JPWO2008108146A1 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JPWO2008108146A1
JPWO2008108146A1 JP2009502492A JP2009502492A JPWO2008108146A1 JP WO2008108146 A1 JPWO2008108146 A1 JP WO2008108146A1 JP 2009502492 A JP2009502492 A JP 2009502492A JP 2009502492 A JP2009502492 A JP 2009502492A JP WO2008108146 A1 JPWO2008108146 A1 JP WO2008108146A1
Authority
JP
Japan
Prior art keywords
dielectric layer
electrostatic chuck
insulating dielectric
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009502492A
Other languages
Japanese (ja)
Inventor
良昭 辰己
良昭 辰己
宮下 欣也
欣也 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creative Technology Corp
Original Assignee
Creative Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creative Technology Corp filed Critical Creative Technology Corp
Publication of JPWO2008108146A1 publication Critical patent/JPWO2008108146A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

この発明は、吸着面の交換が可能で、且つこの交換可能な樹脂シートを柔軟な材質とすることで、吸着保持するウエハなどの基板との密着性を高めた静電チャックを提供する。ポリイミドなどの樹脂またはフロロシリコーンなどのシリコーン系ゴムの第一の絶縁性電体層(3,4)内に、銅やアルミニウムなどの吸着電極(6)を内在させた。そして、第一の絶縁性電体層の上部層(4)の上に、ポリイミドなどの樹脂シートである第二の誘電体層(5)を貼り付け、交換可能とした。The present invention provides an electrostatic chuck that is capable of exchanging the attracting surface and has improved adhesiveness with a substrate such as a wafer to be attracted and held by making the replaceable resin sheet a flexible material. An adsorption electrode (6) such as copper or aluminum was included in the first insulating electrical conductor layer (3,4) of a resin such as polyimide or a silicone rubber such as fluorosilicone. Then, the second dielectric layer (5), which is a resin sheet such as polyimide, is attached on the upper layer (4) of the first insulating electric conductor layer so as to be exchangeable.

Description

この発明は、半導体素子製造プロセスで用いられているエッチング処理、化学気相蒸着(CVD)による薄膜形成などのプラズマ処理装置、電子露光装置、イオン描写装置、イオン注入装置、また液晶パネル製造に使用されるイオンドーピング装置などに用いられる半導体ウエハの静電チャックの機構にするものである。   The present invention is used for plasma processing apparatuses such as etching processes and chemical vapor deposition (CVD) thin film formation used in semiconductor element manufacturing processes, electron exposure apparatuses, ion drawing apparatuses, ion implantation apparatuses, and liquid crystal panel manufacturing. This is a mechanism for an electrostatic chuck of a semiconductor wafer used in an ion doping apparatus to be used.

静電チャックでその寿命にもっとも影響があるのは、その吸着面である。静電チャックの吸着面は半導体ウエハやガラスなど比較的硬い材質からなる基板を相当な力、単位面積あたり数gf/cmから大きいときには数10gf/cmで保持させるためである。さらに基板の裏面、すなわち吸着面に接する面はゴミや微小なパーティクルが付着していたり、静電チャックが設置される処理室の壁などから浮遊する異物が直接吸着面にふりかかったりするため、静電チャックの吸着面は常に磨耗やダメージを受けることになる。The chucking surface has the most influence on the life of the electrostatic chuck. Attracting surface of the electrostatic chuck is for holding the number 10 gf / cm 2 when a large substrate of relatively hard material such as a semiconductor wafer or a glass considerable force, from the number of units per area gf / cm 2. In addition, because the backside of the substrate, that is, the surface in contact with the suction surface, has dust or minute particles attached to it, or foreign substances floating from the walls of the processing chamber where the electrostatic chuck is installed directly touch the suction surface. The attracting surface of the electrostatic chuck is always worn and damaged.

静電チャック吸着面は前記の磨耗やダメージの影響を少なくするため、比較的硬い材質、例えばセラミックが使われる。また樹脂の場合でも比較的引張強度の高い材質、たとえば宇部興産のユーピレックス(宇部興産の登録商標)とよばれるポリイミドシートが使われている。材質の強度を増して静電チャックの吸着面の寿命を長くすることは可能であるが、吸着面の柔軟性は失われるため基板の冷却特性は悪化する。どちらも硬い材質になるため、吸着面と基板の接触面積が少なくなるためである。さらに硬い材質どうしが擦れ合うと微小なパーティクルが発生する可能性が高まるため、吸着面や基板自身からの発塵の問題が懸念される。   The electrostatic chuck attracting surface is made of a relatively hard material, such as ceramic, in order to reduce the influence of the wear and damage. Also in the case of resin, a material having a relatively high tensile strength, for example, a polyimide sheet called Ube Industries' Upilex (registered trademark of Ube Industries) is used. Although it is possible to increase the strength of the material and extend the life of the attracting surface of the electrostatic chuck, the flexibility of the attracting surface is lost, so the cooling characteristics of the substrate deteriorate. This is because both are made of a hard material, and the contact area between the suction surface and the substrate is reduced. Further, when hard materials rub against each other, the possibility of generating fine particles increases, and there is a concern about the problem of dust generation from the suction surface and the substrate itself.

特許文献1である特開2003−45949号公報には、薄膜形成に使用する静電チャックの吸着面に防着シートと呼ばれるパーティクル捕捉シートを基板との間に挟んで処理する方法が開示されている。防着シートは消耗品であり、都度交換するためパーティクル低減に効果があるとしている。また、特許文献2である特開平10−209256号公報では、セラミックの絶縁性誘電体層に電極と樹脂製の吸着面を貼り付け、それら電極と吸着面を交換可能とすることが開示されている。さらに、特許文献3である特開平10−303286号公報には、プラズマエッチング装置の静電チャックでセラミック製の絶縁性誘電体層を接着剤で基盤に固定してその絶縁性誘電体層を交換可能とすることが開示されている。   Japanese Patent Application Laid-Open No. 2003-45949, which is a patent document 1, discloses a method of processing a particle capturing sheet called an anti-adhesion sheet between a substrate and an adsorption surface of an electrostatic chuck used for forming a thin film. Yes. The anti-adhesion sheet is a consumable item and is said to be effective in reducing particles because it is replaced every time. Japanese Patent Application Laid-Open No. 10-209256, which is Patent Document 2, discloses that an electrode and a resin adsorption surface are attached to a ceramic insulating dielectric layer so that the electrode and the adsorption surface can be exchanged. Yes. Furthermore, in Japanese Patent Application Laid-Open No. 10-303286, which is Patent Document 3, an insulating dielectric layer made of ceramic is fixed to a substrate with an adhesive by an electrostatic chuck of a plasma etching apparatus, and the insulating dielectric layer is replaced. It is disclosed that it is possible.

特開2003−45949号公報JP 2003-45949 A 特開平10−209256号公報JP-A-10-209256 特開平10−303286号公報JP-A-10-303286

この発明が解決しようとする課題は以下のとおりである。
第一の課題はポリイミドなどの樹脂もしくはフロロシリコーン(フルオロシリコーンとも呼ぶ)などのフッ素とシリコーンの複合ゴムの絶縁性誘電体層に吸着電極を施した静電チャックの吸着面側に、ポリイミドなどの樹脂シートを貼り付け、引き剥がし可能とすることで、吸着面の交換ができるようにすることである。第二の課題は前記の交換可能な樹脂シートを柔軟な材質とすることで、吸着保持するウエハなどの基板との密着性を高めることである。
Problems to be solved by the present invention are as follows.
The first problem is that the surface of the electrostatic chuck having an adsorption electrode on the insulating dielectric layer of a fluorine-silicone composite rubber such as a resin such as polyimide or fluorosilicone (also referred to as fluorosilicone) is coated with polyimide or the like. By attaching a resin sheet and making it possible to peel it off, the suction surface can be exchanged. A second problem is to improve the adhesion with a substrate such as a wafer to be sucked and held by making the replaceable resin sheet a flexible material.

上記課題を解決するために、請求項1の発明は、誘電体の内部に吸着電極を有して吸着電極に印加する電圧で誘起される静電気により基板を吸着保持する静電チャックにおいて、吸着電極を有する第一の絶縁性誘電体層に第二の誘電体層を貼り付けそして引き剥がしができ、第二の誘電体層を交換することが可能である構成とした。
ここで、第一の絶縁性誘電体層の材質は特に問わない。ある程度の電気絶縁性を有し半導体製造装置で要求される材質の純度と耐久および耐熱性をさらに有すポリイミド等の樹脂又はフロロシリコーン材が適当である。ポリイミド又はフロロシリコーンからなる第一の絶縁性誘電体層は50〜200μmの範囲の厚さを有し、単層あるいは二層以上の同質又は異なった種類の材質で構成される。厚みが比較的薄い場合は単層で形成するのが適当であるが、厚みが厚い場合や後述の吸着電極を内在させる場合には複数のポリイミドシートを貼り合せることで形成する。吸着電極は第一の絶縁性誘電体層の表面もしくは内部に形成する。吸着電極の材質としては銅やアルミニウムなどの電気伝導度の高い材質、あるいはタングステンやタンタルなどの化学的、熱的に耐性が高いもの。さらにニッケルなど加工の容易なものから選ばれる。厚みは0.5μmから30μm程度であるが、できるだけ薄くするほうが吸着面の凸凹が小さくなるので好ましい場合もある。耐久性と表面の平坦性を考慮して決定する。吸着電極の形成方法はスパッタ法、鍍金、イオンプレーティング、蒸着あるいは薄膜を接着するなどの方法で行い、適当なパターンニングを要する場合はエッチング法などを併用しておこなう。第二の誘電体層はポリイミド樹脂で形成する。第二の誘電体層の厚みは25〜100μmの範囲が好ましく、単層もしくは複層で形成する。厚みが薄い場合は単層のシート状のもので形成するのが製作上好ましい。第二の誘電体層は第一の絶縁性誘電体層に粘着剤で貼り付けるが、適当な保持力を有しかつ交換性をもたせるために引き剥がしが可能であることが必要である。
In order to solve the above-mentioned problems, the invention of claim 1 is directed to an electrostatic chuck having an adsorption electrode inside a dielectric and adsorbing and holding a substrate by static electricity induced by a voltage applied to the adsorption electrode. The second dielectric layer can be attached to and peeled off from the first insulating dielectric layer having the structure, and the second dielectric layer can be exchanged.
Here, the material of the first insulating dielectric layer is not particularly limited. A resin such as polyimide or a fluorosilicone material that has a certain degree of electrical insulation and further has the purity, durability, and heat resistance of materials required for semiconductor manufacturing equipment is suitable. The first insulating dielectric layer made of polyimide or fluorosilicone has a thickness in the range of 50 to 200 μm, and is composed of a single layer or two or more layers of the same or different kinds of materials. When the thickness is relatively thin, it is appropriate to form it as a single layer, but when the thickness is large or when an adsorption electrode described later is contained, it is formed by bonding a plurality of polyimide sheets. The adsorption electrode is formed on the surface or inside of the first insulating dielectric layer. The material of the adsorption electrode is a material with high electrical conductivity such as copper or aluminum, or a material with high chemical and thermal resistance such as tungsten or tantalum. Furthermore, it is selected from those that are easy to process, such as nickel. The thickness is about 0.5 μm to 30 μm, but it is sometimes preferable to make it as thin as possible because the unevenness of the adsorption surface becomes small. Determined in consideration of durability and surface flatness. The adsorption electrode is formed by a method such as sputtering, plating, ion plating, vapor deposition, or adhesion of a thin film. When appropriate patterning is required, an etching method is used in combination. The second dielectric layer is formed of a polyimide resin. The thickness of the second dielectric layer is preferably in the range of 25 to 100 μm, and is formed as a single layer or multiple layers. In the case where the thickness is small, it is preferable in terms of production to form a single-layer sheet. The second dielectric layer is affixed to the first insulating dielectric layer with an adhesive, but it must have a suitable holding force and can be peeled off in order to have exchangeability.

請求項2の発明は、請求項1に記載の静電チャックにおいて、第二の誘電体層はシリコン系粘着剤で第一の絶縁性誘電体層に貼り付ける構成とした。
ここで使用される粘着剤は、半導体製造プロセス上なるべく無害な材質ものを使用する必要がある。吸着する基板のほとんどはシリコン基板であるので、同質の材質の粘着剤とすることでその安全性を高めることができる。
According to a second aspect of the present invention, in the electrostatic chuck according to the first aspect, the second dielectric layer is attached to the first insulating dielectric layer with a silicon-based adhesive.
The pressure-sensitive adhesive used here needs to be made of a material that is as harmless as possible in the semiconductor manufacturing process. Since most of the adsorbing substrates are silicon substrates, the safety can be improved by using an adhesive of the same quality.

請求項3の発明は、請求項1又は請求項2に記載の静電チャックにおいて、第二の誘電体層は第一の絶縁性誘電体層よりも柔軟性が高い材質のもので、ヤング率が2〜6GPaであるポリイミド樹脂から成る構成とした。
第二の誘電体層は第一の絶縁性誘電体層よりも柔軟性を高くすることによって、ウエハなどの基板と静電チャックの吸着面との接触面積すなわち密着性を高めることができる。ヤング率は材料にかかる力に対してどれだけ変位ができるかの係数で、柔軟性を示す一つの指標である。この係数が高いほど硬い材質とされる。密着性が高まればウエハからの熱を静電チャックにより効率よく伝えることができるためウエハの冷却性能が向上する。さらに、ウエハと静電チャックに溜まった電荷もその間の接触抵抗が低減するので効率よく消滅することが可能になる。
According to a third aspect of the present invention, in the electrostatic chuck according to the first or second aspect, the second dielectric layer is made of a material having higher flexibility than the first insulating dielectric layer, and has a Young's modulus. Is made of a polyimide resin having 2 to 6 GPa.
By making the second dielectric layer more flexible than the first insulating dielectric layer, it is possible to increase the contact area, that is, the adhesion between the substrate such as a wafer and the attracting surface of the electrostatic chuck. Young's modulus is a coefficient of how much displacement can be made with respect to the force applied to the material, and is an index indicating flexibility. The higher the coefficient, the harder the material. If the adhesion is increased, the heat from the wafer can be efficiently transferred by the electrostatic chuck, so that the cooling performance of the wafer is improved. Furthermore, since the contact resistance between the charges accumulated on the wafer and the electrostatic chuck is reduced, it can be efficiently eliminated.

以上詳しく説明したように、この発明の静電チャックによれば、静電チャックの吸着面がパーティクルの付着やダメージなどで寿命が尽きたとき、第二の誘電体層のみを張替えて再生することによりその機能を回復できる。この作業は、吸着電極を含む絶縁性誘電体層を再生することよりも簡単におこなうことができるので、より経済的である。また、既存の樹脂で構成された絶縁性誘電体層を有する静電チャックの吸着面として、第二の誘電体層を上貼りすることで、吸着面を再生可能とでき、さらに、ウエハの冷却性能の向上が可能となる。   As described above in detail, according to the electrostatic chuck of the present invention, when the chucking surface of the electrostatic chuck has expired due to adhesion or damage of particles, only the second dielectric layer is replaced and regenerated. Can restore its function. This operation is more economical because it can be performed more easily than regenerating the insulating dielectric layer including the attracting electrode. In addition, by adhering a second dielectric layer on the surface of the electrostatic chuck having an insulating dielectric layer made of an existing resin, it is possible to regenerate the suction surface, and to cool the wafer. The performance can be improved.

この発明の第一実施例に係る静電チャックの概略断面図である。It is a schematic sectional drawing of the electrostatic chuck which concerns on 1st Example of this invention. この発明の第二実施例に係る静電チャックの概略断面図である。It is a schematic sectional drawing of the electrostatic chuck which concerns on 2nd Example of this invention.

符号の説明Explanation of symbols

1…基盤、 2…クッション層、 3…第一の絶縁性誘電体層の下部層、 4…第一の絶縁性誘電体層の上部層、 5…第二の誘電体層、 5a…吸着面、 6…吸着電極、 7…冷却水路、 8…電位供給絶縁部、 9…電位供給端子、 10…電源、 100,101…静電チャック。   DESCRIPTION OF SYMBOLS 1 ... Base | substrate, 2 ... Cushion layer, 3 ... Lower layer of 1st insulating dielectric layer, 4 ... Upper layer of 1st insulating dielectric layer, 5 ... 2nd dielectric layer, 5a ... Adsorption surface 6 ... Adsorption electrode, 7 ... Cooling water channel, 8 ... Potential supply insulating part, 9 ... Potential supply terminal, 10 ... Power supply, 100, 101 ... Electrostatic chuck.

以下、この発明の最良の形態について図面を参照して説明する。   The best mode of the present invention will be described below with reference to the drawings.

図1は、この発明の第一実施例に係る静電チャックの概略断面図である。
図1において、符号1は基盤であり、この基盤1は硬性の高いアルミニウム金属で作られ、直径300mmウエハ用の静電チャックの場合、基盤1の直径は294mmで厚さ10mmである。この基盤1の内部には基盤1を冷却するための冷却水路7が形成される。冷却する理由は、基盤1を冷却することによって間接的に熱伝導により静電チャックに吸着保持するウエハなどの基板を冷却するためである。
第一の絶縁性誘電体層の上部層4を用意する。ポリイミド樹脂で厚さ125μm、直径294mmのものを用意する。この実施例ではユーピレックス(宇部興産の登録商標)とよばれる製品を使った。
次に、第一の絶縁性誘電体層の上部層4の片面に吸着電極6を形成する。吸着電極6の材質は銅を用いた。他の吸着電極6の材料の候補としてはアルミニウム、タングステン、タンタル、金なども可能である。吸着電極6の形成方法はめっき法を用い厚さ0.6μmとした。なるべく薄い吸着電極6の膜を形成することが静電チャックの吸着面の凸凹を減少させることにつながる。他の吸着電極6の形成方法としては蒸着やスパッタリング法がある。吸着電極6を第一の絶縁性誘電体層の上部層4の片面の全面に形成し、後にエッチング処理により扇形に10分割かつ双極型になるようパターンニングした。他の電極の形としてはくし型や同心円など様々なものが可能である。吸着電極6の形成方法としてはマスクを施して必要な部分のみ吸着電極6を形成することも可能である。
吸着電極6を形成した第一の絶縁性誘電体層の上部層4は吸着電極6を挟むように125μmの厚さの第一の絶縁性誘電体層の下部層3に接着する。この接着には20μmの熱可塑性のポリイミド接着シート(図示せず)を介して接着する。
接着工程は一般的にプレスラミネートと呼ばれる真空中で温度と圧力を管理して脱泡しながら積層形態を形成する方法を用いる。次にクッション層2を介して基盤1に上記で完成した吸着電極6を含む第一の絶縁性誘電体層を接着するが、このとき吸着電極6への電位供給部も同時に形成する。吸着電極6に電源10からの電位を供給するための電位供給端子9への配線をおこなうが、当該電位供給端子9は静電チャック内では電気的絶縁性を保つため他の部位に接触しないよう電位供給絶縁部8の内部に配置される。クッション層2はシリコン系の弾性体で500μmの厚さを有す。この層を設ける理由は、ウエハと静電チャックの吸着面の接触率を高めるためである。吸着電極6とウエハは静電気により吸着するため、吸着電極6以下基盤1以上の層が柔軟であれば、ウエハの表面状態になじんで吸着面5aが密着するためである。
最後に、第二の誘電体層5を第一の絶縁性誘電体層の上部層4に貼り付ける。第二の誘電体層5は25μmのポリイミド樹脂でカプトン(東レ・デュポン株式会社の登録商標)と呼ばれるものに25μmのシリコン系粘着剤を施したものを使用した。
以上でこの実施例の静電チャック100を完成する。
FIG. 1 is a schematic sectional view of an electrostatic chuck according to a first embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a base. The base 1 is made of a highly rigid aluminum metal. In the case of an electrostatic chuck for a wafer having a diameter of 300 mm, the base 1 has a diameter of 294 mm and a thickness of 10 mm. A cooling water channel 7 for cooling the base 1 is formed inside the base 1. The reason for cooling is to cool a substrate such as a wafer that is attracted and held on the electrostatic chuck by heat conduction indirectly by cooling the substrate 1.
An upper layer 4 of the first insulating dielectric layer is prepared. A polyimide resin having a thickness of 125 μm and a diameter of 294 mm is prepared. In this example, a product called Upilex (registered trademark of Ube Industries) was used.
Next, the adsorption electrode 6 is formed on one surface of the upper layer 4 of the first insulating dielectric layer. The material of the adsorption electrode 6 was copper. Aluminum, tungsten, tantalum, gold, and the like are also possible as other materials for the adsorption electrode 6. The adsorption electrode 6 was formed by plating using a thickness of 0.6 μm. Forming a film of the adsorption electrode 6 as thin as possible leads to a reduction in unevenness of the adsorption surface of the electrostatic chuck. Other methods for forming the adsorption electrode 6 include vapor deposition and sputtering. The adsorption electrode 6 was formed on the entire surface of one surface of the upper layer 4 of the first insulating dielectric layer, and was then patterned into a fan-shaped and bipolar type by an etching process. Various other electrode shapes such as comb and concentric circles are possible. As a method for forming the adsorption electrode 6, it is possible to form the adsorption electrode 6 only at a necessary portion by applying a mask.
The upper layer 4 of the first insulating dielectric layer on which the adsorption electrode 6 is formed is adhered to the lower layer 3 of the first insulating dielectric layer having a thickness of 125 μm so as to sandwich the adsorption electrode 6. For this bonding, a 20 μm thermoplastic polyimide adhesive sheet (not shown) is bonded.
In the bonding step, a method of forming a laminated form while defoaming by controlling temperature and pressure in a vacuum generally called press lamination is used. Next, the first insulating dielectric layer including the adsorption electrode 6 completed as described above is bonded to the substrate 1 through the cushion layer 2. At this time, a potential supply portion to the adsorption electrode 6 is also formed at the same time. Wiring to the potential supply terminal 9 for supplying a potential from the power source 10 to the adsorption electrode 6 is performed, but the potential supply terminal 9 is not in contact with other parts in order to maintain electrical insulation in the electrostatic chuck. Arranged inside the potential supply insulating portion 8. The cushion layer 2 is a silicon-based elastic body and has a thickness of 500 μm. The reason for providing this layer is to increase the contact ratio between the wafer and the attracting surface of the electrostatic chuck. This is because the adsorption electrode 6 and the wafer are adsorbed by static electricity, so that if the layers below the adsorption electrode 6 and the substrate 1 are flexible, the adsorption surface 5a comes into close contact with the surface state of the wafer.
Finally, the second dielectric layer 5 is attached to the upper layer 4 of the first insulating dielectric layer. The second dielectric layer 5 was a 25 μm polyimide resin called Kapton (registered trademark of Toray DuPont Co., Ltd.) with a 25 μm silicon adhesive.
Thus, the electrostatic chuck 100 of this embodiment is completed.

この実施例による静電チャック100のウエハ冷却特性の評価は中電流型イオン注入装置に搭載して実施した。条件はリン一価イオンのビーム(エネルギ150keV、ビーム電流3mA、ドーズ1×1015/cm)を300mm直径のシリコンウエハに注入することによりおこなった。温度計測はウエハの注入面の5点(中央、左右上下)で行い、従来より吸着電圧が比較的低い場合でも良好な冷却特性を示した。吸着電圧1000Vでたとえばウエハ表面の温度は54〜65℃の範囲に入り、吸着電圧を半分の500Vにした場合でも、ウエハ表面の温度は76〜87℃の範囲に入っていて100℃以下の仕様に十分満足できる結果を得た。Evaluation of the wafer cooling characteristics of the electrostatic chuck 100 according to this example was carried out by being mounted on a medium current ion implantation apparatus. The conditions were set by implanting a phosphorous monovalent ion beam (energy 150 keV, beam current 3 mA, dose 1 × 10 15 / cm 2 ) into a 300 mm diameter silicon wafer. The temperature was measured at five points (center, left and right, top and bottom) of the wafer implantation surface, and showed good cooling characteristics even when the adsorption voltage was relatively lower than before. For example, when the adsorption voltage is 1000 V, the wafer surface temperature is in the range of 54 to 65 ° C., and even when the adsorption voltage is half of 500 V, the wafer surface temperature is in the range of 76 to 87 ° C. The results were satisfactory.

次に、この発明の第二実施例について説明する。
図2は、この発明の第二実施例に係る静電チャックの概略断面図である。
この実施例では、上述した第一実施例で用いた第一の絶縁性誘電体層が、ポリイミドでなく、フロロシリコーン材としたもので、第一の絶縁性誘電体層の下部層3を有しない。
図2において、基盤1は硬性の高いアルミニウム金属で作られ、直径300mmウエハ用の静電チャックの場合、基盤1の直径は294mmで厚さ10mmである。
基盤1の内部には基盤1を冷却するための冷却水路7が形成される。冷却する理由は、基盤1を冷却することによって間接的に熱伝導により静電チャックに吸着保持するウエハなどの基板を冷却するためである。
第一の絶縁性誘電体層の上部層4を用意する。フロロシリコーン製ゴムで厚さ200μm、直径294mmのものを用意する。
次に第一の絶縁性誘電体層の上部層4の片面に吸着電極6を形成する。吸着電極6の材質は30μmの銅箔である。吸着電極6を第一の絶縁性誘電体層の上部層4の片面の全面にシリコン系接着剤を介して実施例1と同等なプレスラミネート法で形成し、後にエッチング処理により扇形に10分割かつ双極型になるようパターンニングした。吸着電極6を形成した第一の絶縁性誘電体層の上部層4は吸着電極6を挟むようにクッション層2を介して基盤1にシリコン系接着剤で接着するが、このとき吸着電極6への電位供給部も同時に形成する。吸着電極6に電源10からの電位を供給するための電位供給端子9への配線をおこなうが、当該電位供給端子9は静電チャック内では電気的絶縁性を保つため他の部位に接触しないよう電位供給絶縁部8の内部に配置される。クッション層2はシリコン系の弾性体で650μmの厚さを有す。
最後に、第二の誘電体層5を第一の絶縁性誘電体層の上部層4に貼り付ける。第二の誘電体層5は25μmのポリイミド樹脂でカプトン(東レ・デュポン株式会社の登録商標)と呼ばれるものに25μmのシリコン系粘着剤を施したものを使用した。
この実施例2の静電チャック101を完成する。
その他の構成、作用及び効果は、上記第一実施例と同様であるので、その記載は省略する。
Next, a second embodiment of the present invention will be described.
FIG. 2 is a schematic sectional view of an electrostatic chuck according to the second embodiment of the present invention.
In this embodiment, the first insulating dielectric layer used in the first embodiment described above is not a polyimide but a fluorosilicone material, and has a lower layer 3 of the first insulating dielectric layer. do not do.
In FIG. 2, the substrate 1 is made of a hard aluminum metal, and in the case of an electrostatic chuck for a wafer having a diameter of 300 mm, the substrate 1 has a diameter of 294 mm and a thickness of 10 mm.
A cooling water channel 7 for cooling the base 1 is formed inside the base 1. The reason for cooling is to cool a substrate such as a wafer that is attracted and held on the electrostatic chuck by heat conduction indirectly by cooling the substrate 1.
An upper layer 4 of the first insulating dielectric layer is prepared. A fluorosilicone rubber having a thickness of 200 μm and a diameter of 294 mm is prepared.
Next, the adsorption electrode 6 is formed on one surface of the upper layer 4 of the first insulating dielectric layer. The material of the adsorption electrode 6 is a 30 μm copper foil. The attracting electrode 6 is formed on the entire surface of one surface of the upper layer 4 of the first insulating dielectric layer by a press laminating method equivalent to that in Example 1 through a silicon adhesive, and is divided into 10 fan shapes by an etching process. Patterned to be bipolar. The upper layer 4 of the first insulating dielectric layer on which the adsorption electrode 6 is formed is bonded to the substrate 1 with a silicon adhesive via the cushion layer 2 so as to sandwich the adsorption electrode 6. The potential supply portion is simultaneously formed. Wiring to the potential supply terminal 9 for supplying a potential from the power source 10 to the adsorption electrode 6 is performed, but the potential supply terminal 9 is not in contact with other parts in order to maintain electrical insulation in the electrostatic chuck. Arranged inside the potential supply insulating portion 8. The cushion layer 2 is a silicon-based elastic body and has a thickness of 650 μm.
Finally, the second dielectric layer 5 is attached to the upper layer 4 of the first insulating dielectric layer. The second dielectric layer 5 was a 25 μm polyimide resin called Kapton (registered trademark of Toray DuPont Co., Ltd.) with a 25 μm silicon adhesive.
The electrostatic chuck 101 of Example 2 is completed.
Since other configurations, operations, and effects are the same as those in the first embodiment, description thereof is omitted.

最後に、この発明の第三実施例について説明する。
吸着面5aの再生方法は以下のとおりである。
吸着面5aが損傷その他理由で劣化したときは、第二の誘電体層5を第一の絶縁性誘電体層の上部層4から引き剥がす。吸着面5aと第一の絶縁性誘電体層の上部層4は粘着剤で貼り付けてあるので、比較的容易に第一の絶縁性誘電体層の上部層4に損傷を与えることなく粘着剤の溶解剤などの助けをかりながら引き剥がし可能である。第二の誘電体層5を引き剥がした後の第一の絶縁性誘電体層の上部層4を有機溶剤などで洗浄し、新たな第二の誘電体層5を再度接着することで吸着面5aを再生する。既存の静電チャックに第二の誘電体層を貼り付ける場合も上記と同様な手順でおこなうことができる。
その他の構成、作用及び効果は、上記第一及び第二実施例と同様であるので、その記載は省略する。
Finally, a third embodiment of the present invention will be described.
The method for regenerating the adsorption surface 5a is as follows.
When the adsorption surface 5a is deteriorated due to damage or other reasons, the second dielectric layer 5 is peeled off from the upper layer 4 of the first insulating dielectric layer. Since the adsorbing surface 5a and the upper layer 4 of the first insulating dielectric layer are pasted with an adhesive, the adhesive is relatively easily damaged without damaging the upper layer 4 of the first insulating dielectric layer. It can be peeled off with the help of other solubilizers. After the second dielectric layer 5 is peeled off, the upper layer 4 of the first insulating dielectric layer is washed with an organic solvent or the like, and a new second dielectric layer 5 is adhered again to the adsorption surface. Play 5a. Even when the second dielectric layer is attached to the existing electrostatic chuck, the same procedure as described above can be used.
Since other configurations, operations, and effects are the same as those in the first and second embodiments, description thereof is omitted.

Claims (3)

誘電体の内部に吸着電極を有して上記吸着電極に印加する電圧で誘起される静電気により基板を吸着保持する静電チャックにおいて、上記吸着電極を有する第一の絶縁性誘電体層に第二の誘電体層を貼り付けそして引き剥がしができ、第二の誘電体層を交換することが可能である、
ことを特徴とする静電チャック。
In an electrostatic chuck having an attracting electrode inside a dielectric and attracting and holding a substrate by static electricity induced by a voltage applied to the attracting electrode, a second insulating dielectric layer having the attracting electrode is provided on a second insulating dielectric layer. The dielectric layer can be applied and peeled off, and the second dielectric layer can be replaced.
An electrostatic chuck characterized by that.
上記第二の誘電体層は、シリコン系粘着剤で第一の絶縁性誘電体層に貼り付ける、
ことを特徴とする請求項1に記載の静電チャック。
The second dielectric layer is attached to the first insulating dielectric layer with a silicon-based adhesive.
The electrostatic chuck according to claim 1.
上記第二の誘電体層は、第一の絶縁性誘電体層よりも柔軟性が高い材質のもので、ヤング率が2〜6GPaであるポリイミド樹脂から成る、
ことを特徴とする請求項1又は請求項2に記載の静電チャック。
The second dielectric layer is made of a material having higher flexibility than the first insulating dielectric layer, and is made of a polyimide resin having a Young's modulus of 2 to 6 GPa.
The electrostatic chuck according to claim 1, wherein the electrostatic chuck is characterized in that:
JP2009502492A 2007-03-01 2008-02-14 Electrostatic chuck Pending JPWO2008108146A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007089383 2007-03-01
JP2007089383 2007-03-01
PCT/JP2008/052408 WO2008108146A1 (en) 2007-03-01 2008-02-14 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JPWO2008108146A1 true JPWO2008108146A1 (en) 2010-06-10

Family

ID=39738043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009502492A Pending JPWO2008108146A1 (en) 2007-03-01 2008-02-14 Electrostatic chuck

Country Status (2)

Country Link
JP (1) JPWO2008108146A1 (en)
WO (1) WO2008108146A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019187222A (en) * 2018-04-06 2019-10-24 アポロ テク カンパニー リミテッド Electrostatic chuck excellent in buffering

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5236448B2 (en) * 2008-12-16 2013-07-17 アドヴァンスド・ディスプレイ・プロセス・エンジニアリング・コーポレーション・リミテッド Electrostatic chuck and substrate bonding apparatus including the same
JP6067210B2 (en) * 2011-03-31 2017-01-25 芝浦メカトロニクス株式会社 Plasma processing equipment
CN104904003B (en) * 2012-11-02 2018-02-02 恩特格里斯公司 Electrostatic chuck with photo-patterned soft prominent contact surface
US20180025931A1 (en) * 2016-07-22 2018-01-25 Applied Materials, Inc. Processed wafer as top plate of a workpiece carrier in semiconductor and mechanical processing
JP6935132B2 (en) * 2017-07-21 2021-09-15 株式会社ディスコ Manufacturing method of electrostatic chuck plate
KR102176064B1 (en) * 2017-11-10 2020-11-09 주식회사 아이앤티 Electrostatic chuck mnufacturing method the electrostatic chuck
KR102632324B1 (en) * 2023-11-09 2024-02-01 주식회사 이에스티 Multi-layer electrostatic chuck with multi-layer stripping film structure
KR102668954B1 (en) * 2023-11-09 2024-05-24 주식회사 이에스티 Multi-layer electrostatic chuck with efficient repair structure
KR102669549B1 (en) * 2023-11-09 2024-05-27 주식회사 이에스티 Electrostatic chuck jig repair method using stripping film
KR102668953B1 (en) * 2023-11-09 2024-05-24 주식회사 이에스티 Electrostatic chuck jig repair method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297805A (en) * 1998-04-13 1999-10-29 Tomoegawa Paper Co Ltd Electrostatic chucking device, laminated sheet and bonding agent therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297805A (en) * 1998-04-13 1999-10-29 Tomoegawa Paper Co Ltd Electrostatic chucking device, laminated sheet and bonding agent therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019187222A (en) * 2018-04-06 2019-10-24 アポロ テク カンパニー リミテッド Electrostatic chuck excellent in buffering

Also Published As

Publication number Publication date
WO2008108146A1 (en) 2008-09-12

Similar Documents

Publication Publication Date Title
JPWO2008108146A1 (en) Electrostatic chuck
JP5458323B2 (en) Electrostatic chuck and manufacturing method thereof
JP5283699B2 (en) Bipolar electrostatic chuck
US7411773B2 (en) Electrostatic chucking device and manufacturing method thereof
JP6021006B2 (en) Work heating device and work processing device
US20130148253A1 (en) Substrate temperature adjusting-fixing device and manufacturing method thereof
TW201222716A (en) Electrostatic chuck device and production method for same
JP5054022B2 (en) Electrostatic chuck device
JP2008251737A (en) Electrode member for electrostatic chuck device, electrostatic chuck device using same, and electrostatic adsorption releasing method
TW201237991A (en) High efficiency electrostatic chuck assembly for semiconductor wafer processing
WO2007007674A1 (en) Electrostatic chuck and electrode sheet for electrostatic chuck
JP2019009270A (en) Board retainer
JP6413646B2 (en) Electrostatic chuck device
KR20070098566A (en) Electrostatic chuck
JP4677397B2 (en) Electrostatic adsorption method
WO2012026421A1 (en) Electrostatic chuck apparatus and method for manufacturing same
JP3979694B2 (en) Electrostatic chuck device and manufacturing method thereof
JP5343802B2 (en) Electrostatic chuck device
JP2012138440A (en) Electrostatic chuck and method of manufacturing the same
JPH10209256A (en) Electrostatic chuck device and its manufacture
JP2008160009A (en) Bipolar electrostatic chucking device
JP2007005434A (en) Electrostatic zipper device and electrode sheet therefor
CN110473824A (en) A kind of semiconductor renewable electrostatic chuck and its manufacturing method
JP2007294827A (en) Electrostatic chuck
JP4529352B2 (en) Laminated wafer for semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121010