JPWO2007111351A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JPWO2007111351A1
JPWO2007111351A1 JP2008507518A JP2008507518A JPWO2007111351A1 JP WO2007111351 A1 JPWO2007111351 A1 JP WO2007111351A1 JP 2008507518 A JP2008507518 A JP 2008507518A JP 2008507518 A JP2008507518 A JP 2008507518A JP WO2007111351 A1 JPWO2007111351 A1 JP WO2007111351A1
Authority
JP
Japan
Prior art keywords
section
pressure
leak
gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008507518A
Other languages
English (en)
Inventor
女川 靖浩
靖浩 女川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Publication of JPWO2007111351A1 publication Critical patent/JPWO2007111351A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Abstract

基板を反応管内に搬入する工程と、前記反応管内にガス供給ラインよりガスを供給しつつ、排気ラインより排気装置にて排気すると共に、前記排気ラインに設けられた圧力センサからの出力に基づいて前記反応管内の圧力を制御して基板を処理する工程と、処理後の基板を前記反応管内から搬出する工程と、前記ガス供給ライン、前記反応管、前記排気ラインを含むガス流通経路のリークチェックを行う工程と、を有し、前記リークチェックを行う工程では、前記ガス流通経路を少なくとも前記圧力センサおよび前記排気装置と連通する複数の区間に分け、各区間の上流端を閉塞した状態で各区間内を前記排気装置にて排気すると共に各区間内の圧力を前記圧力センサにて測定し、その測定した圧力により区間毎にガス流通経路のリークの有無を判断する半導体装置の製造方法。

Description

本発明はシリコンウェーハ、ガラス基板等の基板を処理して半導体装置を製造する場合の半導体装置の製造方法に関するものである。
基板を処理して半導体装置を製造する過程で、薄膜の生成、不純物の拡散、アニール処理、エッチング等の各種基板処理がなされるが、基板処理工程に於いて処理圧力の管理は基板品質等基板処理品質に影響する。従って、基板が処理される処理室の圧力は圧力センサが検出する検出結果を基に所定の処理圧に制御されている。
又、処理室、ガス給排ラインのリークは処理圧の制御に影響を及ぼし、基板の処理品質を左右する。従って、処理室、ガス給排ラインについてリークの有無を検査することは不可欠である。
特開平9−280995号公報
本発明は斯かる実情に鑑み、ガス給排ラインのリーク検出を可能とし、基板の処理品質、歩留りの向上を図った半導体装置の製造方法を提供するものである。
本発明は、基板を反応管内に搬入する工程と、前記反応管内にガス供給ラインよりガスを供給しつつ、排気ラインより排気装置にて排気すると共に、前記排気ラインに設けられた圧力センサからの出力に基づいて前記反応管内の圧力を制御して基板を処理する工程と、処理後の基板を前記反応管内から搬出する工程と、前記ガス供給ライン、前記反応管、前記排気ラインを含むガス流通経路のリークチェックを行う工程と、を有し、前記リークチェックを行う工程では、前記ガス流通経路を少なくとも前記圧力センサおよび前記排気装置と連通する複数の区間に分け、各区間の上流端を閉塞した状態で各区間内を前記排気装置にて排気すると共に各区間内の圧力を前記圧力センサにて測定し、その測定した圧力により区間毎にガス流通経路のリークの有無を判断する半導体装置の製造方法に係るものである。
また、本発明は、基板を反応管内に搬入する工程と、前記反応管内にガス供給ラインよりガスを供給しつつ、排気ラインより排気装置にて排気すると共に、前記排気ラインに設けられた圧力センサからの出力に基づいて前記反応管内の圧力を制御して基板を処理する工程と、処理後の基板を前記反応管内から搬出する工程と、前記ガス供給ライン、前記反応管、前記排気ラインを含むガス流通経路のうち少なくとも前記排気ラインのリークチェックを行う工程と、を有し、前記リークチェックを行う工程では、前記排気ラインを少なくとも前記圧力センサおよび前記排気装置と連通する複数の区間に分け、各区間の上流端を閉塞した状態で各区間内を前記排気装置にて排気すると共に各区間内の圧力を前記圧力センサにて測定し、その測定した圧力により区間毎に前記排気ラインのリークの有無を判断する半導体装置の製造方法に係るものである。
本発明によれば、ガス流通経路を、複数の区間毎にリークチェックできるので、リークがある場合にリークポイントの特定を迅速かつ容易に行うことができ、また、排気ラインに設けられた圧力センサを用いるので、排気ラインを個別にリークチェックすることもでき、基板処理の品質管理、歩留り向上が図れるという優れた効果を発揮する。
また、本発明によれば、ガス流通経路のうち少なくとも排気ラインを、複数の区間毎にリークチェックすることができるので、排気ラインにリークがある場合でもリークポイントの特定を迅速かつ容易に行うことができ、基板処理の品質管理、歩留り向上が図れるという優れた効果を発揮する。
本発明の実施の形態を示す概略構成図である。 本発明の実施の形態に用いられる処理炉の一例を示す断面図である。 本発明の実施の形態に用いられる水蒸気発生装置を示す概略構成図である。 本発明の実施の形態に於けるリークチェックについての説明図である。 本発明の実施の形態に於けるリークチェックについての説明図である。 本発明の実施の形態に於けるリークチェックについての説明図である。
符号の説明
1 均熱管
2 反応管
3 ガス供給管
4 ガス排気管
5 導入口
9 排気口
16 ボート
18 ボートエレベータ
19 処理室
20 処理炉
23 相対圧検出センサ
24 圧力制御弁
24b 絶対圧検出センサ
30 排気ライン
31 ガスクーラ
以下、図面を参照しつつ本発明を実施するための最良の形態を説明する。
半導体装置の製造に用いられる基板処理装置としては、1枚ずつ処理する枚葉式の基板処理装置、所定枚数の基板を一度に処理するバッチ式の基板処理装置があり、以下は本発明がバッチ式の基板処理装置で実施された一例を説明する。
先ず、図1に於いて、バッチ式の基板処理装置について概略を説明する。
均熱管1の内部に反応管2が同心に設けられ、該反応管2の周囲を囲む様に、ヒータ10が同心に配設されている。該ヒータ10はヒータベース21に立設され、前記反応管2は気密容器45に立設されている。該気密容器45は移載室46を画成し、該移載室46と処理室19とは炉口部を介して連通され、該炉口部は炉口シャッタ47によって気密に閉塞可能となっている。前記均熱管1、前記反応管2、前記ヒータ10等は、処理炉20を構成する。
前記反応管2の上面にはガス溜め部7が設けられ、該ガス溜め部7にはガス供給管3が導入口5、導管6を介して連通され、処理ガスが分散孔8を介してシャワー状に導入される様になっている。又、前記反応管2の下部には排気口9が連通され、該排気口9には前記処理室19の雰囲気を排気するガス排気管4が接続され、後述する様に該ガス排気管4より下流側は排気ライン30を構成している。
前記移載室46にはボートエレベータ18、基板移載機49が収納され、前記ボートエレベータ18はシールキャップ13を介して基板保持具(ボート)16を昇降可能に支持し、前記ボートエレベータ18は前記ボート16を昇降させ、前記処理室19に装入、該処理室19から引出し可能であり、前記シールキャップ13は上昇状態で前記炉口部を気密に閉塞可能となっている。
前記基板移載機49は前記ボートエレベータ18と対向して配置され、降下状態の前記ボート16に対して未処理基板を装填し、処理済基板を払出し可能となっている。
前記処理炉20の一例について、図2を参照して説明する。
前記均熱管1は、例えば、炭化珪素(SiC)等の耐熱性材料からなり、上端が閉塞し、下端が開口した形状となっている。前記反応管2は、例えば石英(SiO2 )等の耐熱性材料からなり、上端が閉塞し、下端が開口した円筒形状となっている。なお、先述の導管6及び排気口9も、反応管2と同様に、例えば石英(SiO2 )等の耐熱性材料から構成されている。前記処理室19には前記ボート16が収納され、該ボート16は、例えば石英や炭化珪素等の耐熱性材料からなり、基板(ウェーハ)17を水平姿勢で多段に保持する様になっており、前記ボート16は下部に断熱機能を有するボートキャップ15を有している。
該ボートキャップ15は、例えば石英や炭化珪素等の耐熱性材料からなり、前記ヒータ10からの熱が前記反応管2の下端側に伝わり難くなる様に構成されている。
前記ガス供給管3は、ガス流量制御器としてのMFC(マスフローコントローラ)22を介して図示しない処理ガス供給源、キャリアガス供給源、不活性ガス供給源に接続されている。尚、前記処理室19に水蒸気を供給する必要がある場合は、前記マスフローコントローラ22よりも下流側に、後述する水蒸気発生装置100(図3)が設けられる。前記マスフローコントローラ22には、ガス流量制御部27が電気的に接続されており、供給するガスの流量が所望の量となる様所望のタイミングにて制御する様に構成されている。又、前記ガス供給管3、前記マスフローコントローラ22等はガス供給ラインを構成する。
前記ガス排気管4の下流側には圧力検出器としての相対圧検出センサ23及び圧力制御弁24が設けられ、該圧力制御弁24は排気装置としての真空発生器24a(後述)を有しており、前記処理室19の圧力が所定の圧力となる様排気し得る様に構成されている。前記圧力制御弁24及び前記相対圧検出センサ23、後述する絶対圧検出センサ24b、後述するエアバルブ39等には、圧力制御部29が電気的に接続されており、該圧力制御部29は、前記相対圧検出センサ23により検出された圧力に基づいて、後述するエアバルブ39の開閉動作を所望のタイミングで制御する様に、また、前記絶対圧検出センサ24bにより検出された圧力に基づいて前記圧力制御弁24により前記処理室19の圧力が所望の圧力となる様に、所望のタイミングにて制御する様に構成されている。又、前記ガス排気管4、前記圧力制御弁24等は排気ライン30を構成する。
前記反応管2の下端部には、ベース12と、炉口蓋体としての前記シールキャップ13が設けられている。該シールキャップ13は例えばステンレス等の金属からなり、円盤状に形成されている。前記ベース12は例えば石英からなり、円盤状に形成され、前記シールキャップ13の上に取付けられている。前記ベース12の上面には前記反応管2の下端と当接するシール部材としてのOリング12aが設けられている。
前記シールキャップ13の下側には、ボートを回転させる回転手段14が設置されている。該回転手段14の回転軸14aは前記シールキャップ13と前記ベース12を貫通しており、前記回転軸14aは前記ボートキャップ15を介して前記ボート16を支持し、前記ボートキャップ15を介して前記ボート16を回転させる様に構成されている。
前記シールキャップ13は上記した様に前記ボートエレベータ18に支持され、該ボートエレベータ18によって昇降されることで、前記ボート16は前記処理室19に対し搬入搬出することが可能となっている。前記回転手段14及び前記ボートエレベータ18には、駆動制御部28が電気的に接続されており、所望の動作をする様所望のタイミングにて制御する様に構成されている。
前記均熱管1と前記反応管2との間には、温度検出器としての温度センサ11が設置されている。前記ヒータ10と前記温度センサ11には、電気的に温度制御部26が接続されており、前記温度センサ11により検出された温度情報に基づき前記ヒータ10への通電具合を調整することにより前記処理室19の温度が所望の温度分布となる様所望のタイミングにて制御する様に構成されている。
前記温度制御部26、前記ガス流量制御部27、前記圧力制御部29、前記駆動制御部28は、操作部、入出力部をも構成している。これら、前記温度制御部26、前記ガス流量制御部27、前記圧力制御部29、前記駆動制御部28は主制御部25として構成されている。
水蒸気発生装置100の一例について、図3を参照して説明する。
水蒸気発生装置100の一例として、外部燃焼装置(外部トーチ)を用いて、水蒸気(HO)を発生する装置を説明する。水蒸気発生装置100は、水素(H)ガス源82a、酸素(O)ガス源82b、及び外部燃焼装置86を有する。水素ガス源82a、酸素ガス源82bは、それぞれ開閉バルブ88a、88b及びMFC(マスフローコントローラ)22a、22bを介して、ガス供給管92a、92bにより、外部燃焼装置86に並列に接続されている。
外部燃焼装置86には、発生した水分を先述の処理室19内に供給する先述のガス供給管3が接続されている。MFC22a、22b、開閉バルブ88a、88b、外部燃焼装置86には、先述のガス流量制御部27(図2)が電気的に接続されており、水素ガス源82a、酸素ガス源82bから供給するHガス、Oガスの流量、外部燃焼装置86にて発生させ供給する水蒸気(HO)の流量が所望の量となるよう所望のタイミングにて制御するように構成されている。
水蒸気発生装置100では、水素ガス源82a、酸素ガス源82bから供給されたHガス、Oガスを外部燃焼装置86で燃焼させて水蒸気(HO)を発生させる。発生した水蒸気(HO)は外部燃焼装置86よりガス供給管3を通して処理室19内に供給される。
水蒸気発生装置100の一例として、水蒸気(HO)を発生する外部燃焼装置(外部トーチ)を用いることに替えて、触媒反応を利用する水蒸気発生装置を用いても良い。触媒反応を利用する場合、図3に示す外部燃焼装置86の代わりに、触媒反応装置87を用いる。これ以外の構成は、外部燃焼装置(外部トーチ)を用いる水蒸気発生装置と同様である。
触媒反応装置87を用いる水蒸気発生装置100では、水素ガス源82a、酸素ガス源82bから供給されたHガス、Oガスは、触媒反応装置87内に設けられた白金等の触媒と接触し、白金等と接触したHガス、Oガスは、白金等の触媒作用によって活性化され、反応性が高められた状態となる。活性化されたHガスとOガスは、発火温度よりも低い温度で反応し水蒸気(HO)が生成される。生成された水蒸気(HO)は触媒反応装置87よりガス供給管3を通して処理室19内に供給される。触媒反応装置87を用いる水蒸気発生装置100によれば、外部燃焼装置86を用いる水蒸気発生装置100のような高温燃焼を伴うことなく水蒸気を発生させることができる。
前記排気ライン30について図1を参照して説明する。
前記排気口9に接続された前記ガス排気管4は耐熱、耐食性の合成樹脂製であり、例えば、テフロン(登録商標)などのフッ素樹脂製であり、工場排気装置のダクト等に接続されている。前記ガス排気管4には、下流側に向ってガスクーラ31、前記絶対圧検出センサ24b、前記相対圧検出センサ23、前記圧力制御弁24、前記真空発生器24a、第1開閉弁32等が設けられている。前記相対圧検出センサ23は差圧型センサ(相対圧計)であり、前記処理室19と外気との差圧を検出可能となっている。前記ガスクーラ31の下流側に排液ライン34が連通され、該排液ライン34には下流側に向って第1エアバルブ35、貯溜具であるドレインタンク36、第2エアバルブ37が設けられている。
前記ドレインタンク36は、1回の処理で発生する水分を充分貯溜することができる容量を有している。
前記ガス排気管4、前記排液ライン34、前記相対圧検出センサ23、及び前記絶対圧検出センサ24bは、ブロック52に接続され、ブロック52によって互いに連通した状態となっている。ブロック52は、例えばフッ素樹脂製であり、内部にガス流路が形成されている。前記相対圧検出センサ23及び前記絶対圧検出センサ24bは、前記処理室19内を排気する際の排気圧、具体的にはブロック52内の排気圧の相対圧及び絶対圧を、それぞれ検出している。
前記排液ライン34の前記ガスクーラ31と前記第1エアバルブ35との間、すなわち前記排液ライン34の第1エアバルブ35よりも上流側と、前記ガス排気管4の前記第1開閉弁32よりも下流側はバイパスライン38によって接続され、該バイパスライン38には前記排液ライン34から前記ガス排気管4に向って第3エアバルブ39、第2開閉弁40が設けられている。前記第3エアバルブ39は、前記処理室19の圧力が外気と同等となった時に開となり、前記処理室19の圧力を逃す様になっている。又、前記第3エアバルブ39は、前記相対圧検出センサ23が外気の圧力以上の圧力を検出した場合、前記反応管2が過加圧により割れたりしない様に開となり、前記処理室19の圧力を逃す様になっている。
前記圧力制御弁24は、排気装置として用いられる真空ポンプ等の真空発生器24a、前記処理室19内部の絶対圧を検出する圧力検出器としての前記絶対圧検出センサ(絶対圧計)24bを有し、前記真空発生器24aには真空圧発生用のN供給ライン(図示せず)が接続され、前記絶対圧検出センサ24bは前記ガス排気管4内の絶対圧を検出する様になっている。
次に、上記構成に係る処理炉20を用いて、半導体デバイスの製造工程の1工程として、ウェーハ17に酸化、拡散等の処理を施す方法について説明する。尚、以下の説明に於いて、基板処理装置を構成する各部の動作は前記主制御部25により制御される。
基板処理を開始する前工程として、前記排気ライン30等のリークチェックが行われ、該排気ライン30等についてリークがないことが確認されて実質的な基板処理が開始される。基板処理前に事前にリークチェックを行うことで、基板の処理不良を防止でき、歩留りの向上が図れる。
尚、前記排気ライン30等のリークチェックは、基板処理装置のセットアップ時に行うのがよい。また、後述するボート16を処理室19に搬入する前に行ってもよいし、後述するボート16が前記処理室19に搬入(ボートローディング)した後、処理ガスを供給する前の工程として実施してもよい。或は、基板処理と基板処理との間に定期的にリークチェックをしてもよい。更には、基板処理装置に異常が見られた時点で行うようにしても良い。
前記移載室46で所定枚数のウェーハ17が前記ボート16に装填(ウェーハチャージ)されると、該ボート16は、前記ボートエレベータ18により上昇され、前記処理室19に搬入(ボートローディング)される。この状態で、前記シールキャップ13はベース12、Oリング12aを介して前記反応管2下端(炉口部)を気密に閉塞した状態となる。
前記処理室19が所望の圧力(陰圧)となる様に前記圧力制御弁24を制御しつつ前記真空発生器24aによって排気される。この際、前記処理室19の圧力は、前記絶対圧検出センサ24bで測定され、この測定された圧力に基づき前記圧力制御弁24がフィードバック制御される。又、前記処理室19が所望の温度となる様に前記ヒータ10によって加熱されて、昇温される。この際、前記処理室19が所望の温度分布となる様に前記温度センサ11が検出した温度情報に基づき前記ヒータ10への通電具合がフィードバック制御される。続いて、前記回転手段14により、前記ボートキャップ15、前記ボート16が回転されることで、ウェーハ17が回転される。
次いで、図示しない処理ガス供給源及びキャリアガス供給源から供給され、前記マスフローコントローラ22にて所望の流量となる様に制御されたガスは、前記ガス供給管3から前記導入口5、前記導管6、前記ガス溜め部7を経て前記分散孔8から前記処理室19にシャワー状に導入される。
尚、ウェーハ17に対して水蒸気を用いた処理を行う場合は、前記マスフローコントローラ22にて所望の流量となる様に制御されたガスが水蒸気発生装置に供給され、水蒸気発生装置にて生成された水蒸気(HO)を含むガスが前記処理室19に導入される。すなわち、先述の図3において、マスフローコントローラ22a、22bにて所望の流量となるように制御されたHガス、Oガスが、外部燃焼装置86、または触媒反応装置87に供給されることで水蒸気(HO)が生成され、水蒸気(HO)を含むガスが前記処理室19に導入される。導入されたガスは前記処理室19を流下し、前記排気口9を流通して前記ガス排気管4から排気される。ガスは前記処理室19を通過する際にウェーハ17の表面と接触し、ウェーハ17に対して酸化、拡散等の処理がなされる。
予め設定された処理時間が経過すると、不活性ガス供給源から不活性ガスが供給されて、前記処理室19が不活性ガスに置換され、その後、不活性ガスの供給を維持した状態で、主制御部25からの指令により制御圧力弁24が閉じられ、前記処理室19の圧力が常圧に復帰される。この際、前記処理室19の圧力が前記相対圧検出センサ23により測定され、測定された圧力に基づきフィードバック制御される。すなわち、前記相対圧検出センサ23が外気の圧力以上の圧力を検出した場合、前記反応管2が過加圧により割れたりしない様に前記第3エアバルブ39が開となるように制御される。
その後、処理室19内が降温された後、前記ボートエレベータ18により前記ボート16が降下されて、炉口部が開口されると共に、処理済ウェーハ17が前記ボート16に保持された状態で炉口部から前記移載室46に搬出(ボートアンローディング)される。その後、処理済ウェーハ17は一定の冷却時間を経て前記基板移載機49より払出される(ウェーハディスチャージ)。尚、炉口部は前記炉口シャッタ47によって気密に閉塞される。
尚、一例迄、本実施の形態の処理炉にてウェーハを処理する際の処理条件としては、例えば、酸化処理に於いては、処理温度800〜1000℃、処理圧力940〜980hPa、ガス種、ガス供給流量H/O 、1〜10slm/1〜20slmが例示され、それぞれの処理条件をそれぞれの範囲内のある値で一定に維持することで基板処理がなされる。
