JP2008160009A - Bipolar electrostatic chucking device - Google Patents

Bipolar electrostatic chucking device Download PDF

Info

Publication number
JP2008160009A
JP2008160009A JP2006349581A JP2006349581A JP2008160009A JP 2008160009 A JP2008160009 A JP 2008160009A JP 2006349581 A JP2006349581 A JP 2006349581A JP 2006349581 A JP2006349581 A JP 2006349581A JP 2008160009 A JP2008160009 A JP 2008160009A
Authority
JP
Japan
Prior art keywords
changed
electrodes
electrostatic chuck
chuck device
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349581A
Other languages
Japanese (ja)
Inventor
Mikio Oyama
三樹夫 尾山
Ritsu Kawase
律 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2006349581A priority Critical patent/JP2008160009A/en
Publication of JP2008160009A publication Critical patent/JP2008160009A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bipolar electrostatic chucking device capable of attaining a high attraction performance for an object to be attracted, a stable release performance of the object to be attracted, and a low probability of electrically affecting on the object to be attracted, even if the applied voltage is low. <P>SOLUTION: The bipolar electrostatic chucking device is such that if S (μm) is the distance between electrodes, and Z(μm) is the distance from the electrode to the attraction surface, expression (1) is satisfied, S satisfies expression (2) and Z satisfies expression (3); where Z≤165exp(-0.0026S) (1), 40 μm≤S≤1,000 μm (2), and 5 μm≤Z≤150 μm (3). It is preferable that the attraction surface is composed of a resin material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば半導体ウエハやガラス基板等を吸着保持する静電チャック装置に関する。   The present invention relates to an electrostatic chuck device that holds, for example, a semiconductor wafer or a glass substrate by suction.

半導体装置の製造においては、ウエハをプラズマエッチング装置等の加工装置の所定部位に固定するためにウエハを吸着保持するチャック装置が使用されている。チャック装置としては機械式、真空式、静電式等があり、中でも静電チャック装置は、取り扱いが簡単で、真空中でも使用できるという利点を有している。
従来の静電チャック装置は、例えば特許文献1〜5に開示されており、一対のセラミック基板で電極を挟持した構造のものや、一対の絶縁性フィルムが電極を内包する絶縁性接着剤層を介して貼着された構造のもの等が知られている。
In the manufacture of semiconductor devices, a chuck device that sucks and holds a wafer is used to fix the wafer to a predetermined portion of a processing apparatus such as a plasma etching apparatus. There are mechanical, vacuum, electrostatic and the like as the chuck device. Among them, the electrostatic chuck device has an advantage that it is easy to handle and can be used even in a vacuum.
Conventional electrostatic chuck devices are disclosed in, for example, Patent Documents 1 to 5, and have a structure in which an electrode is sandwiched between a pair of ceramic substrates, or an insulating adhesive layer in which a pair of insulating films enclose the electrodes. The thing of the structure affixed via is known.

特開平10−223742号公報JP-A-10-223742 特開平5−138473号公報JP-A-5-138473 特開平5−235152号公報JP-A-5-235152 特開平11−163111号公報JP-A-11-163111 特開2000−107969号公報JP 2000-107969 A

しかしながら、従来の静電チャック装置は、被吸着物の吸着に通常±1,500V〜3,000V程度の高い印加電圧が必要であった。印加電圧が高いと、電圧印加を切断した後の各絶縁層に残留する総電荷量が高くなり、被吸着物の安定した離脱性能が得られにくかった。また、印加電圧が高いと、被吸着物に対して電気的な影響を及ぼすことがあった。   However, the conventional electrostatic chuck device usually requires a high applied voltage of about ± 1,500 V to 3,000 V for the adsorption of the object to be adsorbed. When the applied voltage is high, the total amount of charge remaining in each insulating layer after cutting off the voltage application is high, and it is difficult to obtain a stable separation performance of the adsorbed object. In addition, when the applied voltage is high, the object to be adsorbed may be electrically affected.

本発明は、上記のような状況に鑑みてなされたものであって、低印加電圧でも被吸着物に対する良好な吸着性能が得られ、かつ被吸着物の安定した離脱性能を得られ、かつ被吸着物に対して電気的な影響を及ぼしにくい静電チャック装置を提供することを目的とする。   The present invention has been made in view of the situation as described above, and is capable of obtaining a good adsorption performance for an object to be adsorbed even at a low applied voltage, obtaining a stable separation performance for the object to be adsorbed, and It is an object of the present invention to provide an electrostatic chuck device that hardly exerts an electrical influence on an adsorbate.

電極間の距離をS[μm]、電極から吸着面までの距離をZ[μm]としたとき、下式(1)を満たし、かつSが下式(2)、かつZが下式(3)を満たすことを特徴とする双極型静電チャック装置。
Z≦165exp(-0.0026S) (1)
40μm≦S≦1,000μm (2)
5μm≦Z≦150μm (3)
また、吸着面が樹脂材料で構成されていることが好ましい。
When the distance between the electrodes is S [μm] and the distance from the electrode to the adsorption surface is Z [μm], the following expression (1) is satisfied, S is the following expression (2), and Z is the following expression (3 The bipolar electrostatic chuck device is characterized by satisfying
Z ≦ 165exp (−0.0026S) (1)
40μm ≦ S ≦ 1,000μm (2)
5μm ≦ Z ≦ 150μm (3)
Moreover, it is preferable that the adsorption | suction surface is comprised with the resin material.

本発明によれば、低印加電圧でも被吸着物に対する良好な吸着性能が得られ、かつ被吸着物の安定した離脱性能を得られ、かつ被吸着物に対して電気的な影響を及ぼしにくい静電チャック装置を提供することができる。   According to the present invention, it is possible to obtain a good adsorption performance for an object to be adsorbed even at a low applied voltage, to obtain a stable detachment performance of the object to be adsorbed, and to prevent static electricity from exerting an electrical influence on the object to be adsorbed. An electric chuck device can be provided.

図面を参照して、本発明に係る静電チャック装置の実施形態について説明する。図1および図2は、本実施形態の静電チャック装置を電極の延在方向に対して垂直方向に切断したときの断面図である。図3は、本実施形態の静電チャック装置を電極の延在方向に対して垂直方向から見たときの電極の平面パターンである。なお、図1および図2において、被吸着物を吸着する側を上側、その反対側を下側と定義する。   An embodiment of an electrostatic chuck device according to the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 are cross-sectional views when the electrostatic chuck device of this embodiment is cut in a direction perpendicular to the extending direction of the electrodes. FIG. 3 is a planar pattern of electrodes when the electrostatic chuck device of this embodiment is viewed from a direction perpendicular to the extending direction of the electrodes. In FIGS. 1 and 2, the side that adsorbs the object to be adsorbed is defined as the upper side, and the opposite side is defined as the lower side.

図1に示すように、本実施形態の静電チャック装置10は、一対の絶縁性フィルム31、32が絶縁性接着剤層33を介して貼着され、絶縁性接着剤層33内に2種類の内部電極34、35が形成された電極シート(静電チャック装置用電極シート)30を主体として構成され、該電極シート30の下面が、接着剤層21を介して基板20に貼着されている。本実施形態では、絶縁性フィルム32の上面が、被吸着物を吸着する吸着面36である。
なお、図2に示すように、絶縁性接着剤層33の上面が被吸着物を吸着する吸着面36となっていてもよい。
また、図1における内部電極34、35の位置は、絶縁性接着剤層33の内部にあれば、絶縁性フィルム31および絶縁性フィルム32と接触しない位置や、絶縁性フィルム32に接触する位置に形成されていてもよい。
吸着面36を構成する樹脂材料としては、絶縁性を有していて、吸着面が形成できる物質であれば特に限定されない。
As shown in FIG. 1, the electrostatic chuck device 10 according to the present embodiment has a pair of insulating films 31, 32 attached via an insulating adhesive layer 33, and two types of insulating films 33 in the insulating adhesive layer 33. The electrode sheet (electrostatic chuck device electrode sheet) 30 on which the internal electrodes 34 and 35 are formed is mainly formed, and the lower surface of the electrode sheet 30 is attached to the substrate 20 via the adhesive layer 21. Yes. In the present embodiment, the upper surface of the insulating film 32 is an adsorption surface 36 that adsorbs an object to be adsorbed.
In addition, as shown in FIG. 2, the upper surface of the insulating adhesive layer 33 may be an adsorption surface 36 that adsorbs an object to be adsorbed.
Moreover, if the position of the internal electrodes 34 and 35 in FIG. 1 exists in the inside of the insulating adhesive layer 33, it will be in the position which does not contact the insulating film 31 and the insulating film 32, or the position which contacts the insulating film 32. It may be formed.
The resin material constituting the adsorption surface 36 is not particularly limited as long as it has an insulating property and can form the adsorption surface.

内部電極34、35の平面パターンを図3に示す。櫛歯状の内部電極34、35は交互に配置されており、内部電極34は電極37に、内部電極35は電極38にそれぞれ繋がっている。
電極37、38に極性の異なる電圧が印加されることにより、内部電極34、35は各々独立に駆動される。本実施形態の静電チャック装置10は、このように極性の異なる電圧が印加される複数の電極を備えた、いわゆる双極型構造を有している。双極型は、単極型と異なり、内部電極34、35間に電位差を設けることにより、被吸着物を吸着保持できるため、被吸着物に対して電気的な影響を小さくできる。
なお、内部電極34、35は交互に配置されていればよく、そのパターンは図3に示したようなパターンに限定されない。さらに、各電極の形状も帯状に限定されない。
A planar pattern of the internal electrodes 34 and 35 is shown in FIG. The comb-like internal electrodes 34 and 35 are alternately arranged, and the internal electrode 34 is connected to the electrode 37 and the internal electrode 35 is connected to the electrode 38.
When voltages having different polarities are applied to the electrodes 37 and 38, the internal electrodes 34 and 35 are driven independently. The electrostatic chuck device 10 of the present embodiment has a so-called bipolar structure including a plurality of electrodes to which voltages having different polarities are applied. Unlike the monopolar type, the bipolar type can adsorb and hold the object to be adsorbed by providing a potential difference between the internal electrodes 34 and 35, so that the electrical influence on the object to be adsorbed can be reduced.
The internal electrodes 34 and 35 may be arranged alternately, and the pattern is not limited to the pattern shown in FIG. Furthermore, the shape of each electrode is not limited to a strip shape.

図1に示すように、内部電極34、35間の距離をS[μm]、内部電極34、35から吸着面36までの距離をZ[μm]としたとき、下式(1)において、本発明の双極型静電チャック装置10は、2,000V以下の低印加電圧でも被吸着物に対する良好な吸着性能を得ることができる。
Z≦165exp(-0.0026S) (1)
As shown in FIG. 1, when the distance between the internal electrodes 34 and 35 is S [μm] and the distance from the internal electrodes 34 and 35 to the adsorption surface 36 is Z [μm], The bipolar electrostatic chuck device 10 of the invention can obtain good adsorption performance for an object to be adsorbed even at a low applied voltage of 2,000 V or less.
Z ≦ 165exp (−0.0026S) (1)

ただし、Sが上式(1)において、Sが下式(2)を満たす必要がある。Sが1,000μmを超えた場合では、低印加電圧のときに被吸着物との吸着力が不十分となる。また、Sが40μm未満では、絶縁性が不十分となる。なお、Sが40μm≦S≦500μmであれば、被吸着物に対する高い吸着力が得られるのでより好ましい。
40μm≦S≦1,000μm (2)
However, S needs to satisfy the following equation (2) in the above equation (1). When S exceeds 1,000 μm, the adsorbing force with the object to be adsorbed becomes insufficient when the applied voltage is low. On the other hand, if S is less than 40 μm, the insulation is insufficient. In addition, it is more preferable that S is 40 μm ≦ S ≦ 500 μm because a high adsorbing power for an object to be adsorbed can be obtained.
40 μm ≦ S ≦ 1,000 μm (2)

さらに上式(1)において、Zが下式(3)を満たす必要がある。Zが150μmを超えた場合では、低印加電圧のときに被吸着物との吸着力が不十分となる。また、Zが5μm未満では、絶縁性が不十分となる。なお、Zが5μm≦Z≦70μmであれば、被吸着物に対する高い吸着力が得られるのでより好ましい。
5μm≦Z≦150μm (3)
Furthermore, in the above formula (1), Z needs to satisfy the following formula (3). When Z exceeds 150 μm, the adsorbing force with the object to be adsorbed becomes insufficient when the applied voltage is low. On the other hand, if Z is less than 5 μm, the insulation is insufficient. In addition, it is more preferable that Z is 5 μm ≦ Z ≦ 70 μm because a high adsorbing force for an object to be adsorbed can be obtained.
5μm ≦ Z ≦ 150μm (3)

内部電極34、35は導電性物質で構成されている。導電性物質としては、電圧を印加した際に静電吸着力を発現できれば特に限定されないが、例えば、銅、アルミニウム、金、銀、白金、クロム、ニッケル、タングステン等や、これらの合金から選択される1種又は2種以上の金属が挙げられる。内部電極には、これら導電性物質の薄膜をパターニングしたものが好ましい。金属薄膜としては、例えば、蒸着、メッキ、スパッタリング等により成膜されたものや、導電性ペーストを塗布乾燥して成膜されたもの、銅箔等の金属箔が挙げられる。   The internal electrodes 34 and 35 are made of a conductive material. The conductive material is not particularly limited as long as it can exhibit an electrostatic adsorption force when a voltage is applied, but is selected from, for example, copper, aluminum, gold, silver, platinum, chromium, nickel, tungsten, and alloys thereof. 1 type or 2 or more types of metals are mentioned. The internal electrode is preferably obtained by patterning a thin film of these conductive materials. Examples of the metal thin film include those formed by vapor deposition, plating, sputtering, etc., those formed by applying and drying a conductive paste, and metal foils such as copper foil.

内部電極34、35の厚さは特に限定されないが、具体的には1μm〜35μmが好ましい。内部電極34、35の厚さが35μmを超えると、吸着面36上に凹凸が形成されやすい。また、内部電極34、35の厚さが1μm以上であることが好ましい。1μm未満では、電極の強度が不十分になる。   Although the thickness of the internal electrodes 34 and 35 is not specifically limited, Specifically, 1 micrometer-35 micrometers are preferable. When the thickness of the internal electrodes 34 and 35 exceeds 35 μm, irregularities are easily formed on the adsorption surface 36. Moreover, it is preferable that the thickness of the internal electrodes 34 and 35 is 1 μm or more. If it is less than 1 μm, the strength of the electrode becomes insufficient.

絶縁性フィルム31,32の材質は特に限定されないが、樹脂材料で構成されていることが好ましい。樹脂材料としては、例えば、ポリエチレンテレフタレート等のポリエステル類、ポリエチレン等のポリオレフィン類、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルイミド、トリアセチルセルロース、シリコーンゴム等が挙げられる。中でも、絶縁性に優れることから、ポリエステル類、ポリオレフィン類、ポリイミド、シリコーンゴム、ポリエーテルイミド、ポリエーテルサルフォン等が好ましく、ポリイミドが特に好ましい。ポリイミドフィルムは市販されており、例えば、東レ・デュポン社製 商品名カプトン、宇部興産社製 商品名ユーピレックス、鐘淵化学工業社製 商品名アピカル等が好ましく用いられる。   The material of the insulating films 31 and 32 is not particularly limited, but is preferably made of a resin material. Examples of the resin material include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene, polyimide, polyamide, polyamideimide, polyethersulfone, polyphenylene sulfide, polyetherketone, polyetherimide, triacetylcellulose, silicone rubber, and the like. Is mentioned. Among these, polyesters, polyolefins, polyimide, silicone rubber, polyetherimide, polyethersulfone, and the like are preferable because of excellent insulation, and polyimide is particularly preferable. The polyimide film is commercially available. For example, trade name Kapton manufactured by Toray DuPont, trade name Upilex manufactured by Ube Industries, and trade name Apical manufactured by Kaneka Chemical Co., Ltd. are preferably used.

絶縁性接着剤層33は、電極間に短絡を生じさせない絶縁性があれば特に限定されないが、樹脂材料で構成されていることが好ましい。樹脂材料としては、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂、アクリロニトリル−ブタジエン共重合体、ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂、スチレン系ブロック共重合体、アミン化合物、ビスマレイミド化合物等から選択される1種又は2種以上の樹脂を主成分とする接着剤から条件を充足するものを選択して用いることができる。   The insulating adhesive layer 33 is not particularly limited as long as it has an insulating property that does not cause a short circuit between the electrodes, but is preferably made of a resin material. As the resin material, one selected from epoxy resin, phenol resin, polyamide resin, acrylonitrile-butadiene copolymer, polyester resin, polyimide resin, silicone resin, styrene block copolymer, amine compound, bismaleimide compound, etc. Or what satisfy | fills conditions can be selected and used from the adhesive agent which has 2 or more types of resin as a main component.

エポキシ樹脂としては、ビスフェノール型、フェノールノボラック型、クレゾールノボラック型、グリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、トリヒドロキシフェニルメタン型、テトラグリシジルフェノールアルカン型、ナフタレン型、ジグリシジルジフェニルメタン型、ジグリシジルビフェニル型等の2官能又は多官能エポキシ樹脂等が具体的に挙げられる。中でも、ビスフェノール型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂が特に好ましい。また、エポキシ樹脂を主成分とする場合、必要に応じて、イミダゾール類、第3アミン類、フェノール類、ジシアンジアミド類、芳香族ジアミン類、有機過酸化物等のエポキシ樹脂用の硬化剤や硬化促進剤を配合したものを用いることもできる。
フェノール樹脂としては、アルキルフェノール樹脂、p−フェニルフェノール樹脂、ビスフェノールA型フェノール樹脂等のノボラックフェノール樹脂、レゾールフェノール樹脂、ポリフェニルパラフェノール樹脂等が具体的に挙げられる。
スチレン系ブロック共重合体としては、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、スチレン−エチレン−ブチレン−スチレンブロック共重合体(SEBS)、スチレン−エチレン−プロピレン−スチレン共重合体(SEPS)等が具体的に挙げられる。
なお、被吸着物を吸着する側の絶縁性フィルム32の表面あるいは絶縁性接着剤層33の表面、すなわち被吸着物を吸着する吸着面36の凹凸差は、20μm以下が好ましい。吸着面36の凹凸差が20μmを超えると、被吸着物との密着性が低下し、吸着力が不十分となる。
Epoxy resins include bisphenol, phenol novolac, cresol novolac, glycidyl ether, glycidyl ester, glycidylamine, trihydroxyphenylmethane, tetraglycidylphenolalkane, naphthalene, diglycidyldiphenylmethane, and diglycidyl. Specific examples include bifunctional or polyfunctional epoxy resins such as biphenyl type. Among these, bisphenol type epoxy resins are preferable, and bisphenol A type epoxy resins are particularly preferable. When epoxy resin is the main component, curing agents for epoxy resins such as imidazoles, tertiary amines, phenols, dicyandiamides, aromatic diamines, organic peroxides, and curing accelerators are used as necessary. What mix | blended the agent can also be used.
Specific examples of the phenol resin include novolak phenol resins such as alkylphenol resins, p-phenylphenol resins, and bisphenol A type phenol resins, resole phenol resins, polyphenylparaphenol resins, and the like.
Examples of the styrene block copolymer include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-butylene-styrene block copolymer (SEBS), Specific examples include styrene-ethylene-propylene-styrene copolymer (SEPS).
The unevenness difference between the surface of the insulating film 32 or the surface of the insulating adhesive layer 33 that adsorbs the object to be adsorbed, that is, the adsorption surface 36 that adsorbs the object to be adsorbed is preferably 20 μm or less. If the unevenness difference of the adsorption surface 36 exceeds 20 μm, the adhesion with the object to be adsorbed is lowered and the adsorption force becomes insufficient.

電極シート30を貼着する基板20の材質は特に限定されないが、アルミニウム基板、ステンレス基板、セラミック基板等が挙げられる。また、接着剤層21を構成する接着剤には、絶縁性接着剤層33と同様の接着剤を用いてもよい。ただし、接着剤層21には、絶縁性接着剤層33のような高い絶縁性は必要ない。   Although the material of the board | substrate 20 which adheres the electrode sheet 30 is not specifically limited, An aluminum board | substrate, a stainless steel board | substrate, a ceramic board | substrate etc. are mentioned. Further, as the adhesive constituting the adhesive layer 21, an adhesive similar to the insulating adhesive layer 33 may be used. However, the adhesive layer 21 does not need to have high insulating properties like the insulating adhesive layer 33.

本実施形態の電極シート30およびこれを用いた双極型静電チャック装置10によれば、2,000V以下の低印加電圧でも良好な吸着力が得ることができる。なお、低印加電圧とは、印加電圧が±1,000(印加電圧差2,000V以下)のことを表す。印加電圧が低いため、電圧印加を切断した際の各絶縁層に残留蓄積する総電荷量が小さくなる。そのため、被吸着物の安定した離脱性能が得られる。また、印加電圧が低いため、被吸着物に対して電気的な影響を及ぼす確率が非常に低くなる。   According to the electrode sheet 30 of the present embodiment and the bipolar electrostatic chuck device 10 using the same, a good attracting force can be obtained even at a low applied voltage of 2,000 V or less. The low applied voltage means that the applied voltage is ± 1,000 (applied voltage difference of 2,000 V or less). Since the applied voltage is low, the total amount of charge remaining in each insulating layer when the voltage application is cut is reduced. Therefore, stable separation performance of the object to be adsorbed can be obtained. In addition, since the applied voltage is low, the probability of an electrical influence on the object to be adsorbed is very low.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<<静電チャック装置の製作>>
以下のようにして、静電チャック装置を製作した。
なお、実施例1〜5、8、10〜13、16〜18、21、23、25、比較例1〜16の層の構成は、図1に示すものと同様である。また、実施例6、7、9、14、15、19、20、22、24、26〜29、比較例17の層の構成は、図2に示すものと同様である。
<< Production of electrostatic chuck device >>
An electrostatic chuck device was manufactured as follows.
In addition, the structure of the layer of Examples 1-5, 8, 10-13, 16-18, 21, 23, 25 and Comparative Examples 1-16 is the same as that shown in FIG. Moreover, the structure of the layer of Example 6, 7, 9, 14, 15, 19, 20, 22, 24, 26-29 and the comparative example 17 is the same as that of what is shown in FIG.

(実施例1)
図1の絶縁性フィルム31に該当するものとして、膜厚50μmのポリイミドフィルム(東レ・デュポン社製 商品名カプトン)を用い、該ポリイミドフィルムの片面に銅を5μmの厚さでメッキし、銅薄膜を形成した。該銅薄膜の表面にフォトレジストを塗布した後、パターン露光、現像処理を行い、エッチングにより不要な銅薄膜を除去し、さらにフォトレジストを除去した。これにより、幅40μmの内部電極34と35が、電極間の距離Sを40μmにして交互に配置された、図3に示すような双極型の内部電極を形成した。
該内部電極の上に、図1の絶縁性接着剤層33に該当するものとして、乾燥および加熱により半硬化させた絶縁性接着剤シートを用いた。なお、該絶縁性接着剤シートは、アクリロニトリル―ブタジエンゴム(商品名:ニッポール1001 日本ゼオン社製)100質量部、高純度エポキシ樹脂(商品名:エピコートYL979 油化シェル社製)50質量部、クレゾール型フェノール樹脂(商品名:CKM2400 昭和高分子社製)50質量部、2エチルメチルイミダゾール(和光純薬社製)5質量部を適量のメチルエチルケトンに混合溶解したものを成形して得られた。
さらに、該絶縁性接着剤シートの上に、絶縁性フィルム32に該当するものとして、膜厚125μmのポリイミドフィルム(宇部興産社製 商品名ユーピレックス)を貼着し、熱処理により接着することで、図1の電極シート30を得た。なお、乾燥後の絶縁性接着剤層33の厚さは20μmであった。
(Example 1)
As a film corresponding to the insulating film 31 in FIG. 1, a polyimide film having a film thickness of 50 μm (trade name Kapton manufactured by Toray DuPont Co., Ltd.) is used, and copper is plated on one side of the polyimide film to a thickness of 5 μm. Formed. After applying a photoresist to the surface of the copper thin film, pattern exposure and development were performed, unnecessary copper thin film was removed by etching, and the photoresist was further removed. Thus, a bipolar internal electrode as shown in FIG. 3 was formed in which the internal electrodes 34 and 35 having a width of 40 μm were alternately arranged with the distance S between the electrodes being 40 μm.
An insulating adhesive sheet that was semi-cured by drying and heating was used on the internal electrode as corresponding to the insulating adhesive layer 33 of FIG. The insulating adhesive sheet is composed of 100 parts by mass of acrylonitrile-butadiene rubber (trade name: Nippon 1001 manufactured by Nippon Zeon Co., Ltd.), 50 parts by mass of high-purity epoxy resin (trade name: Epicoat YL979 manufactured by Yuka Shell), cresol. A molded phenol resin (trade name: CKM2400, manufactured by Showa High Polymer Co., Ltd.) 50 parts by mass and 5 parts by mass of 2 ethylmethylimidazole (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and dissolved in an appropriate amount of methyl ethyl ketone to obtain.
Furthermore, on the insulating adhesive sheet, a polyimide film having a film thickness of 125 μm (trade name: Upilex, manufactured by Ube Industries Co., Ltd.), which corresponds to the insulating film 32, is adhered and bonded by heat treatment. 1 electrode sheet 30 was obtained. In addition, the thickness of the insulating adhesive layer 33 after drying was 20 μm.

得られた電極シート30における下側の面(ポリイミドフィルムにおける下側の面)に、図1の接着剤層21に該当するものとして、絶縁性接着剤層33の絶縁性接着剤シートと同じものを積層し、これらをアルミ基板20に貼着し、熱処理により接着した。なお、乾燥後の接着剤層21の厚さは20μmであった。   The lower surface of the obtained electrode sheet 30 (the lower surface of the polyimide film) corresponds to the adhesive layer 21 of FIG. 1 and is the same as the insulating adhesive sheet of the insulating adhesive layer 33. Were laminated on the aluminum substrate 20 and bonded by heat treatment. The thickness of the adhesive layer 21 after drying was 20 μm.

(実施例2)
内部電極の幅を200μm、電極間の距離Sを200μm、絶縁性フィルム32の膜厚を75μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例3)
内部電極の幅を300μm、電極間の距離Sを300μm、絶縁性フィルム32の膜厚を50μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例4)
内部電極の幅を500μm、電極間の距離Sを500μm、絶縁性フィルム32の膜厚を25μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 2)
An electrostatic chuck device was manufactured under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 200 μm, the distance S between the electrodes was changed to 200 μm, and the film thickness of the insulating film 32 was changed to 75 μm.
(Example 3)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 300 μm, the distance S between the electrodes was changed to 300 μm, and the film thickness of the insulating film 32 was changed to 50 μm.
Example 4
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 500 μm, the distance S between the electrodes was changed to 500 μm, and the film thickness of the insulating film 32 was changed to 25 μm.

(実施例5)
内部電極の幅を600μm、電極間の距離Sを600μm、絶縁性フィルム32の膜厚を12.5μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例6)
内部電極の幅を800μm、電極間の距離Sを800μm、絶縁性フィルム32を無しに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例7)
内部電極の幅を1000μm、電極間の距離Sを1000μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 5)
An electrostatic chuck device was manufactured under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 600 μm, the distance S between the electrodes was changed to 600 μm, and the film thickness of the insulating film 32 was changed to 12.5 μm.
(Example 6)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was 800 μm, the distance S between the electrodes was 800 μm, and the insulating film 32 was omitted.
(Example 7)
The same conditions as in Example 1 except that the width of the internal electrode is 1000 μm, the distance S between the electrodes is 1000 μm, the insulating film 32 is omitted, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.

(実施例8)
内部電極の幅を40μm、電極間の距離Sを40μm、絶縁性フィルム32の膜厚を50μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例9)
内部電極の幅を40μm、電極間の距離Sを40μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例10)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を75μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 8)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 40 μm, the distance S between the electrodes was changed to 40 μm, and the film thickness of the insulating film 32 was changed to 50 μm.
Example 9
The same conditions as in Example 1 except that the width of the internal electrodes is 40 μm, the distance S between the electrodes is 40 μm, the insulating film 32 is omitted, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.
(Example 10)
An electrostatic chuck device was manufactured under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 100 μm, the distance S between the electrodes was changed to 100 μm, and the film thickness of the insulating film 32 was changed to 75 μm.

(実施例11)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を50μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例12)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を25μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例13)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を12.5μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 11)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 100 μm, the distance S between the electrodes was changed to 100 μm, and the film thickness of the insulating film 32 was changed to 50 μm.
(Example 12)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 100 μm, the distance S between the electrodes was changed to 100 μm, and the film thickness of the insulating film 32 was changed to 25 μm.
(Example 13)
An electrostatic chuck apparatus was produced under the same conditions as in Example 1 except that the width of the internal electrodes was 100 μm, the distance S between the electrodes was 100 μm, and the film thickness of the insulating film 32 was changed to 12.5 μm.

(実施例14)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32を無しに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例15)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例16)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を50μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 14)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was 100 μm, the distance S between the electrodes was 100 μm, and the insulating film 32 was omitted.
(Example 15)
The same conditions as in Example 1 except that the width of the internal electrodes is 100 μm, the distance S between the electrodes is 100 μm, the insulating film 32 is eliminated, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.
(Example 16)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 100 μm, the distance S between the electrodes was changed to 100 μm, and the film thickness of the insulating film 32 was changed to 50 μm.

(実施例17)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を25μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例18)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を12.5μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例19)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32を無しに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 17)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 100 μm, the distance S between the electrodes was changed to 100 μm, and the film thickness of the insulating film 32 was changed to 25 μm.
(Example 18)
An electrostatic chuck apparatus was produced under the same conditions as in Example 1 except that the width of the internal electrodes was 100 μm, the distance S between the electrodes was 100 μm, and the film thickness of the insulating film 32 was changed to 12.5 μm.
(Example 19)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was 100 μm, the distance S between the electrodes was 100 μm, and the insulating film 32 was omitted.

(実施例20)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例21)
内部電極の幅を300μm、電極間の距離Sを300μm、絶縁性フィルム32の膜厚を12.5μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例22)
内部電極の幅を300μm、電極間の距離Sを300μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 20)
The same conditions as in Example 1 except that the width of the internal electrodes is 100 μm, the distance S between the electrodes is 100 μm, the insulating film 32 is eliminated, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.
(Example 21)
An electrostatic chuck device was manufactured under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 300 μm, the distance S between the electrodes was changed to 300 μm, and the film thickness of the insulating film 32 was changed to 12.5 μm.
(Example 22)
The same conditions as in Example 1 except that the width of the internal electrodes is 300 μm, the distance S between the electrodes is 300 μm, the insulating film 32 is eliminated, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.

(実施例23)
内部電極の幅を400μm、電極間の距離Sを400μm、絶縁性フィルム32の膜厚を25μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例24)
内部電極の幅を400μm、電極間の距離Sを400μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例25)
内部電極の幅を500μm、電極間の距離Sを500μm、絶縁性フィルム32の膜厚を12.5μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 23)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 400 μm, the distance S between the electrodes was changed to 400 μm, and the film thickness of the insulating film 32 was changed to 25 μm.
(Example 24)
The same conditions as in Example 1 except that the width of the internal electrodes is 400 μm, the distance S between the electrodes is 400 μm, the insulating film 32 is eliminated, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.
(Example 25)
An electrostatic chuck device was manufactured under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 500 μm, the distance S between the electrodes was changed to 500 μm, and the film thickness of the insulating film 32 was changed to 12.5 μm.

(実施例26)
内部電極の幅を500μm、電極間の距離Sを500μm、絶縁性フィルム32を無しに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例27)
内部電極の幅を500μm、電極間の距離Sを500μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(実施例28)
内部電極の幅を600μm、電極間の距離Sを600μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 26)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was 500 μm, the distance S between the electrodes was 500 μm, and the insulating film 32 was omitted.
(Example 27)
The same conditions as in Example 1 except that the width of the internal electrodes is 500 μm, the distance S between the electrodes is 500 μm, the insulating film 32 is eliminated, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.
(Example 28)
The same conditions as in Example 1 except that the width of the internal electrodes is 600 μm, the distance S between the electrodes is 600 μm, the insulating film 32 is omitted, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.

(実施例29)
内部電極の幅を900μm、電極間の距離Sを900μm、絶縁性フィルム32を無くして、乾燥後の絶縁性接着剤層33の厚さを10μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Example 29)
The same conditions as in Example 1 except that the width of the internal electrode is 900 μm, the distance S between the electrodes is 900 μm, the insulating film 32 is eliminated, and the thickness of the insulating adhesive layer 33 after drying is changed to 10 μm. Thus, an electrostatic chuck device was produced.

(比較例1)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を125μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例2)
内部電極の幅を200μm、電極間の距離Sを200μm、絶縁性フィルム32の膜厚を125μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例3)
内部電極の幅を300μm、電極間の距離Sを300μm、絶縁性フィルム32の膜厚を75μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Comparative Example 1)
An electrostatic chuck device was fabricated under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 100 μm, the distance S between the electrodes was changed to 100 μm, and the film thickness of the insulating film 32 was changed to 125 μm.
(Comparative Example 2)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 200 μm, the distance S between the electrodes was changed to 200 μm, and the film thickness of the insulating film 32 was changed to 125 μm.
(Comparative Example 3)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 300 μm, the distance S between the electrodes was changed to 300 μm, and the film thickness of the insulating film 32 was changed to 75 μm.

(比較例4)
内部電極の幅を400μm、電極間の距離Sを400μm、絶縁性フィルム32の膜厚を50μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例5)
内部電極の幅を500μm、電極間の距離Sを500μm、絶縁性フィルム32の膜厚を125μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例6)
内部電極の幅を500μm、電極間の距離Sを500μm、絶縁性フィルム32の膜厚を75μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Comparative Example 4)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 400 μm, the distance S between the electrodes was changed to 400 μm, and the film thickness of the insulating film 32 was changed to 50 μm.
(Comparative Example 5)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 500 μm, the distance S between the electrodes was changed to 500 μm, and the film thickness of the insulating film 32 was changed to 125 μm.
(Comparative Example 6)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 500 μm, the distance S between the electrodes was changed to 500 μm, and the film thickness of the insulating film 32 was changed to 75 μm.

(比較例7)
内部電極の幅を500μm、電極間の距離Sを500μm、絶縁性フィルム32の膜厚を5050μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例8)
内部電極の幅を600μm、電極間の距離Sを600μm、絶縁性フィルム32の膜厚を25μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例9)
内部電極の幅を800μm、電極間の距離Sを800μm、絶縁性フィルム32の膜厚を125μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Comparative Example 7)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 500 μm, the distance S between the electrodes was changed to 500 μm, and the film thickness of the insulating film 32 was changed to 5050 μm.
(Comparative Example 8)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 600 μm, the distance S between the electrodes was changed to 600 μm, and the film thickness of the insulating film 32 was changed to 25 μm.
(Comparative Example 9)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 800 μm, the distance S between the electrodes was changed to 800 μm, and the film thickness of the insulating film 32 was changed to 125 μm.

(比較例10)
内部電極の幅を800μm、電極間の距離Sを800μm、絶縁性フィルム32の膜厚を75μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例11)
内部電極の幅を800μm、電極間の距離Sを800μm、絶縁性フィルム32の膜厚を12.5μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例12)
内部電極の幅を1,000μm、電極間の距離Sを1,000μm、絶縁性フィルム32の膜厚を125μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Comparative Example 10)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 800 μm, the distance S between the electrodes was changed to 800 μm, and the film thickness of the insulating film 32 was changed to 75 μm.
(Comparative Example 11)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 800 μm, the distance S between the electrodes was changed to 800 μm, and the film thickness of the insulating film 32 was changed to 12.5 μm.
(Comparative Example 12)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 1,000 μm, the distance S between the electrodes was changed to 1,000 μm, and the film thickness of the insulating film 32 was changed to 125 μm.

(比較例13)
内部電極の幅を1,000μm、電極間の距離Sを1,000μm、絶縁性フィルム32の膜厚を75μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例14)
内部電極の幅を1,000μm、電極間の距離Sを1,000μm、絶縁性フィルム32の膜厚を50μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例15)
内部電極の幅を1,000μm、電極間の距離Sを1,000μm、絶縁性フィルム32の膜厚を25μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Comparative Example 13)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 1,000 μm, the distance S between the electrodes was changed to 1,000 μm, and the film thickness of the insulating film 32 was changed to 75 μm.
(Comparative Example 14)
An electrostatic chuck device was manufactured under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 1,000 μm, the distance S between the electrodes was changed to 1,000 μm, and the film thickness of the insulating film 32 was changed to 50 μm.
(Comparative Example 15)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 1,000 μm, the distance S between the electrodes was changed to 1,000 μm, and the film thickness of the insulating film 32 was changed to 25 μm.

(比較例16)
内部電極の幅を1,000μm、電極間の距離Sを1,000μm、絶縁性フィルム32の膜厚を12.5μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例17)
内部電極の幅を1,000μm、電極間の距離Sを1,000μm、絶縁性フィルム32を無しに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例18)
内部電極の幅を1,500μm、電極間の距離Sを1,500μm、絶縁性フィルム32の膜厚を12.5μmに変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Comparative Example 16)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 1,000 μm, the distance S between the electrodes was changed to 1,000 μm, and the film thickness of the insulating film 32 was changed to 12.5 μm. did.
(Comparative Example 17)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 1,000 μm, the distance S between the electrodes was changed to 1,000 μm, and the insulating film 32 was omitted.
(Comparative Example 18)
An electrostatic chuck device was produced under the same conditions as in Example 1 except that the width of the internal electrodes was changed to 1,500 μm, the distance S between the electrodes was changed to 1,500 μm, and the film thickness of the insulating film 32 was changed to 12.5 μm. did.

(比較例19)
内部電極の幅を100μm、電極間の距離Sを100μm、絶縁性フィルム32の膜厚を250μmのポリエステルフィルム(商品名:ダイアホイル 三菱ポリエステルフィルム社製)に変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(比較例20)
内部電極の幅を1,500μm、電極間の距離Sを1,500μm、絶縁性フィルム32の膜厚を250μmのポリエステルフィルム(商品名:ダイアホイル 三菱ポリエステルフィルム社製)に変更した以外は、実施例1と同様の条件によって静電チャック装置を作製した。
(Comparative Example 19)
Example 1 except that the width of the internal electrode is 100 μm, the distance S between the electrodes is 100 μm, and the thickness of the insulating film 32 is changed to a polyester film (trade name: Diafoil manufactured by Mitsubishi Polyester Film). An electrostatic chuck device was fabricated according to the conditions described above.
(Comparative Example 20)
Except for changing the width of the internal electrode to 1,500 μm, the distance S between the electrodes to 1,500 μm, and the thickness of the insulating film 32 to 250 μm polyester film (trade name: Diafoil manufactured by Mitsubishi Polyester Film) An electrostatic chuck device was manufactured under the same conditions as in Example 1.

(評価)
実施例と比較例から得られた静電チャック装置について、吸着力および吸着性能を評価し、その結果を表1、表2、および図4に示した。
(1) 吸着力
印加電圧±1,000V(印加電圧差2,000V)における被吸着物の吸着力(単位:gf/cm)を測定した。被吸着物としては、無アルカリガラス(100mm×100mm×厚さ0.7mm)を用いた。このガラスを真空状態(10Pa以下)にて静電チャック装置の表面に接触させ、内部電極34、35に±1,000Vの電圧を印加し、30秒間保持させた後、電圧を印加したままガラスを垂直方向に引き上げ、このときの剥離力を吸着力とした。
(2) 吸着性能判定
上記吸着力の測定値を元に、吸着性能判定を以下のようにおこなった。
(a)◎ 被吸着物の保持に対する高い吸着力が得られた。
(b)○ 被吸着物の保持に対する吸着力が得られた。
(c)× 被吸着物の保持に対する吸着力が得られなかった。
(3) SとZの相関関係
電極34、35間の距離S [μm]をX軸に、電極34、35から吸着面36までの距離Z[μm]をY軸にしたグラフを用いて、各実施例と各比較例における吸着性能判定をグラフ上にプロットし、吸着性能が得られる範囲を示す関係式を求めた。なお、被吸着物の保持に対する十分な吸着力が得られたものを○、吸着力が得られなかったものを×で表した。
(Evaluation)
With respect to the electrostatic chuck devices obtained from the examples and the comparative examples, the suction force and the suction performance were evaluated, and the results are shown in Table 1, Table 2, and FIG.
(1) Adsorption force The adsorption force (unit: gf / cm 2 ) of the object to be adsorbed at an applied voltage of ± 1,000 V (applied voltage difference of 2,000 V) was measured. As the object to be adsorbed, alkali-free glass (100 mm × 100 mm × thickness 0.7 mm) was used. The glass is brought into contact with the surface of the electrostatic chuck device in a vacuum state (10 Pa or less), a voltage of ± 1,000 V is applied to the internal electrodes 34 and 35 and held for 30 seconds, and then the glass is applied with the voltage applied. Was pulled up in the vertical direction, and the peeling force at this time was defined as the adsorption force.
(2) Adsorption performance determination Based on the measured value of the adsorption force, the adsorption performance determination was performed as follows.
(A) A high adsorbing power for holding the object to be adsorbed was obtained.
(B) ○ Adsorption power for holding the object to be adsorbed was obtained.
(C) × Adsorption force for holding the object to be adsorbed could not be obtained.
(3) Correlation between S and Z Using a graph in which the distance S [μm] between the electrodes 34 and 35 is on the X axis and the distance Z [μm] from the electrodes 34 and 35 to the adsorption surface 36 is on the Y axis, The adsorption performance judgment in each example and each comparative example was plotted on a graph, and a relational expression indicating a range in which the adsorption performance was obtained was obtained. In addition, the thing with sufficient adsorption power with respect to holding | maintenance of a to-be-adsorbed object was represented by (circle), and the thing in which adsorption power was not obtained was represented by x.

Figure 2008160009
Figure 2008160009

Figure 2008160009
Figure 2008160009

(結果)
表1と表2に示したように、吸着力は実施例において高い値を示し、比較例において低い値を示した。被吸着物に対する吸着力は5gf/cm以上で得られるため、実施例は被吸着物に対する吸着性能が十分に得られていると判定された。比較例は被吸着物に対する吸着性能が得られていないと判定された。
また、図4に示したように、実施例では、印加電圧差2,000Vで吸着力が得られるSとZの値には相関関係があった。比較例のプロットに隣接している実施例のプロットを線で結び、その線をSとZの相関関係で表すと、関係式Z=165exp(−0.0026S)が導き出された。
図4に示すように、各実施例はZ≦165exp(−0.0026S)の範囲内に収まり、各比較例はZ≦165exp(−0.0026S)の範囲外、すなわちZ>165exp(−0.0026S)を示した。したがって、吸着力が得られるプロットのSとZは、関係式Z≦165exp(-0.0026S)が成立することが確認された。よって、本発明の静電チャック装置10において、関係式40μm≦S≦1,000μm、5μm≦Z≦150μmの範囲内で、Z≦165exp(-0.0026S)が満たされるとき、印加電圧差2,000Vのような低電圧印加でも、被吸着物に対する吸着性能が得られることが確認された。
(result)
As shown in Tables 1 and 2, the adsorptive power showed a high value in the examples and a low value in the comparative examples. Since the adsorptive power with respect to the adsorbent is obtained at 5 gf / cm 2 or more, it was determined that the adsorption performance with respect to the adsorbent was sufficiently obtained in the examples. In the comparative example, it was determined that the adsorption performance for the object to be adsorbed was not obtained.
In addition, as shown in FIG. 4, in the example, there was a correlation between the values of S and Z at which an adsorption force can be obtained with an applied voltage difference of 2,000 V. When the plot of the example adjacent to the plot of the comparative example is connected by a line and the line is expressed by the correlation between S and Z, the relational expression Z = 165exp (−0.0026S) is derived.
As shown in FIG. 4, each example falls within the range of Z ≦ 165exp (−0.0026S), and each comparative example is out of the range of Z ≦ 165exp (−0.0026S), that is, Z> 165exp (−0). .0026S). Therefore, it was confirmed that the relational expression Z ≦ 165exp (−0.0026S) holds true for S and Z in the plot for obtaining the attractive force. Therefore, in the electrostatic chuck device 10 of the present invention, when Z ≦ 165exp (−0.0026 S) is satisfied within the relational expression of 40 μm ≦ S ≦ 1,000 μm, 5 μm ≦ Z ≦ 150 μm, the applied voltage difference 2 It was confirmed that the adsorption performance for the object to be adsorbed can be obtained even by applying a low voltage such as 1,000 V.

以上詳細に説明したように、本発明によれば、低印加電圧でも被吸着物に対する良好な吸着性能が得られ、被吸着物の安定した離脱性能を得られ、被吸着物に対しての電気的な影響を及ぼす確率が低い静電チャック装置を提供することができる。   As described above in detail, according to the present invention, it is possible to obtain a good adsorption performance for an object to be adsorbed even at a low applied voltage, to obtain a stable detachment performance of the object to be adsorbed, and to It is possible to provide an electrostatic chuck device having a low probability of affecting the device.

本発明に係る静電チャック装置の実施形態例を示す断面図である。It is sectional drawing which shows the embodiment of the electrostatic chuck apparatus which concerns on this invention. 本発明に係る静電チャック装置の実施形態例を示す断面図である。It is sectional drawing which shows the embodiment of the electrostatic chuck apparatus which concerns on this invention. 本発明に係る静電チャック装置の実施形態例を示す電極の平面パターンである。It is a plane pattern of the electrode which shows the embodiment of the electrostatic chuck apparatus which concerns on this invention. 本発明に係る静電チャック装置の電極上層の電極と吸着面の距離と、電極間の距離の相関関係を示す図である。It is a figure which shows the correlation of the distance of the electrode of the upper layer electrode of the electrostatic chuck device which concerns on this invention, and an adsorption | suction surface, and the distance between electrodes.

符号の説明Explanation of symbols

10 静電チャック装置
30 電極シート
31、32 絶縁性フィルム
33 絶縁性接着剤層
34、35 内部電極
36 吸着面
10 Electrostatic chuck device 30 Electrode sheets 31 and 32 Insulating film 33 Insulating adhesive layers 34 and 35 Internal electrode 36 Adsorption surface

Claims (2)

電極間の距離をS[μm]、電極から吸着面までの距離をZ[μm]としたとき、下式(1)を満たし、かつSが下式(2)、かつZが下式(3)を満たすことを特徴とする双極型静電チャック装置。
Z≦165exp(-0.0026S) (1)
40μm≦S≦1,000μm (2)
5μm≦Z≦150μm (3)
When the distance between the electrodes is S [μm] and the distance from the electrode to the adsorption surface is Z [μm], the following expression (1) is satisfied, S is the following expression (2), and Z is the following expression (3 The bipolar electrostatic chuck device is characterized by satisfying
Z ≦ 165exp (−0.0026S) (1)
40μm ≦ S ≦ 1,000μm (2)
5μm ≦ Z ≦ 150μm (3)
吸着面が樹脂材料で構成されることを特徴とする請求項1記載の双極型静電チャック装置。   2. The bipolar electrostatic chuck device according to claim 1, wherein the attracting surface is made of a resin material.
JP2006349581A 2006-12-26 2006-12-26 Bipolar electrostatic chucking device Pending JP2008160009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349581A JP2008160009A (en) 2006-12-26 2006-12-26 Bipolar electrostatic chucking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349581A JP2008160009A (en) 2006-12-26 2006-12-26 Bipolar electrostatic chucking device

Publications (1)

Publication Number Publication Date
JP2008160009A true JP2008160009A (en) 2008-07-10

Family

ID=39660566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349581A Pending JP2008160009A (en) 2006-12-26 2006-12-26 Bipolar electrostatic chucking device

Country Status (1)

Country Link
JP (1) JP2008160009A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010087345A1 (en) * 2009-01-28 2012-08-02 旭硝子株式会社 Method for manufacturing a reflective mask blank for EUV lithography
JP2013533609A (en) * 2010-05-28 2013-08-22 インテグリス・インコーポレーテッド High surface resistivity electrostatic chuck
US9543187B2 (en) 2008-05-19 2017-01-10 Entegris, Inc. Electrostatic chuck
US9721821B2 (en) 2009-05-15 2017-08-01 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107969A (en) * 1998-08-03 2000-04-18 Tomoegawa Paper Co Ltd Electrostatic chuck device
JP2004319700A (en) * 2003-04-15 2004-11-11 Nhk Spring Co Ltd Electrostatic chuck
JP2005223185A (en) * 2004-02-06 2005-08-18 Toto Ltd Electrostatic chuck and its manufacturing method
WO2005091356A1 (en) * 2004-03-19 2005-09-29 Creative Technology Corporation Bipolar electrostatic chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107969A (en) * 1998-08-03 2000-04-18 Tomoegawa Paper Co Ltd Electrostatic chuck device
JP2004319700A (en) * 2003-04-15 2004-11-11 Nhk Spring Co Ltd Electrostatic chuck
JP2005223185A (en) * 2004-02-06 2005-08-18 Toto Ltd Electrostatic chuck and its manufacturing method
WO2005091356A1 (en) * 2004-03-19 2005-09-29 Creative Technology Corporation Bipolar electrostatic chuck

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543187B2 (en) 2008-05-19 2017-01-10 Entegris, Inc. Electrostatic chuck
US10395963B2 (en) 2008-05-19 2019-08-27 Entegris, Inc. Electrostatic chuck
JPWO2010087345A1 (en) * 2009-01-28 2012-08-02 旭硝子株式会社 Method for manufacturing a reflective mask blank for EUV lithography
US9721821B2 (en) 2009-05-15 2017-08-01 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
JP2013533609A (en) * 2010-05-28 2013-08-22 インテグリス・インコーポレーテッド High surface resistivity electrostatic chuck
CN105196094A (en) * 2010-05-28 2015-12-30 恩特格林斯公司 High surface resistivity electrostatic chuck
KR101731136B1 (en) * 2010-05-28 2017-04-27 엔테그리스, 아이엔씨. High surface resistivity electrostatic chuck

Similar Documents

Publication Publication Date Title
JP5054022B2 (en) Electrostatic chuck device
JP4825220B2 (en) Electrode sheet for electrostatic chuck and electrostatic chuck
KR100639817B1 (en) Electrode sheet for electrostatic chuck devices and electrostatic chuck device comprising the same
JP4928454B2 (en) Electrostatic chuck and electrode sheet for electrostatic chuck
JP2008251737A (en) Electrode member for electrostatic chuck device, electrostatic chuck device using same, and electrostatic adsorption releasing method
JPH0227748A (en) Electrostatic chucking device and forming method therefor
TW201021150A (en) Bipolar electrostatic chuck
JP4677397B2 (en) Electrostatic adsorption method
JP4057977B2 (en) Electrode sheet for electrostatic chuck device, electrostatic chuck device and adsorption method
TW201237991A (en) High efficiency electrostatic chuck assembly for semiconductor wafer processing
JP2008112763A (en) Electrostatic chuck
JP2009071023A (en) Adhesive sheet for electrostatic chuck equipment, and electrostatic chuck equipment
JPWO2008108146A1 (en) Electrostatic chuck
JP2008160009A (en) Bipolar electrostatic chucking device
JP2008187006A (en) Electrostatic chucking device
JP3979694B2 (en) Electrostatic chuck device and manufacturing method thereof
JP2007005434A (en) Electrostatic zipper device and electrode sheet therefor
US20230115256A1 (en) Electrostatic chuck device and sleeve for electrostatic chuck device
JP2007324260A (en) Electrostatic chuck member and apparatus thereof
JP3907401B2 (en) Dummy wafer
JP2008244190A (en) Electrostatic chuck device
JP7335371B2 (en) Electrostatic chuck device
JP2008140823A (en) Electrostatic chuck
JP4891155B2 (en) Electrostatic chuck device
JP2007319958A (en) Electrostatic chuck member and electrostatic chuck device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A02