WO2011162251A1 - リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池 - Google Patents
リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池 Download PDFInfo
- Publication number
- WO2011162251A1 WO2011162251A1 PCT/JP2011/064153 JP2011064153W WO2011162251A1 WO 2011162251 A1 WO2011162251 A1 WO 2011162251A1 JP 2011064153 W JP2011064153 W JP 2011064153W WO 2011162251 A1 WO2011162251 A1 WO 2011162251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- secondary battery
- positive electrode
- lithium secondary
- particles
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
- C01P2004/22—Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to a plate-like particle for a positive electrode active material of a lithium secondary battery, a positive electrode of a lithium secondary battery, and a lithium secondary battery.
- a positive electrode active material in a lithium secondary battery (sometimes called a lithium ion secondary battery)
- a material using plate-like particles of a lithium composite oxide (lithium transition metal oxide) having a layered rock salt structure Widely known (see, for example, JP-A-5-226004).
- the charge / discharge characteristics are improved by exposing a large number of lithium ion entrance / exit surfaces (eg, [104] surface) to the plate surface.
- a large number of lithium ion entrance / exit surfaces eg, [104] surface
- the size of the plate-like particles for example, the thickness is 5 ⁇ m or more and less than 30 ⁇ m
- the active material filling rate in the positive electrode is increased, and the capacity can be increased.
- intergranular cracks and interfacial delamination are considered to be caused by the expansion and contraction of the crystal lattice (including the expansion and contraction of the volume and the lattice expansion and contraction that does not change the volume) accompanying the entry and exit of lithium ions in the charge / discharge cycle. . Then, due to the occurrence of these grain boundary cracks and interface peeling, the conductive path is cut off and an electrically isolated portion (a portion that cannot contribute to the capacitance) is generated in the positive electrode active material layer. The decrease is considered to be a cause of deterioration of cycle characteristics.
- an object of the present invention is to provide a lithium secondary battery, a positive electrode thereof, and a plate-like particle for an active material contained in the positive electrode, which can achieve high capacity while maintaining good charge / discharge characteristics. It is in.
- the plate-like particles for the positive electrode active material of the lithium secondary battery of the present invention have a layered rock salt structure.
- a positive electrode (hereinafter simply referred to as “positive electrode”) of the lithium secondary battery of the present invention includes a positive electrode active material layer containing the plate-like particles. Specifically, the positive electrode active material layer is formed by dispersing the plate-like particles and a conductive additive in a binder.
- the lithium secondary battery of the present invention includes the positive electrode, a negative electrode containing a carbonaceous material or a lithium storage material as a negative electrode active material, and an electrolyte provided so as to be interposed between the positive electrode and the negative electrode. ing.
- the “layered rock salt structure” in the plate-like particles for the positive electrode active material of the lithium secondary battery of the present invention means that lithium layers and transition metal layers other than lithium are alternately stacked with oxygen layers in between.
- Crystal structure that is, a crystal structure in which transition metal ion layers and lithium single layers are alternately laminated via oxide ions (typically ⁇ -NaFeO 2 type structure: [111] axial direction of cubic rock salt type structure In which a transition metal and lithium are regularly arranged).
- the plate-like particles are typically made of a lithium composite oxide.
- “Lithium composite oxide” means Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal: typically, M is one or more of Co, Ni, and Mn. It is an oxide represented by.
- the feature of the present invention is that the plate-like particles have a thickness of 5 ⁇ m or more and less than 30 ⁇ m, a peak intensity ratio [003] / [104] of 2 or less, and an average pore diameter of 0.1 to 5 ⁇ m. And the porosity is 3% or more and less than 15%.
- the peak intensity ratio [003] / [104] is the ratio of the diffraction intensity by the (003) plane to the diffraction intensity by the (104) plane in X-ray diffraction.
- the plate-like particles are typically Thickness t,
- the minimum dimension in the plate surface direction (direction perpendicular to the thickness direction) is w, If It may be formed so that w / t is 3 or more.
- the “thickness direction” is a direction that defines the thickness t of the plate-like particles, and is typically vertical in a state where the plate-like particles are stably placed on a horizontal plane. A direction parallel to the direction. The dimension of the plate-like particle in the “thickness direction” is referred to as “thickness”.
- the “plate surface” refers to a surface substantially orthogonal to the “thickness direction” of the plate-like particles. Since this “plate surface” is the widest surface of the plate-like particle, it may be referred to as “principal surface”.
- the “plate surface direction” refers to a direction parallel to the “plate surface” (that is, an in-plane direction). Therefore, the “thickness” of the plate-like particle is the shortest distance between two “plate surfaces” that are substantially parallel.
- the above-mentioned “thickness direction” is a direction that defines the shortest distance between the two “plate surfaces”.
- the thickness t can be obtained, for example, by measuring the distance between the plate surfaces that are observed substantially in parallel when the cross section of the plate-like particle is observed with an SEM (scanning electron microscope). Further, the minimum dimension w in the plate surface direction is obtained, for example, by measuring the diameter when an inscribed circle of the outer shape is drawn when the outer shape of the plate-like particle in plan view is observed by SEM. It is done.
- Average pore diameter is the average value of the diameters of the pores in the plate-like particles.
- the “diameter” is typically a diameter of the sphere when the pore is assumed to be a sphere having the same volume or the same cross-sectional area.
- the “average value” is preferably calculated on the basis of the number.
- Such an average pore diameter can be obtained by a known method such as image processing of a cross-sectional SEM (scanning electron microscope) photograph or a mercury intrusion method.
- “Voidage” is the volume ratio of pores (including open pores and closed pores) in the plate-like particles of the present invention. “Porosity” is sometimes referred to as “porosity”. This “porosity” is calculated from, for example, the bulk density and the true density.
- the size of the primary particles is preferably 5 ⁇ m or less.
- the thickness of the plate-like particles is 5 ⁇ m or more and less than 30 ⁇ m, and the peak intensity ratio [003] / [104] is 2 or less (preferably 2 or less, more preferably 1.2 or less, still more preferably 0.6 And the like, the active material filling rate in the positive electrode active material layer is increased, and the exposure of the lithium ion entrance / exit surface (for example, the [104] surface) on the plate surface of the plate-like particle is increased. As a result, the capacity can be increased and the charge / discharge characteristics can be improved. Furthermore, when the above-mentioned average pore diameter and porosity and the peak intensity ratio [003] / [104] are 2 or less, cycle characteristics are improved. The reason is considered as follows.
- the expansion and contraction (volume expansion / contraction) of the crystal lattice accompanying the charge / discharge cycle is greatest in the direction perpendicular to the (003) plane (that is, [003] direction). For this reason, the grain boundary crack caused by the expansion and contraction of the crystal lattice accompanying the charge / discharge cycle tends to be parallel to the (003) plane.
- the (003) plane is a close-packed plane of oxygen and is a chemically and electrochemically inert plane from which lithium ions and electrons cannot enter and exit.
- the peak intensity ratio [003] / [104] is 2 or less means that the (003) plane appears on the plate surface of the plate-like particle, the plate It means that the ratio of the appearance of the (003) plane parallel to the plate surface inside the particle is reduced.
- the plate-like particles include pores of a predetermined size in a predetermined ratio, so that the stress generated by the expansion and contraction of the crystal lattice associated with the entry and exit of lithium ions in the charge / discharge cycle is good due to the pores ( Uniformly). For this reason, generation
- the primary particle size is reduced (specifically, 5 ⁇ m or less)
- the number of grain boundaries increases.
- the greater the number of grain boundaries the better the internal stress generated during the expansion and contraction of the crystal lattice accompanying the charge / discharge cycle is dispersed better.
- the grain boundary cracks the larger the number of grain boundaries, the better the crack extension is suppressed. Therefore, in this case, the cycle characteristics are further improved.
- the average pore diameter exceeds 5 ⁇ m, relatively large pores are generated. Such large pores are usually distorted rather than clean spherical. For this reason, stress concentration is likely to occur locally in such large pores. Therefore, it becomes difficult to obtain the effect of releasing stress uniformly inside.
- the average pore diameter is less than 0.1 ⁇ m or the porosity is less than 3%, the stress release effect by the pores is insufficient. Therefore, in any case, the occurrence of grain boundary cracks is not satisfactorily suppressed. Furthermore, in any case, it is difficult to obtain the effect of increasing the bonding strength at the bonding interface with the binder, and the occurrence of the above-described interface peeling is not suppressed well.
- lithium cobaltate expands in volume during charging (when lithium ions are released), whereas lithium nickelate expands in volume during discharge (when lithium ions enter).
- the length of the grating changes. Specifically, Li (Co 0.5 Ni 0.5 ) O 2 extends in the c-axis direction but contracts in the a-axis direction.
- M
- One or more elements such as Te, Ba, Bi and the like may be included.
- the volume expansion and contraction is large composition, for example, Li p (Co x, Ni y, Mn z) in O 2, and when the molar ratio of nickel than 0.75, the molar ratio of cobalt is over 0.9 If, Li p (Co x, Ni y, Al z) with respect to the molar ratio of nickel in the O 2 is 0.7 or more, application of the present invention is particularly effective.
- FIG. 3 is an enlarged perspective view of a plate-like particle for positive electrode active material shown in FIG. 2.
- FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a lithium secondary battery 10 to which an embodiment of the present invention is applied.
- the lithium secondary battery 10 of this embodiment includes a battery case 11, a separator 12, an electrolyte 13, a negative electrode 14, and a positive electrode 15.
- the separator 12 is provided so as to bisect the inside of the battery case 11 into the negative electrode 14 side and the positive electrode 15 side. That is, the negative electrode 14 and the positive electrode 15 are provided in the battery case 11 so as to face each other with the separator 12 therebetween.
- An electrolyte 13 is accommodated in the battery case 11.
- a liquid electrolyte can be suitably used from the viewpoint of electrical characteristics and ease of handling.
- a non-aqueous solvent type prepared by dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent such as an organic solvent is preferably used.
- polymer electrolytes, gel electrolytes, organic solid electrolytes, and inorganic solid electrolytes can also be used as the electrolyte 13 without problems.
- the non-aqueous solvent is not particularly limited.
- chain esters such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propion carbonate; high dielectric constants such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate
- a cyclic ester a mixed solvent of a chain ester and a cyclic ester can be used, and a mixed solvent with a cyclic ester having a chain ester as a main solvent is particularly suitable.
- electrolyte salt to be dissolved in the nonaqueous solvent described above, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (RfSO 2 ) (Rf′SO 2 ), LiC (RfSO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 [where Rf And Rf ′ are fluoroalkyl groups], and the like.
- this electrolyte salt only 1 type may be used independently and 2 or more types may be used together.
- fluorine-containing organic lithium salts having 2 or more carbon atoms are particularly preferable. This is because this fluorine-containing organolithium salt has a large anionic property and is easily ion-separated, so that it is easily dissolved in the above-mentioned solvent.
- the concentration of the electrolyte salt in the electrolyte 13 as the nonaqueous electrolytic solution is not particularly limited, but is, for example, 0.3 mol / l or more, more preferably 0.4 mol / l or more, and 1.7 mol / l or less. More preferably, it is preferably 1.5 mol / l or less.
- the negative electrode active material according to the negative electrode 14 may be any material that can occlude and release lithium ions.
- carbonaceous materials graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, etc.
- a part of graphite can be replaced with a metal, oxide, or the like that can be alloyed with lithium.
- metallic lithium, alloys containing metallic lithium and other elements silicon, tin, indium, etc.
- oxides of silicon, tin, etc. that can be charged and discharged at a low potential close to lithium, Li 2.6 Co 0.4
- a lithium storage material such as a nitride of lithium and cobalt such as N can also be used as the negative electrode active material.
- the voltage at full charge can be regarded as about 0.1 V on the basis of lithium.
- the electric potential of the positive electrode 15 can be calculated for convenience with a voltage obtained by adding 0.1 V to the battery voltage. Therefore, in this case, the charging potential of the positive electrode 15 is easy to control, which is preferable.
- FIG. 2 is an enlarged cross-sectional view of the positive electrode 15 shown in FIG.
- the positive electrode 15 includes a positive electrode current collector 15a and a positive electrode active material layer 15b.
- the positive electrode active material layer 15b is obtained by dispersing positive electrode active material plate-like particles 15b2 and a conductive additive such as carbon in a binder 15b1, and is bonded to the positive electrode current collector 15a.
- the positive electrode active material plate-like particle 15b2 according to the present invention is a lithium composite oxide sintered plate having a thickness of 5 ⁇ m or more and less than 30 ⁇ m, an average pore diameter of 0.1 to 5 ⁇ m, and a porosity of 3%. It is formed to be less than 15%.
- FIG. 3 is an enlarged perspective view of the plate-like particle 15b2 for positive electrode active material shown in FIG.
- the plate-like particles 15b2 for the positive electrode active material have a surface (for example, (101) surface) other than (003) on a plate surface that is a surface orthogonal to the thickness direction (vertical direction in the drawing).
- a surface for example, (101) surface
- Upper surface A and lower surface B: “upper surface A” and “lower surface B” are hereinafter referred to as “plate surface A” and “plate surface B”, respectively. "). That is, the plate-like particles 15b2 for the positive electrode active material are formed so that surfaces other than (003) (for example, (104) surface) are parallel to the plate surfaces A and B of the particles.
- the positive electrode active material plate-like particle 15b2 has a peak intensity ratio [003], which is a ratio of the diffraction intensity by the (003) plane to the diffraction intensity by the (104) plane in X-ray diffraction. / [104] is formed to be 2 or less. It should be noted that the (003) plane (surface painted in black in the drawing) may be exposed at the end surface C that intersects the plate surface direction (in-plane direction) of the particles.
- the positive electrode active material plate-like particles 15b2 having the above-described configuration are easily and reliably formed by the following manufacturing method, for example.
- raw material particles particles of a transition metal (Co, Ni, Mn, etc.) compound not containing a lithium compound are used.
- the raw material particles can be appropriately pulverized and classified.
- multiple types of raw material particles may be mixed as appropriate.
- low melting point oxides such as boron oxide, bismuth oxide and antimony oxide, low melting point chlorides such as sodium chloride and potassium chloride, and low melting point glasses such as borosilicate glass are 0 0.001 to 30 wt% can be added.
- the pore forming material which is an additive for forming the above-mentioned desired size and proportion of pores, can be mixed uniformly as appropriate.
- the pore forming material particles or fibers of a substance that is decomposed (evaporated or carbonized) in the subsequent pre-baking step can be preferably used.
- particles or fibers of an organic synthetic resin such as theobromine, nylon, graphite, phenol resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, or foamable resin are suitably used as the pore forming material.
- an organic synthetic resin such as theobromine, nylon, graphite, phenol resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, or foamable resin are suitably used as the pore forming material.
- an “independent” sheet-like molded body By forming the raw material particles or a mixture thereof into a sheet, an “independent” sheet-like molded body can be obtained.
- the “independent” sheet (sometimes referred to as “self-supporting film”) refers to a sheet that can be handled independently from another support (a thin piece having an aspect ratio of 5 or more). Also included). That is, the “independent” sheet does not include a sheet fixed to another support (substrate or the like) and integrated with the support (unseparable or difficult to separate).
- Sheet forming can be performed by various known methods. That is, for example, a doctor blade type sheet forming machine (doctor blade method), a drum dryer, a disk dryer, a screen printer, or the like can be used for sheet forming.
- the thickness of the sheet-like molded body is appropriately set so that the desired thickness is obtained after firing.
- Preliminary firing step of the molded body The sheet-like molded body obtained by the above-described molding step is fired at a relatively low temperature (for example, 700 to 1200 ° C.) prior to the lithium introduction step described later. As a result, a porous sheet-like intermediate fired body containing a large number of relatively large pores is obtained.
- the temporary firing step is performed in an air atmosphere in a state where the molded body is placed on a zirconia setter that has been embossed.
- Lithium introduction process Lithium is introduced into the intermediate fired body by heat-treating the intermediate fired body obtained by the above-described preliminary firing process with a lithium compound. As a result, an “independent” sheet-like lithium composite oxide sintered plate for a positive electrode active material layer is obtained. Such a lithium introducing step is performed, for example, in a crucible.
- lithium compound examples include lithium salts such as lithium carbonate, lithium nitrate, lithium peroxide, lithium hydroxide, lithium acetate, lithium chloride, lithium oxalate, lithium citrate, lithium methoxide, lithium ethoxide, Lithium alkoxides such as can be used.
- the lithium compound is added so that the molar ratio Li / M between lithium and M in the sintered body plate represented by the general formula Li x MO 2 is 1 or more.
- Crushing step Prior to or after the above-described lithium introduction step, the above-described sheet is crushed into a large number of plate-like particles. This crushing process is performed by, for example, placing the above-described sheet on a mesh having a predetermined opening diameter and pressing the sheet from above with a spatula.
- the produced positive electrode, negative electrode made of a lithium metal plate, stainless steel current collector plate, and separator are arranged in the order of current collector plate-positive electrode-separator-negative electrode-current collector plate, and the coin cell is filled with the electrolyte.
- the electrolytic solution was prepared by dissolving LiPF 6 in an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at an equal volume ratio to a concentration of 1 mol / L.
- Cycle characteristics were evaluated using the battery (coin cell) produced as described above.
- the test temperature was set to 20 ° C., and (1) 1C rate constant current-constant voltage charging to 4.2V and (2) 1C rate constant current discharging to 3.0V were repeated. Cycle charge / discharge was performed. The capacity retention rate (%) was obtained by multiplying the value obtained by dividing the discharge capacity of the battery after the end of the cycle charge / discharge by the initial value by 100.
- binder polyvinyl butyral: product number “BM-2”, manufactured by Sekisui Chemical Co., Ltd.
- plasticizer DOP: Di (2-ethylhexyl) phthalate, black
- Temporary calcination A sheet-like molded body peeled off from the PET film is rolled, placed in an alumina sheath (size 150 mm square, height 10 mm), and placed at a predetermined temperature (intermediate calcination body firing) in an air atmosphere. Temperature) for 5 hours, the temperature was lowered to room temperature at a cooling rate of 200 ° C./h, and the portion not welded to the sheath was taken out to obtain a flake-like fired body.
- Li 2 CO 3 powder manufactured by Kanto Chemical Co., Inc.
- a LiCoO 2 plate-like particle plate-like particle 15b2 for positive electrode active material having a thickness of 20 ⁇ m was obtained.
- a slurry was prepared in the same manner as in Experimental Example 1-1 described above except that the pore forming material was added.
- the pore forming material a fibrous material (product name “Ceresh PC10S”: manufactured by Daicel Finechem Co., Ltd.) or a spherical material (nylon powder: manufactured by Sumitomo Enviro Science Co., Ltd.) was used.
- the slurry thus prepared was formed into a sheet on a PET film in the same manner as in Experimental Example 1-1.
- the sheet-like molded body peeled off from the PET film is rolled, placed in an alumina sheath (size 150 mm square, height 10 mm), and fired at 900 ° C. (intermediate fired body firing temperature) for 10 hours in an air atmosphere.
- the temperature was decreased at a temperature decrease rate of 200 ° C./h, and the portion not welded to the sheath was taken out and crushed.
- LiCoO 2 plate-like particles having a thickness of 20 ⁇ m (positive electrode active material plate) were obtained by introducing lithium into the Co 3 O 4 ceramic powder thus obtained in the same manner as in Experimental Example 1-1. A powder of the particles 15b2) was obtained.
- the LiCoO 2 powder obtained by heat treatment at 800 ° C. for 24 hours in an air atmosphere is pulverized and averaged
- the particle size was 5.0 ⁇ m.
- a sheet was formed in the same manner as in Experimental Examples 1-1, 1-2, and 1-6 to 1-8, fired at 900 ° C. for 10 hours in an air atmosphere, and then cooled down to 200 ° C./h. Then, the temperature was lowered and the portion not welded to the sheath was taken out and crushed to obtain powdered LiCoO 2 particles.
- the evaluation results of the experimental examples shown in Table 1 are shown in Table 2.
- the “capacity maintenance ratio” in Table 2 is a value after 50 cycles of charge / discharge.
- boiling treatment was performed in water in order to sufficiently expel the air present in the pores.
- the pores were impregnated with water in advance using a vacuum impregnation device (device name “Sitback” manufactured by Struers) and then boiled.
- the “average pore diameter” is measured by a mercury intrusion method (mercury intrusion type pore distribution measuring device: device name “Autopore IV9510” manufactured by Shimadzu Corporation).
- the porosity is not increased as shown in Experimental Example 1-9, even if an attempt is made to simply introduce voids without the formation of an intermediate fired body and the introduction of lithium for this, and without the addition of a pore-forming material. Since it becomes too large, there is a problem in terms of capacity increase (appearance of the cycle characteristics seems to be good, but the capacity of the positive electrode active material is too low and the initial capacity is too low, so the capacity maintenance ratio is reduced. It is considered that the capacity retention rate is high even though the average pore diameter is larger than the above predetermined range.
- the peak intensity ratio [[003] / [104] which is the ratio of the diffraction intensity (peak intensity) by the (003) plane to the diffraction intensity by the (104) plane in X-ray diffraction, was evaluated.
- XRD X-ray diffraction
- a ceramic plate for a positive electrode active material layer processed to a size of about ⁇ 5 to 10 mm was placed on a sample folder for XRD measurement.
- an XRD apparatus product name “RINT-TTRIII” manufactured by Rigaku Corporation
- the XRD profile when the surface of the ceramic plate for the positive electrode active material layer is irradiated with X-rays is measured, and the diffraction intensity by the (104) plane
- the ratio [003] / [104] of the diffraction intensity (peak height) by the (003) plane to (peak height) was determined.
- a diffraction profile is obtained by a crystal plane that is parallel to the crystal plane of the plate surface, that is, a crystal plane that is oriented in the plate surface direction.
- Experimental Examples 1-10 to 1-14 having different degrees of orientation were prepared with the porosity and pore diameter being constant.
- the same porosity and pore size as in Experimental Example 1-4 (porosity of 8%) were obtained by making the raw material particle size and intermediate fired body firing temperature the same as in Experimental Example 1-4.
- the average pore size was set to 5 ⁇ m), and the conditions in the lithium introduction step (type and addition amount of lithium compound and treatment temperature: see Table 3) were appropriately changed to form different degrees of orientation. is there.
- the evaluation results are shown in Table 4.
- the positive electrode active material plate-like particle 15b2 of the present embodiment has a structure in which a large number of primary particles (crystal particles) are bonded. Therefore, in order to evaluate the influence of the primary particle diameter, Experimental Examples 1-15 to 1-19 having different primary particle diameters with the porosity and the pore diameter being constant were prepared. In Experimental Examples 1-15 to 1-19, the conditions in the lithium introduction step (types of lithium compounds and The primary particle diameter is changed by appropriately changing the addition amount and the processing temperature (see Table 5).
- the primary particle size was measured as follows: electron microscope observation of a cross section parallel to the plate surface of the ceramic plate for the positive electrode active material layer by processing a thin piece to a thickness of about 80 nm by FIB (focused ion beam) A sample was created. Using a transmission electron microscope, the magnification at which 10 or more primary particles were in the field of view was selected, and a bright field image of the sample was taken. For the 10 primary particles in the obtained bright-field image, the diameters when inscribed circles were drawn in the grains were determined, and the average value of these was taken as the primary particle diameter.
- the evaluation results of Experimental Examples 1-15 to 1-19 are shown in Table 6.
- Slurry preparation NiO powder (particle size 1-10 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.) 75.1 parts by weight, Co 3 O 4 powder (particle size 1-5 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.) 21 0.5 parts by weight and 3.4 parts by weight of Al 2 O 3 powder (particle size: 1-10 ⁇ m, Showa Denko KK) are mixed and pulverized, and heat-treated at 1000 ° C. for 5 hours in an air atmosphere. (Ni 0.75 , Co 0.2 , Al 0.05 ) O powder was synthesized.
- Temporary calcination A sheet-like molded body peeled off from the PET film is rolled, placed in an alumina sheath (size 150 mm square, height 10 mm), and placed at a predetermined temperature (intermediate calcination body firing) in an air atmosphere. Temperature) for 3 hours, the temperature was lowered to room temperature at a temperature lowering rate of 200 ° C./h, and the portion not welded to the sheath was taken out.
- Li 2 CO 3 powder manufactured by Kanto Chemical Co., Inc.
- Li 2 CO 3 powder manufactured by Kanto Chemical Co., Inc.
- Li / Co. 1.1
- the mixture was heat-treated in an oxygen atmosphere (0.1 MPa) at 825 ° C. for 24 hours to obtain Li 1.0 (Ni 0.75 Co 0.2 Al with a thickness of 20 ⁇ m).
- a powder of O 2 plate-like particles (plate-like particles for positive electrode active material 15b2) was obtained.
- the creation conditions in Experimental Examples 2-3 to 2-6 in Table 7 are the same as in Experimental Example 2-1 described above except that the above-described hole forming material was added.
- the creation conditions in Experimental Example 2-10 in Table 7 are as follows.
- NiO powder particles (particle size 1-10 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.), Co 3 O 4 so as to have a composition ratio of Li 1.50 (Ni 0.75 Co 0.2 Al 0.05 ) O 2.
- Powder particle size 1-5 ⁇ m, manufactured by Shodo Chemical Co., Ltd.), Al 2 O 3 .H 2 O (particle size 1-3 ⁇ m, manufactured by SASOL), and Li 2 CO 3 powder (particle size 10-50 ⁇ m, Li 1.0 (Ni 0.75 Co 0.2 Al 0.05 ) O by mixing in Kanto Chemical Co., Ltd. and heat-treating in an oxygen atmosphere (0.1 MPa) at 825 ° C. for 24 hours. 2.
- the temperature is lowered at / h, and the portion not welded to the sheath is taken out and pulverized, so that a Li 1.0 (Ni 0.75 Co 0.2 Al 0.05 ) O 2 plate-like particle having a thickness of 20 ⁇ m ( A powder of plate-like particles 15b2) for positive electrode active material was obtained.
- the results of evaluating the influence of the peak intensity ratio [003] / [104] and the primary particle diameter are shown in Tables 9 to 12, similarly to the above-described LiCoO 2 .
- the evaluation results of the experimental examples shown in Tables 9 to 12 the same results as the above-described LiCoO 2 were obtained for the nickel-based composition.
- the present invention is not limited to the configuration specifically disclosed in the above embodiment.
- the positive electrode current collector 15a in the positive electrode 15 can be omitted.
- the present invention is not limited to the specific manufacturing method described above. That is, for example, the plate-like particles for positive electrode active material of the present invention can be easily and reliably formed by the following production method.
- raw material particles particles obtained by appropriately mixing particles of compounds such as Li, Co, Ni, and Mn are used so that the composition after synthesis is a positive electrode active material LiMO 2 having a layered rock salt structure.
- raw material particles having a composition of LiMO 2 can be used.
- the above-mentioned hole forming material is added to the raw material particles.
- an excess of lithium compound may be added by about 0.5 to 30 mol%.
- 0.001 to 30 wt% of a low melting point oxide such as bismuth oxide or a low melting point glass such as borosilicate glass may be added.
- Heat treatment (firing) step of the formed body The sheet-like formed body obtained by the above-described forming step is heat-treated at a relatively high temperature (for example, 1200 ° C. to 1500 ° C.) for the purpose of growing crystals while forming pores. By firing, an “independent” sheet-like lithium composite oxide sintered body plate for a positive electrode active material layer is obtained.
- This heat treatment step can be performed, for example, in an oxygen atmosphere in a state where the molded body is placed on a zirconia setter that has been embossed.
- stage process Unlike the above-described embodiment that uses a two-step heat treatment process of forming an intermediate fired body (preliminary firing) and introducing lithium, the manufacturing method of this modification is performed using a one-step heat treatment process. This is referred to as “stage process”.
- the molar ratio Li / M (Li / Co or Li / (Co, Ni, Mn)) between lithium and M in the sintered body plate represented by the general formula Li x MO 2 is not limited to 1.0, It is preferably in the range of 0.9 to 1.2, and more preferably in the range of 1.0 to 1.1. Thereby, a favorable charge / discharge capacity is realized.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本発明の目的は、良好な充放電特性を維持しつつ、高容量化を図ることができる、リチウム二次電池及びその正極並びにこの正極に含まれる活物質用板状粒子を提供することである。本発明のリチウム二次電池の正極活物質用の板状粒子は、層状岩塩構造を有していて、その厚さが5μm以上且つ30μm未満であり、ピーク強度比[003]/[104]が2以下であり、平均気孔径が0.1~5μmであり、空隙率が3%以上であり且つ15%未満である。
Description
本発明は、リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池に関する。
リチウム二次電池(リチウムイオン二次電池と称されることもある)における正極活物質として、層状岩塩構造を有するリチウム複合酸化物(リチウム遷移金属酸化物)の板状粒子を用いたものが、広く知られている(例えば、特開平5-226004号公報等参照。)。
この種の板状粒子においては、リチウムイオンの出入り面(例えば[104]面)が板面に多く露出することで、充放電特性が向上する。また、かかる板状粒子を大型化(例えば厚さを5μm以上且つ30μm未満に)することで、正極における活物質充填率が高くなり、高容量化を図ることが可能になる。
しかしながら、この種のリチウム二次電池において、充放電サイクルに伴う容量低下(サイクル特性悪化)が生じることがあった。そこで、この原因を究明するために、サイクル特性が悪化した実験例における正極を電子顕微鏡によって観察したところ、板状粒子における粒界にクラックが発生していた(これを、以下「粒界クラック」と称する。)。また、カーボン等の導電助剤を含むバインダーと、このバインダー中に分散されている板状粒子と、の間に、剥離が発生していた(これを、以下「界面剥離」と称する。)。
これらの粒界クラックや界面剥離は、充放電サイクルにおけるリチウムイオンの出入りに伴う、結晶格子の伸縮(体積の膨張収縮及び体積変化を伴わない格子伸縮を含む)によって発生するものであると考えられる。そして、これらの粒界クラックや界面剥離の発生によって、正極活物質層内に、導電経路が断たれて電気的に孤立した部分(容量に寄与し得ない部分)が発生することで、容量が低下することが、サイクル特性悪化の原因であると考えられる。
本発明は、かかる課題に対処するためになされたものである。すなわち、本発明の目的は、良好な充放電特性を維持しつつ、高容量化を図ることができる、リチウム二次電池及びその正極並びにこの正極に含まれる活物質用板状粒子を提供することにある。
<構成>
本発明のリチウム二次電池の正極活物質用の板状粒子(以下、単に「板状粒子」と称することがある。)は、層状岩塩構造を有している。本発明のリチウム二次電池の正極(以下、単に「正極」と称する。)は、前記板状粒子を含む正極活物質層を備えている。具体的には、前記正極活物質層は、バインダー中に前記板状粒子と導電助剤とを分散させることによって形成されている。本発明のリチウム二次電池は、前記正極と、炭素質材料又はリチウム吸蔵物質を負極活物質として含む負極と、前記正極と前記負極との間に介在するように設けられた電解質と、を備えている。
本発明のリチウム二次電池の正極活物質用の板状粒子(以下、単に「板状粒子」と称することがある。)は、層状岩塩構造を有している。本発明のリチウム二次電池の正極(以下、単に「正極」と称する。)は、前記板状粒子を含む正極活物質層を備えている。具体的には、前記正極活物質層は、バインダー中に前記板状粒子と導電助剤とを分散させることによって形成されている。本発明のリチウム二次電池は、前記正極と、炭素質材料又はリチウム吸蔵物質を負極活物質として含む負極と、前記正極と前記負極との間に介在するように設けられた電解質と、を備えている。
ここで、本発明のリチウム二次電池の正極活物質用の板状粒子における「層状岩塩構造」とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO2型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。前記板状粒子は、典型的には、リチウム複合酸化物からなる。「リチウム複合酸化物」とは、LixMO2(0.05<x<1.10、Mは少なくとも1種類の遷移金属:典型的にはMはCo,Ni,Mnのうちの1種以上を含む。)で表される酸化物である。
本発明の特徴は、前記板状粒子が、その厚さが5μm以上且つ30μm未満であり、ピーク強度比[003]/[104]が2以下であり、平均気孔径が0.1~5μmであり、空隙率が3%以上であり且つ15%未満であることにある。ここで、ピーク強度比[003]/[104]は、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率である。
また、前記板状粒子は、典型的には、
厚さをt、
板面方向(厚さ方向と直交する方向)における最小寸法をw、
とした場合に、
w/tが3以上となるように形成され得る。
厚さをt、
板面方向(厚さ方向と直交する方向)における最小寸法をw、
とした場合に、
w/tが3以上となるように形成され得る。
ここで、「厚さ方向」とは、前記板状粒子の厚さtを規定する方向であって、典型的には、当該板状粒子を水平面上に安定的に載置した状態における、鉛直方向と平行な方向をいう。そして、かかる「厚さ方向」における当該板状粒子の寸法が、「厚さ」と称される。
また、「板面」とは、前記板状粒子の「厚さ方向」と略直交する表面をいう。この「板面」は、当該板状粒子における最も広い表面であるため、「主面(principal surface)」と称されることもある。「板面方向」とは、この「板面」と平行な方向(すなわち面内方向)をいう。したがって、当該板状粒子の「厚さ」は、略平行な2つの「板面」間の最短距離となる。また、上述の「厚さ方向」は、2つの「板面」の最短距離を規定する方向となる。
厚さtは、例えば、前記板状粒子の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される板面間の距離を測定することで得られる。また、板面方向における最小寸法wは、例えば、前記板状粒子の平面視における外形形状をSEMによって観察した場合における、当該外形形状の内接円を描いたときの直径を測定することで得られる。
「平均気孔径」は、前記板状粒子内の気孔の、直径の平均値である。かかる「直径」は、典型的には、当該気孔を同体積あるいは同断面積を有する球形と仮定した場合の、当該球形における直径である。本発明においては、「平均値」は、個数基準で算出されたものが適している。かかる平均気孔径は、例えば、断面SEM(走査電子顕微鏡)写真の画像処理や、水銀圧入法等の、周知の方法によって取得され得る。
「空隙率(voidage)」は、本発明の板状粒子における、気孔(開気孔及び閉気孔を含む)の体積比率である。「空隙率」は、「気孔率(porosity)」と称されることもある。この「空隙率」は、例えば、嵩密度と真密度とから計算上求められる。
前記板状粒子が、多数の一次粒子(結晶粒子)が結合した構造を有している場合、前記一次粒子の大きさ(一次粒子径)は、5μm以下であることが好適である。
<作用・効果>
前記板状粒子の厚さが5μm以上且つ30μm未満であり、且つピーク強度比[003]/[104]が2以下(好ましくは2以下、より好ましくは1.2以下、さらに好ましくは0.6以下)であることで、前記正極活物質層における活物質充填率が高くなるとともに、当該板状粒子の板面における、リチウムイオンの出入り面(例えば[104]面)の露出が多くなる。これにより、高容量化及び充放電特性の向上を図ることができる。さらに、上述の平均気孔径及び空隙率、並びにピーク強度比[003]/[104]が2以下であることにより、サイクル特性が向上する。この理由は、以下のように考えられる。
前記板状粒子の厚さが5μm以上且つ30μm未満であり、且つピーク強度比[003]/[104]が2以下(好ましくは2以下、より好ましくは1.2以下、さらに好ましくは0.6以下)であることで、前記正極活物質層における活物質充填率が高くなるとともに、当該板状粒子の板面における、リチウムイオンの出入り面(例えば[104]面)の露出が多くなる。これにより、高容量化及び充放電特性の向上を図ることができる。さらに、上述の平均気孔径及び空隙率、並びにピーク強度比[003]/[104]が2以下であることにより、サイクル特性が向上する。この理由は、以下のように考えられる。
充放電サイクルに伴う結晶格子の伸縮(体積膨張収縮)は、(003)面に垂直な方向(すなわち[003]方向)についてのものが、最も大きくなる。このため、充放電サイクルに伴う結晶格子の伸縮を起因とする粒界クラックは、(003)面と平行に入りやすい。また、(003)面は、酸素の最密充填面であって、リチウムイオンおよび電子が出入りできない、化学的にも電気化学的にも不活性な面である。
この点、上述のように、ピーク強度比[003]/[104]が2以下である、ということは、前記板状粒子の板面に(003)面が出現している割合や、当該板状粒子の内部にて板面と平行に(003)面が出現している割合が、減っていることを意味する。これにより、容量低下に特に影響する、板面と平行な粒界クラックの発生が、効果的に抑制される。また、前記バインダーとの接合界面の接着強度が高まることで、上述の界面剥離の発生が抑制される。
また、上述のように前記板状粒子に所定の大きさの気孔が所定割合含まれることで、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮によって発生する応力が、当該気孔によって良好(均一)に開放される。このため、充放電サイクルの繰り返しに伴う粒界クラックの発生が、可及的に抑制される。また、前記バインダーとの接合界面に含まれる気孔(開気孔)により、接合強度が高まる。このため、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮による、前記板状粒子の形状変化を起因とする、上述の界面剥離の発生が、よりいっそう良好に抑制される。
さらに、前記一次粒子径が小さくなる(具体的には5μm以下となる)と、粒界の数が増加する。ここで、粒界の数が多いほど、充放電サイクルに伴う結晶格子の伸縮の際に発生する内部応力が、良好に分散される。また、粒界クラックについても、粒界の数が多いほど、クラックの伸展が良好に抑制される。したがって、この場合、サイクル特性がさらに向上する。
以上の通り、本発明によれば、サイクル特性を含む充放電特性を良好に維持しつつ、高容量化を図ることができる。
一方、平均気孔径が5μmを超えると、比較的大きな気孔が生じることとなる。かかる大きな気孔は、通常、きれいな球形ではなく、いびつな形状である。このため、かかる大きな気孔の局所において応力集中が発生しやすくなる。よって、内部で応力を均一に開放する効果が得られにくくなる。また、平均気孔径が0.1μm未満あるいは空隙率が3%未満では、気孔による応力開放効果が不十分となる。したがって、いずれの場合も、粒界クラックの発生が良好に抑制されない。さらに、いずれの場合も、前記バインダーとの接合界面の接合強度を高める効果も得られにくくなり、上述の界面剥離の発生が良好には抑制されない。
ところで、例えば、コバルト酸リチウムは充電時(リチウムイオンが抜けるとき)に体積膨張するのに対し、ニッケル酸リチウムは放電時(リチウムイオンが入るとき)に体積膨張する。このため、組成比を適宜調整することで、見かけ上、充放電時の体積膨張収縮をゼロにすることは可能である。しかしながら、この場合でも、格子の長さは変化する。具体的には、Li(Co0.5Ni0.5)O2は、c軸方向には伸びる一方でa軸方向には縮む。
よって、本発明は、層状岩塩構造を有するリチウム複合酸化物(例えば、コバルト酸リチウムLipCoO2[一般式中1≦p≦1.1]、ニッケル酸リチウムLiNiO2、マンガン酸リチウムLi2MnO3、ニッケルマンガン酸リチウムLip(Ni0.5,Mn0.5)O2、一般式Lip(Cox,Niy,Mnz)O2[一般式中0.97≦p≦1.07,x+y+z=1]で表されるこれらの固溶体、Lip(Cox,Niy,Alz)O2[一般式中0.97≦p≦1.07,x+y+z=1、0<x≦0.25、0.6≦y≦0.9、0<z≦0.1]、Li2MnO3とLiMO2(Mは、Co、Ni等の遷移金属)との固溶体、等)の組成を有する前記板状粒子対して非常に有効である。なお、上記一般式を満たす範囲で、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi等の元素が、1種以上含まれていてもよい。
また、体積膨張収縮が大きい組成、例えば、Lip(Cox,Niy,Mnz)O2における、ニッケルのモル比率が0.75以上の場合や、コバルトのモル比率が0.9以上の場合、Lip(Cox,Niy,Alz)O2におけるニッケルのモル比率が0.7以上の場合に対して、本発明の適用は特に有効である。
以下、本発明の好適な実施形態を、実施例及び比較例を用いつつ説明する。なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。よって、後述するように、本発明が、以下に説明する実施形態や実施例の具体的構成に何ら限定されるものではないことは、全く当然である。本実施形態や実施例に対して施され得る各種の変更の例示は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、主として末尾にまとめて記載されている。
<リチウム二次電池の概略構成>
図1は、本発明の一実施形態が適用されたリチウム二次電池10の概略構成を模式的に示す断面図である。図1を参照すると、本実施形態のリチウム二次電池10は、電池ケース11と、セパレータ12と、電解質13と、負極14と、正極15と、を備えている。
図1は、本発明の一実施形態が適用されたリチウム二次電池10の概略構成を模式的に示す断面図である。図1を参照すると、本実施形態のリチウム二次電池10は、電池ケース11と、セパレータ12と、電解質13と、負極14と、正極15と、を備えている。
セパレータ12は、電池ケース11内を、負極14の側と正極15の側とに二分するように設けられている。すなわち、電池ケース11内には、負極14及び正極15が、セパレータ12を隔てて対向するように設けられている。また、電池ケース11内には、電解質13が収容されている。
電解質13としては、例えば、電気的特性や取り扱い易さの点から、液体電解質が好適に用いられ得る。かかる液体電解質としては、有機溶媒等の非水系溶媒にリチウム塩等の電解質塩を溶解させることによって調製された、非水溶媒系のものが好適に用いられる。もっとも、ポリマー電解質、ゲル電解質、有機固体電解質、無機固体電解質も、電解質13として問題なく使用することができる。
非水系溶媒としては、特に限定はないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピオンカーボネート等の鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の誘電率の高い環状エステル;鎖状エステルと環状エステルの混合溶媒;等を用いることができ、鎖状エステルを主溶媒とした環状エステルとの混合溶媒が特に適している。
上述の非水系溶媒に溶解させる電解質塩としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC4F9SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(RfSO2)(Rf′SO2)、LiC(RfSO2)3、LiCnF2n+1SO3(n≧2)、LiN(RfOSO2)2[ここでRfとRf′はフルオロアルキル基]、等が用いられ得る。かかる電解質塩としては、1種のみが単独で用いられてもよく、2種以上が併用されてもよい。
上述の電解質塩の中でも、炭素数2以上の含フッ素有機リチウム塩が特に好ましい。この含フッ素有機リチウム塩は、アニオン性が大きく、且つイオン分離しやすいために、上述の溶媒に溶解し易いからである。非水電解液としての電解質13中における電解質塩の濃度は、特に限定はないが、例えば、0.3mol/l以上、より好ましくは0.4mol/l以上であって、1.7mol/l以下、より好ましくは1.5mol/l以下であることが好ましい。
負極14に係る負極活物質は、リチウムイオンを吸蔵及び放出できるものであればよい。よって、例えば、炭素質材料(黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭等)が、負極活物質として用いられ得る。また、黒鉛の一部は、リチウムと合金化し得る金属や酸化物等と置き換えられ得る。さらに、金属リチウムや、金属リチウムと他の元素(ケイ素,スズ,インジウム等)とを含む合金、リチウムに近い低電位で充放電できるケイ素,スズ等の酸化物、Li2.6Co0.4N等のリチウムとコバルトとの窒化物、等の、リチウム吸蔵物質も、負極活物質として用いられ得る。
負極活物質として黒鉛を用いた場合、満充電時の電圧を、リチウム基準で約0.1Vとみなすことができる。このため、電池電圧に0.1Vを加えた電圧で正極15の電位を便宜上計算することができる。よって、この場合、正極15の充電電位が制御しやすく、好適である。
図2は、図1に示されている正極15の拡大断面図である。図2を参照すると、正極15は、正極集電体15aと、正極活物質層15bと、を備えている。正極活物質層15bは、結着材15b1中に、正極活物質用板状粒子15b2と、カーボン等の導電助剤と、を分散したものであって、正極集電体15aと接合されている。本発明に係る正極活物質用板状粒子15b2は、リチウム複合酸化物焼結体板であって、厚さが5μm以上且つ30μm未満、平均気孔径が0.1~5μm、空隙率が3%以上15%未満となるように形成されている。
図3は、図2に示されている正極活物質用板状粒子15b2の拡大斜視図である。図3に示されているように、正極活物質用板状粒子15b2は、厚さ方向(図中上下方向)と直交する表面である板面に(003)以外の面(例えば(101)面や(104)面)が露出するように形成されている(上側表面A及び下側表面B:以下「上側表面A」及び「下側表面B」をそれぞれ「板面A」及び「板面B」と称する。)。すなわち、正極活物質用板状粒子15b2は、(003)以外の面(例えば(104)面)が粒子の板面A及びBと平行となるように形成されている。
具体的には、本発明に係る正極活物質用板状粒子15b2は、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率である、ピーク強度比[003]/[104]が、2以下となるように形成されている。なお、粒子の板面方向(面内方向)と交差する端面Cには、(003)面(図中黒色で塗りつぶされた面)が露出していても構わない。
<正極活物質用板状粒子の製造方法の概要>
上述の構成の正極活物質用板状粒子15b2は、例えば、以下の製造方法によって、容易かつ確実に形成される。
上述の構成の正極活物質用板状粒子15b2は、例えば、以下の製造方法によって、容易かつ確実に形成される。
1.原料粒子の準備
原料粒子としては、リチウム化合物を含まない、遷移金属(Co,Ni,Mn等)化合物の粒子が用いられる。原料粒子は、適宜、粉砕及び分級され得る。また、目的とする組成に応じて、複数種の原料粒子が適宜混合され得る。さらに、粒成長を促進する目的で、酸化ホウ素,酸化ビスマス,酸化アンチモン,等の低融点酸化物や、塩化ナトリウムや塩化カリウム等の低融点塩化物、ホウケイ酸ガラス等の低融点ガラスが、0.001~30wt%添加され得る。
原料粒子としては、リチウム化合物を含まない、遷移金属(Co,Ni,Mn等)化合物の粒子が用いられる。原料粒子は、適宜、粉砕及び分級され得る。また、目的とする組成に応じて、複数種の原料粒子が適宜混合され得る。さらに、粒成長を促進する目的で、酸化ホウ素,酸化ビスマス,酸化アンチモン,等の低融点酸化物や、塩化ナトリウムや塩化カリウム等の低融点塩化物、ホウケイ酸ガラス等の低融点ガラスが、0.001~30wt%添加され得る。
さらに、上述の所望の大きさ及び割合の空孔を形成するための添加剤である空孔形成材が、適宜、均一に混合され得る。かかる空孔形成材としては、続く仮焼成工程において分解(蒸発あるいは炭化)される物質の、粒子又は繊維が、好適に用いられ得る。具体的には、例えば、テオブロミン、ナイロン、グラファイト、フェノール樹脂、ポリメタクリル酸メチル、ポリエチレン、ポリエチレンテレフタレート、又は発泡性樹脂等の有機合成樹脂の、粒子又は繊維が、空孔形成材として好適に用いられ得る。勿論、かかる空孔形成材がなくても、原料粒子の粒径や、仮焼成工程における焼成温度等を適宜調整することによって、上述の所望の大きさ及び割合の空孔を形成することが可能である。
2.原料粒子の成形工程
原料粒子あるいはその混合物をシート成形することで、「独立した」シート状の成形体が得られる。ここで、「独立した」シート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、「独立した」シートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能あるいは分離困難となった)ものは含まれない。
原料粒子あるいはその混合物をシート成形することで、「独立した」シート状の成形体が得られる。ここで、「独立した」シート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、「独立した」シートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能あるいは分離困難となった)ものは含まれない。
シート成形は、周知の様々な方法で行われ得る。すなわち、例えば、シート成形には、ドクターブレード式シート成形機(ドクターブレード法)、ドラムドライヤー、ディスクドライヤー、スクリーン印刷機、等が用いられ得る。シート状の成形体の厚さは、焼成後に上述の所望厚さとなるように、適宜設定される。
3.成形体の仮焼成工程
上述の成形工程によって得られたシート状の成形体は、後述するリチウム導入工程に先立ち、比較的低温(例えば700~1200℃)で焼成される。これにより、比較的大きめの気孔が多数含まれる多孔質状のシート状中間焼成体が得られる。かかる仮焼成工程は、例えば、エンボス加工が施されたジルコニア製セッター上に成形体を載置した状態で、大気雰囲気中で行われる。
上述の成形工程によって得られたシート状の成形体は、後述するリチウム導入工程に先立ち、比較的低温(例えば700~1200℃)で焼成される。これにより、比較的大きめの気孔が多数含まれる多孔質状のシート状中間焼成体が得られる。かかる仮焼成工程は、例えば、エンボス加工が施されたジルコニア製セッター上に成形体を載置した状態で、大気雰囲気中で行われる。
4.リチウム導入工程
上述の仮焼成工程によって得られた中間焼成体に、リチウム化合物をふりかけて、熱処理することにより、当該中間焼成体にリチウムが導入される。これにより、「独立した」シート状の正極活物質層用リチウム複合酸化物焼結体板が得られる。かかるリチウム導入工程は、例えば、坩堝中で行われる。
上述の仮焼成工程によって得られた中間焼成体に、リチウム化合物をふりかけて、熱処理することにより、当該中間焼成体にリチウムが導入される。これにより、「独立した」シート状の正極活物質層用リチウム複合酸化物焼結体板が得られる。かかるリチウム導入工程は、例えば、坩堝中で行われる。
リチウム化合物としては、例えば、炭酸リチウム,硝酸リチウム,過酸化リチウム,水酸化リチウム,酢酸リチウム,塩化リチウム,シュウ酸リチウム,クエン酸リチウム,等の各種リチウム塩や、リチウムメトキシド,リチウムエトキシド,等のリチウムアルコキシドが用いられ得る。リチウム化合物は、一般式LixMO2で表される焼結体板におけるリチウムとMとのモル比Li/Mが1以上となるように添加される。
上述の仮焼成工程によって得られた多孔質状のシート状中間焼成体に対して、リチウム導入を行う際に、当該中間焼成体内の気孔が小さくなり、上述のような、所望の大きさ及び割合となる。
5.解砕工程
上述のリチウム導入工程に先立って、あるいはその後に、上述のシートが、多数の板状粒子に解砕される。この解砕工程は、例えば、上述のシートを、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることによって行われる。
上述のリチウム導入工程に先立って、あるいはその後に、上述のシートが、多数の板状粒子に解砕される。この解砕工程は、例えば、上述のシートを、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることによって行われる。
<評価方法及び評価結果>
電池特性の評価のために、以下のようにして、CR2032型と同一形状のコインセル型電池を作成した。
電池特性の評価のために、以下のようにして、CR2032型と同一形状のコインセル型電池を作成した。
作製した正極、リチウム金属板からなる負極、ステンレス集電板、及びセパレータを、集電板-正極-セパレータ-負極-集電板の順に配置し、この集積体を電解液で満たすことでコインセルを作製した。電解液は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPF6を1mol/Lの濃度となるように溶解することで調製した。
上述のようにして作製した電池(コインセル)を用いて、サイクル特性(容量維持率)の評価を行った。
作製した電池について、試験温度を20℃として、(1)1Cレートの定電流-定電圧で4.2Vまでの充電、及び(2)1Cレートの定電流で3.0Vまでの放電、を繰り返すサイクル充放電を行った。サイクル充放電終了後の電池の放電容量を初回値で除した値に100を乗算したものを、容量維持率(%)とした。
<具体例>
以下、上述の正極活物質用板状粒子15b2の具体例、及びかかる具体例の評価結果について、より詳細に説明する。
以下、上述の正極活物質用板状粒子15b2の具体例、及びかかる具体例の評価結果について、より詳細に説明する。
表1の実験例1-1,1-2,及び1-6~1-8における作成条件は、以下の通りである。
(1)スラリー調製:Co3O4粉末(粒径1-5μm、正同化学工業株式会社製)を粉砕及び分級して得られたCo3O4原料粒子100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番「BM-2」、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名「レオドールSP-O30」、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、3000~4000cPの粘度に調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した(以下同様)。
(2)シート成形:上述のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが20μmとなるように、シート状に成形した。
(3)仮焼成:PETフィルムから剥がしたシート状の成形体を丸め、アルミナ製サヤ(寸法150mm角、高さ10mm)内に20g載置し、大気雰囲気中にて所定温度(中間焼成体焼成温度)で5h焼成後、室温まで降温速度200℃/hにて降温し、サヤに溶着していない部分を取り出して、フレーク状の焼成体を得た。
(4)粉砕:取り出した焼成体50gと、直径10mmのナイロンボール370gと、エタノール165gとを、容積1リットルのポリプロピレン製ポットに入れ、20時間混合して粉砕した。
(5)リチウム導入:このようにして得られたCo3O4粉末に、Li2CO3粉末(関東化学株式会社製)を、Li/Co=1.0となるように混合し、酸素雰囲気中(0.1MPa)にて760℃で20時間加熱処理することで、厚さ20μmのLiCoO2板状粒子(正極活物質用板状粒子15b2)の粉末を得た。
表1の実験例1-3~1-5における作成条件は、以下の通りである。
空孔形成材を添加した以外は、上述の実験例1-1等と同様にして、スラリーを調製した。空孔形成材は、繊維状のもの(製品名「セレッシュPC10S」:ダイセルファインケム株式会社製)、又は球状のもの(ナイロンパウダー:住友エンビロサイエンス株式会社製)を用いた。このようにして調製されたスラリーを、上述の実験例1-1等と同様に、PETフィルムの上にシート状に成形した。
PETフィルムから剥がしたシート状の成形体を丸め、アルミナ製サヤ(寸法150mm角、高さ10mm)内に20g載置し、大気雰囲気中にて900℃(中間焼成体焼成温度)で10h焼成後、降温速度200℃/hにて降温し、サヤに溶着していない部分を取り出して解砕した。このようにして得られたCo3O4セラミックス粉に、上述の実験例1-1等と同様にして、リチウム導入を行うことで、厚さ20μmのLiCoO2板状粒子(正極活物質用板状粒子15b2)の粉末を得た。
表1の実験例1-9における作成条件は、以下の通りである。
Li2CO3とCo3O4とをLi/Co比が1.0になるように混合した後に大気雰囲気中にて800℃で24h熱処理することで得られたLiCoO2粉末を粉砕し、平均粒径5.0μmとした。この粉末を用いて、実験例1-1,1-2,及び1-6~1-8と同様にシート成形し、大気雰囲気中にて900℃で10h焼成後、降温速度200℃/hにて降温し、サヤに溶着していない部分を取り出して解砕することで、粉末状のLiCoO2粒子を得た。
表1に示されている実験例の評価結果を、表2に示す。なお、表2における「容量維持率」は、50サイクルの充放電終了後の値である。また、「空隙率」は、アルキメデス法で求めた焼結体板の嵩密度を、ピクノメータを用いて求めた真密度で除して求めた値である、相対密度から計算される値(空隙率=1-相対密度)である。嵩密度の測定では、気孔中に存在する空気を十分に追い出すために、水中で煮沸処理をした。気孔径の小さな試料では、予め真空含浸装置(ストルアス社製 装置名「シトバック」)を用いて、気孔中に水を含浸させたあと、煮沸処理をした。さらに、「平均気孔径」は、水銀圧入法によって測定したもの(水銀圧入式細孔分布測定装置:株式会社島津製作所製 装置名「オートポアIV9510」)である。
表1及び表2から明らかなように、平均気孔径が0.1~5μmであり、空隙率が3%以上であり且つ15%未満である実験例1-1~1-5においては、50サイクルの充放電終了後でも良好な容量維持率が得られた。これに対し、空隙率及び平均気孔径が上記所定範囲よりも低い実験例1-6~1-8においては、上述の実験例1-1~1-5よりも、サイクル特性(50サイクルの充放電終了後における容量維持率)が格段に低下した。これは、以下の理由によるものと考えられる。
実験例1-1~1-5のように、所定の大きさの気孔が所定割合含まれることで、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮によって発生する応力が、当該気孔によって良好(均一)に開放される。このため、充放電サイクルに伴う粒界クラックの発生が可及的に抑制される。また、正極活物質用板状粒子15b2と結着材15b1との界面における接合強度が高まり、界面剥離が効果的に抑制される。したがって、実験例1-1~1-5によれば、良好なサイクル特性を維持しつつ、高容量化を図ることができる。
一方、平均気孔径が5μmを超える実験例1-7及び1-8においては、比較的大きな気孔が生じることとなる。かかる大きな気孔は、通常、きれいな球形ではなく、いびつな形状である。このため、かかる大きな気孔の局所において応力集中が発生しやすくなる。よって、焼結体内で応力を均一に開放する効果が得られにくくなる。また、平均気孔径が0.1μm未満あるいは空隙率が3%未満である実験例1-6及び1-7においては、気孔による応力開放効果が不十分となる。したがって、いずれの場合も、粒界クラックの発生が良好に抑制されない。さらに、いずれの場合も、正極活物質用板状粒子と結着材との界面における接合強度を高める効果も得られにくくなり、界面剥離が良好に抑制されない。
なお、中間焼成体の形成及びこれに対するリチウム導入を経ることなく、また空孔形成材を添加することもなく、単純に空隙を導入しようとしても、実験例1-9のように、空隙率が大きくなりすぎるため、高容量化の面で問題がある(外見上、サイクル特性が良いようにみえるが、正極活物質の充填率が低すぎて初期の容量が低すぎるため、容量維持率の低下が目立たないだけであると考えられる。平均気孔径が上記所定範囲よりも大きいにもかかわらず容量維持率が高いのも同様の理由によるものと考えられる。)。
次に、X線回折における、(104)面による回折強度に対する(003)面による回折強度(ピーク強度)の比率である、ピーク強度比[[003]/[104]について評価した。XRD(X線回折)測定は、以下の方法で行った。
φ5~10mm程度の大きさに加工した正極活物質層用セラミックス板を、XRD測定用の試料フォルダに載せた。XRD装置(株式会社リガク製 製品名「RINT-TTRIII」)を用い、正極活物質層用セラミックス板の表面に対してX線を照射したときのXRDプロファイルを測定し、(104)面による回折強度(ピーク高さ)に対する(003)面による回折強度(ピーク高さ)の比率[003]/[104]を求めた。上記方法によれば、板面の結晶面に平行に存在する結晶面、すなわち、板面方向に配向する結晶面による回折プロファイルが得られる。
ピーク強度比[003]/[104]の影響を評価するため、空隙率及び気孔径を一定にして、配向度が異なる実験例1-10~1-14を作成した。実験例1-10~1-14は、原料粒子粒径及び中間焼成体焼成温度を実験例1-4と同一とすることで実験例1-4と同じ空隙率及び気孔径(空隙率8%、平均気孔径5μm)に設定しつつ、リチウム導入工程における条件(リチウム化合物の種類及び添加量、並びに処理温度:表3参照)を適宜変更することによって、配向度が異なるように形成したものである。この評価結果を表4に示す。
表4に示されている結果から明らかなように、ピーク強度比[003]/[104]が2以下である実験例1-10~1-12においては、良好なサイクル特性が得られた。一方、ピーク強度比[003]/[104]が2を超える実験例1-13及び1-14においては、サイクル特性が悪化した。
また、本実施形態の正極活物質用板状粒子15b2は、多数の一次粒子(結晶粒子)が結合した構造を有している。そこで、一次粒子径の影響を評価するため、空隙率及び気孔径を一定にして、一次粒子径が異なる実験例1-15~1-19を作成した。実験例1-15~1-19は、原料粒子粒径及び中間焼成体焼成温度を同一とすることで空隙率及び気孔径を一定に設定しつつ、リチウム導入工程における条件(リチウム化合物の種類及び添加量、並びに処理温度:表5参照)を適宜変更することによって、一次粒子径が異なるように形成したものである。
一次粒子径は、以下のようにして測定した:FIB(収束イオンビーム)によって厚さを80nm程度まで薄片加工することで、正極活物質層用セラミックス板の板面と平行な断面の電子顕微鏡観察サンプルを作成した。透過電子顕微鏡により、一次粒子が視野内に10個以上入る倍率を選択して、かかるサンプルの明視野像を撮影した。得られた明視野像中の10個の一次粒子について、それぞれ、粒内に内接円を描いたときの直径を求め、これらの平均値を一次粒子径とした。これら実験例1-15~1-19の評価結果を表6に示す。
表6に示されている結果から明らかなように、一次粒子径が5μm以下である実験例1-15~1-18においては、良好なサイクル特性が得られた。一方、一次粒子径が5μmを超える実験例1-19においては、サイクル特性が悪化した。
表7の実験例2-1,2-2,及び2-7~2-9における作成条件は、以下の通りである。
(1)スラリー調製:NiO粉末(粒径1-10μm、正同化学工業株式会社製)75.1重量部、Co3O4粉末(粒径1-5μm、正同化学工業株式会社製)21.5重量部、及びAl2O3粉末(粒径1-10μm、昭和電工株式会社製)3.4重量部を混合及び粉砕し、大気雰囲気中にて1000℃で5時間熱処理することで、(Ni0.75,Co0.2,Al0.05)O粉末を合成した。
この粉末をポットミルで粉砕することで得られた(Ni0.75,Co0.2,Al0.05)O原料粒子100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番「BM-2」、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名「レオドールSP-O30」、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、3000~4000cPの粘度に調製した。
(2)シート成形:上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが20μmとなるように、シート状に成形した。
(3)仮焼成:PETフィルムから剥がしたシート状の成形体を丸め、アルミナ製サヤ(寸法150mm角、高さ10mm)内に20g載置し、大気雰囲気中にて所定温度(中間焼成体焼成温度)で3h焼成後、室温まで降温速度200℃/hで降温して、サヤに溶着していない部分を取り出した。
(4)粉砕:取り出した焼成体50gと、直径10mmのナイロンボール370gと、エタノール165gとを、容積1リットルのポリプロピレン製ポットに入れ、20時間混合して粉砕した。
(5)リチウム導入:このようにして得られた(Ni0.75,Co0.2,Al0.05)O粉末に、Li2CO3粉末(関東化学株式会社製)を、Li/Co=1.1となるように混合し、酸素雰囲気中(0.1MPa)にて825℃で24時間加熱処理することで、厚さ20μmのLi1.0(Ni0.75Co0.2Al0.05)O2板状粒子(正極活物質用板状粒子15b2)の粉末を得た。
表7の実験例2-3~2-6における作成条件は、上述の空孔形成材を添加した以外は、上述の実験例2-1等と同様である。表7の実験例2-10における作成条件は、以下の通りである。
Li1.50(Ni0.75Co0.2Al0.05)O2の組成比となるように、NiO粉末(粒径1-10μm、正同化学工業株式会社製)、Co3O4粉末(粒径1-5μm、正同化学工業株式会社製)、Al2O3・H2O(粒径1-3μm、SASOL社製)、及びLi2CO3粉末(粒径10-50μm、関東化学株式会社製)を混合し、酸素雰囲気中(0.1MPa)にて825℃で24時間加熱処理することで、Li1.0(Ni0.75Co0.2Al0.05)O2、平均粒径3.0μmの粉体を得た。
この粉末を用いたこと以外は、実験例2-1等と同様に、厚さ20μmのシート状に成形した。PETフィルムから剥がしたシート状の成形体を丸め、アルミナ製サヤ(寸法150mm角、高さ10mm)内に20g載置し、大気雰囲気中にて900℃で10h焼成後、室温まで降温速度200℃/hにて降温し、サヤに溶着していない部分を取り出して粉砕することで、厚さ20μmのLi1.0(Ni0.75Co0.2Al0.05)O2板状粒子(正極活物質用板状粒子15b2)の粉末を得た。
また、ニッケル系組成についても、上述のLiCoO2と同様に、ピーク強度比[003]/[104]や一次粒子径の影響について評価した結果を、表9~表12に示す。表9~表12に示されている実験例の評価結果から明らかなように、ニッケル系組成についても、上述のLiCoO2と同様の結果が得られた。
<変形例の例示列挙>
なお、上述の実施形態や具体例は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の具現化の一例を単に示したものにすぎないのであって、本発明はもとより上述の実施形態や具体例によって何ら限定されるべきものではない。よって、上述の実施形態や具体例に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
なお、上述の実施形態や具体例は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の具現化の一例を単に示したものにすぎないのであって、本発明はもとより上述の実施形態や具体例によって何ら限定されるべきものではない。よって、上述の実施形態や具体例に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
以下、変形例について幾つか例示する。以下の変形例の説明において、上述の実施形態における各構成要素と同様の構成・機能を有する構成要素については、本変形例においても同一の名称及び同一の符号が付されているものとする。そして、当該構成要素の説明については、上述の実施形態における説明が、矛盾しない範囲で適宜援用され得るものとする。
もっとも、変形例とて、下記のものに限定されるものではないことは、いうまでもない。本発明を、上述の実施形態や下記変形例の記載に基づいて限定解釈することは、(特に先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。
また、上述の実施形態の構成、及び下記の各変形例に記載された構成の全部又は一部が、技術的に矛盾しない範囲において、適宜複合して適用され得ることも、いうまでもない。
本発明は、上述の実施形態にて具体的に開示された構成に何ら限定されない。例えば、正極15における正極集電体15aは、省略され得る。
本発明は、上述した具体的な製造方法に限定されない。すなわち、例えば、本発明の正極活物質用板状粒子は、以下の製造方法によっても、容易かつ確実に形成される。
1.原料粒子の準備
原料粒子としては、合成後の組成が層状岩塩構造を有する正極活物質LiMO2となるように、Li、Co、Ni、Mn等の化合物の粒子を適宜混合したものが用いられる。あるいは、原料粒子として、LiMO2の組成からなるもの(合成済みのもの)を用いることができる。そして、かかる原料粒子に対して、上述の空孔形成材が添加される。
原料粒子としては、合成後の組成が層状岩塩構造を有する正極活物質LiMO2となるように、Li、Co、Ni、Mn等の化合物の粒子を適宜混合したものが用いられる。あるいは、原料粒子として、LiMO2の組成からなるもの(合成済みのもの)を用いることができる。そして、かかる原料粒子に対して、上述の空孔形成材が添加される。
後述する熱処理工程中における、粒成長の促進あるいは揮発分の補償の目的で、リチウム化合物が0.5~30mol%程度過剰に添加されてもよい。また、粒成長を促進する目的で、酸化ビスマス等の低融点酸化物や、ホウケイ酸ガラス等の低融点ガラスが、0.001~30wt%添加されてもよい。
2.原料粒子の成形工程
原料粒子と空孔形成材との混合物をシート成形することで、「独立した」シート状の成形体が得られる。かかるシート成形工程は、上述の二段階プロセスと同様である。
原料粒子と空孔形成材との混合物をシート成形することで、「独立した」シート状の成形体が得られる。かかるシート成形工程は、上述の二段階プロセスと同様である。
3.成形体の熱処理(焼成)工程
上述の成形工程によって得られたシート状の成形体を、空孔を形成しつつ結晶を成長させる目的で、比較的高温(例えば1200℃~1500℃)で熱処理(焼成)することで、「独立した」シート状の正極活物質層用リチウム複合酸化物焼結体板が得られる。かかる熱処理工程は、例えば、エンボス加工が施されたジルコニア製セッター上に成形体を載置した状態で、酸素雰囲気中で行われ得る。
上述の成形工程によって得られたシート状の成形体を、空孔を形成しつつ結晶を成長させる目的で、比較的高温(例えば1200℃~1500℃)で熱処理(焼成)することで、「独立した」シート状の正極活物質層用リチウム複合酸化物焼結体板が得られる。かかる熱処理工程は、例えば、エンボス加工が施されたジルコニア製セッター上に成形体を載置した状態で、酸素雰囲気中で行われ得る。
4.解砕工程
上述の熱処理工程によって得られたシートを、上述と同様に解砕することで、正極活物質用板状粒子15b2が得られる。
上述の熱処理工程によって得られたシートを、上述と同様に解砕することで、正極活物質用板状粒子15b2が得られる。
かかる変形例の製造方法は、中間焼成体の形成(仮焼成)及びリチウム導入という二段階の熱処理プロセスを用いる上述の実施形態とは異なり、一段階の熱処理工程を用いて行われるため、「一段階プロセス」と称される。
一般式LixMO2で表される焼結体板におけるリチウムとMとのモル比Li/M(Li/CoあるいはLi/(Co,Ni,Mn))は、1.0に限定されないが、0.9~1.2の範囲内にあることが好ましく、1.0~1.1の範囲内にあることがより好ましい。これにより、良好な充放電容量が実現される。
その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の技術的範囲に含まれることは当然である。
また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。さらに、本明細書にて引用した先行出願や各公報の内容(明細書及び図面を含む)は、本明細書の一部を構成するものとして適宜援用され得る。
Claims (11)
- 層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子であって、
厚さが5μm以上且つ30μm未満であり、
X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、2以下であり、
平均気孔径が0.1~5μmであり、
空隙率が3%以上であり且つ15%未満であることを特徴とする、
リチウム二次電池の正極活物質用の板状粒子。 - 請求項1に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
厚さをt、
前記厚さを規定する厚さ方向と直交する方向である、板面方向における、最小寸法をw、
とした場合に、
w/tが3以上であることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。 - 請求項1又は請求項2に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
多数の一次粒子が結合した構造を有し、
前記一次粒子の大きさである一次粒子径が、5μm以下であることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。 - 層状岩塩構造を有する板状粒子を含む正極活物質層を備えた、リチウム二次電池の正極であって、
前記板状粒子は、
厚さが5μm以上且つ30μm未満であり、
X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、2以下であり、
平均気孔径が0.1~5μmであり、
空隙率が3%以上であり且つ15%未満であることを特徴とする、
リチウム二次電池の正極。 - 請求項4に記載の、リチウム二次電池の正極であって、
前記板状粒子は、
厚さをt、
前記厚さを規定する厚さ方向と直交する方向である、板面方向における、最小寸法をw、
とした場合に、
w/tが3以上であることを特徴とする、リチウム二次電池の正極。 - 請求項4又は請求項5に記載の、リチウム二次電池の正極であって、
前記板状粒子は、多数の一次粒子が結合した構造を有しており、
前記一次粒子の大きさである一次粒子径が、5μm以下であることを特徴とする、リチウム二次電池の正極。 - 請求項4~請求項6のうちのいずれか1項に記載の、リチウム二次電池の正極であって、
前記正極活物質層は、バインダー中に前記板状粒子と導電助剤とを分散させることによって形成されたことを特徴とする、リチウム二次電池の正極。 - X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、2以下であり、厚さが5μm以上且つ30μm未満であり、平均気孔径が0.1~5μmであり、空隙率が3%以上であり且つ15%未満である、層状岩塩構造を有する板状粒子を含む正極活物質層を備えた、正極と、
炭素質材料又はリチウム吸蔵物質を負極活物質として含む、負極と、
前記正極と前記負極との間に介在するように設けられた、電解質と、
を少なくとも備えたことを特徴とする、リチウム二次電池。 - 請求項8に記載の、リチウム二次電池であって、
前記板状粒子は、
厚さをt、
前記厚さを規定する厚さ方向と直交する方向である、板面方向における、最小寸法をw、
とした場合に、
w/tが3以上であることを特徴とする、リチウム二次電池。 - 請求項8又は請求項9に記載の、リチウム二次電池であって、
前記板状粒子は、多数の一次粒子が結合した構造を有しており、
前記一次粒子の大きさである一次粒子径が、5μm以下であることを特徴とする、リチウム二次電池。 - 請求項8~請求項10のうちのいずれか1項に記載の、リチウム二次電池であって、
前記正極活物質層は、バインダー中に前記板状粒子と導電助剤とを分散させることによって形成されたことを特徴とする、リチウム二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012521478A JP5631992B2 (ja) | 2010-06-23 | 2011-06-21 | リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-142444 | 2010-06-23 | ||
JP2010142444 | 2010-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011162251A1 true WO2011162251A1 (ja) | 2011-12-29 |
Family
ID=45352849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064153 WO2011162251A1 (ja) | 2010-06-23 | 2011-06-21 | リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9236601B2 (ja) |
JP (1) | JP5631992B2 (ja) |
WO (1) | WO2011162251A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137391A1 (ja) * | 2011-04-07 | 2012-10-11 | 日本碍子株式会社 | リチウム二次電池の正極活物質及びリチウム二次電池 |
US9450228B2 (en) | 2014-07-23 | 2016-09-20 | Asahi Glass Company, Limited | Cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9093705B2 (en) * | 2013-03-15 | 2015-07-28 | GM Global Technology Operations LLC | Porous, amorphous lithium storage materials and a method for making the same |
JP6374634B1 (ja) * | 2017-02-13 | 2018-08-15 | 日本碍子株式会社 | リチウム複合酸化物焼結体板 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0922693A (ja) * | 1995-07-04 | 1997-01-21 | Matsushita Electric Ind Co Ltd | 非水電解液電池およびその正極活物質と正極板の製造法 |
JP2000323123A (ja) * | 1999-05-06 | 2000-11-24 | Dowa Mining Co Ltd | 非水系二次電池用正極活物質および正極 |
JP2004172114A (ja) * | 2002-11-06 | 2004-06-17 | Toshiba Corp | 非水電解質二次電池 |
JP2005072008A (ja) * | 2003-08-21 | 2005-03-17 | Samsung Sdi Co Ltd | 非水系電解質二次電池用負極活物質及びその製造方法並びにそれを含む非水系電解質二次電池 |
JP2008078146A (ja) * | 2001-03-22 | 2008-04-03 | Matsushita Electric Ind Co Ltd | 正極活物質およびこれを含む非水電解質二次電池 |
JP2009117261A (ja) * | 2007-11-08 | 2009-05-28 | Mitsubishi Chemicals Corp | リチウム二次電池用正極活物質材料並びにそれを用いた正極及びリチウム二次電池 |
JP2009295383A (ja) * | 2008-06-04 | 2009-12-17 | Panasonic Corp | 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 |
JP2010116302A (ja) * | 2008-11-13 | 2010-05-27 | Toda Kogyo Corp | コバルト酸リチウム粒子粉末及びその製造法、並びに非水電解質二次電池 |
JP2010129481A (ja) * | 2008-11-28 | 2010-06-10 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池用正極 |
WO2010074299A1 (ja) * | 2008-12-24 | 2010-07-01 | 日本碍子株式会社 | リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池 |
JP2010219069A (ja) * | 2010-06-23 | 2010-09-30 | Ngk Insulators Ltd | リチウム二次電池の正極活物質用の板状粒子の製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0603397B2 (en) | 1991-09-13 | 2002-12-18 | Asahi Kasei Kogyo Kabushiki Kaisha | Secondary cell |
JP2001085006A (ja) * | 1999-09-14 | 2001-03-30 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池 |
JP2001202948A (ja) * | 2000-01-19 | 2001-07-27 | Sanyo Electronic Components Co Ltd | 二次電池用正極活物質およびその製造方法 |
CN1287474C (zh) | 2001-03-22 | 2006-11-29 | 松下电器产业株式会社 | 正极活性物质及含该活性物质的非水电解质二次电池 |
US8241790B2 (en) * | 2002-08-05 | 2012-08-14 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
NZ520452A (en) * | 2002-10-31 | 2005-03-24 | Lg Chemical Ltd | Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition |
US7455933B2 (en) | 2002-11-06 | 2008-11-25 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
US7556889B2 (en) * | 2003-05-26 | 2009-07-07 | Nec Corporation | Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery |
JP4100341B2 (ja) * | 2003-12-26 | 2008-06-11 | 新神戸電機株式会社 | リチウム二次電池用正極材料及びそれを用いたリチウム二次電池 |
CN101548416B (zh) * | 2007-03-30 | 2012-07-18 | 松下电器产业株式会社 | 非水电解质二次电池用活性物质及其制造方法 |
US20090104517A1 (en) * | 2007-10-17 | 2009-04-23 | Toyotaka Yuasa | Cathode active material and lithium ion secondary battery containing the same |
CN103259011B (zh) | 2008-03-28 | 2015-06-03 | 户田工业株式会社 | 氧化氢氧化钴颗粒粉末及其制造方法 |
CN102239587B (zh) | 2008-12-24 | 2015-11-25 | 日本碍子株式会社 | 锂二次电池的正极活性物质用的板状粒子、锂二次电池的正极活性物质膜、它们的制造方法、锂二次电池的正极活性物质的制造方法以及锂二次电池 |
US20100159326A1 (en) | 2008-12-24 | 2010-06-24 | Ngk Insulators, Ltd. | Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery |
EP2369662A1 (en) | 2008-12-24 | 2011-09-28 | NGK Insulators, Ltd. | Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries |
US20100173204A1 (en) | 2008-12-24 | 2010-07-08 | Ngk Insulators, Ltd. | Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, method for manufacturing the same, method for manufacturing a cathode active material of a lithium secondary battery, and a lithium secondary battery |
WO2010074303A1 (ja) | 2008-12-24 | 2010-07-01 | 日本碍子株式会社 | リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池 |
CN102171863A (zh) | 2008-12-24 | 2011-08-31 | 日本碍子株式会社 | 锂二次电池的正极活性物质用的板状粒子、锂二次电池的正极活性物质膜、及锂二次电池 |
US20110003206A1 (en) * | 2009-09-29 | 2011-01-06 | Ngk Insulators, Ltd. | Positive electrode active element and lithium secondary battery |
-
2011
- 2011-06-21 WO PCT/JP2011/064153 patent/WO2011162251A1/ja active Application Filing
- 2011-06-21 JP JP2012521478A patent/JP5631992B2/ja not_active Expired - Fee Related
- 2011-06-21 US US13/165,337 patent/US9236601B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0922693A (ja) * | 1995-07-04 | 1997-01-21 | Matsushita Electric Ind Co Ltd | 非水電解液電池およびその正極活物質と正極板の製造法 |
JP2000323123A (ja) * | 1999-05-06 | 2000-11-24 | Dowa Mining Co Ltd | 非水系二次電池用正極活物質および正極 |
JP2008078146A (ja) * | 2001-03-22 | 2008-04-03 | Matsushita Electric Ind Co Ltd | 正極活物質およびこれを含む非水電解質二次電池 |
JP2004172114A (ja) * | 2002-11-06 | 2004-06-17 | Toshiba Corp | 非水電解質二次電池 |
JP2005072008A (ja) * | 2003-08-21 | 2005-03-17 | Samsung Sdi Co Ltd | 非水系電解質二次電池用負極活物質及びその製造方法並びにそれを含む非水系電解質二次電池 |
JP2009117261A (ja) * | 2007-11-08 | 2009-05-28 | Mitsubishi Chemicals Corp | リチウム二次電池用正極活物質材料並びにそれを用いた正極及びリチウム二次電池 |
JP2009295383A (ja) * | 2008-06-04 | 2009-12-17 | Panasonic Corp | 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 |
JP2010116302A (ja) * | 2008-11-13 | 2010-05-27 | Toda Kogyo Corp | コバルト酸リチウム粒子粉末及びその製造法、並びに非水電解質二次電池 |
JP2010129481A (ja) * | 2008-11-28 | 2010-06-10 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池用正極 |
WO2010074299A1 (ja) * | 2008-12-24 | 2010-07-01 | 日本碍子株式会社 | リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池 |
JP2010219069A (ja) * | 2010-06-23 | 2010-09-30 | Ngk Insulators Ltd | リチウム二次電池の正極活物質用の板状粒子の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137391A1 (ja) * | 2011-04-07 | 2012-10-11 | 日本碍子株式会社 | リチウム二次電池の正極活物質及びリチウム二次電池 |
US9450228B2 (en) | 2014-07-23 | 2016-09-20 | Asahi Glass Company, Limited | Cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP5631992B2 (ja) | 2014-11-26 |
US20110318640A1 (en) | 2011-12-29 |
US9236601B2 (en) | 2016-01-12 |
JPWO2011162251A1 (ja) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5564649B2 (ja) | リチウム二次電池の正極及びリチウム二次電池 | |
JP5587052B2 (ja) | リチウム二次電池の正極及びリチウム二次電池 | |
JP5542694B2 (ja) | リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池 | |
US8795898B2 (en) | Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery | |
JP5631993B2 (ja) | リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池 | |
JP4745463B2 (ja) | リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池 | |
EP2369661A1 (en) | Plate-shaped particles for positive electrode active material of lithium secondary batteries, and lithium secondary batteries | |
JP4755727B2 (ja) | リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池 | |
JP5457947B2 (ja) | リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池 | |
US20140087265A1 (en) | Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery | |
JP2010219069A (ja) | リチウム二次電池の正極活物質用の板状粒子の製造方法 | |
JP5752303B2 (ja) | リチウム複合酸化物焼結体板 | |
JP5703409B2 (ja) | リチウム二次電池用のリチウム複合酸化物焼結体板 | |
JP5711608B2 (ja) | リチウム二次電池及びその正極活物質粒子 | |
JP5631992B2 (ja) | リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池 | |
JP2010219068A (ja) | リチウム二次電池の正極活物質用の板状粒子の製造方法 | |
WO2012029803A1 (ja) | リチウム二次電池の正極活物質 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11798135 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012521478 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11798135 Country of ref document: EP Kind code of ref document: A1 |