次に、リークチェックについて説明する。尚、装置セットアップ時のリークチェックと、基板処理開始前又は装置に異常が見られたときのリークチェックとでは、やり方が異なるため、以下、まず、リークチェックが基板処理開始前又は装置に異常が見られた時に実行される場合を説明し、次に、リークチェックが装置セットアップ時に実行される場合を説明する。
まず、リークチェックの事前準備として行う基準圧力の測定の具体的な方法について説明する。事前に、ガス供給管3、反応管2、排気ライン30等で構成されるガス流通経路全体にリークがないことを確認した後、炉内圧力の設定値を大気圧よりも充分に低い値、例えば800hPa、に設定し、炉内にガスを流さない状態で、即ち前記ガス供給管3の上流側を閉塞した状態で、排気装置としての前記真空発生器24aにより前記処理室19を真空排気する(STEP:00)。この状態で得られた真空状態を引切りと称し、引切り時の圧力(引切り圧力)、すなわち、引切りに到達した圧力を前記絶対圧検出センサ24bにより検出し、引切り圧力をデータとして記録する。引切り圧力は、リークチェックの基準となる圧力であり前記主制御部25の記憶部(図示せず)等に記憶する。
次に、基板処理開始前又は装置に異常が見られたときの、リークチェックの具体的な方向について説明する。まず、圧力の設定値をSTEP:00と同様に設定し、図4に示される様に、前記ガスクーラ31の上流側で、前記ガス排気管4を閉塞し、排気装置としての前記真空発生器24aにより前記排気ライン30を真空排気する(STEP:01)。前記ガス排気管4の閉塞は、例えば前記ガスクーラ31の上流側にエアバルブを設け、このエアバルブを閉じることにより行う。
この時の、該排気ライン30の圧力は前記絶対圧検出センサ24bによって検出され、STEP:00で取得した引切り圧力値と比較し、STEP:01で検出した圧力が前記引切り圧力値と同一であれば、前記ガスクーラ31の上流側迄の区間(区間A)にはリークポイントはないと判断される。一方、STEP:01で得られた検出圧力値が引切り圧力値より高い場合は、区間Aにリークポイントが有ると判断される。区間Aのリークチェック後、ガスクーラ31の上流側でのガス排気管4の閉塞を解き、区間Aを大気圧に戻す。このとき、ガス供給管3より区間Aに対し、不活性ガスを供給するようにしてもよい。
次に、圧力の設定値は、STEP:00と同様に設定したままの状態で、図5に示される様に前記ガス排気管4の上流端(例えば排気口9)を閉塞し、排気装置としての前記真空発生器24aにより前記排気ライン30を真空排気する(STEP:02)。前記ガス排気管4の閉塞は、例えば該ガス排気管4の上流端付近にエアバルブを設け、このエアバルブを閉じることにより行う。この時の、該排気ライン30の圧力は前記絶対圧検出センサ24bによって検出され、前記引切り圧力値と比較され、STEP:02で検出した圧力が前記引切り圧力値と同一であれば、前記ガス排気管4の上流端迄の区間(区間B)にはリークポイントはないと判断される。一方、STEP:02で得られた検出圧力値が引切り圧力値より高い場合は、区間Bにリークポイントが有ると判断される。
例えば区間Aにはリークポイントがなく区間Bにリークポイントが有る場合は、区間Aと区間Bが重複しない区間、即ち前記ガスクーラ31の上流側から前記ガス排気管4の上流端迄の区間にリークポイントが有ると判断される。区間Bのリークチェック後、ガス排気管4の上流端でのガス排気管4の閉塞を解き、区間Bを大気圧に戻す。この時、ガス供給管3より区間Bに対して不活性ガスを供給するようにしても良い。
更に、圧力の設定値は、STEP:00と同様に設定したままの状態で、図6に示される様に、前記導入口5の上流端を閉塞し、排気装置としての前記真空発生器24aにより前記排気ライン30、前記反応管2を真空排気する(STEP:03)。前記導入口5の閉塞は、例えば該導入口5の上流端付近にエアバルブを設け、このエアバルブを閉じることにより行う。この時の前記排気ライン30の圧力は前記絶対圧検出センサ24bによって検出され、前記引切り圧力値と比較され、STEP:03で検出した圧力が前記引切り圧力値と同一であれば、前記導入口5の上流端迄の区間(区間C)にはリークポイントはないと判断される。一方、STEP:03で得られた検出圧力値が引切り圧力値より高い場合は、区間Cにリークポイントが有ると判断される。
例えば区間Bにはリークポイントがなく、区間Cにリークポイントが有る場合は、区間Bと区間Cが重複しない区間、即ち前記ガス排気管4の上流端から前記導入口5の上流端迄の区間にリークポイントが有ると判断される。区間Cのリークチェック後、導入口5の上流端でのガス供給管3の閉塞を解き、区間Cを大気圧に戻す。この時、ガス供給管3より区間Cに対して不活性ガスを供給するようにしても良い。
次に、装置セットアップ時のリークチェックについて説明する。
装置セットアップ時のリークチェックにおいては、たとえ引き切り圧力を検出したとしても、ガス供給管3、反応管2、排気ライン30等で構成されるガス流通経路全体のいずれかの位置にリークが有った場合、検出した引き切り圧力は、リークの有る状態での引き切り圧力であり、リークチェックの基準値とすることはできない。このため、先述の基板処理開始前又は装置に異常が見られたときのリークチェックのように検出値(検出した圧力)が基準値(基準となる圧力)に到達するかどうかでリークの有無を判断するのではなく、設定値(設定した圧力)と検出値(検出した圧力)とを比較し、検出値が設定値に到達するかどうかでリークの有無を判断する。以下具体的に説明する。
まず、炉内圧力の設定値を大気圧よりも充分に低い値、例えば800hPa、に設定し、図4に示される様に、前記ガスクーラ31の上流側で、前記ガス排気管4を閉塞し、排気装置としての前記真空発生器24aにより前記排気ライン30を真空排気する(STEP:01)。前記ガス排気管4の閉塞は、例えば前記ガスクーラ31の上流側にエアバルブを設け、このエアバルブを閉じることにより行う。この時の、該排気ライン30の圧力は前記絶対圧検出センサ24bによって検出され、予め設定された設定値と比較し、STEP:01で検出した圧力が設定値と同一であれば、前記ガスクーラ31の上流側迄の区間(区間A)にはリークポイントはないと判断される。一方、STEP:01で得られた検出圧力値が設定値より高い場合は、区間Aにリークポイントが有ると判断される。区間Aのリークチェック後、ガスクーラ31の上流側でのガス排気管4の閉塞を解き、区間Aを大気圧に戻す。このとき、ガス供給管3より区間Aに対し、不活性ガスを供給するようにしてもよい。
次に、圧力の設定値は、STEP:01と同様に設定したままの状態で、図5に示される様に前記ガス排気管4の上流端(例えば排気口9)を閉塞し、排気装置としての前記真空発生器24aにより前記排気ライン30を真空排気する(STEP:02)。前記ガス排気管4の閉塞は、例えば該ガス排気管4の上流端付近にエアバルブを設け、このエアバルブを閉じることにより行う。この時の、該排気ライン30の圧力は前記絶対圧検出センサ24bによって検出され、予め設定された設定値と比較され、STEP:02で検出した圧力が設定値と同一であれば、前記ガス排気管4の上流端迄の区間(区間B)にはリークポイントはないと判断される。一方、STEP:02で得られた検出圧力値が設定値より高い場合は、区間Bにリークポイントが有ると判断される。
例えば区間Aにはリークポイントがなく区間Bにリークポイントが有る場合は、区間Aと区間Bが重複しない区間、即ち前記ガスクーラ31の上流側から前記ガス排気管4の上流端迄の区間にリークポイントが有ると判断される。区間Bのリークチェック後、ガス排気管4の上流端でのガス排気管4の閉塞を解き、区間Bを大気圧に戻す。この時、ガス供給管3より区間Bに対して不活性ガスを供給するようにしても良い。
更に、圧力の設定値は、STEP:01と同様に設定したままの状態で、図6に示される様に、前記導入口5の上流端を閉塞し、排気装置としての前記真空発生器24aにより前記排気ライン30、前記反応管2を真空排気する(STEP:03)。前記導入口5の閉塞は、例えば該導入口5の上流端付近にエアバルブを設け、このエアバルブを閉じることにより行う。この時の前記排気ライン30の圧力は前記絶対圧検出センサ24bによって検出され、事前に設定された設定値と比較され、STEP:03で検出した圧力が設定値と同一であれば、前記導入口5の上流端迄の区間(区間C)にはリークポイントはないと判断される。一方、STEP:03で得られた検出圧力値が設定値より高い場合は、区間Cにリークポイントが有ると判断される。
例えば区間Bにはリークポイントがなく、区間Cにリークポイントが有る場合は、区間Bと区間Cが重複しない区間、即ち前記ガス排気管4の上流端から前記導入口5の上流端迄の区間にリークポイントが有ると判断される。区間Cのリークチェック後、導入口5の上流端でのガス供給管3の閉塞を解き、区間Cを大気圧に戻す。この時、ガス供給管3より区間Bに対して不活性ガスを供給するようにしても良い。
尚、各部位を閉塞する手段は、前記排気ライン30等に設けられている開閉弁を利用してもよく、或は閉塞部分を切離して手で塞いでもよく、或はアイソレーションバルブを用いてもよい。
以上で説明した装置セットアップ時のリークチェックや、基板の処理開始前又は装置に異常が見られたときのリークチェックで全ての区間でリークポイントがないと判断されると、基板処理が開始される。尚、装置セットアップ時のリークチェックや、基板の処理開始前又は装置に異常が見られたときのリークチェックで、いずれかの区間でリークポイントがあると判断されると、その区間のガス流通経路を構成する部材(ガス供給管3、反応管2、ガス排気管4、ガスクーラ31、ブロック52等)同士の接続部分をチェックし、接続状態が適正かどうかを確認し、適正でない場合は改善がなされる。
具体的には、例えば、接続部分を締め付け具等で締め付けている箇所については、締め付け具の締め付け具合をチェックして締め直したり、ガス配管や締め付け具等の接続部分を構成する部材を交換したりする。また、例えば、接続部分がねじ込み式である箇所については、ねじ込み具合をチェックしてねじ込みを直したり、接続部分を交換したりする。尚、接続部分を構成する部材は、当初、適切な状態であったとしても、熱の影響を受け、適正な状態でなくなることもある。例えば、上述のねじ込み部分や締め付け具は熱の影響を受けて緩むことがあり、処理回数が増えるにつれて熱の影響が蓄積された緩むこともある。
リークチェックを行う区間としては、上記区分に限定されるものではなく、ガス流通経路を下流側から適宜閉塞していけばよい。
また、リークチェックを行う順番としては、上述の順番のように、区間A、区間B、区間Cのうち最も容積の小さい区間から容積の小さい順にリークチェックを行うのが好ましい。これにより、最も容積の大きい区間から容積の大きい順にリークチェックを行う場合に比べて、リークポイントの特定が速い。つまり、リークポイントの特定を効率的に行うことができる。
また、区間A、区間B、区間Cに分けてリークチェックを行うことに替えて、ガス流通経路のうち少なくとも排気ライン30を複数の区間に分け、各区間毎に排気ライン30におけるリークチェックを行っても良い。これにより、排気ライン30を区間毎にリークチェックできるので、排気ライン30にリークがある場合でも、リークポイントの特定を迅速かつ容易に行うことができる。
また、少なくとも、排気ライン30の上流端よりも下流側の第1区間と、反応管2内にガスを導入する導入口5の上流端よりも下流側の第2区間とに分けてリークチェックを行っても良い。これにより、排気ライン30と反応管2とを別々にリークチェックできるので、リークがある場合でも、リークポイントの特定を迅速かつ容易に行うことができる。
また、排気ライン30の上流端よりも下流側の第1区間と、反応管2内にガスを導入する導入口5の上流端よりも下流側の第2区間とのうち、第1区間をさらに複数の区間に分けてリークチェックを行ってもよい。これにより、排気ライン30を複数の区間毎にリークチェックできるので、排気ライン30にリークがある場合でも、リークポイントの特定を迅速かつ容易に行うことができる。
また、排気ライン30の上流端よりも下流側の第1区間と、反応管2内にガスを導入する導入口5の上流端よりも下流側の第2区間とに分けてリークチェックを行う場合、第1区間、第2区間の順にリークチェックを行うのが良い。これにより、第2区間、第1区間の順にリークチェックを行う場合と比較して、リークポイントの特定が速い。つまり、リークポイントの特定を効率的に行うことができる。
また、少なくとも、排気ライン30の上流端よりも下流側の第1区間と、反応管2内にガスを導入する導入口の上流端よりも下流側の第2区間と、ガス供給管3の上流側の所定箇所よりも下流側の第3区間とに分けてリークチェックを行っても良い。これにより、排気ライン30、反応管2、ガス供給管3とを別々にリークチェックできるので、リークがある場合に、リークポイントの特定を迅速かつ容易に行うことができる。
また、排気ライン30の上流端よりも下流側の第1区間と、反応管2内にガスを導入する導入口の上流端よりも下流側の第2区間と、ガス供給管3の上流側の所定箇所よりも下流側の第3区間とに分けてリークチェックを行う場合、第1区間、前記第2区間、前記第3区間の順にチークチェックを行うのが良い。これにより、第3区間、第2区間、第1区間の順でリークチェックを行う場合と比較して、リークポイントの特定が速い。つまり、リークポイントの特定を効率的に行うことができる。
また、本発明は、半導体装置(デバイス)の製造工程の中でも、酸化・拡散装置を用いた酸化・拡散処理工程に適用することが特に有効である。すなわち、酸化・拡散装置は、CVD装置などの他の装置に比べ、排気ラインの構造が複雑といえる。例えば、酸化・拡散装置の排気ラインにはガスクーラや廃液ライン等、CVD装置にはない部材も設けられており、そのため排気ラインを構成する部材同士の接続ポイントも比較的多くなる。また、酸化・拡散装置は、CVD装置に比べ炉内温度が高く、そのため圧力制御弁が熱の影響を受けないように圧力制御弁を反応炉から遠ざけて配置する必要がある。このため、排気口から圧力制御弁までの距離をCVD装置よりも長くする必要がある。また、酸化・拡散装置の排気ラインには、フッ素樹脂製の部分が多く、ねじ込み式の接続部も多い。尚、フッ素樹脂製の部分は継手部分が脆い。このように、酸化・拡散装置においては、排気ラインの構造が比較的複雑であり、排気ラインを構成する部材同士の接続ポイントが比較的多く、排気口から圧力制御弁までの距離が比較的長く、排気ラインにフッ素樹脂製の部分、ねじ込み式の接続部が比較的多く、これらのことからリークポイントとなり得る箇所が比較的多いといえる。このため、本発明は、このようにリークポイントとなり得る箇所が比較的多い酸化・拡散装置に適用する場合に特に有効となる。
(付記)
又、本発明は以下の実施の態様を含む。
(付記1)基板を反応管内に搬入する工程と、前記反応管内にガス供給ラインよりガスを供給しつつ、排気ラインより排気装置にて排気すると共に、前記排気ラインに設けられた圧力センサからの出力に基づいて前記反応管内の圧力を制御して基板を処理する工程と、処理後の基板を前記反応管内から搬出する工程と、前記ガス供給ライン、前記反応管、前記排気ラインを含むガス流通経路のリークチェックを行う工程と、を有し、前記リークチェックを行う工程では、前記ガス流通経路を少なくとも前記圧力センサおよび前記排気装置と連通する複数の区間に分け、各区間の上流端を閉塞した状態で各区間内を前記排気装置にて排気すると共に各区間内の圧力を前記圧力センサにて測定し、その測定した圧力により区間毎にガス流通経路のリークの有無を判断する半導体装置の製造方法。この形態によれば、ガス流通経路を区間毎にリークチェックできるので、リークがある場合にリークポイントの特定を迅速かつ容易に行うことができる。また、排気ラインに設けられた圧力センサを用いるので、排気ラインを個別にリークチェックすることができる。
(付記2)前記リークチェックを行う工程では、前記ガス流通経路の最も下流にある区間から上流に向かって順にリークの有無を判断する付記1記載の半導体装置の製造方法。この形態によれば、付記1の効果に加えて、リークがある場合に、最も上流にある区間から下流に向かってリークチェックする場合に比べ、リークポイントの特定が速い。つまり、リークポイントの特定を効率的に行うことができる。
(付記3)前記リークチェックを行う工程では、前記ガス流通経路の最も容積の小さい区間から容積の小さい順にリークの有無を判断する付記1記載の半導体装置の製造方法。この形態によれば、付記1の効果に加えて、リークがある場合に、最も容積の大きい区間から容積の大きい順にリークチェックする場合に比べ、リークポイントの特定が速い。つまり、リークポイントの特定を効率的に行うことができる。
(付記4)前記リークチェックを行う工程では、前記ガス流通経路のうち少なくとも前記排気ラインを前記複数の区間に分け、各区間毎に前記排気ラインにおけるリークの有無を判断する付記1記載の半導体装置の製造方法。この形態によれば、付記1の効果に加えて、排気ラインを区間毎にリークチェックできるので、排気ラインにリークがある場合でもリークポイントの特定を迅速かつ容易に行うことができる。
(付記5)前記リークチェックを行う工程では、前記ガス流通経路を少なくとも、前記排気ラインの上流端よりも下流側の第1区間と、前記反応管内にガスを導入する導入口の上流端よりも下流側の第2区間とに分け、区間毎にリークの有無を判断する付記1記載の半導体装置の製造方法。この形態によれば、付記1の効果に加えて、排気ラインと、反応管と、を別々にリークチェックできるので、リークがある場合にリークポイントの特定を迅速かつ容易に行うことができる。
(付記6)前記リークチェックを行う工程では、前記第1区間をさらに複数の区間に分け、区間毎にリークの有無を判断する付記5記載の半導体装置の製造方法。この形態によれば、付記5の効果に加えて、排気ラインを区間毎にリークチェックできるので、排気ラインにリークがある場合でもリークポイントの特定を迅速かつ容易に行うことができる。
(付記7)前記リークチェックを行う工程では、前記第1区間、前記第2区間の順にリークの有無を判断する付記5記載の半導体装置の製造方法。この形態によれば、付記5の効果に加えて、リークがある場合に、第2区間、第1区間の順にリークチェックする場合に比べ、リークポイントの特定が速い。つまり、リークポイントの特定を効率的に行うことができる。
(付記8)前記リークチェックを行う工程では、前記ガス流通経路を、少なくとも、前記排気ラインの上流端よりも下流側の第1区間と、前記反応管内にガスを導入する導入口の上流端よりも下流側の第2区間と、前記ガス供給ラインの上流側の所定箇所よりも下流側の第3区間とに分け、区間毎にリークの有無を判断する付記1記載の半導体装置の製造方法。この形態によれば、付記1の効果に加えて、排気ラインと、反応管と、ガス供給ラインと、を別々にリークチェックできるので、リークがある場合にリークポイントの特定を迅速かつ容易に行うことができる。
(付記9)前記リークチェックを行う工程では、前記第1区間、前記第2区間、前記第3区間の順にリークの有無を判断する付記8記載の半導体装置の製造方法。この形態によれば、付記8の効果に加えて、リークがある場合に、第3区間、第2区間、第1区間の順にリークチェックする場合に比べ、リークポイントの特定が速い。つまり、リークポイントの特定を効率的に行うことができる。
(付記10)前記ガス流通経路にリークがない状態において、前記ガス供給ライン上流側を閉塞しつつ、前記反応管内を前記排気装置にて真空排気し、そのときの到達圧力を測定する工程と、前記測定した到達圧力を基準圧力として記憶する工程と、をさらに有し、前記リークチェックを行う工程では、前記測定した各区間内の圧力を、前記記憶した基準圧力と比較することで、区間毎に前記ガス流通経路のリークの有無を判断する付記1記載の半導体装置の製造方法。この形態によれば、付記1の効果に加えて、リーク有無の判断を容易に行うことができる。
(付記11)前記リークチェックを行う工程では、前記測定した各区間内の圧力が、前記基準圧力と同等の圧力となった場合、その区間にはリークポイントがないものと判断し、前記測定した各区間内の圧力が、前記基準圧力と同等の圧力とならなかった場合、その区間にはリークポイントがあるものと判断する付記10記載の半導体装置の製造方法。この形態によれば、付記10の効果に加えて、リーク有無の判断を、さらに容易に行うことができる。
(付記12)基板を反応管内に搬入する工程と、前記反応管内にガス供給ラインよりガスを供給しつつ、排気ラインより排気装置にて排気すると共に、前記排気ラインに設けられた圧力センサからの出力に基づいて前記反応管内の圧力を制御して基板を処理する工程と、処理後の基板を前記反応管内から搬出する工程と、前記ガス供給ライン、前記反応管、前記排気ラインを含むガス流通経路のうち少なくとも前記排気ラインのリークチェックを行う工程と、を有し、前記リークチェックを行う工程では、前記排気ラインを少なくとも前記圧力センサおよび前記排気装置と連通する複数の区間に分け、各区間の上流端を閉塞した状態で各区間内を前記排気装置にて排気すると共に各区間内の圧力を前記圧力センサにて測定し、その測定した圧力により区間毎に前記排気ラインのリークの有無を判断する半導体装置の製造方法。この形態によれば、排気ラインを区間毎にリークチェックできるので、排気ラインにリークがある場合でもリークポイントの特定を迅速かつ容易に行うことができる。
(付記13)前記基板を処理する工程では、ガスクーラ及び廃液ラインが接続された排気ラインより前記排気装置にて排気する付記12記載の半導体装置の製造方法。この形態によれば、付記12の効果に加えて、排気ラインに、ガスクーラや廃液ラインが接続されている場合、排気ラインを構成する部材同士の接続ポイントが多くなり、排気ラインにリークポイントとなり得る箇所が比較的多くなるが、この場合であってもリークポイントの特定を迅速かつ容易に行うことができる。
(付記14)前記基板を処理する工程では、フッ素樹脂製の配管を有する排気ラインより前記排気装置にて排気する付記12記載の半導体装置の製造方法。この形態によれば、付記12の効果に加えて、排気ラインがフッ素樹脂製の配管を有する場合、排気ラインにリークポイントとなり得る箇所が比較的多くなるが、この場合であってもリークポイントの特定を迅速かつ容易に行うことができる。
(付記15)前記基板を処理する工程では、基板に対し酸化処理または拡散処理を行う付記12記載の半導体装置の製造方法。この形態によれば、付記12の効果に加えて、装置構造が複雑でリークが比較的に発生しやすい装置を用いる酸化処理または拡散処理を行う場合であっても、リークポイントの特定を迅速かつ容易に行うことができる。

Claims (15)

  1. 基板を反応管内に搬入する工程と、
    前記反応管内にガス供給ラインよりガスを供給しつつ、排気ラインより排気装置にて排気すると共に、前記排気ラインに設けられた圧力センサからの出力に基づいて前記反応管内の圧力を制御して基板を処理する工程と、
    処理後の基板を前記反応管内から搬出する工程と、
    前記ガス供給ライン、前記反応管、前記排気ラインを含むガス流通経路のリークチェックを行う工程と、
    を有し、
    前記リークチェックを行う工程では、
    前記ガス流通経路を少なくとも前記圧力センサおよび前記排気装置と連通する複数の区間に分け、各区間の上流端を閉塞した状態で各区間内を前記排気装置にて排気すると共に各区間内の圧力を前記圧力センサにて測定し、その測定した圧力により区間毎にガス流通経路のリークの有無を判断する半導体装置の製造方法。
  2. 前記リークチェックを行う工程では、
    前記ガス流通経路の最も下流にある区間から上流に向かって順にリークの有無を判断する請求項1記載の半導体装置の製造方法。
  3. 前記リークチェックを行う工程では、
    前記ガス流通経路の最も容積の小さい区間から容積の小さい順にリークの有無を判断する請求項1記載の半導体装置の製造方法。
  4. 前記リークチェックを行う工程では、
    前記ガス流通経路のうち少なくとも前記排気ラインを前記複数の区間に分け、各区間毎に前記排気ラインにおけるリークの有無を判断する請求項1記載の半導体装置の製造方法。
  5. 前記リークチェックを行う工程では、
    前記ガス流通経路を少なくとも、前記排気ラインの上流端よりも下流側の第1区間と、前記反応管内にガスを導入する導入口の上流端よりも下流側の第2区間とに分け、区間毎にリークの有無を判断する請求項1記載の半導体装置の製造方法。
  6. 前記リークチェックを行う工程では、
    前記第1区間をさらに複数の区間に分け、区間毎にリークの有無を判断する請求項5記載の半導体装置の製造方法。
  7. 前記リークチェックを行う工程では、
    前記第1区間、前記第2区間の順にリークの有無を判断する請求項5記載の半導体装置の製造方法。
  8. 前記リークチェックを行う工程では、
    前記ガス流通経路を、少なくとも、前記排気ラインの上流端よりも下流側の第1区間と、前記反応管内にガスを導入する導入口の上流端よりも下流側の第2区間と、前記ガス供給ラインの上流側の所定箇所よりも下流側の第3区間とに分け、区間毎にリークの有無を判断する請求項1記載の半導体装置の製造方法。
  9. 前記リークチェックを行う工程では、
    前記第1区間、前記第2区間、前記第3区間の順にリークの有無を判断する請求項8記載の半導体装置の製造方法。
  10. 前記ガス流通経路にリークがない状態において、前記ガス供給ライン上流側を閉塞しつつ、前記反応管内を前記排気装置にて真空排気し、そのときの到達圧力を測定する工程と、
    前記測定した到達圧力を基準圧力として記憶する工程と、
    をさらに有し、
    前記リークチェックを行う工程では、
    前記測定した各区間内の圧力を、前記記憶した基準圧力と比較することで、区間毎に前記ガス流通経路のリークの有無を判断する請求項1記載の半導体装置の製造方法。
  11. 前記リークチェックを行う工程では、
    前記測定した各区間内の圧力が、前記基準圧力と同等の圧力となった場合、その区間にはリークポイントがないものと判断し、前記測定した各区間内の圧力が、前記基準圧力と同等の圧力とならなかった場合、その区間にはリークポイントがあるものと判断する請求項10記載の半導体装置の製造方法。
  12. 基板を反応管内に搬入する工程と、
    前記反応管内にガス供給ラインよりガスを供給しつつ、排気ラインより排気装置にて排気すると共に、前記排気ラインに設けられた圧力センサからの出力に基づいて前記反応管内の圧力を制御して基板を処理する工程と、
    処理後の基板を前記反応管内から搬出する工程と、
    前記ガス供給ライン、前記反応管、前記排気ラインを含むガス流通経路のうち少なくとも前記排気ラインのリークチェックを行う工程と、
    を有し、
    前記リークチェックを行う工程では、
    前記排気ラインを少なくとも前記圧力センサおよび前記排気装置と連通する複数の区間に分け、各区間の上流端を閉塞した状態で各区間内を前記排気装置にて排気すると共に各区間内の圧力を前記圧力センサにて測定し、その測定した圧力により区間毎に前記排気ラインのリークの有無を判断する半導体装置の製造方法。
  13. 前記基板を処理する工程では、ガスクーラ及び廃液ラインが接続された排気ラインより前記排気装置にて排気する請求項12記載の半導体装置の製造方法。
  14. 前記基板を処理する工程では、フッ素樹脂製の配管を有する排気ラインより前記排気装置にて排気する請求項12記載の半導体装置の製造方法。
  15. 前記基板を処理する工程では、基板に対し酸化処理または拡散処理を行う請求項12記載の半導体装置の製造方法。
JP2008507518A 2006-03-28 2007-03-28 半導体装置の製造方法 Pending JPWO2007111351A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006087461 2006-03-28
JP2006087461 2006-03-28
PCT/JP2007/056699 WO2007111351A1 (ja) 2006-03-28 2007-03-28 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JPWO2007111351A1 true JPWO2007111351A1 (ja) 2009-08-13

Family

ID=38541267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008507518A Pending JPWO2007111351A1 (ja) 2006-03-28 2007-03-28 半導体装置の製造方法

Country Status (3)

Country Link
US (1) US20090064765A1 (ja)
JP (1) JPWO2007111351A1 (ja)
WO (1) WO2007111351A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394360B2 (ja) * 2010-03-10 2014-01-22 東京エレクトロン株式会社 縦型熱処理装置およびその冷却方法
JP5394292B2 (ja) * 2010-03-12 2014-01-22 東京エレクトロン株式会社 縦型熱処理装置および圧力検知システムと温度センサの組合体
CN109097755A (zh) * 2017-06-20 2018-12-28 华邦电子股份有限公司 工艺腔室气体检测系统及其操作方法
JP6987016B2 (ja) * 2018-04-27 2021-12-22 東京エレクトロン株式会社 半導体製造装置の組立装置
KR20200141003A (ko) * 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 가스 감지기를 포함하는 기상 반응기 시스템
US20210317574A1 (en) * 2020-04-14 2021-10-14 Wonik Ips Co., Ltd. Substrate processing apparatus
KR102418948B1 (ko) * 2020-11-24 2022-07-11 주식회사 유진테크 기판 처리 시스템
CN113760020B (zh) * 2021-09-26 2023-06-02 北京北方华创微电子装备有限公司 半导体设备的压力控制装置及半导体设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142747U (ja) * 1983-03-14 1984-09-25 住友金属工業株式会社 配管の漏水検知装置
JP2000321163A (ja) * 1999-05-14 2000-11-24 Horiba Ltd 分析装置におけるガス漏れ検出機構
JP2001330534A (ja) * 2000-03-16 2001-11-30 Tokyo Electron Ltd 減圧処理装置のリークチェック方法および減圧処理装置
JP2004353559A (ja) * 2003-05-29 2004-12-16 Hitachi Unisia Automotive Ltd 蒸発燃料処理装置のリーク診断装置
JP2005121481A (ja) * 2003-10-16 2005-05-12 Denso Corp 気密漏れ検査方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8716032D0 (en) * 1987-07-08 1987-08-12 British Telecomm Duct testing
EP1109210A1 (en) * 1999-05-28 2001-06-20 Tokyo Electron Limited Ozone treatment device of semiconductor process system
JP2003318172A (ja) * 2002-04-19 2003-11-07 Tokyo Electron Ltd 成膜方法、成膜処理時間補正式の導出方法、成膜装置、およびプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142747U (ja) * 1983-03-14 1984-09-25 住友金属工業株式会社 配管の漏水検知装置
JP2000321163A (ja) * 1999-05-14 2000-11-24 Horiba Ltd 分析装置におけるガス漏れ検出機構
JP2001330534A (ja) * 2000-03-16 2001-11-30 Tokyo Electron Ltd 減圧処理装置のリークチェック方法および減圧処理装置
JP2004353559A (ja) * 2003-05-29 2004-12-16 Hitachi Unisia Automotive Ltd 蒸発燃料処理装置のリーク診断装置
JP2005121481A (ja) * 2003-10-16 2005-05-12 Denso Corp 気密漏れ検査方法及び装置

Also Published As

Publication number Publication date
US20090064765A1 (en) 2009-03-12
WO2007111351A1 (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
JPWO2007111351A1 (ja) 半導体装置の製造方法
US7858534B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP5386024B2 (ja) 基板処理装置、基板処理方法及び半導体装置の製造方法
JP2012054393A (ja) 基板処理装置及び半導体装置の製造方法
JP3468577B2 (ja) 熱処理装置
JP3554847B2 (ja) 熱処理装置
JP2007243014A (ja) 半導体装置の製造方法及び基板処理装置
JP2011040636A (ja) ガスポート構造及び処理装置
US20230067800A1 (en) Method of Manufacturing Semiconductor Device and Non-transitory Computer-readable Recording Medium
JP2010123624A (ja) 基板処理装置
JP2009117554A (ja) 基板処理装置
JP2012099723A (ja) 基板処理装置
JP2009016426A (ja) 半導体装置の製造方法および基板処理装置
JP2010021385A (ja) 基板処理装置及び半導体装置の製造方法
JP2008210852A (ja) 基板処理装置及び半導体装置の製造方法
JP5571157B2 (ja) 半導体装置の製造方法、クリーニング方法および基板処理装置
JP7250152B2 (ja) 基板処理装置、半導体装置の製造方法、基板処理方法、プログラム及び排ガス処理システム
JP4342559B2 (ja) 基板処理装置及び半導体装置の形成方法
WO2023127054A1 (ja) 漏洩検知装置、半導体装置の製造方法、基板処理方法およびプログラム
TWI744759B (zh) 半導體裝置的製造方法,記錄媒體及基板處理裝置
JP4304354B2 (ja) 半導体装置の処理方法
JP2007234935A (ja) 半導体装置の製造方法および基板処理装置
JP2002329717A (ja) 被処理体の熱処理方法及びバッチ式熱処理装置
JP4994424B2 (ja) 基板処理装置及び半導体装置の形成方法
JP2002319579A (ja) 被処理体の熱処理方法及びバッチ式熱処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120802