径rを算出し、この仮想半径rを用いて外周長さ2πrを算出した。
株式会社島津製作所製 製品名「フローソーブIII2305」を用いて、BET比表面積を測定した(吸着ガスとして窒素を用いた)。BET比表面積の測定値は0.25m/gとなった。また、先に求めた板面積と粒子厚さとの積から粒子体積を算出し、この粒子体積と、コバルト酸リチウムの比重(5.1)と、(1−気孔率)と、の積から、粒子重量を算出した。そしてBET比表面積値と粒子重量との積により、実測表面積(β)を算出した。β/αの値は、四捨五入した整数値とした。
さらに、実施例1の粒子に対して、X線回折(XRD)による配向性評価を行ったところ、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]は、0.3となった。
XRD(X線回折)測定は、以下の方法で行った:エタノール2gにLiCoO板状粒子0.1gを加えたものを、超音波分散機(超音波洗浄機)で30分間分散させ、これを25mm×50mmのガラス基板に2000rpmでスピンコートし、板状粒子同士ができるだけ重ならないように、且つ結晶面とガラス基板面とが平行となる状態に配置した。XRD装置(株式会社リガク製 ガイガーフレックスRAD−IB)を用い、板状粒子の表面に対してX線を照射したときのXRDプロファイルを測定し、(104)面による回折強度(ピーク高さ)に対する(003)面による回折強度(ピーク高さ)の比率[003]/[104]を求めた。なお、上記方法においては、板状粒子の板面がガラス基板面と面接触し、粒子板面とガラス基板面とが平行になる。このため、上記方法によれば、粒子板面の結晶面に平行に存在する結晶面、すなわち、粒子の板面方向に配向する結晶面による回折プロファイルが得られる。
かかる実施例1の正極活物質用板状粒子15b2について、電池特性(容量維持率)の評価を、以下のようにして行ったところ、98%と非常に良好であった。
LiCoO粒子、アセチレンブラック、及びポリフッ化ビニリデン(PVDF)を、質量比で75:20:5となるように混合して、正極材料を調製した。調製した正極材料0.02gを300kg/cmの圧力で直径20mmの円板状にプレス成形することで、正極を作製した。
作製した正極、リチウム金属板からなる負極、ステンレス集電板、及びセパレータを、集電板−正極−セパレータ−負極−集電板の順に配置し、この集積体を電解液で満たすことで、コインセルを作製した。電解液は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPFを1mol/Lの濃度となるように溶解することで調製した。
0.1Cレートの電流値で電池電圧が4.2Vとなるまで定電流充電し、次に電池電圧を4.2Vに維持する電流条件で電流値が1/20に低下するまで定電圧充電した後、10分間休止し、続いて1Cレートの電流値で電池電圧が3.0Vになるまで定電流放電した後10分間休止する、という充放電操作を1サイクルとし、25℃の条件下で合計3サイクル繰り返し、3サイクル目の放電容量の測定値を1Cレートの放電容量とした。
同様に、0.1Cレートの電流値で電池電圧が4.2Vとなるまで定電流充電し、次に電池電圧を4.2Vに維持する電流条件で電流値が1/20に低下するまで定電圧充電した後、10分間休止し、続いて0.1Cレートの電流値で電池電圧が3.0Vになるまで定電流放電した後10分間休止する、という充放電操作を1サイクルとし、25℃の条件下で合計3サイクル繰り返し、3サイクル目の放電容量の測定値を0.1Cレートの放電容量とした。
そして、1Cレートの放電容量を、0.1Cレートの放電容量で除した値を、容量維持率(%)とした。
ここで、上述の実施例1における、リチウム導入時の工程パラメータを適宜変更することで、BET比表面積の値を変化させたものを、サンプル1〜5とした(サンプル4は上述の実施例1に対応する)。
すなわち、サンプル1及び2においては、リチウム導入工程におけるLiCO粉末に代えてLiNO(関東化学株式会社製)を用い、熱処理温度を800℃とした。また、リチウム導入工程におけるリチウム化合物添加の際のLi/Coの値は、サンプル1ないし5の順に、1.6,1.4,1.2,1.0,1.0とした。熱処理時間は、サンプル1ないし5の順に、10,5,5,3,1[時間]とした。
また、BET比表面積がより小さいサンプル6及び7を、以下のようにして作成した。
上述のシート形成工程によって得られた膜状のシート(自立膜)に対して、解砕工程を経ずにリチウム導入工程を行った後、得られたLiCoO膜の両面を、ダイヤモンドスラリー(丸本ストルアス株式会社製 製品名「DPスプレー」 粒径1μm)を用いてバフ研磨し、エタノール中で超音波洗浄後、ふるい通しにより解砕し、さらに、研磨による結晶性の乱れを回復するために大気中600℃で1時間熱処理することで、サンプル6及び7の粉末を得た。
サンプル6とサンプル7とのBET値の差は、上述のバフ研磨の条件を変えることで設定した。すなわち、サンプル6においては、ダイヤモンドスラリーを塗布した研磨布紙へ指で軽く押さえつけ、10〜20mmの距離を10往復することでバフ研磨した。サンプル7においては、バフ研磨時の往復回数を30〜40回とした。
上述のサンプル1〜7の、BET比表面積、仮想的表面積(α)に対する実測表面積(β)との比β/α、及び容量維持率の測定結果が、下記表1にまとめて示されている。
表1に示されているように、β/αが3以上10以下の範囲にあるサンプル2〜6においては、良好な電池特性が得られた。
なお、他の粒子厚さ(約2μm及び約30μm)、配向度([003]/[104]=0.9)、材料(Li(Ni0.75Co0.2Al0.05)O,Li(Co,Ni,Mn)O)においても、上述と同様の結果が得られた。
<実施形態による効果>
上述のように、本実施形態の正極活物質用板状粒子15b2においては、(003)面が粒子板面と交差するように配向する。また、この正極活物質用板状粒子15b2においては、上述の比B/Aが3以上となることで、リチウムイオンの出入りに寄与する表面積を増加させるような凹凸が当該板面に形成される。これにより、リチウムイオンの出入りが良好に行われる結晶面((003)面以外の面:例えば(101)面や(104)面)が、より多く電解質に露出する。したがって、電池容量等の特性が向上する。
ところで、通常の(図2Bや図2Cに示されているような)正極活物質用板状粒子においては、粒子径を小さくすると、比表面積が大きくなるためにレート特性が高くなる一方、粒子強度が低くなるために耐久性が低下し、結着材の割合が多くなるために容量も小さくなる。このように、通常の(従来の)正極活物質用板状粒子においては、レート特性と、耐久性及び容量とが、トレードオフの関係になっていた。
これに対し、本実施形態の正極活物質用板状粒子15b2においては、粒子径を大きくして耐久性及び容量を向上させた場合、リチウムイオンが放出されやすい面の総面積も大きくなり、高レート特性が得られる。したがって、本実施形態によれば、容量、耐久性、及びレート特性が、従来よりも向上され得る。
特に、携帯電話やノートPCに搭載される、モバイル機器向けのリチウムイオン二次電池においては、長時間の使用に対応した、高容量な電池が求められる。高容量化には活物質粉末の充填率向上が有効であり、充填性のよい粒径10μm以上の大粒子を用いることが好ましい。
この点、従来技術では、粒子径を10μm以上に大きくしようとすると、結晶構造上、リチウムイオンおよび電子が出入りできない面(003)が表面に広く露出した板状粒子となってしまい(図2C参照)、出力特性に悪影響を及ぼすことがあった。
これに対し、本実施形態の正極活物質用板状粒子15b2では、リチウムイオンおよび電子の伝導面が表面に広く露出している。このため、本実施形態によれば、出力特性に悪影響を及ぼすことなくLiCoO板状粒子を大粒子化することができる。したがって、本実施形態によれば、従来よりも高充填された、高容量な正極材シートを提供することができる。
なお、正極活物質用板状粒子15b2の厚さは、2〜100μm、より好ましくは5〜50μm、さらに好ましくは5〜20μmが望ましい。100μmより厚いと、レート特性が低下する点や、シート成形性の点から、好ましくない。2μmより薄いと、充填率を上げる効果が小さくなる点で、好ましくない。
正極活物質用板状粒子15b2のアスペクト比は、4〜20が望ましい。4より小さいと、配向によるリチウムイオン出入り面の拡大効果が小さくなる。20より大きいと、正極活物質用板状粒子15b2の板面が正極活物質層15bの面内方向と平行になるように正極活物質用板状粒子15b2が充填された場合、正極活物質層15bの厚み方向へのリチウムイオンの拡散経路が長くなることで、レート特性が低下するので、好ましくない。
<変形例の例示列挙>
なお、上述の実施形態や具体例は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の具現化の一例を単に示したものにすぎないのであって、本発明はもとより上述の実施形態や具体例によって何ら限定されるべきものではない。よって、上述の実施形態や具体例に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
以下、変形例について幾つか例示する。以下の変形例の説明において、上述の実施形態における各構成要素と同様の構成・機能を有する構成要素については、本変形例においても同一の名称及び同一の符号が付されているものとする。そして、当該構成要素の説明については、上述の実施形態における説明が、矛盾しない範囲で適宜援用され得るものとする。
もっとも、変形例とて、下記のものに限定されるものではないことは、いうまでもない。本発明を、上述の実施形態や下記変形例の記載に基づいて限定解釈することは、(特に先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。
また、上述の実施形態の構成、及び下記の各変形例に記載された構成の全部又は一部が、技術的に矛盾しない範囲において、適宜複合して適用され得ることも、いうまでもない。
本発明は、上述の実施形態にて具体的に開示された構成に何ら限定されない。
例えば、正極活物質層15b内にて、複数の大きさ・形状の正極活物質用粒子が適宜配合されてもよい。また、図5に示されているように、本発明の正極活物質用板状粒子15b2と、従来の等軸形状の粒子15b3とが、適当な混合比で配合されてもよい。等軸形状の従来の粒子15b3と、その粒径と同程度の厚みを有する本発明の正極活物質用板状粒子15b2とを、適当な混合比で混合することで、効率よく粒子が配列することができ、充填率が高められる。
本発明の正極活物質用板状粒子及び正極活物質膜は、層状岩塩構造を有する限り、コバルト酸リチウムに限定されない。例えば、本発明の正極活物質用板状粒子及び正極活物質膜は、コバルトの他にニッケルやマンガン等を含有した固溶体からなるものであってもよい。具体的には、ニッケル酸リチウム、マンガン酸リチウム、ニッケル・マンガン酸リチウム、ニッケル・コバルト酸リチウム、コバルト・ニッケル・マンガン酸リチウム、コバルト・マンガン酸リチウム等が挙げられる。これらの材料に、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Biなどの元素が1種以上含まれていてもよい。
Coの酸化物は、920℃以上では、室温におけるCoで表されるスピネル構造からCoOの岩塩構造に相変態する。一方、MnおよびNiは、広い温度範囲で、それぞれMnのスピネル構造、NiOの岩塩構造をとる。
このため、Co、Ni、Mnのうちの少なくとも2つを含む固容体においても、組成、温度、雰囲気、圧力などを制御することで、Coと同様に、低温でのスピネル構造から高温にて岩塩構造をとるような相変態を起こさせることができる。
この場合、(h00)配向した多数の板状のM(MはCo、Ni、Mnら選ばれる1種以上を含む)粒子からなる、独立した膜状のシートを形成し、かかるシートあるいはその解砕物に対してリチウムを導入することで、(104)や(101)等のリチウムイオンの出入りが良好に行われる結晶面が板面と平行となるように配向した正極活物質用LiMOシートあるいは板状粒子を得ることができる。
すなわち、例えば、Coを含まない、Ni−Mn複合酸化物についても、Co酸化物と同様に、高温で岩塩構造、低温でスピネル構造をとることから、配向シートが上述と同様に作製されうる。そして、かかるシートあるいはその解砕物にリチウムを導入することで、Li(Ni,Mn)Oで示され、良好な配向状態の正極活物質が作製され得る。
あるいは、岩塩構造である、(h00)配向した多数の板状のMO(MはCo、Ni、Mnら選ばれる1種以上を含む)粒子からなる、独立した膜状のシートを形成し、かかるシートあるいはその解砕物に対してリチウムを導入することで、(104)や(101)等のリチウムイオンの出入りが良好に行われる結晶面が板面と平行となるように配向した、正極活物質用LiMOシートあるいは板状粒子を得ることもできる。
あるいは、LiMO(MはCo、Ni、Mnら選ばれる1種以上を含む)の粒子からなる膜状のシートを焼成する際、組成、温度、雰囲気、圧力、添加剤などを制御することで、(104)や(101)等のリチウムイオン出入りが良好に行われる結晶面が板面と平行となるように配向した正極活物質用LiMOシートあるいは板状粒子を直接的に得ることができる。
なお、LiFePOに代表される、オリビン構造の正極活物質においては、リチウムイオンの伝導方向がb軸方向([010]方向)であるとされている。よって、ac面(例えば(010)面)が板面と平行となるように配向した板状粒子あるいは膜とすることで、良好な性能を有する正極活物質を得ることができる。
<他の組成例1:コバルト−ニッケル系>
NiO粉末と、Co粉末と、Al粉末と、を含有する、20μm以下の厚さのグリーンシートを形成し、このグリーンシートを1000℃ないし1400℃の範囲内の温度で、大気雰囲気で所定時間焼成することで、(h00)配向した多数の板状の(Ni,Co,Al)O粒子からなる、独立した膜状のシートが形成される。ここで、助剤としてMnO、ZnO等を添加することにより、粒成長が促進され、結果として板状結晶粒子の(h00)配向性を高めることができる。
上述の工程によって得られた、(h00)配向した(Ni,Co,Al)Oセラミックシートあるいは粒子と、硝酸リチウム(LiNO)とを混合して、所定時間加熱することで、当該シートあるいは粒子にリチウムが導入される。これにより、(104)配向した正極活物質用Li(Ni0.75Co0.2Al0.05)O板状粒子が得られる。
なお、上述の例においては、コバルト−ニッケル系におけるニッケルの一部がアルミニウムに置換されていたが、本発明はこれに限定されない。すなわち、本発明がLi(Ni,Co)Oに対しても好適に適用されることは、いうまでもない。
<他の組成例2:コバルト−ニッケル−マンガン三元系>
Li(Ni1/3Mn1/3Co1/3)O粉末を用いて100μm以下の厚さのグリーンシートを形成し、このグリーンシートを900℃ないし1200℃の範囲内の温度で所定時間焼成することで、(101)あるいは(104)が粒子板面と平行となるように配向した粒子からなる、独立した膜状のシートが形成される。
本プロセスで配向した粒子が得られる理由の詳細については明らかではないが、以下に推定する理由を説明する。このシート焼成の際に、結晶の歪エネルギーの最も低い結晶面をグリーンシートの面内に持つ粒子のみが選択的に面内方向へ扁平状(板状)に粒成長することで、アスペクト比が大きく、特定の結晶面(ここでは(101)、(104)面)が板面と平行となるように配向したLi(Ni1/3Mn1/3Co1/3)Oからなる板状結晶粒子が得られると考えられる。
なお、ここでいう、歪エネルギーとは、粒成長時の内部応力や、欠陥等による応力をいう。層状化合物は、一般に歪エネルギーが大きいことが知られている。
特定の方位の粒子の選択な粒成長(優先配向)には、歪エネルギーと表面エネルギーの両方が寄与する。表面エネルギー的には(003)面が最も安定であり、歪エネルギー的には(101)並びに(104)面が安定面である。
膜厚が0.1μm以下では、シート体積に対する表面の割合が大きいため、表面エネルギー支配的な選択成長が起こり、(003)面に配向した粒子が得られる。一方、膜厚が0.1μm以上では、シート体積に占める表面の割合が低下するため、歪エネルギーが支配的になり、(101)並びに(104)面に配向した粒子が得られる。但し、膜厚が100μm以上のシートでは、緻密化が困難になり、粒成長時の内部応力が溜まらないため、選択的な配向は確認されない。
本材料においては、粒成長が大きく促進される1000℃以上の温度域では、リチウムの揮発が生じたり、構造的に不安定になることによる分解が生じたりする。よって、例えば、揮発するリチウムを補償するために原料中のリチウム量を過剰にすることや、雰囲気制御(例えば炭酸リチウム等のリチウム化合物を載置した密閉容器内での焼成等)による分解抑制や、Biや低融点ガラスなどの助剤添加による低温焼成、等が重要である。
上述のシート形成工程によって得られた膜状のシートは、粒界部にて解砕しやすい状態となっている。そこで、上述のシート形成工程によって得られた膜状のシートを、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることで、上述のシートが多数のLi(Ni1/3Mn1/3Co1/3)O粒子に解砕される。
あるいは、Li(Ni1/3Mn1/3Co1/3)Oからなる板状結晶粒子は、以下の製造方法によっても得られる。
NiO粉末と、MnCO粉末と、Co粉末と、を含有する、20μm以下の厚さのグリーンシートを形成し、このグリーンシートを900℃ないし1300℃の範囲内の温度で、Ar雰囲気で所定時間焼成することで、(h00)配向した多数の板状の(Ni,Mn,Co)粒子からなる、独立した膜状のシートが形成される。なお、この焼成の際に、スピネル構造の(Ni,Mn,Co)は、還元されることで、岩塩構造の(Ni,Mn,Co)Oに相変態する。
このとき、表面エネルギーの最も低い結晶面をグリーンシートの面内に持つ粒子のみが選択的に面内方向へ扁平状(板状)に粒成長する。その結果、シート焼成により、アスペクト比が大きく、特定の結晶面(ここでは(h00)面)が粒子板面と平行となるように配向した(Ni,Mn,Co)Oからなる板状結晶粒子が得られる。
さらに、温度が下がる過程で、炉内の雰囲気を酸素雰囲気に置換すると、(Ni,Mn,Co)Oから(Ni,Mn,Co)に酸化される。その際に、(Ni,Mn,Co)Oの配向方位が引き継がれることで、特定の結晶面(ここでは(h00)面)が粒子板面方向に配向した(Ni,Mn,Co)板状結晶粒子が得られる。
かかる(Ni,Mn,Co)Oから(Ni,Mn,Co)への酸化の際に、配向度が低下しやすい。これは、(Ni,Mn,Co)Oと(Ni,Mn,Co)の結晶構造が大きく異なること、並びに、Ni−O,Mn−O,及びCo−Oの原子間距離が大きく異なることから、酸化(すなわち酸素原子が挿入される)時に結晶構造が乱れやすいためである。
したがって、配向度をなるべく低下しないように適宜条件を選択することが好ましい。例えば、降温速度を小さくすることや、所定の温度で保持することや、酸素分圧を小さくすることが好ましい。
上述のシート形成工程によって得られた膜状のシートは、粒界部にて解砕しやすい状態となっている。そこで、上述のシート形成工程によって得られた膜状のシートを、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることで、上述のシートが多数の(Ni,Mn,Co)粒子に解砕される。
上述の解砕工程によって得られた、(h00)配向した(Ni,Mn,Co)粒子と、LiCOとを混合して、所定時間加熱することで、(Ni,Mn,Co)粒子にリチウムが導入される。これにより、(104)配向したLi(Ni1/3Mn1/3Co1/3)O粒子である正極活物質用板状粒子15b2が得られる。
Li/Coは、1.0に限定されないが、0.9〜1.2の範囲内にあることが好ましく、1.0〜1.1の範囲内にあることがより好ましい。これにより、良好な充放電容量が実現される。
例えば、上述のように、実施例1において、LiCO粉末を添加する際にLi/Coが1.0より大(例えば1.2)となるようにしたり、あるいは、上述のコバルト−ニッケル系組成例において、(Ni,Co,Al)OセラミックスシートとLiNO粉末とを混合する際に、mol比率Li/(NiCoAl)を大きく(例えば2.0)したりすることで、リチウム過剰な組成の正極活物質粉末が得られる。
なお、リチウム過剰な組成の正極活物質粉末におけるLi/Coの値は、ICP(誘導結合プラズマ)発光分光分析装置(株式会社堀場製作所製 製品名ULTIMA2)を用いた成分分析によって確認可能である。
本発明は、上述の実施形態にて具体的に開示された製造方法に何ら限定されない。
例えば、グリーンシートの焼成温度は、900℃ないし1300℃の範囲内の温度であればよい。また、シート形成工程における添加物も、Biに限定されない。
さらに、上述の具体例におけるCo原料粒子に代えて、CoO原料粒子を用いることが可能である。この場合、スラリーを焼成することで、900℃以上の温度域において(h00)配向した岩塩構造のCoOシートが得られ、これを例えば800℃程度あるいはそれ以下で酸化することで、CoOにおける、Co原子とO原子の配列状態を部分的に継承した、(h00)配向したスピネル構造のCo粒子からなるシートが得られる。
リチウム導入工程において、(h00)配向したCo粒子とLiCOとを単に混合して所定時間加熱する代わりに、これらを塩化ナトリウム(融点800℃)や塩化カリウム(融点770℃)などのフラックス中で混合及び加熱してもよい。
その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の技術的範囲に含まれることは当然である。
また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。さらに、本明細書にて引用した先行出願や各公報の内容(明細書及び図面を含む)は、本明細書の一部を構成するものとして適宜援用され得る。

Claims (6)

  1. 層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子であって、
    気孔率が10%以下であり、
    (003)面が、粒子の厚さ方向と直交する表面である板面と交差するように配向し、
    前記板面が平滑であると仮定した場合にその平面形状及び厚さから規定される当該粒子の仮想的表面積(α)に対する、BET比表面積の測定値から求められる当該粒子の実測表面積(β)との比β/αが、3以上10以下であることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  2. 請求の範囲第1項に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
    (003)以外の面が、前記板面と平行に配向していることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  3. 請求の範囲第2項に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
    (104)面が、前記板面と平行に配向しており、
    X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、1以下となることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  4. 請求の範囲第2項又は第3項に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
    前記板面と平行となるように配向した(hkl)面とは異なる面である(h’k’l’)面が、複数の方向を向くことを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  5. 請求の範囲第1項ないし第4項のうちのいずれか1項に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
    厚さが2μm以上であることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  6. 請求の範囲第1項ないし第5項のうちのいずれか1項に記載の板状粒子を正極活物質として含む、正極と、
    炭素質材料又はリチウム吸蔵物質を負極活物質として含む、負極と、
    前記正極と前記負極との間に介在するように設けられた、電解質と、
    を備えたことを特徴とする、リチウム二次電池。
JP2010544201A 2008-12-24 2009-12-22 リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池 Expired - Fee Related JP4703785B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010544201A JP4703785B2 (ja) 2008-12-24 2009-12-22 リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2008326997 2008-12-24
JP2008326997 2008-12-24
JP2009064862 2009-03-17
JP2009064862 2009-03-17
JP2009138984 2009-06-10
JP2009138984 2009-06-10
JP2009191677 2009-08-21
JP2009191677 2009-08-21
JP2009235027 2009-10-09
JP2009235027 2009-10-09
PCT/JP2009/071833 WO2010074299A1 (ja) 2008-12-24 2009-12-22 リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池
JP2010544201A JP4703785B2 (ja) 2008-12-24 2009-12-22 リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池

Publications (2)

Publication Number Publication Date
JP4703785B2 JP4703785B2 (ja) 2011-06-15
JPWO2010074299A1 true JPWO2010074299A1 (ja) 2012-06-21

Family

ID=42266614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010544201A Expired - Fee Related JP4703785B2 (ja) 2008-12-24 2009-12-22 リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池

Country Status (5)

Country Link
US (1) US20100159333A1 (ja)
EP (1) EP2369661A1 (ja)
JP (1) JP4703785B2 (ja)
CN (1) CN102171865A (ja)
WO (1) WO2010074299A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549817B (zh) * 2009-09-11 2015-01-28 株式会社半导体能源研究所 电力储存设备及其制备方法
JP5631992B2 (ja) 2010-06-23 2014-11-26 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
JP5631993B2 (ja) 2010-06-23 2014-11-26 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
JP5917027B2 (ja) 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 電極用材料の作製方法
EP2642563A4 (en) * 2010-11-17 2014-05-14 Ngk Insulators Ltd POSITIVE ELECTRODE FOR LITHIUM MEDICATION BATTERIES
EP2642562A4 (en) * 2010-11-17 2014-05-21 Ngk Insulators Ltd POSITIVE ELECTRODE FOR LITHIUM MEDICATION BATTERIES
US9577261B2 (en) 2011-03-18 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Lithium ion secondary battery and method for manufacturing the same
KR102131859B1 (ko) * 2011-03-25 2020-07-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 2차 전지
JP6029898B2 (ja) 2011-09-09 2016-11-24 株式会社半導体エネルギー研究所 リチウム二次電池用正極の作製方法
US20140302397A1 (en) * 2011-12-16 2014-10-09 3M Innovative Properties Company Methods for Making Electrodes
PL2840630T3 (pl) * 2012-11-30 2020-11-16 Lg Chem, Ltd. Materiał aktywny anody do akumulatora litowego i akumulator litowy go zawierający
CN103618094B (zh) * 2013-12-02 2016-03-16 浙江大学 一种大容量锂硫液流电池及其电极的制备方法
WO2019078043A1 (ja) * 2017-10-17 2019-04-25 日本碍子株式会社 リチウム二次電池、及び電池内蔵デバイスの製造方法
JP2020087814A (ja) * 2018-11-29 2020-06-04 本田技研工業株式会社 正極活物質粒子
JP6605164B1 (ja) * 2018-12-27 2019-11-13 日本碍子株式会社 燃料電池のセルスタック
JP2022546264A (ja) * 2019-08-29 2022-11-04 ノボニクス バッテリー テクノロジー ソリューションズ インコーポレイテッド 改善されたミクロ粒状化法及びその製品粒子
US11866346B2 (en) * 2020-08-07 2024-01-09 Dowa Electronics Materials Co., Ltd. Composite oxide powder

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503930A (en) * 1994-03-07 1996-04-02 Tdk Corporation Layer structure oxide
US5683672A (en) * 1994-04-15 1997-11-04 Sony Corporation Non-aqueous liquid electrolyte secondary cell
US5498489A (en) * 1995-04-14 1996-03-12 Dasgupta; Sankar Rechargeable non-aqueous lithium battery having stacked electrochemical cells
JP2001052703A (ja) * 1999-08-10 2001-02-23 Nikko Materials Co Ltd リチウム二次電池用正極材料及びその製造方法
DE60140163D1 (de) * 2000-08-28 2009-11-26 Nissan Motor Wiederaufladbare Lithiumionenbatterie
JP4986098B2 (ja) * 2001-03-15 2012-07-25 日立金属株式会社 非水系リチウム二次電池用正極およびそれを用いた非水系リチウム二次電池
JP4392169B2 (ja) * 2001-05-15 2009-12-24 Fdk株式会社 非水電解質二次電池及びその正極材料の製造方法
JP3971911B2 (ja) * 2001-10-29 2007-09-05 松下電器産業株式会社 固体リチウム二次電池およびその製造方法
WO2003088382A1 (fr) * 2002-04-18 2003-10-23 Japan Storage Battery Co., Ltd. Pile secondaire non aqueuse
WO2004102700A1 (ja) * 2003-05-15 2004-11-25 Yuasa Corporation 非水電解質電池
US7556889B2 (en) * 2003-05-26 2009-07-07 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP4100341B2 (ja) * 2003-12-26 2008-06-11 新神戸電機株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP4439456B2 (ja) * 2005-03-24 2010-03-24 株式会社東芝 電池パック及び自動車
CN100342568C (zh) * 2005-09-15 2007-10-10 河北工业大学 含锂锰复合氧化物的正极多元活性材料的制备方法
JP2007179917A (ja) * 2005-12-28 2007-07-12 Hitachi Ltd リチウム二次電池用正極活物質及びこれを用いたリチウム二次電池
JP2007283184A (ja) 2006-04-14 2007-11-01 Tokyo Univ Of Agriculture & Technology 水素分離薄膜及びその製造方法。
CN101548416B (zh) * 2007-03-30 2012-07-18 松下电器产业株式会社 非水电解质二次电池用活性物质及其制造方法
JP5195049B2 (ja) * 2008-06-06 2013-05-08 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法

Also Published As

Publication number Publication date
WO2010074299A9 (ja) 2010-08-05
CN102171865A (zh) 2011-08-31
JP4703785B2 (ja) 2011-06-15
WO2010074299A1 (ja) 2010-07-01
US20100159333A1 (en) 2010-06-24
EP2369661A1 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4703785B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池
JP5542694B2 (ja) リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
JP5043203B2 (ja) リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
JP4703786B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
JP4755727B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
JP4745463B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
JP4745464B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
JP5457947B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
US20130045424A1 (en) Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery
JPWO2009139397A1 (ja) 板状結晶粒子及びその製造方法、並びにリチウム二次電池
WO2014038394A1 (ja) リチウム二次電池用正極活物質
WO2011158575A1 (ja) リチウム二次電池の正極活物質の製造方法
WO2011162251A1 (ja) リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
JP2010219068A (ja) リチウム二次電池の正極活物質用の板状粒子の製造方法
JP2012003880A (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
WO2012029803A1 (ja) リチウム二次電池の正極活物質

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees