JPWO2010041670A1 - ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物、および硬化物 - Google Patents

ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物、および硬化物 Download PDF

Info

Publication number
JPWO2010041670A1
JPWO2010041670A1 JP2010532933A JP2010532933A JPWO2010041670A1 JP WO2010041670 A1 JPWO2010041670 A1 JP WO2010041670A1 JP 2010532933 A JP2010532933 A JP 2010532933A JP 2010532933 A JP2010532933 A JP 2010532933A JP WO2010041670 A1 JPWO2010041670 A1 JP WO2010041670A1
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
epoxy resin
materials
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010532933A
Other languages
English (en)
Other versions
JP5469078B2 (ja
Inventor
政隆 中西
政隆 中西
窪木 健一
健一 窪木
直房 宮川
直房 宮川
義浩 川田
義浩 川田
智江 佐々木
智江 佐々木
静 青木
静 青木
瑞観 鈴木
瑞観 鈴木
正人 鎗田
正人 鎗田
小柳 敬夫
敬夫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2010532933A priority Critical patent/JP5469078B2/ja
Publication of JPWO2010041670A1 publication Critical patent/JPWO2010041670A1/ja
Application granted granted Critical
Publication of JP5469078B2 publication Critical patent/JP5469078B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明は、分子内にエステル結合を有しない新規な脂環エポキシ樹脂およびその前駆体を提供することを目的とする。かかるエポキシ樹脂およびその前駆体は、下記式(1)【化1】(式中、複数存在するRは独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるジオレフィン化合物およびこれをエポキシ化することにより得られるエポキシ樹脂である。

Description

本発明は電気電子材料用途に好適な、新規なジオレフィン化合物及びエポキシ樹脂に関する。
エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料、レジストなどの幅広い分野に利用されている。近年、特に半導体関連材料の分野においてはカメラ付き携帯電話、超薄型の液晶やプラズマTV、軽量ノート型パソコンなど軽・薄・短・小がキーワードとなるような電子機器があふれ、これによりエポキシ樹脂に代表されるパッケージ材料にも非常に高い特性が求められてきている。特に先端パッケージはその構造が複雑になり、液状封止でなくては封止が困難な物が増加している。例えばEnhancedBGAのようなキャビティーダウンタイプの構造になっているものは部分封止を行う必要があり、トランスファー成型では対応できない。このようなことから高機能な液状エポキシ樹脂の開発が求められている。
またコンポジット材、車の車体や船舶の構造材として、近年、その製造法の簡便さからRTMが使用されている。このような組成物においてはカーボンファイバー等への含浸のされやすさから低粘度のエポキシ樹脂が望まれている。
また、オプトエレクトロニクス関連分野、特に近年の高度情報化に伴い、膨大な情報を円滑に伝送、処理するために、従来の電気配線による信号伝送に変わり、光信号を生かした技術が開発されていく中で、光導波路、青色LED、および光半導体等の光学部品の分野においては透明性に優れた樹脂の開発が望まれている。これらの要求に対し、脂環式のエポキシ化合物が注目されている。
脂環式エポキシ化合物はグリシジルエーテルタイプのエポキシ化合物と比較し、電気絶縁性や、透明性といった面で優れており、透明封止材料等に種々使用されているが、この脂環式エポキシ化合物はこういった優れた点の反面、硬化物が硬く、靭性が劣るという問題が残り、この欠点を改良すべく検討が進められている(特許文献1)。
さらに従来、一般に知られているような構造の脂環式エポキシ樹脂は多くはその構造にエステル結合を有する。分子内にエステル基を持つため加水分解性を有し、高温高湿下での使用や強酸が発生する条件等に用いた場合、硬化物の物性低下が起こることがあった。そこで、分子内に脂環骨格を持つが、エステル基を持たないエポキシ化合物が望まれている。このようなエポキシ化合物としては、例えば特許文献2、3に開示されたものがある。既存の脂環式エポキシ化合物の種類はあまり多くない上、エポキシ化前の原料が比較的高価な化合物が多い。また安価なものであってもジシクロペンタジエンのエポキシ化物などはその極性の低さ、分子量の小ささから昇華性があり、作業上好ましくないだけでなく、分子間の官能基密度が大きく、靭性に劣る硬化物となる。
日本公開特許:特開2006−52187号公報 日本公開特許:特開2004−262874号公報 日本公開特許:特開2004−339417号公報
本発明は、分子内にエステル結合を有しない新規な脂環エポキシ樹脂を提供することを目的とする。
本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は
(1)下記式(1)
Figure 2010041670
(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)
で表されるジオレフィン化合物、
(2)上記(1)に記載のジオレフィン化合物を酸化することにより得られるエポキシ樹脂、
(3)過酸化水素または過酸を用いて酸化して得られた上記(2)に記載のエポキシ樹脂、
(4)上記(2)または(3)に記載のエポキシ樹脂と硬化剤および/または硬化触媒を含有する硬化性樹脂組成物、
(5)上記(4)に記載の硬化性樹脂組成物を硬化してなる硬化物、
に関する。
本発明のエポキシ樹脂は分子構造にエステル結合を有さず、さらには機械特性に優れた硬化物を与える。本発明のエポキシ樹脂を含む本発明の硬化性樹脂組成物は電気・電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト、などの広範囲の用途、特に低着色性であることから光学材料に極めて有用である。
本発明のジオレフィン化合物はシクロヘキセンアルデヒド誘導体と、トリメチロールアルカン誘導体との反応により得られる。
使用できるシクロヘキセンアルデヒド誘導体としては、シクロヘキセンカルボアルデヒド、メチルシクロヘキセンカルボアルデヒド、エチルシクロヘキセンカルボアルデヒド等が挙げられる。またトリメチロールアルカン誘導体としては、ジトリメチロールプロパン、ジトリメチロールメタン、ジトリメチロールエタン、ジトリメエチロールブタン等が挙げられる。トリメチロールアルカン誘導体は、シクロヘキセンアルデヒド誘導体1モルに対し、通常0.4〜0.6モル、好ましくは0.45〜0.55モル使用する。
本発明のジオレフィン化合物は、通常の環状アセタール化反応を応用すれば製造できる。例えば、反応媒体にトルエン、キシレンなどの溶媒を用いて共沸脱水しながら反応を行う方法(米国特許第2945008号公報)、濃塩酸に多価アルコールを溶解した後アルデヒド類を徐々に添加しながら反応を行う方法(特開昭48−96590号公報)、反応媒体に水を用いる方法(米国特許第3092640号公報)、反応媒体に有機溶媒を用いる方法(特開平7−215979号公報)、固体酸触媒を用いる方法(特開2007−230992号公報)等が知れている。
本発明においては、前記した手法のいずれであっても構わないが、例えば、シクロヘキセンアルデヒド誘導体とトリメチロールアルカン誘導体を酸性条件下、脱水反応によりアセタール化する方法が挙げられる。この方法は、例えば、トルエン、キシレン等の溶剤中、酸性触媒(硫酸、リン酸等の鉱酸類:トルエンスルホン酸、メタンスルホン酸、イオン交換樹脂等の有機酸類:タングステン酸、モリブデン酸等のヘテロポリ酸、活性白土、無機酸、塩化第二錫、塩化亜鉛、塩化第二鉄等、その他酸性を示す有機、無機酸塩類等が挙げられる)を添加し、アセタール化を行うというものである。必要に応じて共沸脱水を行いながら反応を行っても構わない。さらには水との2層系で反応を行っても構わない。
このようにして合成される本発明のジオレフィン化合物は前記式(1)のような構造を有する。得られるジオレフィン化合物はその構造上、一般に液状を呈する場合が多い。
前記式(1)に示す、本発明のジオレフィン体は酸化することで本発明のエポキシ樹脂とすることができる。酸化の手法としては過酢酸等の過酸で酸化する方法、過酸化水素水で酸化する方法、空気(酸素)で酸化する方法などが挙げられるが、これらに限らない。
過酸によるエポキシ化の手法としては具体的には特開2006−52187号公報に記載の手法などが挙げられる。
過酸化水素水によるエポキシ化の手法においては種々の手法が適応できるが、具体的には、特開昭59−108793号公報、特開昭62−234550号公報、特開平5−213919号公報、特開平11−349579号公報、特公平1―33471号公報、特開2001−17864号公報、特公平3−57102号公報等に挙げられるような手法が適応できる。
以下、本発明のエポキシ樹脂を得るのに特に好ましい方法を例示する。
本発明のジオレフィン化合物、ポリ酸類及び4級アンモニウム塩を有機溶剤、緩衝液及び過酸化水素水のエマルジョン状態で反応を行う。
本発明で使用するポリ酸類は、ポリ酸構造を有する化合物であれば特に制限はないが、タングステンまたはモリブデンを含むポリ酸およびその塩が好ましく、タングステンを含むポリ酸およびその塩が更に好ましく、タングステン酸塩が特に好ましい
具体的なポリ酸およびその塩としては、タングステン酸、12−タングスト燐酸、12−タングストホウ酸、18−タングスト燐酸、12−タングストケイ酸等のタングステン系の酸およびそれらの塩、モリブデン酸、リンモリブデン酸等のモリブデン系の酸およびそれらの塩等、が挙げられる。
これらの塩のカウンターカチオンとしては4級アンモニウムイオン、アルカリ土類金属イオン、アルカリ金属イオンなどが挙げられる。
具体的にはカルシウムイオン、マグネシウムイオン等のアルカリ土類金属イオン、ナトリウム、カリウム、セシウム等のアルカリ金属イオンなどが挙げられるがこれらに限定されない。
特に好ましいカウンターカチオンとしてはナトリウムイオン、カリウムイオン、カルシウムイオン、アンモニウムイオンである。
使用量としては原料1モルに対し、金属元素換算(タングテン酸ならタングステン原子、モリブデン酸ならモリブデン原子のモル数)で1.0〜20ミリモル、好ましくは2.0〜20ミリモル、さらに好ましくは2.5〜10ミリモルである。
4級アンモニウム塩としては、総炭素数が10以上、好ましくは25〜100の4級アンモニウム塩が好ましく使用でき、特にそのアルキル鎖が全て脂肪族鎖であるものが好ましい。
具体的にはトリデカニルメチルアンモニウム塩、ジラウリルジメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、トリアルキルメチル(アルキル基がオクチル基である化合物とデカニル基である化合物の混合タイプ)アンモニウム塩、トリヘキサデシルメチルアンモニウム塩、トリメチルステアリルアンモニウム塩、テトラペンチルアンモニウム塩、セチルトリメチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、ジセチルジメチルアンモニウム塩、トリセチルメチルアンモニウム塩、ジ硬化牛脂アルキルジメチルアンモニウム塩などが挙げられるがこれらに限定されない。特に炭素数が25〜100の物が好ましい。
またこれら塩のアニオン種に特に限定はなく、具体的にはハロゲン化物イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、アセテートイオン、炭酸イオン、等が挙げられるが、これらに限定されない。
本発明においては特にハロゲンを含まない点から硝酸イオン、硫酸イオン、硫酸水素イオン、アセテートイオン、炭酸イオン、等が好ましく、特にエポキシ化時の副反応の少なさからアセテートイオン等のカルボン酸塩が特に好ましい。
炭素数が100を上回ると疎水性が強くなりすぎて、4級アンモニウム塩の水層への溶解性が悪くなる場合がある。炭素数が10未満であると親水性が強くなり、同様に4級アンモニウム塩の有機層への相溶性が悪くなり、好ましくない。
4級アンモニウム塩の使用量は使用するポリ酸類(好ましくはタングステン酸類)の価数倍の0.01〜10倍当量が好ましい。より好ましくは0.05〜6.0倍当量であり、さらに好ましくは0.05〜4.5倍当量である(ただし、特に好ましい範囲はポリ酸類の種類と組み合わせによって異なる)。
例えば、タングステン酸であればHWOで2価であるので、タングステン酸1モルに対し、4級アンモニウム塩は0.02〜20モルの範囲が好ましい。またタングストリン酸であれば3価であるので、同様に0.03〜20モル、ケイタングステン酸であれば4価であるので0.04〜40モルが好ましい。
4級アンモニウム塩の量が、ポリ酸類の価数倍の0.01倍当量よりも低い場合、エポキシ化反応が進行しづらい(場合によっては反応の進行が早くなる)、また副生成物ができやすいという問題が生じる。10倍当量よりも多い場合、後処理が大変であるばかりか、反応を抑制する働きがあり、好ましくない。
緩衝液としてはいずれも用いることができるが、本反応においては燐酸塩水溶液を用いるのが好ましい。そのpHとしてはpH2〜6の間に調整されたものが好ましく、より好ましくはpH3〜5である。pH2未満の場合、エポキシ基の加水分解反応、重合反応が進行しやすくなる。またpH6を超える場合、反応が極度に遅くなり、反応時間が長すぎるという問題が生じる。
緩衝液の使用方法は、例えば好ましい緩衝液である燐酸−燐酸塩水溶液の場合は過酸化水素に対し、0.1〜10モル当量の燐酸(あるいは燐酸二水素ナトリウム等の燐酸塩)を使用し、塩基性化合物(たとえば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等)でpH調整を行うという方法が挙げられる。ここでpHは過酸化水素を添加した際に前述のpHになるように添加することが好ましい。また、燐酸二水素ナトリウム、燐酸水素二ナトリウムなどを用いて調整することも可能である。好ましい燐酸塩の濃度は0.1〜60重量%、好ましくは5〜45重量%である。
また、本反応においては緩衝液を使用せず、pH調整無しに、燐酸水素二ナトリウム、燐酸二水素ナトリウム、燐酸ナトリウム、トリポリ燐酸ナトリウムなど(またはその水和物)の燐酸塩を直接添加しても構わない。工程の簡略化、という意味合いではpH調整のわずらわしさが無く、直接の添加が特に好ましい。この場合の燐酸塩の使用量は、過酸化水素に対し、通常0.1〜5モル%当量、好ましくは0.2〜4モル%当量、より好ましくは、0.3〜3モル%当量である。この際、過酸化水素に対し、5モル%当量を超えるとpH調整が必要となり、0.1モル%当量未満の場合、できたエポキシ化合物の加水分解物が進行しやすくなる、あるいは反応が遅くなるなどの弊害が生じる。
本反応は過酸化水素を用いてエポキシ化を行う。本反応に使用する過酸化水素としては、その取扱いの簡便さから過酸化水素濃度が10〜40重量%の濃度である水溶液が好ましい。濃度が40重量%を超える場合、取扱いが難しくなる他、生成したエポキシ樹脂の分解反応も進行しやすくなることから好ましくない。
本反応は有機溶剤を使用する。使用する有機溶剤の量としては、反応基質であるジオレフィン化合物1に対し、重量比で0.3〜10であり、好ましくは0.3〜5、より好ましくは0.5〜2.5である。重量比で10を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類が挙げられる。また、場合によっては、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物、アセトニトリル等のニトリル化合物なども使用可能である。特に好ましい溶剤としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物である。
具体的な反応操作方法としては、例えばバッチ式の反応釜で反応を行う際は、ジオレフィン化合物、過酸化水素(水溶液)、ポリ酸類(触媒)、緩衝液、4級アンモニウム塩及び有機溶剤を加え、二層で撹拌する。撹拌速度に特に指定は無い。過酸化水素の添加時に発熱する場合が多いことから、各成分を添加した後に過酸化水素を徐々に添加する方法でも構わない。
反応温度は特に限定されないが0〜90℃が好ましく、さらに好ましくは0〜75℃、特に15℃〜60℃が好ましい。反応温度が高すぎる場合、加水分解反応が進行しやすく、反応温度が低いと反応速度が極端に遅くなる。
また反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。好ましい範囲としては1〜48時間、好ましくは3〜36時間、さらに好ましくは4〜24時間である。
反応終了後、過剰な過酸化水素のクエンチ処理を行う。クエンチ処理は、塩基性化合物を使用して行なうことが好ましい。また、還元剤と塩基性化合物を併用することも好ましい。好ましい処理方法としては塩基性化合物でpH6〜10に中和調整後、還元剤を用い、残存する過酸化水素をクエンチする方法が挙げられる。pHが6未満の場合、過剰の過酸化水素を還元する際の発熱が大きく、分解物を生じる可能性がある。
還元剤としては亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドラジン、シュウ酸、ビタミンCなどが挙げられる。還元剤の使用量としては過剰分の過酸化水素のモル数に対し、通常0.01〜20倍モル、より好ましくは0.05〜10倍モル、さらに好ましくは0.05〜3倍モルである。
塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、イオン交換樹脂、アルミナ等の塩基性固体が挙げられる。
その使用量としては水、あるいは有機溶剤(例えば、トルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン、メチルエチルケトン等のケトン類、シクロヘキサン、ヘプタン、オクタン等の炭化水素、メタノール、エタノール、イソプロピルアルコール等のアルコール類など、各種溶剤)に溶解するものであれば、その使用量は過剰分の過酸化水素のモル数に対し、通常0.01〜20倍モル、より好ましくは0.05〜10倍モル、さらに好ましくは0.05〜3倍モルである。これらは水、あるいは前述の有機溶剤の溶液として添加しても単体で添加しても構わない。
水や有機溶剤に溶解しない固体塩基を使用する場合、系中に残存する過酸化水素の量に対し、重量比で1〜1000倍の量を使用することが好ましい。より好ましくは10〜500倍、さらに好ましくは10〜300倍である。水や有機溶剤に溶解しない固体塩基を使用する場合は、後に記載する水層と有機層の分離の後、処理を行っても構わない。
過酸化水素のクエンチ後(もしくはクエンチを行う前に)、有機層と水層が分離しない、もしくは有機溶剤を使用していない場合は前述の有機溶剤を添加して操作を行い、水層より反応生成物の抽出を行う。この際使用する有機溶剤は原料ジオレフィン化合物に対し、重量比で0.5〜10倍、好ましくは0.5〜5倍である。この操作を必要により数回繰り返した後分離した有機層を、必要に応じて水洗して精製する。
得られた有機層は必要に応じてイオン交換樹脂や金属酸化物、活性炭、複合金属塩、粘土鉱物等により、不純物を除去し、さらに水洗、ろ過等を行った後、溶剤を留去することで、目的とするエポキシ樹脂を得ることができる。場合によってはさらにカラムクロマトグラフィーや蒸留により精製しても構わない。
このようにして得られた本発明のエポキシ樹脂は式(2)
Figure 2010041670
(式中、複数存在するRは独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)
で表される化合物を主成分とするが、式(3)
Figure 2010041670
(式中、A〜Dの組み合わせはどのような組み合わせでも構わない。)
に示すような各種の構造の化合物が混在する。またエポキシ基同士の重合した高分子量体や、その他副反応物が反応条件によっては生成する。
得られたエポキシ樹脂は、例えばエポキシアクリレートおよびその誘導体、オキサゾリドン系化合物、環状カーボネート化合物等の各種樹脂原料として使用できる。
以下、本発明のエポキシ樹脂を含む本発明の硬化性樹脂組成物について記載する。
本発明の硬化性樹脂組成物は本発明のエポキシ樹脂を必須成分として含有する。本発明の硬化性樹脂組成物においては、硬化剤による熱硬化(硬化性樹脂組成物A)と酸を硬化触媒とするカチオン硬化(硬化性樹脂組成物B)の二種の方法が適応できる。
硬化性樹脂組成物Aと硬化性樹脂組成物Bにおいて本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。ただし、本発明のエポキシ樹脂を硬化性樹脂組成物の改質剤として使用する場合は、1〜30重量%の割合で添加する。
本発明のエポキシ樹脂と併用し得る他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロルメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
特に本発明の硬化性樹脂組成物を光学用途に用いる場合、脂環式エポキシ樹脂やシルセスキオキサン構造のエポキシ樹脂との併用が好ましい。特に脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(特開2003−170059号公報、特開2004−262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(特開2006−052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる。
アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジメタノール、2,4−ジエチルペンタンジオール、2−エチル−2−ブチル−1.3−プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2−ヒドロキシメチル−1,4−ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
さらには、シクロヘキセンアルデヒド誘導体とアルコール体とのアセタール反応によるアセタール化合物が挙げられる。
これらエポキシ樹脂の具体例としては、ERL−4221、UVR−6105、ERL−4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)及びジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76−85)。
これらは単独で用いてもよく、2種以上併用してもよい。
以下それぞれの硬化性樹脂組成物について言及する。
硬化剤による熱硬化(硬化性樹脂組成物A)
本発明の硬化性樹脂組成物Aが含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4’−ビス(クロロメチル)ベンゼン、1,4’−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン−アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
本発明においては特に前述の酸無水物、カルボン酸樹脂に代表される、酸無水物構造、及びまたはカルボン酸構造を有する化合物が好ましい。
本発明の硬化性樹脂組成物Aにおいて硬化剤の使用量は、全エポキシ樹脂のエポキシ基1当量に対して0.7〜1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
本発明の硬化性樹脂組成物Aにおいては、硬化剤とともに硬化促進剤を併用しても差し支えない。用い得る硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤を用いる場合は、全エポキシ樹脂100重量部に対して0.1〜5.0重量部が必要に応じ用いられる。
本発明の硬化性樹脂組成物Aには、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−ジキシリレニルホスフェート、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1〜0.6(重量比)が好ましい。0.1未満では難燃性が不十分であり、0.6を超えると硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
さらに本発明の硬化性樹脂組成物Aには、必要に応じて酸化防止剤を添加しても構わない。使用できる酸化防止剤としては、フェノール系、イオウ系、リン系酸化防止剤が挙げられる。酸化防止剤は単独で又は2種以上を組み合わせて使用できる。酸化防止剤の使用量は、本発明の硬化性樹脂組成物中の樹脂成分に対して100重量部に対して、通常0.008〜1重量部、好ましくは0.01〜0.5重量部である。
酸化防止剤としては、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤などが挙げられる。フェノール系酸化防止剤の具体例として、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−p−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、等のモノフェノール類;2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,5−ジ−t−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、3,9−ビス[1,1−ジメチル−2−{β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’−ビス−(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−S−トリアジン−2,4,6−(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。
イオウ系酸化防止剤の具体例として、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリルル−3,3’−チオジプロピオネート等が例示される。
リン系酸化防止剤の具体例として、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチル−4−メチルフェニル)ホスファイト、ビス[2−t−ブチル−6−メチル−4−{2−(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のオキサホスファフェナントレンオキサイド類などが例示される。
これらの酸化防止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。特に本発明においてはリン系の酸化防止剤が好ましい。
さらに本発明の硬化性樹脂組成物Aには、必要に応じて光安定剤を添加しても構わない。
光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン・1,3,5−トリアジン・N,N’―ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ〔{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)〔〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1−オクチロキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。
さらに本発明の硬化性樹脂組成物Aには、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ−ナイロン系樹脂、NBR−フェノール系樹脂、エポキシ−NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05〜50重量部、好ましくは0.05〜20重量部が必要に応じて用いられる。
本発明の硬化性樹脂組成物Aには、必要に応じて無機充填剤を添加することができる。無機充填剤としては、シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。特に光学用途に用いる場合はナノサイズの物を用いることが好ましい。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0〜95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、界面活性剤、染料、顔料、紫外線吸収剤等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
本発明の硬化性樹脂組成物Aを光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce,YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1〜250μm、特に2〜50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、樹脂成分に対して100重量部に対して、1〜80重量部、好ましくは、5〜60重量部が好ましい。
本発明の硬化性樹脂組成物Aは、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物Aは従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明のエポキシ樹脂と硬化剤並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、その硬化性樹脂組成物をポッティング、溶融後(液状の場合は溶融無しに)注型あるいはトランスファー成型機などを用いて成型し、さらに80〜200℃で2〜10時間加熱することにより本発明の硬化物を得ることができる。
また本発明の硬化性樹脂組成物Aをトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物Aの硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。また液状組成物のままRTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。
また本発明の硬化性樹脂組成物Aをフィルム型組成物の改質剤としても使用できる。具体的にはB−ステージにおけるフレキシ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明の硬化性樹脂組成物Aを前記硬化性樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。
次に本発明の硬化性樹脂組成物Aを光半導体の封止材又はダイボンド材として用いる場合について詳細に説明する。
本発明の硬化性樹脂組成物Aが高輝度白色LED等の光半導体の封止材、またはダイボンド材として用いる場合には、本発明のエポキシ樹脂を含有する硬化剤(硬化剤組成物)他、硬化促進剤、カップリング材、酸化防止剤、光安定剤等の添加物を充分に混合することによりエポキシ樹脂組成物を調製し、封止材として、またはダイボンド材と封止材の両方に使用される。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。
高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明の硬化性樹脂組成物Aはこの封止材やダイボンド材として用いる事ができる。工程上からは本発明の硬化性樹脂組成物Aをダイボンド材と封止材の両方に使用するのが好都合である。
半導体チップを、本発明の硬化性樹脂組成物Aを用いて、基板に接着する方法としては、本発明の硬化性樹脂組成物Aをディスペンサー、ポッティング、スクリーン印刷により塗布した後、半導体チップをのせて加熱硬化を行い、半導体チップを接着させることができる。加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
加熱条件は例えば80〜230℃で1分〜24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80〜120℃、30分〜5時間予備硬化させた後に、120〜180℃、30分〜10時間の条件で後硬化させることができる。
封止材の成形方式としては上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
加熱条件は例えば80〜230℃で1分〜24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80〜120℃、30分〜5時間予備硬化させた後に、120〜180℃、30分〜10時間の条件で後硬化させることができる。
本発明の硬化性樹脂組成物Aを硬化して得られる本発明の硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。
更に、本発明の硬化性樹脂組成物Aは、エポキシ樹脂等の熱硬化性樹脂が使用される一般の用途に用いることができ、具体的には、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。
接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
硬化性樹脂組成物B(酸性硬化触媒によるカチオン硬化)
酸性硬化触媒を用いて硬化させる本発明の硬化性樹脂組成物Bは、酸性硬化触媒として光重合開始剤あるいは熱重合開始剤を含有する。さらに、希釈剤、重合性モノマー、重合性オリゴマー、重合開始補助剤、光増感剤等の各種公知の化合物、材料等を含有していてもよい。また、所望に応じて無機充填材、着色顔料、紫外線吸収剤、酸化防止剤、安定剤等、各種公知の添加剤を含有してもよい。
酸性硬化触媒としてはカチオン重合開始剤が好ましく、光カチオン重合開始剤が特に好ましい。カチオン重合開始剤としてはヨードニウム塩、スルホニウム塩、ジアゾニウム塩等のオニウム塩を有するものが挙げられ、これらは単独または2種以上で使用することができる。
活性エネルギー線カチオン重合開始剤の例は、金属フルオロホウ素錯塩および三フッ化ホウ素錯化合物(米国特許第3379653号)、ビス(ペルフルアルキルスルホニル)メタン金属塩(米国特許第3586616号)、アリールジアゾニウム化合物(米国特許第3708296号)、VIa族元素の芳香族オニウム塩(米国特許第4058400号)、Va族元素の芳香族オニウム塩(米国特許第4069055号)、IIIa〜Va族元素のジカルボニルキレート(米国特許第4068091号)、チオピリリウム塩(米国特許第4139655号)、MF6−陰イオンの形のVIb族元素(米国特許第4161478号;Mはリン、アンチモンおよび砒素から選択される。)、アリールスルホニウム錯塩(米国特許第4231951号)、芳香族ヨードニウム錯塩および芳香族スルホニウム錯塩(米国特許第4256828号)、およびビス[4−(ジフェニルスルホニオ)フェニル]スルフィド−ビス−ヘキサフルオロ金属塩(Journal of Polymer Science, Polymer Chemistry、第2巻、1789項(1984年))である。その他、鉄化合物の混合配位子金属塩およびシラノール−アルミニウム錯体も使用することが可能である。
また、具体例としては、「アデカオプトマーSP150」、「アデカオプトマーSP170」(いずれも旭電化工業社製)、「UVE−1014」(ゼネラルエレクトロニクス社製)、「CD−1012」(サートマー社製)、「RP−2074」(ローディア社製)等が挙げられる。
該カチオン重合開始剤の使用量は、全エポキシ樹脂成分100重量部に対して、好ましくは、0.01〜50重量部であり、より好ましくは、0.1〜10重量部である。
更に、これらの光カチオン重合開始剤と公知の重合開始補助剤および光増感剤の1種または2種以上を同時に使用することが可能である。重合開始補助剤の例としては、例えば、ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノールプロパン−1−オン、N,N−ジメチルアミノアセトフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−tert−ブチルアントラキノン、1−クロロアントラキノン、2−アミルアントラキノン、2−イソプロピルチオキサトン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、アセトフェノンジメチルケタール、ベンゾフェノン、4−メチルベンゾフェノン、4,4’−ジクロロベンゾフェノン、4,4’−ビスジエチルアミノベンゾフェノン、ミヒラーズケトン等の光ラジカル重合開始剤が挙げられる。光ラジカル重合開始剤等の重合開始補助剤の使用量は、光ラジカル可能な成分100重量部に対して、0.01〜30重量部であり、好ましくは0.1〜10重量部である。
光増感剤の具体例としては、アントラセン、2−イソプロピルチオキサトン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、アクリジン オレンジ、アクリジン イエロー、ホスフィンR、ベンゾフラビン、セトフラビンT、ペリレン、N,N−ジメチルアミノ安息香酸エチルエステル、N,N−ジメチルアミノ安息香酸イソアミルエステル、トリエタノールアミン、トリエチルアミン等を挙げることができる。光増感剤の使用量は、全エポキシ樹脂成分100重量部に対して、0.01〜30重量部であり、好ましくは0.1〜10重量部である。
更に、本発明の硬化性樹脂組成物Bには、必要に応じて無機充填剤やシランカップリング材、離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。具体的な例としては前述の通りである。
本発明の硬化性樹脂組成物Bは、各成分を均一に混合することにより得られる。またポリエチレングリコールモノエチルエーテルやシクロヘキサノン、γブチロラクトン等の有機溶剤に溶解させ、均一とした後、乾燥により溶剤を除去して使用することも可能である。この際の溶剤は、本発明の硬化性樹脂組成物Bと該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。本発明の硬化性樹脂組成物Bは紫外線照射することにより硬化できるが、その紫外線照射量については、硬化性樹脂組成物により変化するため、それぞれの硬化条件によって決定される。光硬化型硬化性樹脂組成物が硬化する照射量であれば良く、硬化物の接着強度が良好である硬化条件を満たしていれば良い。この硬化の際、光が細部まで透過することが必要であることから本発明のエポキシ樹脂、および硬化性樹脂組成物Bにおいては透明性の高いものが望まれる。また。これらエポキシ樹脂系の光硬化では光照射のみでは完全に硬化することが難しく、耐熱性が求められる用途においては光照射後に加熱により完全に反応硬化を終了させる必要がある。
前記光照射後の加熱は通常の硬化性樹脂組成物Bの硬化温度域で良い。例えば常温〜150℃で30分〜7日間の範囲が好適である。硬化性樹脂組成物Bの配合により変化するが、特に高い温度域であればあるほど光照射後の硬化促進に効果があり、短時間の熱処理で効果がある。また、低温であればあるほど長時間の熱処理を要する。このような熱アフターキュアすることで、エージング処理になるという効果も出る。
また、これら硬化性樹脂組成物Bを硬化させて得られる硬化物の形状も用途に応じて種々とりうるので特に限定されないが、例えばフィルム状、シート状、バルク状などの形状とすることもできる。成形する方法は適応する部位、部材によって異なるが、例えば、キャスト法、注型法、スクリーン印刷法、スピンコート法、スプレー法、転写法、ディスペンサー方式などの成形方法などが挙げられるが、これらに限定されるものではない。成形型は研磨ガラス、硬質ステンレス研磨板、ポリカーボネート板、ポリエチレンテレフタレート板、ポリメチルメタクリレート板等を適用することができる。また、成形型との離型性を向上させるためポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリイミドフィルム等を適用することができる。
例えばカチオン硬化性のレジストに使用する際においては、まず、ポリエチレングリコールモノエチルエーテルやシクロヘキサノンあるいはγブチロラクトン等の有機溶剤に溶解させた本発明の光カチオン硬化性樹脂組成物Bを銅張積層板やセラミック基板またはガラス基板等の基板上に、スクリーン印刷、スピンコート法などの手法によって、5〜160μmの膜厚で本発明の組成物を塗布し、塗膜を形成する。そして、該塗膜を60〜110℃で予備乾燥させた後、所望のパターンの描かれたネガフィルムを通して紫外線(例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、レーザー光等)を照射し、ついで、70〜120℃で露光後ベーク処理を行う。その後ポリエチレングリコールモノエチルエーテル等の溶剤で未露光部分を溶解除去(現像)した後、さらに必要があれば紫外線の照射及び/または加熱(例えば100〜200℃で0.5〜3時間)によって十分な硬化を行い、硬化物を得る。このようにしてプリント配線板を得ることも可能である。
本発明の硬化性樹脂組成物Bを硬化してなる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。
光学用材料の他の用途としては、硬化性樹脂組成物Bが使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
次に本発明を実施例により更に具体的に説明するが、以下において部は特に断りのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量はJIS K−7236、粘度は25℃においてE型粘度計を使用して測定を行った。またガスクロマトグラフィー(以下、「GC」という)における分析条件は分離カラムにHP5−MS(0.25mm I.D.x 15m, 膜厚0.25μm)を用いて、カラムオーブン温度を初期温度100℃に設定し、毎分 15℃の速度で昇温させ300℃で25分間保持した。またヘリウムをキャリヤーガスとした。さらにゲルパーミエーションクロマトグラフィー(以下、「GPC」という)の測定においては以下の通りである。カラムは、Shodex SYSTEM−21カラム(KF−803L、KF−802.5(×2本)、KF−802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.カラム温度は40℃、また検出はUV(254nm)で行い、検量線はShodex製標準ポリスチレンを使用した。
実施例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水150部、3−シクロヘキセンカルボアルデヒド55.1部、ジトリメチロールプロパン62.6部、濃塩酸7.3部を加え、60℃で10時間反応を行った。反応終了後、水100部、3%水酸化ナトリウム水溶液を30部加え、さらにリン酸水素二ナトリウムで中和した。ここに、メチルイソブチルケトン200部を加え、水100部で3回水洗を行った後、溶剤等を除去することにより下記式(4)
Figure 2010041670
で表される本発明のジオレフィン化合物(D−1)を101部得た。
得られた化合物の形状は液状であり、GCによる純度は94%、GPCによる分析の結果、98%の純度である事を確認した。粘度は21000mPa・s(25℃ E型粘度計)であった。
実施例2
撹拌機、還流冷却管、撹拌装置、ディーンスターク菅を備えたフラスコに、窒素パージを施しながらトルエン150部、3−シクロヘキセンカルボアルデヒド55.1部、ジトリメチロールプロパン62.6部、p−トルエンスルホン酸1.5部を加え、還流条件で水を抜きながら10時間反応を行った。反応終了後、トリポリリン酸ナトリウム3部加え、100℃で30分撹拌後、ろ過、さらにトルエン200部、10重量%リン酸水素二ナトリウム水溶液100部を加え、水洗、さらに、水100部で3回水洗をおこなった。ここに、メチルイソブチルケトン200部を加え、水100部で3回水洗を行った後、溶剤等を除去することにより前記式(4)で表される本発明のジオレフィン化合物(D−2)を108部得た。
得られた化合物の形状は液状であり、GCによる純度は93%、GPCによる分析の結果、98%の純度である事を確認した。粘度は22000mPa・s(25℃ E型粘度計)であった。
実施例3
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水15部、12−タングストリン酸0.95部、燐酸水素ニナトリウム0.78、ジ硬化牛脂アルキルジメチルアンモニウムアセテート2.7部(ライオンアクゾ製 50重量%ヘキサン溶液)を加え、タングステン酸系触媒を生成させた後、トルエン120部、実施例2で得られた式(4)の化合物(D−2)108部を加え、さらに再度攪拌することでエマルジョン状態の液とした。この溶液を50℃に昇温し、激しく攪拌しながら、35%過酸化水素水55部を加え、そのまま50℃で13時間攪拌した。GCにて反応の進行を確認したところ、反応終了後の基質のコンバ−ジョンは>99%であり、原料ピークは消失していた。
ついで1%水酸化ナトリウム水溶液で中和した後、20%チオ硫酸ナトリウム水溶液25部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここにシリカゲル(ワコーゲル C−300)20部、活性炭(NORIT製 CAP SUPER)10部、ベントナイト(ホージュン製 ベンゲルSH)20部を加え、室温で1時間攪拌後、ろ過した。得られたろ液を水100部で3回水洗を行い、得られた有機層より、有機溶剤を留去することで、下記式(5)
Figure 2010041670
で表される化合物を主成分とする本発明のエポキシ樹脂を99部得た。
GPCの測定結果より、式(5)の骨格の化合物(EP−1)を85%含有していることを確認した。
また、その粘度は230Pa・s(25℃ E型粘度計)であり、エポキシ当量は264g/eq.であった。
ついで、得られたエポキシ樹脂(EP−1)20部、シリカゲル(ワコーゲルC−300)40部、トルエン100部を加え、十分に撹拌した後、ロータリーエバポレータで溶剤を留去した。得られたエポキシ担持シリカゲルを予め200部で積層させたシリカゲルカラムの上に仕込み、展開溶媒として、ヘキサン:酢酸エチル=9:1〜ヘキサン:酢酸エチル1:9と徐々に極性を上げながらシリカゲルカラムクロマトグラフィーにより、前記式(5)の化合物を分離し、得られたフラクションをロータリーエバポレータで溶剤回収することで無色の前記式(5)の化合物(EP−2)を得た。エポキシ当量は244g/eq.であり、粘度は140Pa・s(25℃ E型粘度計)であった。またGPCによる純度は約95%であった。
実施例3で得られた本発明のエポキシ樹脂(EP−1、EP−2)、について、硬化剤として、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH700G、以下、H1と称す)、硬化促進剤としてヘキサデシルトリメチルアンモニウムヒドロキシド(東京化成工業(株)製 25%メタノール溶液、C1と称す)を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物を得た。
(耐熱特性試験:DMA)
実施例3で得られた硬化性樹脂組成物を真空脱泡20分間実施後、横7mm、縦5cm、厚み約800μmの試験片用金型に静かに注型し、その後上からポリイミドフィルムでフタをした。その注型物を下記条件で硬化させ動的粘弾性用試験片を得た。これらの試験片を用い、下記に示した条件で、動的粘弾性試験を実施した。
硬化条件
120℃×1時間+150℃×3時間
測定条件
動的粘弾性測定器:TA−instruments製、DMA-2980
測定温度範囲:−30℃〜280℃
温速度:2℃/分
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
解析条件
Tg:DMA測定に於けるTan−δのピーク点をTgとした。
(熱機械特性試験:TMA)
実施例3で得られた硬化性樹脂組成物を真空脱泡20分間実施後、テフロン(登録商標)製のφ5mmチューブにて注形し、その注型物を上記条件で硬化させ試験片を得た。この試験片を用い、下記に示した条件で、耐熱性試験を実施した。
測定条件
動的粘弾性測定器:真空理工(株)製 TM−7000
測定温度範囲:40℃〜250℃
温速度:2℃/分
試験片サイズ:φ5mm 10mmに切り出した物を使用した。
Figure 2010041670
実施例6、7、比較例1、2
実施例3で得られた本発明のエポキシ樹脂(EP−1)、比較例として(3,4−エポキシシクロヘキシルメチル−(3,4−エポキシ)シクロヘキシルカルボキシレート(ダウ・ケミカル社製 ERL−4221 エポキシ当量 140g/eq. 以下、EP−3と称す)について、硬化剤としてH1、シクロヘキサン−1,2,4−トリカルボン酸−1,2−無水物(三菱瓦斯化学株式会社製 H−TMAn 以下、H2と称す)、硬化促進剤としてC1を使用し、下記表2に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性組成物を得た。
得られた硬化性樹脂組成物を用い、以下に示す要領で、LED試験をおこなった。硬化条件は120℃×1時間の予備硬化の後150℃×3時間である。
(LED試験)
実施例6,7、及び比較例1,2で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した5mm角の表面実装型LEDに注型した。その後、所定の硬化条件で硬化させることで、試験用LEDを得た。
(LED点灯試験)
点灯試験は、試験用LEDを基板に実装したものにつき、規定電流である30mAの2倍の電流での点灯試験を行った。詳細な条件は下記に示した。測定項目としては、200時間点灯後の照度を積分球を使用して測定し、試験用LEDの照度の保持率を算出した。
点灯詳細条件
発光波長:465nm
駆動方式:定電流方式、60mA(発光素子規定電流は30mA)
駆動環境:85℃、85%
評価:200時間後の照度とその照度保持率
Figure 2010041670
以上の結果より、本発明のエポキシ樹脂はその樹脂骨格にエステル結合を有さず、かつLEDでの点灯試験の結果、LEDの光および湿度・熱にも耐えうることのできる光学特性、および電気特性にも優れる硬化物を与えることができることが明らかとなった。
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2008年10月6日付けで出願された日本特許出願(特願2008−259469)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (5)

  1. 下記式(1)
    Figure 2010041670

    (式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)
    で表されるジオレフィン化合物。
  2. 請求項1に記載のジオレフィン化合物を酸化することにより得られるエポキシ樹脂。
  3. 過酸化水素または過酸を用いて酸化して得られた請求項2に記載のエポキシ樹脂。
  4. 請求項2または3に記載のエポキシ樹脂と硬化剤および/または硬化触媒を含有する硬化性樹脂組成物。
  5. 請求項4に記載の硬化性樹脂組成物を硬化してなる硬化物。
JP2010532933A 2008-10-06 2009-10-06 ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物、および硬化物 Expired - Fee Related JP5469078B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010532933A JP5469078B2 (ja) 2008-10-06 2009-10-06 ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物、および硬化物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008259469 2008-10-06
JP2008259469 2008-10-06
JP2010532933A JP5469078B2 (ja) 2008-10-06 2009-10-06 ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物、および硬化物
PCT/JP2009/067432 WO2010041670A1 (ja) 2008-10-06 2009-10-06 ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物、および硬化物

Publications (2)

Publication Number Publication Date
JPWO2010041670A1 true JPWO2010041670A1 (ja) 2012-03-08
JP5469078B2 JP5469078B2 (ja) 2014-04-09

Family

ID=42100620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010532933A Expired - Fee Related JP5469078B2 (ja) 2008-10-06 2009-10-06 ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物、および硬化物

Country Status (4)

Country Link
JP (1) JP5469078B2 (ja)
CN (2) CN103788059A (ja)
TW (1) TWI510478B (ja)
WO (1) WO2010041670A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492081B2 (ja) * 2009-03-19 2014-05-14 日本化薬株式会社 ジオレフィン化合物、エポキシ樹脂及び該組成物
CN103485480A (zh) * 2013-10-08 2014-01-01 江苏明福钢结构有限公司 钢结构网架
CN106120508A (zh) * 2016-06-22 2016-11-16 赵传宝 一种彩色压模混凝土艺术地坪
CN111138383B (zh) * 2019-12-30 2022-03-01 昌德新材科技股份有限公司 脂环族环氧树脂及其制备方法
CN112341407A (zh) * 2020-10-23 2021-02-09 如皋市丹凤纺织有限公司 一种纱线浸渍助剂合成方法
JP2023157777A (ja) * 2022-04-15 2023-10-26 株式会社レゾナック 熱硬化性接着剤組成物、積層フィルム、接続体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035558A1 (ja) * 2002-09-05 2004-04-29 Daicel Chemical Industries, Ltd. 脂環式ジエポキシ化合物の製造方法、硬化性エポキシ樹脂組成物、電子部品封止用エポキシ樹脂組成物、電気絶縁油用安定剤、および電気絶縁用注型エポキシ樹脂組成物
JP2004099467A (ja) * 2002-09-05 2004-04-02 Daicel Chem Ind Ltd 脂環式エポキシ化合物の製造方法
JP2004262874A (ja) * 2003-03-03 2004-09-24 Daicel Chem Ind Ltd ジエポキシシクロオクタン類の製造方法
JP2005029632A (ja) * 2003-07-09 2005-02-03 Konica Minolta Medical & Graphic Inc インクジェット用インク組成物、画像形成方法及びエポキシ化合物

Also Published As

Publication number Publication date
CN102239157A (zh) 2011-11-09
TW201029984A (en) 2010-08-16
TWI510478B (zh) 2015-12-01
WO2010041670A1 (ja) 2010-04-15
CN103788059A (zh) 2014-05-14
CN102239157B (zh) 2014-01-08
JP5469078B2 (ja) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5517237B2 (ja) エポキシ化合物の製造方法、エポキシ化合物、硬化性樹脂組成物及びその硬化物
JP5559154B2 (ja) オレフィン樹脂、エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP5469078B2 (ja) ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物、および硬化物
WO2012002404A1 (ja) 多価カルボン酸組成物、硬化剤組成物、ならびに該多価カルボン酸組成物または該硬化剤組成物をエポキシ樹脂の硬化剤として含有する硬化性樹脂組成物
JP5294771B2 (ja) エポキシ化合物の製造方法
JP5430337B2 (ja) ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP5780627B2 (ja) エポキシ化合物の製造方法
JP5492081B2 (ja) ジオレフィン化合物、エポキシ樹脂及び該組成物
JP5388493B2 (ja) エポキシ化合物の製造方法
JP5505960B2 (ja) ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP5367065B2 (ja) オレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物、led装置
JP5559207B2 (ja) ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP5294772B2 (ja) エポキシ化合物の製造方法
JP5748191B2 (ja) エポキシ化合物の製造方法
JP2011225654A (ja) ジオレフィン樹脂、エポキシ樹脂、及び該組成物
JP5878865B2 (ja) ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP5660778B2 (ja) ジオレフィン化合物、エポキシ化合物、及び該組成物
JP5796916B2 (ja) エポキシ樹脂の製造方法
JP5196663B2 (ja) ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP2010083836A (ja) エポキシ化合物の製造方法及び触媒
JP5388531B2 (ja) エポキシ化合物の製造方法
JP2010254628A (ja) ジオレフィン化合物、エポキシ化合物、硬化性樹脂組成物及びその硬化物

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5469078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees