JPWO2008155916A1 - 静電気対策部品およびその製造方法 - Google Patents

静電気対策部品およびその製造方法 Download PDF

Info

Publication number
JPWO2008155916A1
JPWO2008155916A1 JP2008549297A JP2008549297A JPWO2008155916A1 JP WO2008155916 A1 JPWO2008155916 A1 JP WO2008155916A1 JP 2008549297 A JP2008549297 A JP 2008549297A JP 2008549297 A JP2008549297 A JP 2008549297A JP WO2008155916 A1 JPWO2008155916 A1 JP WO2008155916A1
Authority
JP
Japan
Prior art keywords
electrode
component
electrodes
pair
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008549297A
Other languages
English (en)
Other versions
JP4697306B2 (ja
Inventor
功一 吉岡
功一 吉岡
優克 縄手
優克 縄手
森野 貴
貴 森野
野添 研治
研治 野添
井関 健
健 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008549297A priority Critical patent/JP4697306B2/ja
Publication of JPWO2008155916A1 publication Critical patent/JPWO2008155916A1/ja
Application granted granted Critical
Publication of JP4697306B2 publication Critical patent/JP4697306B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/1006Thick film varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Abstract

アルミナ基板(1)の上面に設けられた一対の第1の電極(2)を比抵抗が小さい材料を用いて膜厚の厚い状態に構成し、かつ前記一対の第1の電極(2)間に位置して融点の高い材料からなる第2の電極(3)を膜厚の薄い状態に設けるとともに、この第2の電極(3)にギャップ(4)を形成した。引出電極を構成する第1の電極(2)の発熱および損傷を低減させることができ、かつ第2の電極(3)のギャップ幅を狭くかつ精度良く形成できる。これにより、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電の抑制特性が安定している静電気対策部品を提供する。

Description

本発明は電子機器を静電気から保護する静電気対策部品およびその製造方法に関するものである。
近年、携帯電話等の電子機器の小型化、高性能化が急速に進み、それに伴い電子機器に用いられる電子部品の小型化も急速に進んでいる。しかしながら、その反面、この小型化に伴って電子機器や電子部品の耐電圧は低下する。これにより、人体と電子機器の端子が接触した時に発生する静電気パルスによって機器内部の電気回路が損傷することが増えてきている。これは静電気パルスによって1ナノ秒以下の立ち上がり速度でかつ数百〜数キロボルトという高電圧が機器内部の電気回路に印加されるからである。
従来から、このような静電気パルスへの対策として、静電気が入るラインとグランド間に対策部品を設ける方法がとられている。近年では信号ラインの伝送速度が数百Mbps以上である高速化が進んでおり、上記の対策部品の浮遊容量が大きい場合には信号品質が劣るため、対策部品の浮遊容量はより小さい方が好ましい。したがって、数百Mbps以上の伝送速度になると1pF以下の低静電容量の対策部品が必要になってくるものである。
このような高速伝送ラインでの静電気対策として、従来においては、対向する一対の引出電極間に形成されたギャップと引出電極の一部を過電圧保護材料層で覆うタイプの静電気対策部品が提案されている。しかし、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品は作成し難いものであった。
なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
ここで、静電気対策部品の劣化や特性ばらつきの原因となるメカニズムを説明する。従来の対向する一対の引出電極間に形成されたギャップと引出電極の一部を過電圧保護材料層で覆うタイプの静電気対策部品における特性発現のメカニズムは、以下のようなものである。対向する一対の引出電極間のギャップに静電気による過電圧が印加された際に、対向する一対の引出電極間のギャップに位置する過電圧保護材料層中に散在する導電粒子間あるいは半導体粒子間に放電電流のようなものが流れるので、それを電流としてグランドにバイパスさせる。このタイプの従来の静電気対策部品では、静電気印加を繰り返し実施することにより、静電気をグランドにバイパスさせる特性が劣化する場合も見られた。静電気印加を繰り返した後に、静電気対策部品をX線透過顕微鏡などの非破壊分析手法で観察すると、対向する一対の引出電極間のギャップ長が、初期状態と比較してわずかに拡大していることがわかる。これは、静電気印加時に流れる電流により対向する一対の引出電極が発熱し、その熱によって一対の引出電極の材料自身がごくわずかに溶解して損傷を受けるのも一因であると考えられる。
上記した一対の引出電極自身の損傷は、主に静電気放電(ESD)印加時に引出電極を流れる電流により発生する熱に起因するところが大きい。従って、引出電極の損傷を低減するためには、引出電極で発生する熱量を抑制することが必要であるとともに、熱に対する耐久性の高い材料を用いることが必要である。この場合、引出電極で発生する熱量を抑制するためには、比抵抗が小さい材料を用い、かつ膜厚を厚くして引出電極の抵抗を下げればよい。また、熱に対する耐久性の高い材料としては融点の高い材料が挙げられる。
しかしながら、引出電極の抵抗値を下げる目的で引出電極の膜厚を厚くした場合には、対向する一対の引出電極間のギャップを狭くかつ精度良く形成することが困難となるものである。一方、熱に対する耐久性の高い材料としてタングステンやモリブデンといった融点の高い金属を用いた場合には、金に比べて融点が高いため熱に起因する損傷を抑制する効果は大きい。しかし、これらは表面が酸化しやすいために、2μm以下の薄い膜厚では、抵抗値が極めて大きくなり発熱量が増大する。これを防ぐためにタングステンやモリブデンの膜厚を厚くした場合には、前述したものと同様の理由により、高精度のギャップの形成が困難になるものである。
特表2002−538601号公報
本発明は、絶縁基板と、この絶縁基板の上面に設けられた一対の第1の電極と、この一対の第1の電極間に位置するギャップと、このギャップを覆う過電圧保護材料層とを備えている。一対の第1の電極を比抵抗が小さい材料を用いて膜厚の厚い状態に構成している。一対の第1の電極間に位置して第1の電極と電気的に接続されるように、融点の高い材料からなる第2の電極を膜厚の薄い状態に設けている。この第2の電極の間にギャップを形成したものである。
この構成によれば、一対の第1の電極を比抵抗が小さい材料を用いて膜厚の厚い状態に構成しているため、引出電極を構成する一対の第1の電極自体の抵抗を低減させることができる。これにより、静電気の印加時に流れる電流による発熱を抑制することができる。また、一対の第1の電極間に位置して第1の電極と電気的に接続されるように、融点の高い材料からなる第2の電極を膜厚の薄い状態に設けるとともに、この第2の電極の間にギャップを形成している。このため、静電気印加による電極の損傷を抑制しながら、第2の電極に10μm程度の狭いギャップを確実に精度良く形成することが可能となる。これにより、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を作成することができる。
図1は本発明の実施の形態1における静電気対策部品の断面図である。 図2Aは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図2Bは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図3Aは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図3Bは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図3Cは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図3Dは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図4Aは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図4Bは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図4Cは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図4Dは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図5Aは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図5Bは本発明の実施の形態1における静電気対策部品の製造方法を示す裏面図である。 図5Cは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図5Dは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図5Eは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図6Aは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図6Bは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図6Cは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図6Dは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図7Aは本発明の実施の形態1における静電気対策部品の製造方法を示す断面図である。 図7Bは本発明の実施の形態1における静電気対策部品の製造方法を示す上面図である。 図8は本発明の実施の形態1における静電気対策部品の静電気試験方法を示す模式図である。 図9は本発明の実施の形態1における静電気対策部品の静電気試験の試験結果を示すグラフである。 図10は本発明の実施の形態1の他の静電気対策部品の断面図である。 図11は本発明の実施の形態2における静電気対策部品の静電気試験の試験結果を示すグラフである。 図12は本発明の実施の形態3における静電気対策部品の静電気試験の試験結果を示すグラフである。
符号の説明
1 アルミナ基板
2 第1の電極
3 第2の電極
4 ギャップ
7 過電圧保護材料層
(実施の形態1)
以下、実施の形態1を用いて、静電気対策部品およびその製造方法について、図面を参照しながら説明する。図1は本発明の実施の形態1における静電気対策部品の断面図を示したものである。図1に示すように、本発明の実施の形態1における静電気対策部品は、比誘電率が50以下、好ましくは10以下の絶縁基板であるアルミナ基板1の上面に引出電極を構成する一対の第1の電極2を有する。この一対の第1の電極2間に位置して、第1の電極2に一部が重なり、電気的に接続するように第2の電極3が設けられている。第2の電極3は、融点の高い材料からなり第1の電極2より膜厚が薄い。この第2の電極3の中央部をレーザーで切断して設けられたギャップ4が形成されている。ギャップ4とは電極の存在しない細い空間である。一対の第1の電極2の上に一対の再上面電極5が形成されている。さらにアルミナ基板1の裏面に一対の裏面電極6が形成されている。ギャップ4と第2の電極3の一部を覆うように少なくとも金属粉とシリコーン系樹脂からなる過電圧保護材料層7が設けられている。この過電圧保護材料層7の上に、少なくとも一種類以上の絶縁体粉とシリコーン系樹脂からなる中間層8が形成されている。この中間層8の上に、この中間層8を完全に覆うとともに、再上面電極5の一部を覆うように保護樹脂層9が形成されている。さらに、アルミナ基板1の両端部に一対の第1の電極2、再上面電極5および裏面電極6と電気的に接続される端面電極10が形成されている。端面電極10を覆うように、バレルめっき法を用いて設けられたニッケルめっき層11と錫めっき層12が形成されている。
次に、本発明の実施の形態1における静電気対策部品の製造方法について説明する。
図2A、図2B、図3A〜図3D、図4A〜図4D、図5A〜図5E、図6A〜図6Dおよび図7A、図7Bは本発明の実施の形態1における静電気対策部品の製造方法を示すステップ順の断面図、平面図または裏面図である。以下、この製造方法について説明する。図2A、図3A、図3C、図4A、図4C、図5A、図5C、図6A、図6Cおよび図7Aは個片状の基板の断面図を示し、また図2B、図3B、図3D、図4B、図4D、図5D、図5E、図6B、図6Dおよび図7Bは個片状の基板の上面図を示し、さらに図5Bは個片状の基板の裏面図を示している。
まず、図2A、図2Bに示すように、比誘電率が50以下、好ましくは10以下のアルミナを900〜1300℃で焼成して作成されたアルミナ基板1の上面の両端部に引出電極を構成する一対の第1の電極2を形成する。ここで、機能素子を形成する絶縁基板にアルミナを用いるのは、アルミナが耐熱性ならびに機能素子との密着性に優れた材料であるためである。なお、この図2A、図2Bには、静電気対策部品の個片サイズである長辺がL(mm)で短辺がW(mm)の矩形状のアルミナ基板1が示されている。以下の製造工程の説明でもこの個片サイズのアルミナ基板1を用いて説明している。しかし、実際の製造工程では、この個片サイズのアルミナ基板1を多数個縦横に得ることができるシート状の集合アルミナ基板を用いて、後述する端面電極の形成工程前に短冊状または個片状に分割するものである。
上記した第1の電極2は、図2Bに示すようなパターンで金を主成分とする比抵抗の小さい材料により形成する。この場合、金を主成分とする導体ペーストをスクリーン印刷法により帯状に印刷し、そして約850℃で45分間焼成することにより第1の電極2を形成する。この方法のよると、他の金系材料、例えば金系スパッタ等を選択するよりも生産性やコストの面から好ましいものである。なお、この第1の電極2の焼成後の厚みは2〜20μmであり、好ましくは2〜10μmである。抵抗値を低く安定にするために膜厚を比較的厚い状態に構成している。また、この第1の電極2はアルミナ基板1の長辺側に余白を残して印刷しているものである。
次に、図3A、図3Bに示すように、一対の第1の電極2間に位置して第1の電極2に一部が重なるように融点の高い材料であるタングステンをスパッタリングすることにより、薄膜からなる第2の電極3を第1の電極2と電気的に接続されるように形成する。この場合、第2の電極3は一対の第1の電極2の一部を覆うように形成しても、図3C、図3Dに示すように第1の電極2のすべてを覆うように形成してもよいものである。第2の電極3は後述するギャップを形成する領域に形成されていればよいものである。従って、第2の電極3の材料コストを削減するためにも、また第2の電極3の形成に用いるスパッタ用マスクパターンの寿命を長くするためにも、第2の電極3はアルミナ基板1および第1の電極2との密着性が良好に得られる範囲内で、図3A、図3Bに示すように第1の電極2の一部を覆うように形成することが好ましい。また、この第2の電極3を構成するタングステンの熱膨張係数は4.3×10-6〜4.5×10-6/Kであり、アルミナ基板1の熱膨張係数である6.4×10-6〜8.0×10-6/Kに近い値であるため、第2の電極3とアルミナ基板1との密着性も良好となる。なお、第2の電極3を形成するのに用いるスパッタ装置は、インライン方式のDCスパッタ装置を使用し、そして出力3KW、アルゴンガス圧0.5〜4.5mmTorr(66〜600Pa)の成膜条件により30〜60分間成膜を行った。また、第2の電極3の幅Aは図3B、図3Dに示すように第1の電極2の幅Bより大きくして、アルミナ基板1との密着性を確保している。
次に、図4A、図4Bに示すように、第2の電極3の略中央部をUVレーザーを用いて切断することにより、幅約10μmのギャップ4を形成する。ここで第2の電極3は融点の高い材料であるタングステンを用いてマスクスパッタすることにより薄膜状態に形成されているため、その厚みは薄い。したがって、比較的低い出力である0.2Wの出力のUVレーザーを用いて第2の電極3を物理的に切削してギャップ4を確実に精度良く形成することが可能となる。これは、フォトリソグラフィーのプロセスによって第2の電極3の間にギャップを形成する場合と比べた場合、ギャップ4のショート不良が起こりにくいものである。
次に、図4C、図4Dに示すように、一対の第1の電極2の一部を覆うように、樹脂銀ペーストからなる一対の再上面電極5を、スクリーン印刷法を用いて3〜20μmの厚みで印刷し、100〜200℃で5〜15分間乾燥させることにより形成する。
次に、図5A、図5Bに示すように、アルミナ基板1の裏面に、樹脂銀ペーストからなる一対の裏面電極6をスクリーン印刷法を用いて3〜20μmの厚みで印刷し、かつ100〜200℃で5〜15分間乾燥させることにより形成する。ここで裏面電極6は、アルミナ基板1の短辺側を跨ぐ部分の幅を他の部分の幅よりも狭くしている。すなわち、シート状のアルミナ基板の個片領域に着目した場合、その両端部をT字型に形成しているものである。このような構成にすれば、一次分割ラインに相当するアルミナ基板1の短辺側に沿ってダイシングを行うことにより、短冊状基板に分割した際にバリが発生しにくく、微小サイズの静電気対策部品を製造する際に、その寸法精度が向上する効果が得られるものである。
次に、図5C、図5Dに示すように、ギャップ4と第2の電極3の一部を覆うように過電圧保護材料ペーストをスクリーン印刷法を用いて5〜50μmの厚みで印刷し、約150℃で5〜15分間乾燥させることにより過電圧保護材料層7を形成する。この過電圧保護材料層7を構成する過電圧保護材料ペーストは、平均粒径が0.3〜10μmで球状のNi,Al,Ag,Pd,Cu等のいずれかからなる金属粉とメチルシリコーン等のシリコーン系樹脂の混合物に適当な有機溶剤を加え、これらを3本ロールミルにより混練・分散させることによって作製している。
次に、図5Eに示すように、過電圧保護材料層7を覆うように中間層用ペーストをスクリーン印刷法を用いて5〜50μmの厚みで印刷する。このとき、とりわけギャップ4の上部に位置する過電圧保護材料層7とほぼ同じ大きさで完全に覆うように印刷し、約150℃で5〜15分間乾燥させることにより中間層8を形成する。この中間層8を形成する中間層用ペーストは、平均粒径が0.3〜10μmのAl,SiO,MgOあるいはこれらの複合酸化物等からなる絶縁体粉とメチルシリコーン等のシリコーン系樹脂の混合物に適当な有機溶剤を加え、これらを3本ロールミルにより混練・分散させることによって作製した。なお、ここでは十分な静電気耐量を得るために、過電圧保護材料層7と中間層8の乾燥後の厚みの和は30μm以上としている。なお、過電圧保護材料層7の厚みが十分厚く、静電気耐量が所望の条件を満たす場合には、中間層8は必ずしも形成する必要がないものである。
次に、図6A、図6Bに示すように、中間層8を完全に覆い、かつ両端に一対の再上面電極5の端部が露出した状態となるように、エポキシ樹脂、フェノール樹脂等からなる保護樹脂ペーストをスクリーン印刷法を用いて印刷し、約150℃で5〜15分間乾燥させる。その後、150〜200℃で15〜60分間硬化させることにより、保護樹脂層9を形成する。この場合、保護樹脂層9の乾燥後の厚みは15〜35μmとする。
次に、図6C、図6Dに示すように、アルミナ基板1の両端部に、樹脂銀ペーストを塗布することによって第1の電極2、再上面電極5および裏面電極6と電気的に接続される端面電極10を形成する。具体的には、図示していないが、集合アルミナ基板を一次分割ラインに相当するアルミナ基板1の短辺側に沿ってダイシングすることによって短冊状の基板を作成する。この短冊状基板の端面に、上述の方法で、端面電極10を形成する。
最後に、図7A、図7Bに示すように、端面電極10を覆うように、ニッケルめっき層11と錫めっき層12を形成する。図示していないが、二次分割ラインに相当するアルミナ基板1の長辺側に沿って分割することによって個片状の基板を作成する。この個片状基板の端面に、バレルめっき法を用いて、ニッケルめっき層11と銅めっき層12とを形成する。このようにして本発明の実施の形態1における静電気対策部品を得ることができる。
上記製造方法によって製造された本発明の実施の形態1における静電気対策部品は、通常使用時(定格電圧下)においては、対向する第2の電極3に形成したギャップ4を覆う過電圧保護材料層7のシリコーン系樹脂が絶縁性を有するため、電気的にオープンになっている。しかしながら、静電気パルス等の高電圧が印加された場合には、過電圧保護材料層7中のシリコーン系樹脂を介して存在する金属粒子間で放電電流が生じてインピーダンスが著しく減少する。本発明の実施の形態1における静電気対策部品はその現象を利用して静電気パルス、サージ等の異常電圧をグランドにバイパスさせるものである。
次に、上記のように構成した本発明の実施の形態1における静電気対策部品について、以下に示すような試験を実施した。図8に示すように、本発明の実施の形態1における静電気対策部品13の一方の端子をグランド14に接地するとともに、他方の端子から引き出した静電気パルス印加部15に静電気試験ガン16を接触させて静電気パルスを印加した。静電気試験の条件は放電抵抗を330Ω、放電容量を150pF、印加電圧を8kVとした。
図9は、図8に示す静電気試験の試験結果を示したグラフである。このグラフにおいて、横軸は静電気パルスを印加した繰り返し回数を示し、また縦軸はその際のピーク電圧を示す。なお、ピーク電圧の増加は電極の劣化を表すものである。
この図9は、以下の条件の静電気対策部品のそれぞれの試験結果を示したものである。
(1)第1の電極2:金のギャップ幅50μmと第2の電極3:タングステンのスパッタ膜厚0.7μmを組み合わせた静電気対策部品、
(2)第1の電極2:金のギャップ幅100μmと第2の電極3:タングステンのスパッタ膜厚1.4μmを組み合わせた静電気対策部品、
(3)第1の電極2:レジネート金で構成した静電気対策部品(従来品)、
(4)第1の電極2:タングステンのスパッタ膜厚0.7μmで構成した静電気対策部品、
(5)第1の電極2:タングステンのスパッタ膜厚1.4μmで構成した静電対策部品。
図9から明らかなように、繰り返し回数の初期(1回)においては、条件(4)の静電気対策部品と、条件(5)の静電気対策部品は、第1の電極2の抵抗が高いため、ピーク電圧が高めとなっている。また、繰り返し回数10回においては、条件(1)の静電気対策部品と、条件(2)の静電気対策部品とは、条件(3)の静電気対策部品(従来品)とピーク電圧が同等程度になっている。条件(4)の静電気対策部品と、条件(5)の静電気対策部品は、ピーク電圧のばらつきが大きく不安定となっている。繰り返し回数100回以降においては、条件(3)の静電気対策部品(従来品)はピーク電圧が1000Vとなって完全に破壊する状態となった。しかし、条件(1)の静電気対策部品と、条件(2)の静電気対策部品とは、他に比べて、ピーク電圧が低く静電気放電(ESD)の抑制特性が安定している。このように、融点の高い材料からなる第2の電極3を第1の電極2よりも膜厚の薄い状態に設け、第2の電極3の間にギャップ4を形成したことにより、静電気の繰り返し印加に対しても耐性がある静電気対策部品を得ることができる。
また、上記本発明の実施の形態1においては、過電圧保護材料層7を覆う中間層8を設けるとともに、この中間層8および過電圧保護材料層7を保護樹脂層9で完全に覆うようにしているため、静電気パルス印加時に生じる最外層に位置する保護樹脂層9の絶縁劣化を防ぐことができる。
そしてまた、この本発明の実施の形態1においては、第1の電極2の一部に重なるように再上面電極5を形成しているため、錫めっき層12と保護樹脂層9の隙間から流入する実装時のはんだが第1の電極2と直接接するということはない。しかも、はんだは再上面電極5と接するため、第1の電極2にはんだ食われ現象が生じて抵抗値が上昇し静電気抑制効果が低下するということもなく、静電気抑制効果が安定している静電気対策部品が得られるものである。
なお、本発明の実施の形態1においては、引出電極を構成する一対の第1の電極2を金を主成分とする材料で構成するとともに、この一対の第1の電極2間に位置して設けられる第2の電極3をタングステンを主成分とする材料で構成したものについて説明した。しかし、上記タングステンの代わりにモリブデンを主成分とする材料で第2の電極3を構成した場合でも、上記本発明の実施の形態1と同様の効果が得られるものである。
また、上記本発明の実施の形態1においては、引出電極を構成する一対の第1の電極2を金を主成分とする材料で構成するとともに、この一対の第1の電極2間に位置して設けられる第2の電極3をタングステンを主成分とする材料で構成するという表現をしている。しかし、これは、金やタングステンを用いて第1の電極2や第2の電極3を構成した場合、何らかの不純物が混入している可能性があることを考慮して表現しているものであって、合金を意味するものではない。
そしてまた、本発明の実施の形態1においては、アルミナ基板1の両端部に一対の第1の電極2を形成した後、この第1の電極2の一部を覆うように第2の電極3を形成するようにしている。しかし、この形成順序を逆にすることもできる。図10は本発明の実施の形態1の他の静電気対策部品の断面図である。図10に示すようにアルミナ基板1の略中央部に第2の電極3を形成した後、この第2の電極3の一部を覆うようにアルミナ基板1の両端部に一対の第1の電極2を形成するようにしてもよく、この場合においても、上記本発明の実施の形態1と同様の効果が得られるものである。
なお、この第1の電極2の焼成後の厚みは2〜20μmであり、好ましくは2〜10μmである。第1の電極2の厚みが厚い方が抵抗値は低くなり、抵抗値を低くするということでは有利であるが、膜厚を過度に厚くすると電極の存在する箇所と存在しない箇所の段差が大きくなり、その上に形成する過電圧保護層7や中間層8を均一に形成しにくくなる。
(実施の形態2)
以下、実施の形態2の静電気対策部品およびその製造方法について、図面を参照しながら説明する。本発明の実施の形態2における静電気対策部品は、第2の電極3をニッケルを主成分とする材料で構成している。その点を除けば、上記した本発明の実施の形態1と同じ構成である。そのため、その断面図は図1と同様であり、またその製造方法を示す製造工程図も図2A〜図7Bと同様である。さらにその静電気試験方法も、実施の形態1と同じ図8を用いた方法で行った。同様であるため、その断面図、製造工程図および静電気試験方法の説明は省略する。
上記のように構成した本発明の実施の形態2における静電気対策部品において、静電気試験を実施した結果は図11のグラフに示す通りである。この図11のグラフにおいて、横軸は静電気パルスを印加した繰り返し回数を示し、また縦軸はその際のピーク電圧を示す。ピーク電圧の増加は電極の劣化を表すものである。
この図11は、以下の条件の静電気対策部品(従来品)のそれぞれの試験結果を示したものである。
(1)第1の電極2:金のギャップ幅50μmと第2の電極3:ニッケルのスパッタ膜厚0.5μmを組み合わせた静電気対策部品、
(2)第1の電極2:金のギャップ幅50μmと第2の電極3:ニッケルのスパッタ膜厚1.5μmを組み合わせた静電気対策部品、
(3)第1の電極2:レジネート金で構成した静電対策部品。
図11から明らかなように、繰り返し回数の初期(1回)においては、上記3種類の静電気対策部品は、ピーク電圧に大差は見られない。繰り返し回数10回においては、条件(2)の静電気対策部品が、他の2種類の静電気対策部品に比べてピーク電圧が低く、良好になっている。また繰り返し回数100回以降においては、条件(3)の静電気対策部品(従来品)が、ピーク電圧が1000Vとなって完全に破壊する状態となった。しかし、条件(1)の静電気対策部品と、条件(2)の静電気対策部品は、従来品に比べて、ピーク電圧が低く静電気放電(ESD)の抑制特性が安定している。これらは、それとともに、静電気の繰り返し印加に対しても耐性を有している。このことから、第2の電極にタングステン薄膜を用いた本発明の実施の形態1よりも、更に良好な特性が得られている。
この理由は、次のように考えられる。ニッケルの融点は1455℃であって、タングステンの融点3407℃に比べると低いが金の融点1064℃よりも高いため、引出電極がレジネート金の単層構造である従来の構成と比べた場合、耐熱性に優れた効果が期待できる。元来、タングステンは融点が極めて高いため、耐熱性には優れているものの、その薄膜は酸化しやすく、そしてこの酸化反応が進行してタングステン薄膜の抵抗値が高くなるものである。これに対し、ニッケル薄膜はその表面に酸化膜が強固に、かつ緻密に形成されて内部まで酸化反応が進行しないため、薄膜の抵抗が安定して低く保たれることになり、これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が静電気放電を繰り返した後も安定している静電気対策部品を得ることができるものである。タングステン薄膜がニッケル薄膜よりも酸化しやすいことを確かめるために、静電気対策部品のピーク電圧を耐湿試験実施前と耐湿試験実施後で比較した結果、第1の電極2が金で第2の電極3がタングステンの組合せにおいては、耐湿試験後のピーク電圧が耐湿試験前に比べて50〜100%高くなった。これに対して、第1の電極2が金で第2の電極3がニッケルの組合せにおいては、耐湿試験後のピーク電圧が耐湿試験前に比べてほとんど変わらないものであった。
ちなみにニッケルの比抵抗は6.8μΩcmであって、タングステンの比抵抗5.5μΩcmに比べると若干高いものの、前述した酸化しにくい性質が抵抗値を低く安定化することに大きく寄与する。このため、ニッケルを用いたものは、図11に示すように、タングステンを用いた場合に比べて良好な特性が得られるものである。
なお、上記本発明の実施の形態2においては、上記した本発明の実施の形態1と同様に、過電圧保護材料層7を覆う中間層8を設けるとともに、この中間層8および過電圧保護材料層7を保護樹脂層9で完全に覆うようにしている。このため、静電気パルス印加時に生じる最外層に位置する保護樹脂層9の絶縁劣化を防ぐことができる。
また、上記本発明の実施の形態2においては、上記した本発明の実施の形態1と同様に、第1の電極2の一部に重なるように再上面電極5を形成しているため、錫めっき層12と保護樹脂層9の隙間から流入する実装時のはんだが第1の電極2と直接接するということはなくなる。そして、はんだは再上面電極5と接するため、第1の電極2にはんだ食われ現象が生じて抵抗値が上昇し静電気抑制効果が低下するということもなくなる。即ち、静電気抑制効果が安定している静電気対策部品が得られるものである。
上記本発明の実施の形態2においては、引出電極を構成する一対の第1の電極2を金を主成分とする材料で構成するとともに、この一対の第1の電極2間に位置して設けられる第2の電極3をニッケルを主成分とする材料で構成するという表現をしている。しかし、これは、金やニッケルを用いて第1の電極2や第2の電極3を構成した場合、何らかの不純物が混入している可能性が有ることを考慮して表現しているものであって、合金を意味するものではない。
さらに、上記本発明の実施の形態2においては、アルミナ基板1の両端部に一対の第1の電極2を形成した後、この第1の電極2の一部を覆うように第2の電極3を形成するようにしている。しかし、この形成順序を逆にして、図10に示すようにアルミナ基板1の略中央部に第2の電極3を形成した後、この第2の電極3の一部を覆うようにアルミナ基板1の両端部に一対の第1の電極2を形成するようにしてもよい。実施の形態1と同じく、この場合においても、上記本発明の実施の形態2と同様の効果が得られるものである。
(実施の形態3)
以下、実施の形態3を用いて、静電気対策部品およびその製造方法について、図面を参照しながら説明する。
本発明の実施の形態3における静電気対策部品は、第2の電極3をアルミニウムを主成分とする材料で構成している。この点を除けば、上記した本発明の実施の形態1と同じ構成であるため、その断面図は図1と同様であり、またその製造方法を示す製造工程図も図2A〜図7Bと同様であり、さらにその静電気試験方法も図8で説明したものと同様である。このため、その断面図、製造工程図および静電気試験方法の説明は省略する。
上記のように構成した本発明の実施の形態3における静電気対策部品において静電気試験を実施した結果は、図12のグラフに示す通りである。この図12のグラフにおいて、横軸は静電気パルスを印加した繰り返し回数を示し、また縦軸はその際のピーク電圧を示す。なお、ピーク電圧の増加は電極の劣化を表すものである。
この図12は、以下の条件の静電対策部品の試験結果を示したものである。
(1)第1の電極2:金のギャップ幅50μmと第2の電極3:アルミニウムのスパッタ膜厚1.0μmを組み合わせた静電気対策部品、
(2)第1の電極2:レジネート金で構成した静電気対策部品(従来品)。
上記図12から明らかなように、繰り返し回数の初期(1回)においては、上記2種類の静電気対策部品のピーク電圧に大差は見られないが、繰り返し回数10回以上においては、条件(1)の静電気対策部品が、条件(2)の従来品の静電気対策部品に比べてピーク電圧が低くなって、良好である。
この理由は、次のように考えられる。アルミニウムの融点は660℃であって、タングステンの融点3407℃、金の融点1064℃と比べると低いが、第2の電極3を構成するアルミニウムのスパッタ膜の表面は緻密な酸化アルミニウムの皮膜で覆われており、この酸化アルミニウムは融点が2020℃と高く、引出電極をレジネート金のみで構成した従来品と比べて耐熱性に優れているものである。アルミニウムのスパッタ膜で構成される第2の電極3とアルミナ基板1との界面では酸化反応が生じて酸化アルミニウムが存在するようになり、この酸化アルミニウムと金属アルミとの界面は明確に分離しているのではなく、ほぼ連続的に組成が変化している状態である。このためアルミナ基板1と第2の電極3との密着性は極めて良好なものである。また、第1の電極2と第2の電極3の電気的導通については、第1の電極2が金を主成分とする厚膜材料でその表面はほとんど酸化されておらず適度な凹凸を有している。そのため、第1の電極2と第2の電極3との界面には電気的導通を阻害する酸化アルミニウムがほとんど存在せず、第1の電極2と第2の電極3との間には良好な電気的導通が確保されているものである。
ちなみにアルミニウムの比抵抗は2.6μΩcmであって、タングステンの比抵抗5.5μΩcmの半分以下と低く、第2の電極3はアルミニウムの持つ抵抗値の低い性質と酸化アルミニウムの持つ耐熱性に優れた性質との相乗効果によって、図12に示すような良好な特性が得られるものである。
なお、上記本発明の実施の形態3においては、上記した本発明の実施の形態1と同様に、過電圧保護材料層7を覆う中間層8を設けるとともに、この中間層8および過電圧保護材料層7を保護樹脂層9で完全に覆うようにしている。このため、静電気パルス印加時に生じる最外層に位置する保護樹脂層9の絶縁劣化を防ぐことができるものである。
また、上記本発明の実施の形態3においては、上記した本発明の実施の形態1と同様に、第1の電極2の一部に重なるように再上面電極5を形成している。このため、錫めっき層12と保護樹脂層9の隙間から流入する実装時のはんだが第1の電極2と直接接するということはなくなる。そしてはんだは再上面電極5と接するため、第1の電極2にはんだ食われ現象が生じて抵抗値が上昇し静電気抑制効果が低下するということもない。即ち、静電気抑制効果が安定している静電気対策部品が得られるものである。
上記本発明の実施の形態3においては、引出電極を構成する一対の第1の電極2を金を主成分とする材料で構成するとともに、この一対の第1の電極2間に位置して設けられる第2の電極3をアルミニウムを主成分とする材料で構成するという表現をしている。これは、金やアルミニウムを用いて第1の電極2や第2の電極3を構成した場合、何らかの不純物が混入している可能性が有ることを考慮して表現しているものであって、合金を意味するものではない。
さらに、上記本発明の実施の形態3においては、アルミナ基板1の両端部に一対の第1の電極2を形成した後、この第1の電極2の一部を覆うように第2の電極3を形成するようにしている。この形成順序を逆にして、図10に示すようにアルミナ基板1の略中央部に第2の電極3を形成した後、この第2の電極3の一部を覆うようにアルミナ基板1の両端部に一対の第1の電極2を形成するようにしてもよい。実施の形態1で述べたのと同様に、この場合においても、上記本発明の実施の形態3と同様の効果が得られるものである。
以上のように、本発明では、絶縁基板であるアルミナ基板1と密着性の高い第2の電極3を設けることにより、第2の電極に10μm程度の狭いギャップを確実に精度良く形成することが可能である。更に、引出電極がアルミナ基板1から剥離するのを抑制できるため、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるという作用効果を有する。
また、本発明では、第1の電極2を金を主成分とする材料で構成するとともに、第2の電極3をタングステンもしくはモリブデンを主成分とする薄膜材料で構成した。この構成によれば、引出電極を構成する第1の電極2を金を主成分とする材料で構成しているため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、第2の電極3は、タングステンもしくはモリブデンを主成分とする薄膜材料で構成している。このタングステン、モリブデンは融点が高いという特徴を有しているため、これらのいずれかを主成分とする材料を用いて薄膜の第2の電極3を形成することにより、この第2の電極3の間にギャップ4を形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となる。これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができる。
また、タングステンの熱膨張係数は4.3×10−6〜4.5×10−6/K、モリブデンの熱膨張係数は5.1×10−6/Kであり、アルミナ基板1の熱膨張係数6.4×10−6〜8.0×10−6/Kと近いものである。このため、第2の電極3とアルミナ基板1との密着性が極めて良好であり、静電気を繰り返し印加した場合の発熱が原因で引出電極が損傷する可能性が低く、これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができる。
また、本発明では、第1の電極2を金を主成分とする材料で構成するとともに、第2の電極をニッケルを主成分とする薄膜材料で構成した。この構成によれば、引出電極を構成する第1の電極2を金を主成分とする材料で構成しているため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、第2の電極3は、ニッケルを主成分とする薄膜材料で構成している。このニッケルは融点が高く耐熱性に優れた特徴を有しているため、ニッケルを主成分とする薄膜材料を用いて第2の電極3を形成することにより、この第2の電極3の間にギャップ4を形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となり、耐熱性に優れた引出電極が得られるものである。また、ニッケルは表面酸化膜が強固に、かつ緻密に形成されて内部まで酸化反応が進行しない。このため、ニッケルを主成分とする第2の電極3の抵抗値も安定して低く保たれることになり、これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
また、本発明では、第2の電極3をアルミニウムを主成分とする薄膜材料で構成している。この構成によれば、引出電極を構成する第1の電極2を金を主成分とする材料で構成しているため、腐食されにくく耐硫化特性に優れたものを得ることができる。また、第2の電極3は、アルミニウムを主成分とする薄膜材料で構成しているもので、アルミニウムを主成分とする薄膜材料を用いて第2の電極を形成することにより、この第2の電極3の間にギャップを形成する場合、比較的低い出力のレーザーで第2の電極を切削することが可能となる。また、アルミニウムを主成分とする薄膜材料がアルミナ基板1と接する部分においては酸化アルミニウムが存在し、このため、アルミナ基板1と第2の電極3とが接する部分においては、第2の電極3の熱膨張係数がアルミナ基板1の熱膨張係数と近くなる。このため、第2の電極3とアルミナ基板1との密着性が極めて良好となるものである。さらに、アルミニウムを主成分とする薄膜は、その表面に耐熱性に優れた酸化アルミニウムが強固に、かつ緻密に形成されて内部まで酸化反応が進行しないため、アルミニウムを主成分とする第2の電極3の抵抗値も安定して低く保たれることになる。これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
本発明の製造方法では、アルミナ基板1の上面に比抵抗が小さい材料からなる厚膜の第1の電極2を形成するステップを備えているため、引出電極を構成する第1の電極2自体の抵抗を低減させることができる。これにより、静電気の印加時に流れる電流による発熱を抑制することができる。また、第1の電極2間に位置して第1の電極2と電気的に接続されるように融点の高い材料からなる第2の電極3を膜厚の薄い状態に形成するとともに、この第2の電極3の間にギャップを形成しているため、静電気印加による電極の損傷を抑制しながら、第2の電極3に10μm程度の狭いギャップを確実に精度良く形成することが可能となる。これにより、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
本発明の製造方法では、アルミナ基板1の上面に比抵抗が小さい材料からなる厚膜の第1の電極を形成しているため、引出電極を構成する一対の第1の電極2自体の抵抗を低減させることができる。なお、厚膜の比抵抗が小さいとは、少なくとも金レジネートペーストによるものと同等またはそれより低いことが好ましく、数値的には、1×10−2Ωcm以下が好ましい。これにより、静電気の印加時に流れる電流による発熱を抑制することができる。また、第1の電極2間に位置して第1の電極2と電気的に接続されるようにアルミナ基板1と密着性の高い材料からなる第2の電極3を膜厚の薄い状態に形成するとともに、この第2の電極3の間にギャップ4を形成しているため、第2の電極3に10μm程度の狭いギャップを確実に精度良く形成することが可能である。かつアルミナ基板1と密着性の高い薄膜の第2の電極3を設けることにより、引出電極がアルミナ基板1から剥離するのを抑制できる。このため、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるという作用効果を有するものである。なお、ここで、膜厚が薄いということは、通常の抵抗器などに用いられる一般的な厚膜電極よりも膜厚が薄いという意味であり、数値的には、約2μm未満の膜厚が好ましい。
本発明の製造方法では、引出電極を構成する厚膜の第1の電極2を金を主成分とする材料を用いて印刷焼成技術により形成しているため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、薄膜の第2の電極3は、タングステンもしくはモリブデンを主成分とする材料をスパッタリングすることにより形成し、さらにギャップ4を、第2の電極3をレーザーで切削することにより形成している。このタングステン、モリブデンは融点が高いという特徴を有しているため、いずれかを主成分とする材料を用いて薄膜の第2の電極3を形成することにより、この第2の電極3にギャップ4を形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となる。これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
更に、本発明の製造方法では、引出電極を構成する厚膜の第1の電極2を金を主成分とする材料を用いて印刷焼成技術により形成しているため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、薄膜の第2の電極3は、ニッケルを主成分とする材料をスパッタリングすることにより形成し、さらにこの第2の電極3にギャップをレーザーで切削することにより形成している。このため、ニッケルを主成分とする材料を用いて薄膜の第2の電極3を形成してこの第2の電極にギャップを形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となる。また、ニッケルは融点が高く、表面酸化膜が強固かつ緻密に形成されて内部まで酸化反応が進行しないため、ニッケルを主成分とする第2の電極3の抵抗値も安定して低く保たれることになる。これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
また、本発明の製造方法によれば、引出電極を構成する第1の電極2を金を主成分とする材料で構成している。このため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、第2の電極3は、アルミニウムを主成分とする材料をスパッタリングすることにより形成しているため、この第2の電極3にギャップを形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となる。また、アルミニウムを主成分とする薄膜材料をスパッタリングにより形成する場合には、この薄膜材料がアルミナ基板と接する部分においては酸化アルミニウムが存在するため、アルミナ基板1と第2の電極3とが接する部分においては第2の電極3の熱膨張係数がアルミナ基板1の熱膨張係数6.4×10−6〜8.0×10−6/Kと近くなる。これにより、第2の電極3はアルミナ基板1との密着性が極めて良好となる。さらに、第2の電極3は、その表面に耐熱性に優れた酸化アルミニウムの薄膜が強固に、かつ緻密に形成されることによって内部まで酸化反応が進行しない。このため、アルミニウムを主成分とする第2の電極3の抵抗値は安定して低く保たれることになり、これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるという作用効果を有するものである。
なお、ここで取り上げた金属の融点は、タングステンが3407℃、モリブデンが2620℃、ニッケルが1455℃、金が1064℃、アルミが660℃である。融点の高い材料として効果があったのは、ニッケル以上である。即ち、本発明で言う融点が高い材料とは約1400℃以上のものである。
また、各実施の形態で取り上げた金属がアルミナ基板と密着性が良いというのは、熱膨張係数がアルミナ基板と近いことに起因している。即ち、タングステンの熱膨張係数は4.3×10−6〜4.5×10−6/K、モリブデンの熱膨張係数は5.1×10−6/Kであり、アルミナ基板1の熱膨張係数6.4×10−6〜8.0×10−6/Kと近いものである。以上より、熱膨張係数が、少なくとも4.3×10−6〜8.0×10−6/Kの範囲の金属は、アルミナ基板と密着性が良いと言える。
また、絶縁基板については、誘電率が低く、難燃性であり、好ましくは熱膨張係数が第2の電極と近いものであれば良く、各実施例で取り上げたアルミナ基板1に限るものではない。窒化アルミニウムやムライト−シリカ系セラミック、ホウ酸塩セラミックなどが使用可能である。
本発明に係る静電気対策部品は、引出電極を構成する第1の電極の発熱および損傷を低減させることができ、かつ第2の電極のギャップ幅を狭くかつ精度良く形成できる。これにより、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定しているという効果を有するものであり、特に電子機器を静電気から保護する微小サイズの静電気対策部品に適用することにより有用となる。
本発明は電子機器を静電気から保護する静電気対策部品およびその製造方法に関するものである。
近年、携帯電話等の電子機器の小型化、高性能化が急速に進み、それに伴い電子機器に用いられる電子部品の小型化も急速に進んでいる。しかしながら、その反面、この小型化に伴って電子機器や電子部品の耐電圧は低下する。これにより、人体と電子機器の端子が接触した時に発生する静電気パルスによって機器内部の電気回路が損傷することが増えてきている。これは静電気パルスによって1ナノ秒以下の立ち上がり速度でかつ数百〜数キロボルトという高電圧が機器内部の電気回路に印加されるからである。
従来から、このような静電気パルスへの対策として、静電気が入るラインとグランド間に対策部品を設ける方法がとられている。近年では信号ラインの伝送速度が数百Mbps以上である高速化が進んでおり、上記の対策部品の浮遊容量が大きい場合には信号品質が劣るため、対策部品の浮遊容量はより小さい方が好ましい。したがって、数百Mbps以上の伝送速度になると1pF以下の低静電容量の対策部品が必要になってくるものである。
このような高速伝送ラインでの静電気対策として、従来においては、対向する一対の引出電極間に形成されたギャップと引出電極の一部を過電圧保護材料層で覆うタイプの静電気対策部品が提案されている。しかし、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品は作成し難いものであった。
なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
ここで、静電気対策部品の劣化や特性ばらつきの原因となるメカニズムを説明する。従来の対向する一対の引出電極間に形成されたギャップと引出電極の一部を過電圧保護材料層で覆うタイプの静電気対策部品における特性発現のメカニズムは、以下のようなものである。対向する一対の引出電極間のギャップに静電気による過電圧が印加された際に、対向する一対の引出電極間のギャップに位置する過電圧保護材料層中に散在する導電粒子間あるいは半導体粒子間に放電電流のようなものが流れるので、それを電流としてグランドにバイパスさせる。このタイプの従来の静電気対策部品では、静電気印加を繰り返し実施することにより、静電気をグランドにバイパスさせる特性が劣化する場合も見られた。静電気印加を繰り返した後に、静電気対策部品をX線透過顕微鏡などの非破壊分析手法で観察すると、対向する一対の引出電極間のギャップ長が、初期状態と比較してわずかに拡大していることがわかる。これは、静電気印加時に流れる電流により対向する一対の引出電極が発熱し、その熱によって一対の引出電極の材料自身がごくわずかに溶解して損傷を受けるのも一因であると考えられる。
上記した一対の引出電極自身の損傷は、主に静電気放電(ESD)印加時に引出電極を流れる電流により発生する熱に起因するところが大きい。従って、引出電極の損傷を低減するためには、引出電極で発生する熱量を抑制することが必要であるとともに、熱に対する耐久性の高い材料を用いることが必要である。この場合、引出電極で発生する熱量を抑制するためには、比抵抗が小さい材料を用い、かつ膜厚を厚くして引出電極の抵抗を下げればよい。また、熱に対する耐久性の高い材料としては融点の高い材料が挙げられる。
しかしながら、引出電極の抵抗値を下げる目的で引出電極の膜厚を厚くした場合には、対向する一対の引出電極間のギャップを狭くかつ精度良く形成することが困難となるものである。一方、熱に対する耐久性の高い材料としてタングステンやモリブデンといった融点の高い金属を用いた場合には、金に比べて融点が高いため熱に起因する損傷を抑制する効果は大きい。しかし、これらは表面が酸化しやすいために、2μm以下の薄い膜厚では、抵抗値が極めて大きくなり発熱量が増大する。これを防ぐためにタングステンやモリブデンの膜厚を厚くした場合には、前述したものと同様の理由により、高精度のギャップの形成が困難になるものである。
特表2002−538601号公報
本発明は、絶縁基板と、この絶縁基板の上面に設けられた一対の第1の電極と、この一対の第1の電極間に位置するギャップと、このギャップを覆う過電圧保護材料層とを備えている。一対の第1の電極を比抵抗が小さい材料を用いて膜厚の厚い状態に構成している。一対の第1の電極間に位置して第1の電極と電気的に接続されるように、融点の高い材料からなる第2の電極を膜厚の薄い状態に設けている。この第2の電極の間にギャップを形成したものである。
この構成によれば、一対の第1の電極を比抵抗が小さい材料を用いて膜厚の厚い状態に構成しているため、引出電極を構成する一対の第1の電極自体の抵抗を低減させることができる。これにより、静電気の印加時に流れる電流による発熱を抑制することができる。また、一対の第1の電極間に位置して第1の電極と電気的に接続されるように、融点の高い材料からなる第2の電極を膜厚の薄い状態に設けるとともに、この第2の電極の間にギャップを形成している。このため、静電気印加による電極の損傷を抑制しながら、第2の電極に10μm程度の狭いギャップを確実に精度良く形成することが可能となる。これにより、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を作成することができる。
(実施の形態1)
以下、実施の形態1を用いて、静電気対策部品およびその製造方法について、図面を参照しながら説明する。図1は本発明の実施の形態1における静電気対策部品の断面図を示したものである。図1に示すように、本発明の実施の形態1における静電気対策部品は、比誘電率が50以下、好ましくは10以下の絶縁基板であるアルミナ基板1の上面に引出電極を構成する一対の第1の電極2を有する。この一対の第1の電極2間に位置して、第1の電極2に一部が重なり、電気的に接続するように第2の電極3が設けられている。第2の電極3は、融点の高い材料からなり第1の電極2より膜厚が薄い。この第2の電極3の中央部をレーザーで切断して設けられたギャップ4が形成されている。ギャップ4とは電極の存在しない細い空間である。一対の第1の電極2の上に一対の再上面電極5が形成されている。さらにアルミナ基板1の裏面に一対の裏面電極6が形成されている。ギャップ4と第2の電極3の一部を覆うように少なくとも金属粉とシリコーン系樹脂からなる過電圧保護材料層7が設けられている。この過電圧保護材料層7の上に、少なくとも一種類以上の絶縁体粉とシリコーン系樹脂からなる中間層8が形成されている。この中間層8の上に、この中間層8を完全に覆うとともに、再上面電極5の一部を覆うように保護樹脂層9が形成されている。さらに、アルミナ基板1の両端部に一対の第1の電極2、再上面電極5および裏面電極6と電気的に接続される端面電極10が形成されている。端面電極10を覆うように、バレルめっき法を用いて設けられたニッケルめっき層11と錫めっき層12が形成されている。
次に、本発明の実施の形態1における静電気対策部品の製造方法について説明する。
図2A、図2B、図3A〜図3D、図4A〜図4D、図5A〜図5E、図6A〜図6Dおよび図7A、図7Bは本発明の実施の形態1における静電気対策部品の製造方法を示すステップ順の断面図、平面図または裏面図である。以下、この製造方法について説明する。図2A、図3A、図3C、図4A、図4C、図5A、図5C、図6A、図6Cおよび図7Aは個片状の基板の断面図を示し、また図2B、図3B、図3D、図4B、図4D、図5D、図5E、図6B、図6Dおよび図7Bは個片状の基板の上面図を示し、さらに図5Bは個片状の基板の裏面図を示している。
まず、図2A、図2Bに示すように、比誘電率が50以下、好ましくは10以下のアルミナを900〜1300℃で焼成して作成されたアルミナ基板1の上面の両端部に引出電極を構成する一対の第1の電極2を形成する。ここで、機能素子を形成する絶縁基板にアルミナを用いるのは、アルミナが耐熱性ならびに機能素子との密着性に優れた材料であるためである。なお、この図2A、図2Bには、静電気対策部品の個片サイズである長辺がL(mm)で短辺がW(mm)の矩形状のアルミナ基板1が示されている。以下の製造工程の説明でもこの個片サイズのアルミナ基板1を用いて説明している。しかし、実際の製造工程では、この個片サイズのアルミナ基板1を多数個縦横に得ることができるシート状の集合アルミナ基板を用いて、後述する端面電極の形成工程前に短冊状または個片状に分割するものである。
上記した第1の電極2は、図2Bに示すようなパターンで金を主成分とする比抵抗の小さい材料により形成する。この場合、金を主成分とする導体ペーストをスクリーン印刷法により帯状に印刷し、そして約850℃で45分間焼成することにより第1の電極2を形成する。この方法のよると、他の金系材料、例えば金系スパッタ等を選択するよりも生産性やコストの面から好ましいものである。なお、この第1の電極2の焼成後の厚みは2〜20μmであり、好ましくは2〜10μmである。抵抗値を低く安定にするために膜厚を比較的厚い状態に構成している。また、この第1の電極2はアルミナ基板1の長辺側に余白を残して印刷しているものである。
次に、図3A、図3Bに示すように、一対の第1の電極2間に位置して第1の電極2に一部が重なるように融点の高い材料であるタングステンをスパッタリングすることにより、薄膜からなる第2の電極3を第1の電極2と電気的に接続されるように形成する。この場合、第2の電極3は一対の第1の電極2の一部を覆うように形成しても、図3C、図3Dに示すように第1の電極2のすべてを覆うように形成してもよいものである。第2の電極3は後述するギャップを形成する領域に形成されていればよいものである。従って、第2の電極3の材料コストを削減するためにも、また第2の電極3の形成に用いるスパッタ用マスクパターンの寿命を長くするためにも、第2の電極3はアルミナ基板1および第1の電極2との密着性が良好に得られる範囲内で、図3A、図3Bに示すように第1の電極2の一部を覆うように形成することが好ましい。また、この第2の電極3を構成するタングステンの熱膨張係数は4.3×10-6〜4.5×10-6/Kであり、アルミナ基板1の熱膨張係数である6.4×10-6〜8.0×10-6/Kに近い値であるため、第2の電極3とアルミナ基板1との密着性も良好となる。なお、第2の電極3を形成するのに用いるスパッタ装置は、インライン方式のDCスパッタ装置を使用し、そして出力3KW、アルゴンガス圧0.5〜4.5mmTorr(66〜600Pa)の成膜条件により30〜60分間成膜を行った。また、第2の電極3の幅Aは図3B、図3Dに示すように第1の電極2の幅Bより大きくして、アルミナ基板1との密着性を確保している。
次に、図4A、図4Bに示すように、第2の電極3の略中央部をUVレーザーを用いて切断することにより、幅約10μmのギャップ4を形成する。ここで第2の電極3は融点の高い材料であるタングステンを用いてマスクスパッタすることにより薄膜状態に形成されているため、その厚みは薄い。したがって、比較的低い出力である0.2Wの出力のUVレーザーを用いて第2の電極3を物理的に切削してギャップ4を確実に精度良く形成することが可能となる。これは、フォトリソグラフィーのプロセスによって第2の電極3の間にギャップを形成する場合と比べた場合、ギャップ4のショート不良が起こりにくいものである。
次に、図4C、図4Dに示すように、一対の第1の電極2の一部を覆うように、樹脂銀ペーストからなる一対の再上面電極5を、スクリーン印刷法を用いて3〜20μmの厚みで印刷し、100〜200℃で5〜15分間乾燥させることにより形成する。
次に、図5A、図5Bに示すように、アルミナ基板1の裏面に、樹脂銀ペーストからなる一対の裏面電極6をスクリーン印刷法を用いて3〜20μmの厚みで印刷し、かつ100〜200℃で5〜15分間乾燥させることにより形成する。ここで裏面電極6は、アルミナ基板1の短辺側を跨ぐ部分の幅を他の部分の幅よりも狭くしている。すなわち、シート状のアルミナ基板の個片領域に着目した場合、その両端部をT字型に形成しているものである。このような構成にすれば、一次分割ラインに相当するアルミナ基板1の短辺側に沿ってダイシングを行うことにより、短冊状基板に分割した際にバリが発生しにくく、微小サイズの静電気対策部品を製造する際に、その寸法精度が向上する効果が得られるものである。
次に、図5C、図5Dに示すように、ギャップ4と第2の電極3の一部を覆うように過電圧保護材料ペーストをスクリーン印刷法を用いて5〜50μmの厚みで印刷し、約150℃で5〜15分間乾燥させることにより過電圧保護材料層7を形成する。この過電圧保護材料層7を構成する過電圧保護材料ペーストは、平均粒径が0.3〜10μmで球状のNi,Al,Ag,Pd,Cu等のいずれかからなる金属粉とメチルシリコーン等のシリコーン系樹脂の混合物に適当な有機溶剤を加え、これらを3本ロールミルにより混練・分散させることによって作製している。
次に、図5Eに示すように、過電圧保護材料層7を覆うように中間層用ペーストをスクリーン印刷法を用いて5〜50μmの厚みで印刷する。このとき、とりわけギャップ4の上部に位置する過電圧保護材料層7とほぼ同じ大きさで完全に覆うように印刷し、約150℃で5〜15分間乾燥させることにより中間層8を形成する。この中間層8を形成する中間層用ペーストは、平均粒径が0.3〜10μmのAl,SiO,MgOあるいはこれらの複合酸化物等からなる絶縁体粉とメチルシリコーン等のシリコーン系樹脂の混合物に適当な有機溶剤を加え、これらを3本ロールミルにより混練・分散させることによって作製した。なお、ここでは十分な静電気耐量を得るために、過電圧保護材料層7と中間層8の乾燥後の厚みの和は30μm以上としている。なお、過電圧保護材料層7の厚みが十分厚く、静電気耐量が所望の条件を満たす場合には、中間層8は必ずしも形成する必要がないものである。
次に、図6A、図6Bに示すように、中間層8を完全に覆い、かつ両端に一対の再上面電極5の端部が露出した状態となるように、エポキシ樹脂、フェノール樹脂等からなる保護樹脂ペーストをスクリーン印刷法を用いて印刷し、約150℃で5〜15分間乾燥させる。その後、150〜200℃で15〜60分間硬化させることにより、保護樹脂層9を形成する。この場合、保護樹脂層9の乾燥後の厚みは15〜35μmとする。
次に、図6C、図6Dに示すように、アルミナ基板1の両端部に、樹脂銀ペーストを塗布することによって第1の電極2、再上面電極5および裏面電極6と電気的に接続される端面電極10を形成する。具体的には、図示していないが、集合アルミナ基板を一次分割ラインに相当するアルミナ基板1の短辺側に沿ってダイシングすることによって短冊状の基板を作成する。この短冊状基板の端面に、上述の方法で、端面電極10を形成する。
最後に、図7A、図7Bに示すように、端面電極10を覆うように、ニッケルめっき層11と錫めっき層12を形成する。図示していないが、二次分割ラインに相当するアルミナ基板1の長辺側に沿って分割することによって個片状の基板を作成する。この個片状基板の端面に、バレルめっき法を用いて、ニッケルめっき層11と銅めっき層12とを形成する。このようにして本発明の実施の形態1における静電気対策部品を得ることができる。
上記製造方法によって製造された本発明の実施の形態1における静電気対策部品は、通常使用時(定格電圧下)においては、対向する第2の電極3に形成したギャップ4を覆う過電圧保護材料層7のシリコーン系樹脂が絶縁性を有するため、電気的にオープンになっている。しかしながら、静電気パルス等の高電圧が印加された場合には、過電圧保護材料層7中のシリコーン系樹脂を介して存在する金属粒子間で放電電流が生じてインピーダンスが著しく減少する。本発明の実施の形態1における静電気対策部品はその現象を利用して静電気パルス、サージ等の異常電圧をグランドにバイパスさせるものである。
次に、上記のように構成した本発明の実施の形態1における静電気対策部品について、以下に示すような試験を実施した。図8に示すように、本発明の実施の形態1における静電気対策部品13の一方の端子をグランド14に接地するとともに、他方の端子から引き出した静電気パルス印加部15に静電気試験ガン16を接触させて静電気パルスを印加した。静電気試験の条件は放電抵抗を330Ω、放電容量を150pF、印加電圧を8kVとした。
図9は、図8に示す静電気試験の試験結果を示したグラフである。このグラフにおいて、横軸は静電気パルスを印加した繰り返し回数を示し、また縦軸はその際のピーク電圧を示す。なお、ピーク電圧の増加は電極の劣化を表すものである。
この図9は、以下の条件の静電気対策部品のそれぞれの試験結果を示したものである。
(1)第1の電極2:金のギャップ幅50μmと第2の電極3:タングステンのスパッタ膜厚0.7μmを組み合わせた静電気対策部品、
(2)第1の電極2:金のギャップ幅100μmと第2の電極3:タングステンのスパッタ膜厚1.4μmを組み合わせた静電気対策部品、
(3)第1の電極2:レジネート金で構成した静電気対策部品(従来品)、
(4)第1の電極2:タングステンのスパッタ膜厚0.7μmで構成した静電気対策部品、
(5)第1の電極2:タングステンのスパッタ膜厚1.4μmで構成した静電対策部品。
図9から明らかなように、繰り返し回数の初期(1回)においては、条件(4)の静電気対策部品と、条件(5)の静電気対策部品は、第1の電極2の抵抗が高いため、ピーク電圧が高めとなっている。また、繰り返し回数10回においては、条件(1)の静電気対策部品と、条件(2)の静電気対策部品とは、条件(3)の静電気対策部品(従来品)とピーク電圧が同等程度になっている。条件(4)の静電気対策部品と、条件(5)の静電気対策部品は、ピーク電圧のばらつきが大きく不安定となっている。繰り返し回数100回以降においては、条件(3)の静電気対策部品(従来品)はピーク電圧が1000Vとなって完全に破壊する状態となった。しかし、条件(1)の静電気対策部品と、条件(2)の静電気対策部品とは、他に比べて、ピーク電圧が低く静電気放電(ESD)の抑制特性が安定している。このように、融点の高い材料からなる第2の電極3を第1の電極2よりも膜厚の薄い状態に設け、第2の電極3の間にギャップ4を形成したことにより、静電気の繰り返し印加に対しても耐性がある静電気対策部品を得ることができる。
また、上記本発明の実施の形態1においては、過電圧保護材料層7を覆う中間層8を設けるとともに、この中間層8および過電圧保護材料層7を保護樹脂層9で完全に覆うようにしているため、静電気パルス印加時に生じる最外層に位置する保護樹脂層9の絶縁劣化を防ぐことができる。
そしてまた、この本発明の実施の形態1においては、第1の電極2の一部に重なるように再上面電極5を形成しているため、錫めっき層12と保護樹脂層9の隙間から流入する実装時のはんだが第1の電極2と直接接するということはない。しかも、はんだは再上面電極5と接するため、第1の電極2にはんだ食われ現象が生じて抵抗値が上昇し静電気抑制効果が低下するということもなく、静電気抑制効果が安定している静電気対策部品が得られるものである。
なお、本発明の実施の形態1においては、引出電極を構成する一対の第1の電極2を金を主成分とする材料で構成するとともに、この一対の第1の電極2間に位置して設けられる第2の電極3をタングステンを主成分とする材料で構成したものについて説明した。しかし、上記タングステンの代わりにモリブデンを主成分とする材料で第2の電極3を構成した場合でも、上記本発明の実施の形態1と同様の効果が得られるものである。
また、上記本発明の実施の形態1においては、引出電極を構成する一対の第1の電極2を金を主成分とする材料で構成するとともに、この一対の第1の電極2間に位置して設けられる第2の電極3をタングステンを主成分とする材料で構成するという表現をしている。しかし、これは、金やタングステンを用いて第1の電極2や第2の電極3を構成した場合、何らかの不純物が混入している可能性があることを考慮して表現しているものであって、合金を意味するものではない。
そしてまた、本発明の実施の形態1においては、アルミナ基板1の両端部に一対の第1の電極2を形成した後、この第1の電極2の一部を覆うように第2の電極3を形成するようにしている。しかし、この形成順序を逆にすることもできる。図10は本発明の実施の形態1の他の静電気対策部品の断面図である。図10に示すようにアルミナ基板1の略中央部に第2の電極3を形成した後、この第2の電極3の一部を覆うようにアルミナ基板1の両端部に一対の第1の電極2を形成するようにしてもよく、この場合においても、上記本発明の実施の形態1と同様の効果が得られるものである。
なお、この第1の電極2の焼成後の厚みは2〜20μmであり、好ましくは2〜10μmである。第1の電極2の厚みが厚い方が抵抗値は低くなり、抵抗値を低くするということでは有利であるが、膜厚を過度に厚くすると電極の存在する箇所と存在しない箇所の段差が大きくなり、その上に形成する過電圧保護層7や中間層8を均一に形成しにくくなる。
(実施の形態2)
以下、実施の形態2の静電気対策部品およびその製造方法について、図面を参照しながら説明する。本発明の実施の形態2における静電気対策部品は、第2の電極3をニッケルを主成分とする材料で構成している。その点を除けば、上記した本発明の実施の形態1と同じ構成である。そのため、その断面図は図1と同様であり、またその製造方法を示す製造工程図も図2A〜図7Bと同様である。さらにその静電気試験方法も、実施の形態1と同じ図8を用いた方法で行った。同様であるため、その断面図、製造工程図および静電気試験方法の説明は省略する。
上記のように構成した本発明の実施の形態2における静電気対策部品において、静電気試験を実施した結果は図11のグラフに示す通りである。この図11のグラフにおいて、横軸は静電気パルスを印加した繰り返し回数を示し、また縦軸はその際のピーク電圧を示す。ピーク電圧の増加は電極の劣化を表すものである。
この図11は、以下の条件の静電気対策部品(従来品)のそれぞれの試験結果を示したものである。
(1)第1の電極2:金のギャップ幅50μmと第2の電極3:ニッケルのスパッタ膜厚0.5μmを組み合わせた静電気対策部品、
(2)第1の電極2:金のギャップ幅50μmと第2の電極3:ニッケルのスパッタ膜厚1.5μmを組み合わせた静電気対策部品、
(3)第1の電極2:レジネート金で構成した静電対策部品。
図11から明らかなように、繰り返し回数の初期(1回)においては、上記3種類の静電気対策部品は、ピーク電圧に大差は見られない。繰り返し回数10回においては、条件(2)の静電気対策部品が、他の2種類の静電気対策部品に比べてピーク電圧が低く、良好になっている。また繰り返し回数100回以降においては、条件(3)の静電気対策部品(従来品)が、ピーク電圧が1000Vとなって完全に破壊する状態となった。しかし、条件(1)の静電気対策部品と、条件(2)の静電気対策部品は、従来品に比べて、ピーク電圧が低く静電気放電(ESD)の抑制特性が安定している。これらは、それとともに、静電気の繰り返し印加に対しても耐性を有している。このことから、第2の電極にタングステン薄膜を用いた本発明の実施の形態1よりも、更に良好な特性が得られている。
この理由は、次のように考えられる。ニッケルの融点は1455℃であって、タングステンの融点3407℃に比べると低いが金の融点1064℃よりも高いため、引出電極がレジネート金の単層構造である従来の構成と比べた場合、耐熱性に優れた効果が期待できる。元来、タングステンは融点が極めて高いため、耐熱性には優れているものの、その薄膜は酸化しやすく、そしてこの酸化反応が進行してタングステン薄膜の抵抗値が高くなるものである。これに対し、ニッケル薄膜はその表面に酸化膜が強固に、かつ緻密に形成されて内部まで酸化反応が進行しないため、薄膜の抵抗が安定して低く保たれることになり、これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が静電気放電を繰り返した後も安定している静電気対策部品を得ることができるものである。タングステン薄膜がニッケル薄膜よりも酸化しやすいことを確かめるために、静電気対策部品のピーク電圧を耐湿試験実施前と耐湿試験実施後で比較した結果、第1の電極2が金で第2の電極3がタングステンの組合せにおいては、耐湿試験後のピーク電圧が耐湿試験前に比べて50〜100%高くなった。これに対して、第1の電極2が金で第2の電極3がニッケルの組合せにおいては、耐湿試験後のピーク電圧が耐湿試験前に比べてほとんど変わらないものであった。
ちなみにニッケルの比抵抗は6.8μΩcmであって、タングステンの比抵抗5.5μΩcmに比べると若干高いものの、前述した酸化しにくい性質が抵抗値を低く安定化することに大きく寄与する。このため、ニッケルを用いたものは、図11に示すように、タングステンを用いた場合に比べて良好な特性が得られるものである。
なお、上記本発明の実施の形態2においては、上記した本発明の実施の形態1と同様に、過電圧保護材料層7を覆う中間層8を設けるとともに、この中間層8および過電圧保護材料層7を保護樹脂層9で完全に覆うようにしている。このため、静電気パルス印加時に生じる最外層に位置する保護樹脂層9の絶縁劣化を防ぐことができる。
また、上記本発明の実施の形態2においては、上記した本発明の実施の形態1と同様に、第1の電極2の一部に重なるように再上面電極5を形成しているため、錫めっき層12と保護樹脂層9の隙間から流入する実装時のはんだが第1の電極2と直接接するということはなくなる。そして、はんだは再上面電極5と接するため、第1の電極2にはんだ食われ現象が生じて抵抗値が上昇し静電気抑制効果が低下するということもなくなる。即ち、静電気抑制効果が安定している静電気対策部品が得られるものである。
上記本発明の実施の形態2においては、引出電極を構成する一対の第1の電極2を金を主成分とする材料で構成するとともに、この一対の第1の電極2間に位置して設けられる第2の電極3をニッケルを主成分とする材料で構成するという表現をしている。しかし、これは、金やニッケルを用いて第1の電極2や第2の電極3を構成した場合、何らかの不純物が混入している可能性が有ることを考慮して表現しているものであって、合金を意味するものではない。
さらに、上記本発明の実施の形態2においては、アルミナ基板1の両端部に一対の第1の電極2を形成した後、この第1の電極2の一部を覆うように第2の電極3を形成するようにしている。しかし、この形成順序を逆にして、図10に示すようにアルミナ基板1の略中央部に第2の電極3を形成した後、この第2の電極3の一部を覆うようにアルミナ基板1の両端部に一対の第1の電極2を形成するようにしてもよい。実施の形態1と同じく、この場合においても、上記本発明の実施の形態2と同様の効果が得られるものである。
(実施の形態3)
以下、実施の形態3を用いて、静電気対策部品およびその製造方法について、図面を参照しながら説明する。
本発明の実施の形態3における静電気対策部品は、第2の電極3をアルミニウムを主成分とする材料で構成している。この点を除けば、上記した本発明の実施の形態1と同じ構成であるため、その断面図は図1と同様であり、またその製造方法を示す製造工程図も図2A〜図7Bと同様であり、さらにその静電気試験方法も図8で説明したものと同様である。このため、その断面図、製造工程図および静電気試験方法の説明は省略する。
上記のように構成した本発明の実施の形態3における静電気対策部品において静電気試験を実施した結果は、図12のグラフに示す通りである。この図12のグラフにおいて、横軸は静電気パルスを印加した繰り返し回数を示し、また縦軸はその際のピーク電圧を示す。なお、ピーク電圧の増加は電極の劣化を表すものである。
この図12は、以下の条件の静電対策部品の試験結果を示したものである。
(1)第1の電極2:金のギャップ幅50μmと第2の電極3:アルミニウムのスパッタ膜厚1.0μmを組み合わせた静電気対策部品、
(2)第1の電極2:レジネート金で構成した静電気対策部品(従来品)。
上記図12から明らかなように、繰り返し回数の初期(1回)においては、上記2種類の静電気対策部品のピーク電圧に大差は見られないが、繰り返し回数10回以上においては、条件(1)の静電気対策部品が、条件(2)の従来品の静電気対策部品に比べてピーク電圧が低くなって、良好である。
この理由は、次のように考えられる。アルミニウムの融点は660℃であって、タングステンの融点3407℃、金の融点1064℃と比べると低いが、第2の電極3を構成するアルミニウムのスパッタ膜の表面は緻密な酸化アルミニウムの皮膜で覆われており、この酸化アルミニウムは融点が2020℃と高く、引出電極をレジネート金のみで構成した従来品と比べて耐熱性に優れているものである。アルミニウムのスパッタ膜で構成される第2の電極3とアルミナ基板1との界面では酸化反応が生じて酸化アルミニウムが存在するようになり、この酸化アルミニウムと金属アルミとの界面は明確に分離しているのではなく、ほぼ連続的に組成が変化している状態である。このためアルミナ基板1と第2の電極3との密着性は極めて良好なものである。また、第1の電極2と第2の電極3の電気的導通については、第1の電極2が金を主成分とする厚膜材料でその表面はほとんど酸化されておらず適度な凹凸を有している。そのため、第1の電極2と第2の電極3との界面には電気的導通を阻害する酸化アルミニウムがほとんど存在せず、第1の電極2と第2の電極3との間には良好な電気的導通が確保されているものである。
ちなみにアルミニウムの比抵抗は2.6μΩcmであって、タングステンの比抵抗5.5μΩcmの半分以下と低く、第2の電極3はアルミニウムの持つ抵抗値の低い性質と酸化アルミニウムの持つ耐熱性に優れた性質との相乗効果によって、図12に示すような良好な特性が得られるものである。
なお、上記本発明の実施の形態3においては、上記した本発明の実施の形態1と同様に、過電圧保護材料層7を覆う中間層8を設けるとともに、この中間層8および過電圧保護材料層7を保護樹脂層9で完全に覆うようにしている。このため、静電気パルス印加時に生じる最外層に位置する保護樹脂層9の絶縁劣化を防ぐことができるものである。
また、上記本発明の実施の形態3においては、上記した本発明の実施の形態1と同様に、第1の電極2の一部に重なるように再上面電極5を形成している。このため、錫めっき層12と保護樹脂層9の隙間から流入する実装時のはんだが第1の電極2と直接接するということはなくなる。そしてはんだは再上面電極5と接するため、第1の電極2にはんだ食われ現象が生じて抵抗値が上昇し静電気抑制効果が低下するということもない。即ち、静電気抑制効果が安定している静電気対策部品が得られるものである。
上記本発明の実施の形態3においては、引出電極を構成する一対の第1の電極2を金を主成分とする材料で構成するとともに、この一対の第1の電極2間に位置して設けられる第2の電極3をアルミニウムを主成分とする材料で構成するという表現をしている。これは、金やアルミニウムを用いて第1の電極2や第2の電極3を構成した場合、何らかの不純物が混入している可能性が有ることを考慮して表現しているものであって、合金を意味するものではない。
さらに、上記本発明の実施の形態3においては、アルミナ基板1の両端部に一対の第1の電極2を形成した後、この第1の電極2の一部を覆うように第2の電極3を形成するようにしている。この形成順序を逆にして、図10に示すようにアルミナ基板1の略中央部に第2の電極3を形成した後、この第2の電極3の一部を覆うようにアルミナ基板1の両端部に一対の第1の電極2を形成するようにしてもよい。実施の形態1で述べたのと同様に、この場合においても、上記本発明の実施の形態3と同様の効果が得られるものである。
以上のように、本発明では、絶縁基板であるアルミナ基板1と密着性の高い第2の電極3を設けることにより、第2の電極に10μm程度の狭いギャップを確実に精度良く形成することが可能である。更に、引出電極がアルミナ基板1から剥離するのを抑制できるため、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるという作用効果を有する。
また、本発明では、第1の電極2を金を主成分とする材料で構成するとともに、第2の電極3をタングステンもしくはモリブデンを主成分とする薄膜材料で構成した。この構成によれば、引出電極を構成する第1の電極2を金を主成分とする材料で構成しているため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、第2の電極3は、タングステンもしくはモリブデンを主成分とする薄膜材料で構成している。このタングステン、モリブデンは融点が高いという特徴を有しているため、これらのいずれかを主成分とする材料を用いて薄膜の第2の電極3を形成することにより、この第2の電極3の間にギャップ4を形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となる。これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができる。
また、タングステンの熱膨張係数は4.3×10−6〜4.5×10−6/K、モリブデンの熱膨張係数は5.1×10−6/Kであり、アルミナ基板1の熱膨張係数6.4×10−6〜8.0×10−6/Kと近いものである。このため、第2の電極3とアルミナ基板1との密着性が極めて良好であり、静電気を繰り返し印加した場合の発熱が原因で引出電極が損傷する可能性が低く、これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができる。
また、本発明では、第1の電極2を金を主成分とする材料で構成するとともに、第2の電極をニッケルを主成分とする薄膜材料で構成した。この構成によれば、引出電極を構成する第1の電極2を金を主成分とする材料で構成しているため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、第2の電極3は、ニッケルを主成分とする薄膜材料で構成している。このニッケルは融点が高く耐熱性に優れた特徴を有しているため、ニッケルを主成分とする薄膜材料を用いて第2の電極3を形成することにより、この第2の電極3の間にギャップ4を形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となり、耐熱性に優れた引出電極が得られるものである。また、ニッケルは表面酸化膜が強固に、かつ緻密に形成されて内部まで酸化反応が進行しない。このため、ニッケルを主成分とする第2の電極3の抵抗値も安定して低く保たれることになり、これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
また、本発明では、第2の電極3をアルミニウムを主成分とする薄膜材料で構成している。この構成によれば、引出電極を構成する第1の電極2を金を主成分とする材料で構成しているため、腐食されにくく耐硫化特性に優れたものを得ることができる。また、第2の電極3は、アルミニウムを主成分とする薄膜材料で構成しているもので、アルミニウムを主成分とする薄膜材料を用いて第2の電極を形成することにより、この第2の電極3の間にギャップを形成する場合、比較的低い出力のレーザーで第2の電極を切削することが可能となる。また、アルミニウムを主成分とする薄膜材料がアルミナ基板1と接する部分においては酸化アルミニウムが存在し、このため、アルミナ基板1と第2の電極3とが接する部分においては、第2の電極3の熱膨張係数がアルミナ基板1の熱膨張係数と近くなる。このため、第2の電極3とアルミナ基板1との密着性が極めて良好となるものである。さらに、アルミニウムを主成分とする薄膜は、その表面に耐熱性に優れた酸化アルミニウムが強固に、かつ緻密に形成されて内部まで酸化反応が進行しないため、アルミニウムを主成分とする第2の電極3の抵抗値も安定して低く保たれることになる。これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
本発明の製造方法では、アルミナ基板1の上面に比抵抗が小さい材料からなる厚膜の第1の電極2を形成するステップを備えているため、引出電極を構成する第1の電極2自体の抵抗を低減させることができる。これにより、静電気の印加時に流れる電流による発熱を抑制することができる。また、第1の電極2間に位置して第1の電極2と電気的に接続されるように融点の高い材料からなる第2の電極3を膜厚の薄い状態に形成するとともに、この第2の電極3の間にギャップを形成しているため、静電気印加による電極の損傷を抑制しながら、第2の電極3に10μm程度の狭いギャップを確実に精度良く形成することが可能となる。これにより、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
本発明の製造方法では、アルミナ基板1の上面に比抵抗が小さい材料からなる厚膜の第1の電極を形成しているため、引出電極を構成する一対の第1の電極2自体の抵抗を低減させることができる。なお、厚膜の比抵抗が小さいとは、少なくとも金レジネートペーストによるものと同等またはそれより低いことが好ましく、数値的には、1×10−2Ωcm以下が好ましい。これにより、静電気の印加時に流れる電流による発熱を抑制することができる。また、第1の電極2間に位置して第1の電極2と電気的に接続されるようにアルミナ基板1と密着性の高い材料からなる第2の電極3を膜厚の薄い状態に形成するとともに、この第2の電極3の間にギャップ4を形成しているため、第2の電極3に10μm程度の狭いギャップを確実に精度良く形成することが可能である。かつアルミナ基板1と密着性の高い薄膜の第2の電極3を設けることにより、引出電極がアルミナ基板1から剥離するのを抑制できる。このため、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるという作用効果を有するものである。なお、ここで、膜厚が薄いということは、通常の抵抗器などに用いられる一般的な厚膜電極よりも膜厚が薄いという意味であり、数値的には、約2μm未満の膜厚が好ましい。
本発明の製造方法では、引出電極を構成する厚膜の第1の電極2を金を主成分とする材料を用いて印刷焼成技術により形成しているため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、薄膜の第2の電極3は、タングステンもしくはモリブデンを主成分とする材料をスパッタリングすることにより形成し、さらにギャップ4を、第2の電極3をレーザーで切削することにより形成している。このタングステン、モリブデンは融点が高いという特徴を有しているため、いずれかを主成分とする材料を用いて薄膜の第2の電極3を形成することにより、この第2の電極3にギャップ4を形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となる。これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
更に、本発明の製造方法では、引出電極を構成する厚膜の第1の電極2を金を主成分とする材料を用いて印刷焼成技術により形成しているため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、薄膜の第2の電極3は、ニッケルを主成分とする材料をスパッタリングすることにより形成し、さらにこの第2の電極3にギャップをレーザーで切削することにより形成している。このため、ニッケルを主成分とする材料を用いて薄膜の第2の電極3を形成してこの第2の電極にギャップを形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となる。また、ニッケルは融点が高く、表面酸化膜が強固かつ緻密に形成されて内部まで酸化反応が進行しないため、ニッケルを主成分とする第2の電極3の抵抗値も安定して低く保たれることになる。これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるものである。
また、本発明の製造方法によれば、引出電極を構成する第1の電極2を金を主成分とする材料で構成している。このため、腐食されにくく耐硫化特性に優れた静電気対策部品を得ることができる。また、第2の電極3は、アルミニウムを主成分とする材料をスパッタリングすることにより形成しているため、この第2の電極3にギャップを形成する場合、比較的低い出力のレーザーで第2の電極3を切削することが可能となる。また、アルミニウムを主成分とする薄膜材料をスパッタリングにより形成する場合には、この薄膜材料がアルミナ基板と接する部分においては酸化アルミニウムが存在するため、アルミナ基板1と第2の電極3とが接する部分においては第2の電極3の熱膨張係数がアルミナ基板1の熱膨張係数6.4×10−6〜8.0×10−6/Kと近くなる。これにより、第2の電極3はアルミナ基板1との密着性が極めて良好となる。さらに、第2の電極3は、その表面に耐熱性に優れた酸化アルミニウムの薄膜が強固に、かつ緻密に形成されることによって内部まで酸化反応が進行しない。このため、アルミニウムを主成分とする第2の電極3の抵抗値は安定して低く保たれることになり、これにより、静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定している静電気対策部品を得ることができるという作用効果を有するものである。
なお、ここで取り上げた金属の融点は、タングステンが3407℃、モリブデンが2620℃、ニッケルが1455℃、金が1064℃、アルミが660℃である。融点の高い材料として効果があったのは、ニッケル以上である。即ち、本発明で言う融点が高い材料とは約1400℃以上のものである。
また、各実施の形態で取り上げた金属がアルミナ基板と密着性が良いというのは、熱膨張係数がアルミナ基板と近いことに起因している。即ち、タングステンの熱膨張係数は4.3×10−6〜4.5×10−6/K、モリブデンの熱膨張係数は5.1×10−6/Kであり、アルミナ基板1の熱膨張係数6.4×10−6〜8.0×10−6/Kと近いものである。以上より、熱膨張係数が、少なくとも4.3×10−6〜8.0×10−6/Kの範囲の金属は、アルミナ基板と密着性が良いと言える。
また、絶縁基板については、誘電率が低く、難燃性であり、好ましくは熱膨張係数が第2の電極と近いものであれば良く、各実施例で取り上げたアルミナ基板1に限るものではない。窒化アルミニウムやムライト−シリカ系セラミック、ホウ酸塩セラミックなどが使用可能である。
本発明に係る静電気対策部品は、引出電極を構成する第1の電極の発熱および損傷を低減させることができ、かつ第2の電極のギャップ幅を狭くかつ精度良く形成できる。これにより、静電気の繰り返し印加に対して耐性があり、かつ静電気対策部品にかかるピーク電圧が低く静電気放電(ESD)の抑制特性が安定しているという効果を有するものであり、特に電子機器を静電気から保護する微小サイズの静電気対策部品に適用することにより有用となる。
本発明の実施の形態1における静電気対策部品の断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す裏面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の製造方法を示す断面図 本発明の実施の形態1における静電気対策部品の製造方法を示す上面図 本発明の実施の形態1における静電気対策部品の静電気試験方法を示す模式図 本発明の実施の形態1における静電気対策部品の静電気試験の試験結果を示すグラフ 本発明の実施の形態1の他の静電気対策部品の断面図 本発明の実施の形態2における静電気対策部品の静電気試験の試験結果を示すグラフ 本発明の実施の形態3における静電気対策部品の静電気試験の試験結果を示すグラフ
符号の説明
1 アルミナ基板
2 第1の電極
3 第2の電極
4 ギャップ
7 過電圧保護材料層

Claims (14)

  1. 絶縁基板と、前記絶縁基板の上面に設けられた一対の第1の電極と、
    前記一対の第1の電極に一部が重なり前記第1の電極と電気的に接続されるように設けられた一対の第2の電極と、
    前記一対の第2の電極間に位置するギャップと、
    少なくとも前記ギャップを覆うように設けられた過電圧保護材料層とを備え、
    前記一対の第1の電極は比抵抗が小さい材料を用いて構成され、前記一対の第2の電極は前記一対の第1の電極よりも膜厚を薄く形成された
    静電気対策部品。
  2. 前記第2の電極が、融点の高い材料からなる請求項1に記載の静電気対策部品。
  3. 前記第1の電極が金を主成分とする材料で構成されるとともに、前記第2の電極がニッケルを主成分とする薄膜材料で構成された請求項2に記載の静電気対策部品。
  4. 前記第1の電極が金を主成分とする材料で構成されるとともに、前記第2の電極がタングステンもしくはモリブデンを主成分とする薄膜材料で構成された請求項1または請求項2のいずれか1項に記載の静電気対策部品。
  5. 前記比抵抗が1×10−2Ωcm以下であり、前期第1の電極の膜厚が2μm以上であり、前記第2の電極の膜厚が2μm未満である請求項1に記載の静電対策部品。
  6. 前記絶縁基板がアルミナ基板であり、前記第2の電極が、4.3×10−6〜8.0×10−6/Kの範囲の熱膨張係数をもつ金属である請求項1に記載の静電対策部品。
  7. 前記第1の電極が金を主成分とする材料で構成されるとともに、前記第2の電極がアルミニウムを主成分とし表面に酸化アルミニウムの皮膜を有する薄膜で構成された請求項1に記載の静電気対策部品。
  8. 絶縁基板の上面に比抵抗が小さい材料からなる一対の第1の電極を形成するステップと、
    前記一対の第1の電極間に位置して前記第1の電極と電気的に接続するように前記第1の電極より膜厚の薄い第2の電極を形成するステップと、
    前記第2の電極にギャップを形成するステップと、
    少なくとも前記ギャップを覆うように過電圧保護材料層を形成するステップとを備えた静電気対策部品の製造方法。
  9. 前記第2の電極を融点の高い材料で形成する請求項8に記載の静電気対策部品の製造方法。
  10. 前記第1の電極を比抵抗が1×10−2Ωcm以下の材料で形成するとともに、厚みを2μm以上に形成し、前記第2の電極の膜厚を2μm未満に形成する請求項8に記載の静電対策部品の製造方法。
  11. 前記第1の電極を金を主成分とする材料を用いて印刷焼成により形成するとともに、前記第2の電極をニッケルを主成分とする材料をスパッタリングすることにより形成し、さらに前記第2の電極をレーザーで切削することによりギャップを形成する請求項8に記載の静電気対策部品の製造方法。
  12. 前記絶縁基板としてアルミナ基板を使用し、前記第2の電極として、4.3×10−6〜8.0×10−6/Kの範囲の熱膨張係数をもつ金属を使用する請求項8に記載の静電対策部品の製造方法。
  13. 前記第1の電極を金を主成分とする材料を用いて印刷焼成により形成するとともに、前記第2の電極をタングステンもしくはモリブデンを主成分とする材料をスパッタリングすることにより形成し、さらに前記第2の電極をレーザーで切削することにより前記ギャップを形成する請求項8に記載の静電気対策部品の製造方法。
  14. 前記第1の電極を金を主成分とする材料を用いて印刷焼成により形成するとともに、前記第2の電極をアルミニウムを主成分とする材料をスパッタリングすることにより形成し、さらに前記第2の電極をレーザーで切削することによりギャップを形成する請求項8に記載の静電気対策部品の製造方法。
JP2008549297A 2007-06-21 2008-06-19 静電気対策部品およびその製造方法 Expired - Fee Related JP4697306B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008549297A JP4697306B2 (ja) 2007-06-21 2008-06-19 静電気対策部品およびその製造方法

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2007163496 2007-06-21
JP2007163496 2007-06-21
JP2007217946 2007-08-24
JP2007217946 2007-08-24
JP2007217947 2007-08-24
JP2007217947 2007-08-24
JP2008008871 2008-01-18
JP2008008871 2008-01-18
JP2008045407 2008-02-27
JP2008045407 2008-02-27
PCT/JP2008/001582 WO2008155916A1 (ja) 2007-06-21 2008-06-19 静電気対策部品およびその製造方法
JP2008549297A JP4697306B2 (ja) 2007-06-21 2008-06-19 静電気対策部品およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2008155916A1 true JPWO2008155916A1 (ja) 2010-08-26
JP4697306B2 JP4697306B2 (ja) 2011-06-08

Family

ID=40156080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008549297A Expired - Fee Related JP4697306B2 (ja) 2007-06-21 2008-06-19 静電気対策部品およびその製造方法

Country Status (3)

Country Link
US (1) US20100134235A1 (ja)
JP (1) JP4697306B2 (ja)
WO (1) WO2008155916A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010101103A1 (ja) * 2009-03-05 2012-09-10 昭和電工株式会社 放電ギャップ充填用組成物および静電放電保護体
KR101276985B1 (ko) 2009-03-19 2013-06-24 쇼와 덴코 가부시키가이샤 방전 갭 충전용 조성물 및 정전 방전 보호체
JP5551696B2 (ja) * 2009-06-17 2014-07-16 昭和電工株式会社 放電ギャップ充填用組成物および静電放電保護体
JP4749482B2 (ja) * 2009-07-08 2011-08-17 Tdk株式会社 複合電子部品
WO2011065043A1 (ja) * 2009-11-26 2011-06-03 釜屋電機株式会社 静電気保護用ペースト、静電気保護部品及びその製造方法
JP2013175443A (ja) * 2012-01-27 2013-09-05 Tdk Corp 静電気対策素子
TWM450811U (zh) * 2012-12-13 2013-04-11 Viking Tech Corp 電阻元件
US9099861B2 (en) * 2013-05-23 2015-08-04 Inpaq Technology Co., Ltd. Over-voltage protection device and method for preparing the same
KR20150135909A (ko) * 2014-05-26 2015-12-04 삼성전기주식회사 복합 전자부품, 제조방법, 그 실장 기판 및 포장체
WO2017038238A1 (ja) * 2015-09-01 2017-03-09 株式会社村田製作所 Esd保護素子
US9953749B2 (en) * 2016-08-30 2018-04-24 Samsung Electro-Mechanics Co., Ltd. Resistor element and resistor element assembly
US11393635B2 (en) * 2018-11-19 2022-07-19 Kemet Electronics Corporation Ceramic overvoltage protection device having low capacitance and improved durability
US11178800B2 (en) * 2018-11-19 2021-11-16 Kemet Electronics Corporation Ceramic overvoltage protection device having low capacitance and improved durability
TWI781418B (zh) * 2019-07-19 2022-10-21 美商凱門特電子股份有限公司 具有低電容及改良耐用性的陶瓷過電壓保護裝置及其製造方法
TWI707366B (zh) * 2020-03-25 2020-10-11 光頡科技股份有限公司 電阻元件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297606A (ja) * 2002-04-01 2003-10-17 Mitsubishi Materials Corp サージアブソーバ及びその製造方法
JP2004040023A (ja) * 2002-07-08 2004-02-05 Ngk Insulators Ltd 電圧非直線抵抗体素子
WO2006085492A1 (ja) * 2005-02-09 2006-08-17 Matsushita Electric Industrial Co., Ltd. 静電気保護機能付きチップ部品
WO2007032240A1 (ja) * 2005-09-13 2007-03-22 Matsushita Electric Industrial Co., Ltd. 静電気対策部品
JP2007081012A (ja) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd 静電気対策部品の特性検査方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376879A (en) * 1992-11-03 1994-12-27 Qrp, Incorporated Method and apparatus for evaluating electrostatic discharge conditions
US5646062A (en) * 1995-01-19 1997-07-08 United Microelectronics Corporation Method for ESD protection circuit with deep source diffusion
JP2003173901A (ja) * 2001-09-28 2003-06-20 Ishizuka Electronics Corp 薄膜サーミスタ及びその抵抗値調整方法
KR100665116B1 (ko) * 2005-01-27 2007-01-09 삼성전기주식회사 Esd 보호용 led를 구비한 질화갈륨계 발광 소자 및그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297606A (ja) * 2002-04-01 2003-10-17 Mitsubishi Materials Corp サージアブソーバ及びその製造方法
JP2004040023A (ja) * 2002-07-08 2004-02-05 Ngk Insulators Ltd 電圧非直線抵抗体素子
WO2006085492A1 (ja) * 2005-02-09 2006-08-17 Matsushita Electric Industrial Co., Ltd. 静電気保護機能付きチップ部品
WO2007032240A1 (ja) * 2005-09-13 2007-03-22 Matsushita Electric Industrial Co., Ltd. 静電気対策部品
JP2007081012A (ja) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd 静電気対策部品の特性検査方法

Also Published As

Publication number Publication date
WO2008155916A1 (ja) 2008-12-24
US20100134235A1 (en) 2010-06-03
JP4697306B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4697306B2 (ja) 静電気対策部品およびその製造方法
JP4844631B2 (ja) 静電気対策部品の製造方法
US9590417B2 (en) ESD protective device
JP5877317B2 (ja) 過電圧保護部品および過電圧保護部品用の過電圧保護材料
JP2007265713A (ja) 静電気保護材料ペーストおよびそれを用いた静電気対策部品
JP5206415B2 (ja) 静電気対策部品およびその製造方法
JPWO2014208215A1 (ja) Esd保護装置
JP2017123453A (ja) チップ抵抗素子
JP2009267202A (ja) 静電気対策部品
JP2009152348A (ja) 静電気対策部品
JP5048370B2 (ja) 絶縁体及び絶縁接合体
JP2009117735A (ja) 静電気対策部品およびその製造方法
JP2010153719A (ja) 過電圧保護部品およびその製造方法
JP2010027636A (ja) 静電気対策部品
JPWO2011104849A1 (ja) 静電気保護部品及びその製造方法
JP2009194130A (ja) 静電気対策部品
CN1929220B (zh) 片型浪涌吸收器
CN101548347A (zh) 防静电部件以及其制造方法
JP2016157896A (ja) 過電圧保護部品および過電圧保護部品用の過電圧保護材料
CN110911069B (zh) 电子组件及其制造方法
JP2010232246A (ja) 過電圧保護部品
JP2008147271A (ja) 静電気対策部品およびその製造方法
JP2010182916A (ja) 過電圧保護部品
US20150103464A1 (en) Static-protective component and static-protective composition
JP2010097791A (ja) 過電圧保護部品

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees