JPWO2007097303A1 - 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置 - Google Patents

反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置 Download PDF

Info

Publication number
JPWO2007097303A1
JPWO2007097303A1 JP2008501714A JP2008501714A JPWO2007097303A1 JP WO2007097303 A1 JPWO2007097303 A1 JP WO2007097303A1 JP 2008501714 A JP2008501714 A JP 2008501714A JP 2008501714 A JP2008501714 A JP 2008501714A JP WO2007097303 A1 JPWO2007097303 A1 JP WO2007097303A1
Authority
JP
Japan
Prior art keywords
film
layer
antireflection film
refractive index
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008501714A
Other languages
English (en)
Other versions
JP4992122B2 (ja
Inventor
岡野 賢
賢 岡野
良和 小島
良和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008501714A priority Critical patent/JP4992122B2/ja
Publication of JPWO2007097303A1 publication Critical patent/JPWO2007097303A1/ja
Application granted granted Critical
Publication of JP4992122B2 publication Critical patent/JP4992122B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249974Metal- or silicon-containing element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、反射防止層の耐薬品性、表面硬度、耐湿熱性密着に優れる反射防止フィルム、該反射防止フィルムの製造方法、それを用いた偏光板及び表示装置を提供する。この反射防止フィルムは、透明樹脂フィルムの少なくとも一方の面上にハードコート層、反射防止層を有する反射防止フィルムであって、該ハードコート層が活性線硬化樹脂、シリコーン界面活性剤及びポリオキシエーテル化合物を少なくとも含有し、該シリコーン界面活性剤とポリオキシエーテル化合物との含有質量比が1.0:1.0〜0.10:1.0であることを特徴とする。

Description

本発明は、反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置に関し、反射防止層の耐薬品性、表面硬度、耐湿熱性密着に優れる反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置に関する。
近年、光学レンズ、プラズマディスプレイパネル(PDP)、陰極管表示装置(CRT)、コンピュータやワープロの液晶画像表示装置等の分野を中心に、透過率及びコントラストの向上、写り込み低減のために、表面反射を減少させる反射防止層を有した反射防止フィルムが提案されている。反射防止層としては、光学干渉層として屈折率と光学膜厚が適当な値を有する層をいくつか積層することにより、積層体と空気界面における光反射を減少させることが有効である。光学干渉層としては、低屈折率層が設けられており、低屈折率材料としてSiO2、MgF2等が使用されている。
反射防止フィルムは、乾式製膜方法と塗布式製膜方法により製造出来るが、容易でかつ安価であるという利点から塗布式製膜方法が一般的に用いられている。また、反射防止フィルムには耐引っ掻き性、耐擦傷性等の性能を付与するために、フィルム基材上に、中間層としてハードコート層を形成し、ハードコート性が付与された反射防止フィルムが一般的である。ハードコート層としては一般的に紫外線硬化樹脂から構成され、例えば(メタ)アクリロイル基を有する紫外線硬化型(メタ)アクリレートモノマーが用いられている。また、ハードコート層は、均一な表面やハジキ、ヌケ等の面状欠陥を防止するため、塗布液の表面張力を下げる効果が大きいフッ素或いはシリコーン界面活性剤が用いられる。しかしながら、前記(メタ)アクリレートモノマーを使用し、フッ素或いはシリコーン界面活性剤だけを用いたハードコート層では、例えば、ロール状態でハードコートフィルムを保管しておき、この状態から繰り出してハードコート層上に反射防止層を塗布し反射防止フィルムを形成すると、ハードコート層表面の平滑性が失われ、フッ素或いはシリコーン界面活性剤の表面配向性等も影響し、反射防止層とハードコート層との密着性低下による反射防止フィルムの耐薬品性、表面硬度及び耐湿熱性密着が低下するといった問題があった。これらによって商品価値や生産性の低下を招いていた。
従来、フッ素或いはシリコーン界面活性剤と他の界面活性剤の併用は表面配向性のコントロールが難しく、ハードコート層の安定した塗布性を維持すること、及び金属化合物の凝集等の反射防止層の塗布性への影響も大きく技術的に困難であった。また、特許文献1や特許文献2には非イオン性界面活性剤とシリコーン界面活性剤の併用の技術的困難性について記載されている。
前記課題に対する改良技術については、例えば特許文献3〜6に開示されている。しかしながら、前記技術等では十分な改良効果が得られず、特にロールのようなハードコート層が透明フィルムと密着状態で保管後に反射防止フィルムを形成した場合、前記課題に対する改良効果は十分でなかった。
本発明は上記課題に対し、シリコーン界面活性剤にポリオキシエーテル化合物を併用し、かつ特定の範囲で添加することで、安定した塗布性が得られ上記課題解決出来ることを見い出し本発明に至ったものである。
前記文特許文献1、2には本発明の化合物に関する言及はなく、前記特許文献3〜6には、シリコーン界面活性剤とポリオキシエーテル化合物との併用による前記課題解決について何ら言及、及び示唆されていない。
特開2005−186584号公報 特開2004−114355号公報 特開2001−74909号公報 特開2001−74910号公報 特開2001−76647号公報 特開2004−212619号公報
本発明の目的は、反射防止層の耐薬品性、表面硬度、耐湿熱性密着に優れる反射防止フィルム、該反射防止フィルムの製造方法、それを用いた偏光板及び表示装置を提供することにある。
本発明の上記課題は以下の構成により達成される。
1.透明樹脂フィルムの少なくとも一方の面上にハードコート層、反射防止層を有する反射防止フィルムにおいて、該ハードコート層が活性線硬化樹脂、シリコーン界面活性剤及びポリオキシエーテル化合物を少なくとも含有し、該シリコーン界面活性剤とポリオキシエーテル化合物との含有質量比が1.0:1.0〜0.10:1.0であることを特徴とする反射防止フィルム。
2.前記ポリオキシエーテル化合物がポリオキシエチレンオレイルエーテル化合物であることを特徴とする前記1に記載の反射防止フィルム。
3.前記反射防止層が、中空シリカ系微粒子を含有する低屈折率層を有することを特徴とする前記1または2に記載の反射防止フィルム。
4.前記1〜3のいずれか1項に記載の反射防止フィルムの製造方法であって、透明樹脂フィルムの一方の面上にハードコート層を塗布形成し、ロール状に巻き取った後、再度繰り出して該ハードコート層上に反射防止層を塗布することを特徴とする反射防止フィルムの製造方法。
5.前記4に記載の反射防止フィルムの製造方法により製造されたことを特徴とする反射防止フィルム。
6.前記1、2、3、または5のいずれか1項に記載の反射防止フィルムを偏光子の少なくとも一方の面に貼合したことを特徴とする偏光板。
7.前記1、2、3、または5のいずれか1項に記載の反射防止フィルム、または前記6に記載の偏光板を用いることを特徴とする表示装置。
本発明により、反射防止層の耐薬品性、表面硬度、耐湿熱性密着、密着性、耐擦傷性、塗布性に優れる反射防止フィルム、該反射防止フィルムの製造方法、それを用いた偏光板及び表示装置を提供することが出来る。
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明者は、透明樹脂フィルムの少なくとも一方の面上にハードコート層、反射防止層を有する反射防止フィルムにおいて、該ハードコート層が活性線硬化樹脂、シリコーン界面活性剤及びポリオキシエーテル化合物を少なくとも含有し、該シリコーン界面活性剤とポリオキシエーテル化合物との含有質量比が1.0:1.0〜0.10:1.0であることを特徴とする反射防止フィルムにより、反射防止層の耐薬品性、表面硬度、耐湿熱性密着に優れる反射防止フィルムが得られることを見出し、本発明を成すに至った次第である。
更に、前記反射防止フィルムは、透明樹脂フィルムの一方の面上にハードコート層を塗布形成し、ロール状に巻き取った後再度繰り出して該ハードコート層上に反射防止層を塗布することを特徴とする反射防止フィルムの製造方法によって製造されることが好ましいことも併せて見出したものである。
以下、本発明を詳細に説明する。
(界面活性剤)
まず、本発明に用いられるシリコーン界面活性剤について説明する。
尚、本発明に用いられるシリコーン界面活性剤はシリコーンオイルも含む。
シリコーン界面活性剤としては、シリコーンオイルのメチル基の一部を親水性基に置換した界面活性剤である。置換の位置は、シリコーンオイルの側鎖、両末端、片末端、両末端側鎖等がある。親水性基としては、ポリエーテル、ポリグリセリン、ピロリドン、ベタイン、硫酸塩、リン酸塩、4級塩等がある。
これらの中で、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン性界面活性剤が好ましい。
非イオン界面活性剤は、水溶液中でイオンに解離する基を有しない界面活性剤を総称していうが、疎水基のほか親水性基として多価アルコール類の水酸基、また、ポリオキシアルキレン鎖(ポリオキシエチレン)等を親水基として有するものである。親水性はアルコール性水酸基の数が多くなるに従って、またポリオキシアルキレン鎖(ポリオキシエチレン鎖)が長くなるに従って強くなる。
次にシリコーンオイルについて説明する。シリコーンオイルとしては、ケイ素原子に結合した有機基の種類により、ストレートシリコーンオイルと変性シリコーンオイルに大別出来る。ストレートシリコーンオイルとは、メチル基、フェニル基、水素原子を置換基として結合したものをいう。変性シリコーンオイルとは、ストレートシリコーンオイルから二次的に誘導された構成部分をもつものである。一方、シリコーンオイルの反応性からも分類することが出来る。これらをまとめると、以下のようになる。
シリコーンオイル
1.ストレートシリコーンオイル
1−1.非反応性シリコーンオイル:ジメチル、メチル、フェニル置換等
1−2.反応性シリコーンオイル:メチル、水素置換等
2.変性シリコーンオイル
ジメチルシリコーンオイルに、さまざまな有機基を導入することで生まれたものが、変性シリコーンオイル
2−1.非反応性シリコーンオイル:アルキル、アルキル/アラルキル、アルキル/ポリエーテル、ポリエーテル、高級脂肪酸エステル置換等、
アルキル/アラルキル変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を長鎖アルキル基或いはフェニルアルキル基に置換えたシリコーンオイル、
ポリエーテル変性シリコーンオイルは、親水性のポリオキシアルキレンを疎水性のジメチルシリコーンに導入したシリコーン系高分子界面活性剤、
高級脂肪酸変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を高級脂肪酸エステルに置換えたシリコーンオイル、
アミノ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をアミノアルキル基に置換えた構造をもつシリコーンオイル、
エポキシ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をエポキシ基含有アルキル基に置換えた構造をもつシリコーンオイル、
カルボキシル変性或いはアルコール変性シリコーンオイルは、シリコーンオイルのメチル基の一部をカルボキシル基或いは水酸基含有アルキル基に置換えた構造をもつシリコーンオイル
2−2.反応性シリコーンオイル:アミノ、エポキシ、カルボキシル、アルコール置換等、これらの内、本発明の目的効果の点から、ポリエーテル変性シリコーンオイルが好ましい。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1,000〜100,000、好ましくは2,000〜50,000が適当である。
これら、シリコーン界面活性剤(シリコーンオイル)の具体的商品として、例えば、SH200、BY16−873、PRX413(ジメチルシリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、SH510、SH550、SH710(メチルフェニルシリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、SH203、SH230、SF8416(アルキル変性シリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、SF8417、BY16−208、BY16−209、BY16−849、BY16−872(アミノ変性シリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、SF8411、SF8413、BY16−855D(エポキシ変性シリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、BY16−848、BY16−201(アルコール変性シリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、BY16−152(メタクリレート変性シリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、FZ−2222、FZ−2207(ジメチルポリシロキサン・ポリエチレンオキサイド直鎖状ブロックコポリマー;日本ユニカー(株)製のFZシリーズ)、KF−101、KF−102,KF−105(エポキシ変性シリコーンオイル;信越化学工業社製)、KF−8008、KF−861,KF−8002(アミノ変性シリコーンオイル;信越化学工業社製)、KF−6001、KF−6002(カルビノール変性シリコーンオイル;信越化学工業社製)、X−22−164A、X−22−2404(メタクリル変性シリコーンオイル;信越化学工業社製)、KF−412、KF−414(アルキル変性シリコーンオイル;信越化学工業社製)、KF−910(エステル変性シリコーンオイル;信越化学工業社製)、SH3749、SH3748、SH8400、SF8410、SF8427、BY16−004、SF8428、SH3771、SH3746、BY16−036(ポリエーテル変性シリコーンオイル;東レ・ダウコーニング・シリコーン(株)社製)、BYK−UV3500,BYK−UV3510、BYK−333、BYK−331、BYK−337(ポリエーテル変性シリコーンオイルビックケミ−ジャパン社製)、TSF4440、TSF4445、TSF4446、TSF4452、TSF4460(ポリエーテル変性シリコーンオイル;GE東芝シリコーン製)、KF−351、KF−351A、KF−352、KF−353、KF−354、KF−355、KF−615、KF−618、KF−945、KF−6004(ポリエーテル変性シリコーンオイル;信越化学工業社製)、等が挙げられるがこれらに限定されない。
一方、ポリオキシエーテル化合物としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル化合物、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシアルキルフェニルエーテル化合物、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルドデシルエーテル等が挙げられる。
ポリオキシエチレンアルキルエーテルの市販品としては、エマルゲン1108、エマルゲン1118S−70(以上花王社製)、ポリオキシエチレンラウリルエーテルの市販品としては、エマルゲン103、エマルゲン104P、エマルゲン105、エマルゲン106、エマルゲン108、エマルゲン109P、エマルゲン120、エマルゲン123P、エマルゲン147、エマルゲン150、エマルゲン130K(以上花王社製)、ポリオキシエチレンセチルエーテルの市販品としては、エマルゲン210P、エマルゲン220(以上花王社製)、ポリオキシエチレンステアリルエーテルの市販品としては、エマルゲン220、エマルゲン306P(以上花王社製)、ポリオキシアルキレンアルキルエーテルの市販品としては、エマルゲンLS−106、エマルゲンLS−110、エマルゲンLS−114、エマルゲンMS−110(以上花王社製)ポリオキシエチレン高級アルコールエーテルの市販品としては、エマルゲン705,エマルゲン707、エマルゲン709等が挙げられる。これらのポリオキシエーテル化合物の中でも好ましくは、ポリオキシエチレンオレイルエーテル化合物であり、一般的に一般式(1)で表される化合物である。
一般式(1) C1835−O(C24O)nH
式中、nは2〜40を表す。
オレイル部分に対するエチレンオキシドの平均付加個数(n)は、2〜40であり、好ましくは2〜10、より好ましくは2〜9、さらに好ましくは2〜8である。また一般式(1)の化合物はエチレンオキシドとオレイルアルコールとを反応させて得られる。
具体的商品としては、エマルゲン404(ポリオキシエチレン(4)オレイルエーテル)、エマルゲン408(ポリオキシエチレン(8)オレイルエーテル)、エマルゲン409P(ポリオキシエチレン(9)オレイルエーテル)、エマルゲン420(ポリオキシエチレン(13)オレイルエーテル)、エマルゲン430(ポリオキシエチレン(30)オレイルエーテル)以上花王社製、日本油脂製NOFABLEEAO−9905(ポリオキシエチレン(5)オレイルエーテル)等が挙げられる。
尚、( )がnの数字を表す。非イオン性のポリオキシエーテル化合物は単独或いは2種以上を併用しても良い。
シリコーン界面活性剤とポリオキシエーテル化合物とのハードコート層中の含有質量比は、1.0:1.0〜0.10:1.0であり、更に好ましくは0.70:1.0〜0.20:1.0であり、前記質量比で含有することで本発明の目的効果を発揮する。
ポリオキシエーテル化合物とシリコーン界面活性剤の好ましい添加量は、両者のトータル量で、ハードコート層中の活性線硬化樹脂に対して0.1質量%〜8.0質量%が好ましく、更に好ましくは、0.2質量%〜4.0質量%であり、該範囲において耐薬品性、表面硬度、耐湿熱性密着に特に優れた反射防止層が得られる。
また、フッ素界面活性剤、アクリル系共重合物、アセチレングリコール系化合物又は他の非イオン性界面活性剤、ラジカル重合性の非イオン性界面活性剤等を併用しても良い。
フッ素界面活性剤の市販品としては住友スリーエム社製フロラードFC−430、FC170、大日本インキ化学工業社製メガファックF177、F471、F482等が挙げられる。アクリル系共重合物としてはビックケミー・ジャパン社製、BYK−361N、BYK−358Nなどが挙げられる。
他の非イオン性界面活性剤としては、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレート等のポリオキシアルキルエステル化合物、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタンモノオレート等のソルビタンエステル化合物、等が挙げられる。
アセチレングリコール系化合物としてはサーフィノール104E、サーフィノール104PA、サーフィノール420、サーフィノール440、ダイノール604(以上、日信化学工業(株)社製)などが挙げられる。
ラジカル重合性の非イオン性界面活性剤としては、例えば、「RMA−564」、「RMA−568」、「RMA−1114」[以上、商品名、日本乳化剤(株)製]等のポリオキシアルキレンアルキルフェニルエーテル(メタ)アクリレート系重合性界面活性剤などを挙げることが出来る。
(反射防止層)
本発明の反射防止フィルムに用いられる光干渉による反射防止層について説明する。
(反射防止層の構成)
本発明に用いられる反射防止層は低屈折率層のみの単層構成でも、少なくとも1層の低屈折率層と少なくとも1層の高屈折率層を有する多層構成とすることが出来る。また3層以上の多層の屈折率層も構成出来る。
透明なフィルム支持体上に、ハードコート層(クリアハードコート層或いは防眩層)を有しその表面上に光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層出来る。反射防止層は、支持体よりも屈折率の高い高屈折率層と、支持体よりも屈折率の低い低屈折率層を組み合わせて構成したり、特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体またはハードコート層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましい。ハードコート層が高屈折率層を兼ねても良い。
本発明の反射防止フィルムの好ましい層構成の例を下記に示す。ここで/は積層配置されていることを示している。本発明でいう支持体とは後述する透明樹脂フィルムである。
バックコート層/透明樹脂フィルム/ハードコート層/低屈折率層
バックコート層/透明樹脂フィルム/ハードコート層/高屈折率層/低屈折率層
バックコート層/透明樹脂フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
バックコート層/透明樹脂フィルム/帯電防止層/ハードコート層/中屈折率層/高屈折率層/低屈折率層
帯電防止層/透明樹脂フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
バックコート層/透明樹脂フィルム/ハードコート層/高屈折率層/低屈折率層/高屈折率層/低屈折率層
汚れや指紋の拭き取りが容易となるように、最表面の低屈折率層の上に、更に防汚層を設けることも出来る。防汚層としては、含フッ素有機化合物が好ましく用いられる。
(ハードコート層)
本発明は、透明樹脂フィルムの少なくとも一方の面上にハードコート層が塗設される。該ハードコート層は、前記シリコーン界面活性剤、ポリオキシエーテル化合物及び後述する活性線硬化樹脂を少なくとも含有することを特徴とする。
活性線硬化樹脂とは紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂を主たる成分とする。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させてハードコート層が形成される。活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が好ましい。
紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。
紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることが出来る。例えば、特開昭59−151110号に記載のものを用いることが出来る。
例えば、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることが出来、特開昭59−151112号に記載のものを用いることが出来る。
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることが出来、特開平1−105738号に記載のものを用いることが出来る。
紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。
これら紫外線硬化性樹脂の光反応開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることが出来る。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用出来る。また、エポキシアクリレート系の光反応開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることが出来る。紫外線硬化樹脂
組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることが出来る。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることが出来る。
本発明において使用し得る紫外線硬化樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用出来る。
また、具体的化合物例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、イソボロニルアクリレート等がある。その他として、チオール(メタ)アクリレート系モノマーを用いる事ができ、具体的化合物例としてはペンタエリスリトールテトラキスチオグリコレート、トリスメルカプトプロピルイソシアヌレート等を挙げることが出来る。
これらの活性線硬化樹脂層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することが出来る。
紫外線硬化性樹脂を光硬化反応により硬化させ、硬化皮膜層を形成する為の光源としては、紫外線を発生する光源であれば制限なく使用出来る。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによって異なるが、活性線の照射量は好ましくは、5〜500mJ/cm2であり、特に好ましくは20〜150mJ/cm2である。
また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、若しくは2軸方向に張力を付与してもよい。これによって更に平面性が優れたフィルムを得ることが出来る。
紫外線硬化樹脂層組成物塗布液の有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、或いはこれらを混合し利用出来る。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
紫外線硬化性樹脂組成物塗布液の塗布方法において、塗布量はウェット膜厚として0.1〜30μmが適当で、好ましくは、0.5〜15μmである。また、ドライ膜厚としては0.1〜20μm、好ましくは1〜20μmである。特に好ましくは5〜20μmである。
又、鉛筆硬度は、2H〜8Hのハードコート層であることが好ましい。特に好ましくは3H〜6Hであることが好ましい。鉛筆硬度は、作製したハードコートフィルム試料を温度25℃、相対湿度60%の条件で2時間調湿した後、JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400が規定する鉛筆硬度評価方法に従い測定した値である。また、フィルム全体の鉛筆硬度が2H〜8Hであれば、当該フィルムはハードコート層を有しているとみなすことが出来る。
紫外線硬化性樹脂組成物は塗布乾燥中または後に、紫外線を照射するのがよく、前記の5〜150mJ/cm2という活性線の照射量を得る為の照射時間としては、0.1秒〜5分程度がよく、紫外線硬化性樹脂の硬化効率または作業効率の観点から0.1〜10秒がより好ましい。
また、これら活性線照射部の照度は50〜500mW/cm2であることが好ましく、より好ましくは、50〜150mW/cm2である。
こうして得たハードコート層に、ブロッキングを防止する為、また耐擦傷性等を高める為、或いは防眩性や光拡散性を持たせる為また屈折率を調整する為に無機化合物或いは有機化合物の微粒子を加えることも出来る。
ハードコート層に使用される無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム及びリン酸カルシウムを挙げることが出来る。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウムなどが好ましく用いられる。
また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物に加えることが出来る。特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)が挙げられる。
これらの微粒子粉末の1次平均粒径としては、0.005〜5μmが好ましく0.01〜3μmであることが特に好ましく、1次平均粒子系や屈折率の異なる2種以上の粒子を含有させることが好ましい、1次平均粒径はMultisizer3(ベックマン・コールター(株)社製)、ELS−Z2(大塚電子(株)社製)等の粒径測定装置によって求めることが出来る。その他、下記の低屈折率層に記載のシランカップリング剤等を添加して良い。
又、JIS B 0601で規定される輪郭曲線要素の平均長さSmから求められるRa/Smの値が0.008以下であることが好ましい。
中心線平均粗さ(Ra)、Smは光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製RST/PLUSを用いて測定することが出来る。
又、予め凹凸が設けられたエンボスロールを用いて、表面に凹凸を有する紫外線硬化樹脂層を形成したり、インクジェット法や印刷法によって、表面に凹凸を形成することで防眩性を付与した紫外線硬化樹脂層も好ましく用いられる。
〈バックコート層〉
本発明のハードコートフィルムのハードコート層を設けた側と反対側の面にはバックコート層を設けることが好ましい。バックコート層は、塗布やCVDなどによって、ハードコート層やその他の層を設けることで生じるカールを矯正する為に設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることが出来る。尚、バックコート層は好ましくはブロッキング防止層を兼ねて塗設されることも好ましく、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせる為に微粒子が添加されることが好ましい。
バックコート層に添加される微粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム及びリン酸カルシウムを挙げることが出来る。微粒子は珪素を含むものがヘイズが低くなる点で好ましく、特に二酸化珪素が好ましい。
これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)、KEP−10,KEP−30、KEP−50(以上株式会社日本触媒)の商品名で市販されており、使用することが出来る。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。ポリマー微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることが出来る。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することが出来る。
これらの中でもアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きい為特に好ましく用いられる。本発明で用いられるハードコートフィルムは、ハードコート層の裏面側の動摩擦係数が0.9以下、特に0.1〜0.9であることが好ましい。
バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%好ましくは0.1〜10質量%であることが好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく0.5%以下であることが好ましく、特に0.0〜0.1%であることが好ましい。
バックコート層は、具体的には透明樹脂フィルムを溶解させる溶媒または膨潤させる溶媒を含む組成物を塗布することによって行われることが好ましい。用いる溶媒としては、溶解させる溶媒及び/または膨潤させる溶媒の混合物の他更に溶解させない溶媒を含む場合もあり、これらを透明樹脂フィルムのカール度合や樹脂の種類によって適宜の割合で混合した組成物及び塗布量を用いて行う。
カール防止機能を強めたい場合は、用いる溶媒組成を溶解させる溶媒及び/または膨潤させる溶媒の混合比率を大きくし、溶解させない溶媒の比率を小さくするのが効果的である。この混合比率は好ましくは(溶解させる溶媒及び/または膨潤させる溶媒):(溶解させない溶媒)=10:0〜1:9で用いられる。このような混合組成物に含まれる、透明樹脂フィルムを溶解または膨潤させる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルムなどがある。溶解させない溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール或いは炭化水素類(トルエン、キシレン、シクロヘキサノール)などがある。
これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター等を用いて透明樹脂フィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体或いは共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることが出来るが、これらに限定されるものではない。例えば、アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが市販されており、この中から好ましいモノを適宜選択することも出来る。
特に好ましくはジアセチルセルロース、セルロースアセテートプロピオネートのようなセルロース系樹脂層である。また、下記の低屈折率層に記載のフッ素系界面活性剤等の界面活性剤も添加することができる。
バックコート層を塗設する順番は反射防止フィルムの、バックコート層とは反対側の層(ハードコート層或いはその他の例えば帯電防止層等の層)を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。或いはハードコート層の塗設の前後に2回以上に分けてバックコート層を塗布することも出来る。
(反射防止層)
次いで、本発明に係る反射防止層について説明する。
本発明は、驚くべきことに、特定のハードコート層の上に反射防止層として少なくとも低屈折率層、または高屈折率層及び低屈折率層等の複数の層を積層したことにより、該反射防止層の耐薬品性、表面硬度、耐湿熱性、密着性、耐擦傷性、塗布性、クラック耐性を著しく改善することが出来たのである。
最初に本発明に好ましい高屈折率層(または中屈折率層)について説明する。
〈高屈折率層(または中屈折率層)〉
(高屈折率層(または中屈折率層)の金属酸化物微粒子)
本発明に用いられる高屈折率層には金属酸化物微粒子が含有されることが好ましい。金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることが出来、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが好ましく、特に好ましくは酸化インジウム−スズ(ITO)、アンチモン酸亜鉛である。
これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であることが好ましく、10〜150nmであることがより好ましい。金属酸化物微粒子の一次粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することが出来る。粒径が10nm未満では凝集しやすくなり、分散性が劣化する。粒径が200nmを超えるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。
高屈折率層の屈折率は、具体的には、支持体である透明樹脂フィルムの屈折率より高く、23℃、波長550nm測定で、1.50〜1.70の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることが更に好ましい。
金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑える事も出来る。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。
前記金属酸化物微粒子を含有する高屈折率層の厚さは5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。
使用する金属酸化物微粒子と後述する電離放射線硬化型樹脂等のバインダーとの比は、金属酸化物微粒子の種類、粒子サイズなどにより異なるが体積比で前者1に対して後者2から前者2に対して後者1程度が好ましい。
本発明において用いられる金属酸化物微粒子の使用量は高屈折率層中に5質量%〜85質量%が好ましく、10質量%〜80質量%であることがより好ましく、20〜75質量%が最も好ましい。使用量が少ないと所望の屈折率や本発明の効果が得られず、多過ぎると膜強度の劣化などが発生する。
上記金属酸化物微粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
また金属酸化物微粒子は、分散機を用いて媒体中に分散することが出来る。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。
本発明では、更にコア/シェル構造を有する金属酸化物微粒子を含有させてもよい。シェルはコアの周りに1層形成させてもよいし、耐光性を更に向上させるために複数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。
コアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム、酸化亜鉛、酸化セリウム、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ等を用いることが出来るが、ルチル型の酸化チタンを主成分としてもよい。
シェルは酸化チタン以外の無機化合物を主成分とし、金属の酸化物または硫化物から形成することが好ましい。例えば、二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化鉄、硫化亜鉛等を主成分とした無機化合物が用いられる。この内アルミナ、シリカ、ジルコニア(酸化ジルコニウム)であることが好ましい。また、これらの混合物でもよい。
コアに対するシェルの被覆量は、平均の被覆量で2〜50質量%である。好ましくは3〜40質量%、更に好ましくは4〜25質量%である。シェルの被覆量が多いと微粒子の屈折率が低下し、被覆量が少な過ぎると耐光性が劣化する。二種以上の無機微粒子を併用してもよい。
コアとなる酸化チタンは、液相法または気相法で作製されたものを使用出来る。また、シェルをコアの周りに形成させる手法としては、例えば、米国特許第3,410,708号、特公昭58−47061号、米国特許第2,885,366号、同第3,437,502号、英国特許第1,134,249号、米国特許第3,383,231号、英国特許第2,629,953号、同第1,365,999号に記載されている方法等を用いることが出来る。
(金属化合物)
本発明に用いられる高屈折率層では、金属化合物として下記一般式(2)で表される化合物またはそのキレート化合物を用いることが好ましい。
一般式(2) AnMBx-n
式中、Mは金属原子、Aは加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合またはイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記式(2)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシドまたはそれらのキレート化合物を挙げることが出来る。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。また、チタンアルコキシドは紫外線硬化樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることが出来る。
チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。
ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。
遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることが出来る。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成出来る。
金属化合物の添加量は、高屈折率層に含まれる該金属化合物由来の金属酸化物の含有量が0.3〜5質量%であるように調整することが好ましい。0.3質量%未満では耐擦傷性が不足し、5質量%を超えると耐光性が劣化する傾向がある。
(電離放射線硬化型樹脂)
電離放射線硬化型樹脂は金属酸化物微粒子のバインダーとして塗膜の成膜性や物理的特性の向上のために添加される。電離放射線硬化型樹脂としては、紫外線や電子線のような電離放射線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることが出来る。官能基としては(メタ)アクリロイルオキシ基等のような不飽和二重結合を有する基、エポキシ基、シラノール基等が挙げられる。中でも不飽和二重結合を2個以上有するラジカル重合性のモノマーやオリゴマーを好ましく用いることが出来る。必要に応じて光重合開始剤を組み合わせてもよい。このような電離放射線硬化型樹脂としては、例えば多官能アクリレート化合物等が挙げられ、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれる化合物であることが好ましい。ここで、多官能アクリレート化合物とは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。
多官能アクリレート化合物のモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートが好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
電離放射線硬化型樹脂の添加量は、高屈折率組成物では固形分中の15質量%以上50質量%未満であることが好ましい。
本発明に係る電離放射線硬化型樹脂の硬化促進のために、光重合開始剤と分子中に重合可能な不飽和結合を2個以上有するアクリル系化合物とを質量比で3:7〜1:9含有することが好ましい。
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることが出来るが、特にこれらに限定されるものではない。
(溶媒)
本発明の高屈折率層をコーティングする際に用いられる有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
以上述べた高屈折率層に対し、金属酸化物微粒子の含有量などを調整することで同様に中屈折率層を形成することが出来る。
〈低屈折率層〉
本発明に用いられる低屈折率層の屈折率は、支持体である透明樹脂フィルムの屈折率より低く、23℃、波長550nm測定で、1.30〜1.45の範囲であることが好ましい。
低屈折率層の膜厚は、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることがさらに好ましく、30nm〜0.2μmであることが最も好ましい。
本発明に用いられる低屈折率層形成用組成物は、下記一般式(3)で表される有機珪素化合物もしくはその加水分解物或いはその重縮合物及び、外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子を含有することが好ましい。
一般式(3) Si(OR)4
(式中、Rはアルキル基である。)
他に溶剤、必要に応じて、シランカップリング剤、硬化剤(酸、金属キレート)、界面活性剤等を添加してもよい。
(中空シリカ系微粒子)
まず、前記外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子について説明する。
中空シリカ系微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(II)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。尚、低屈折率層には(I)複合粒子または(II)空洞粒子の何れかが含まれていればよく、また双方が含まれていてもよい。
尚、空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空微粒子の平均粒子径は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3〜1/10の範囲にあることが望ましい。これらの中空微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。
複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することが出来ないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部に内部に進入して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持出来ないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。
複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF2、NaF、NaAlF6、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等との1種または2種以上を挙げることが出来る。このような多孔質粒子では、シリカをSiO2で表し、シリカ以外の無機化合物を酸化物換算(MOX)で表したときのモル比MOX/SiO2が、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiO2が0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MOX/SiO2が、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、さらに屈折率が低いものを得ることが難しいことがある。
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
尚、このような多孔質粒子の細孔容積は水銀圧入法によって求めることが出来る。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例表した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
このような中空微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から中空微粒子は製造される。
第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることが出来る。尚、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることが出来る。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO2、Al23、TiO2またはZrO2等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることが出来る。さらに前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることが出来る。
上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、または、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOX)に換算し、MOX/SiO2のモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOX/SiO2のモル比は、0.25〜2.0の範囲内にあることが望ましい。
第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
尚、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することが出来る。
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。尚シリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することが出来る。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することが出来る。尚、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。
また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持出来る範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることが出来る。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることが出来る。また、酸触媒としては、各種の無機酸と有機酸を用いることが出来る。
多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。尚、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることが出来る。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることが出来る。また、酸触媒としては、各種の無機酸と有機酸を用いることが出来る。
多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。尚、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆出来る程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。
次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞出来る程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化出来ないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。
このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。
外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子の低屈折率層中の含有量は、10〜50質量%であることが好ましい。低屈折率の効果を得る上で、15質量%以上が好ましく、50質量%を超えるとバインダー成分が少なくなり膜強度が不十分となる。特に好ましくは20〜50質量%である。
(一般式(3)で表される有機珪素化合物もしくはその加水分解物或いはその重縮合物)
前記一般式(3)で表される有機珪素化合物は、式中、Rはアルキル基であり、好ましくは炭素数1〜4のアルキル基である。
具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
低屈折率層への添加方法としては、これらのテトラアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸或いは金属キレートを添加した溶液を、前記中空シリカ系微粒子の分散液に加え、テトラアルコキシシランを加水分解して生成したケイ酸重合物を中空シリカ系微粒子の表面に沈着させる。このとき、テトラアルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることが出来る。また、酸触媒としては、各種の無機酸或いは有機酸を用いることが出来る。
金属キレートとしては、アルミニウム、チタン、ジルコニウムなどのアルコキシド或いはキレート化合物が挙げられる。これらの金属キレート化合物としては、例えばトリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アチルアセテート)チタニウム、ジイソプロポキシ・ビス(アチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシ・ビス(エチルアセトアセテート)アルミニウム、イソプロポキシ・ビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。これら金属キレート化合物のうち好ましいのは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシ・ビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独或いは2種以上混合して使用することが出来る。また、これらの金属キレート化合物の部分加水分解物を使用することも出来る。金属キレート化合物は、一般式(3);Si(OR)4で表される有機珪素化合物に対して、好ましくは0.01〜40質量%、より好ましくは0.1〜30質量%、更に好ましくは0.5〜10質量%の割合で用いることが出来る。
また、本発明では低屈折率層に、下記一般式(4)で表されるフッ素置換アルキル基含有シラン化合物を含有させることも出来る。
一般式(4)で表されるフッ素置換アルキル基含有シラン化合物について説明する。
式中、R1〜R6は炭素数1〜16、好ましくは1〜4のアルキル基、炭素数1〜6、好ましくは1〜4のハロゲン化アルキル基、炭素数6〜12、好ましくは6〜10のアリール基、炭素数7〜14、好ましくは7〜12のアルキルアリール基、アリールアルキル基、炭素数2〜8、好ましくは2〜6のアルケニル基、または炭素数1〜6、好ましくは1〜3のアルコキシ基、水素原子またはハロゲン原子を示す。
Rfは−(C)−を表し、aは1〜12の整数、b+cは2aであり、bは0〜24の整数、cは0〜24の整数を示す。このようなRfとしては、フルオロアルキレン基とアルキレン基とを有する基が好ましい。具体的に、このような含フッ素シリコーン系化合物としては、(MeO)3SiC242424Si(MeO)3、(MeO)3SiC244824Si(MeO)3、(MeO)3SiC2461224Si(MeO)3、(H52O)3SiC244824Si(OC253、(H52O)3SiC2461224Si(OC253で表されるメトキシジシラン化合物等が挙げられる。
バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、形成される透明被膜自体が疎水性を有しているので、透明被膜が充分緻密化しておらず、多孔質であったり、またクラックやボイドを有している場合であっても、水分や酸・アルカリ等の薬品による透明被膜への進入が抑制される。さらには、基板表面や下層である導電層中に含まれる金属等の微粒子と水分や酸・アルカリ等の薬品とが反応することもない。このため、このような透明被膜は、優れた耐薬品性を有している。
また、バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、このような疎水性のみならず、滑り性がよく(接触抵抗が低く)、このためスクラッチ強度に優れた透明被膜を得ることが出来る。さらに、バインダーが、このような構成単位を有するフッ素置換アルキル基含有シラン化合物を含んでいると、下層に導電層が形成されている場合には、バインダーの収縮率が、導電層と同等か近いものであるため導電層と密着性に優れた透明被膜を形成することが出来る。さらに、透明被膜を加熱処理する際に、収縮率の違いから、導電層が剥離して、透明導電性層に電気的接触のない部分が生じることもない。このため、膜全体として充分な導電性を維持出来る。
フッ素置換アルキル基含有シラン化合物と、前記外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子とを含む透明被膜は、スクラッチ強度が高い上に、消しゴム強度または爪強度で評価される膜強度が高く、鉛筆硬度も高く、強度の上で優れた透明被膜を形成することが出来る。
本発明に用いられる低屈折率層にはシランカップリング剤を含有してもよい。シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
低屈折率層のその他のバインダーとして用いられるポリマーとしては、例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂が挙げられる。
低屈折率層は、全体で5〜80質量%のバインダーを含むことが好ましい。バインダーは、中空シリカ微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく低屈折率層の強度を維持出来るように調整する。
(溶媒)
本発明に係る低屈折率層は有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
低屈折率層塗布組成物中の固形分濃度は1〜4質量%であることが好ましく、該固形分濃度が4質量%以下にすることによって、塗布ムラが生じにくくなり、1質量%以上にすることによって乾燥負荷が軽減される。
(フッ素系界面活性剤及びシリコーン界面活性剤(シリコーンオイル))
本発明では、前記高屈折率層(または中屈折率層)及び低屈折率層にフッ素系界面活性剤やシリコーン界面活性剤(シリコーンオイル)を含有することも好ましい。上記界面活性剤を含有させることで、塗布ムラを低減したり膜表面の防汚性を向上させるのに有効である。
フッ素系界面活性剤としては、パーフルオロアルキル基を含有するモノマー、オリゴマー、ポリマーを母核としたもので、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン等の誘導体等が挙げられる。
フッ素系界面活性剤は市販品を用いることも出来、例えばサーフロン「S−381」、「S−382」、「SC−101」、「SC−102」、「SC−103」、「SC−104」(何れも旭硝子(株)製)、フロラード「FC−430」、「FC−431」、「FC−173」(何れもフロロケミカル−住友スリーエム製)、エフトップ「EF352」、「EF301」、「EF303」(何れも新秋田化成(株)製)、シュベゴーフルアー「8035」、「8036」(何れもシュベグマン社製)、「BM1000」、「BM1100」(何れもビーエム・ヒミー社製)、メガファック「F−171」、「F−470」(何れも大日本インキ化学(株)製)、などを挙げることが出来る。
本発明におけるフッ素系界面活性剤のフッ素含有割合は、0.05〜2%、好ましくは0.1〜1%である。上記のフッ素系界面活性剤は、1種又は2種以上を併用することが出来、又その他の界面活性剤と併用することが出来る。
次ぎにシリコーン界面活性剤(シリコーンオイル)について説明する。
シリコーンオイルとしては前記で説明したような化合物であり、ポリエーテル変性シリコーンオイルが好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1,000〜100,000、好ましくは2,000〜50,000が適当であり、数平均分子量が1,000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100,000を越えると、塗膜表面にブリードアウトしにくくなる傾向にある。
具体的な商品としては、日本ユニカー(株)社のL−45、L−9300、FZ−3704、FZ−3703、FZ−3720、FZ−3786、FZ−3501、FZ−3504、FZ−3508、FZ−3705、FZ−3707、FZ−3710、FZ−3750、FZ−3760、FZ−3785、FZ−3785、Y−7499、信越化学社のKF−96L、KF−96、KF−96H、KF−99、KF−54、KF−965、KF−968、KF−56、KF−995、KF−351、KF−351A、KF−352、KF−353、KF−354、KF−355、KF−615、KF−618、KF−945、KF−6004、FL100等がある。
次に、シリコーン界面活性剤としては、前記で説明した化合物である。これらの中で、非イオン性の疎水基としてジメチルポリシロキサンを有する構造の化合物が好ましい。
また、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン性界面活性剤を用いると、前記の低屈折率層のムラや膜表面の防汚性が向上する。ポリメチルシロキサンからなる疎水基が表面に配向し汚れにくい膜表面を形成するものと考えられる。
これらの非イオン性界面活性剤の具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 SILWET L−77、L−720、L−7001、L−7002、L−7604、Y−7006、FZ−2101、FZ−2104、FZ−2105、FZ−2110、FZ−2118、FZ−2120、FZ−2122、FZ−2123、FZ−2130、FZ−2154、FZ−2161、FZ−2162、FZ−2163、FZ−2164、FZ−2166、FZ−2191等が挙げられる。
また、SUPERSILWET SS−2801、SS−2802、SS−2803、SS−2804、SS−2805等が挙げられる。
また、これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン性界面活性剤の好ましい構造としては、ジメチルポリシロキサン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコポリマーであることが好ましい。主鎖骨格の鎖長が長く、直鎖状の構造であることから、優れている。親水基と疎水基が交互に繰り返したブロックコポリマーであることにより、シリカ微粒子の表面を1つの活性剤分子が、複数の箇所で、これを覆うように吸着することが出来るためと考えられる。
これらの具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 ABN SILWET FZ−2203、FZ−2207、FZ−2208等が挙げられる。
また、他の界面活性剤も併用して用いてもよく、適宜、例えばスルホン酸塩系、硫酸エステル塩系、リン酸エステル塩系等のアニオン界面活性剤、また、ポリオキシエチレン鎖親水基として有するエーテル型、エーテルエステル型等の非イオン性界面活性剤等を併用してもよい。
本発明では、シリコーン界面活性剤(シリコーンオイル)の高屈折率層及び低屈折率層塗布液中の含有量は、0.05〜2.0質量%であることが好ましい。
(反射防止層の形成)
本発明では反射防止層を設ける方法は特に限定されないが、塗布により形成することが好ましい。反射防止層の各層は、ハードコート層表面上に、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法やエクストルージョンコート法を用いて、塗布により形成する。
特に、透明樹脂フィルムの一方の面上に前記ハードコート層を塗布形成し、ロール状に巻き取った後再度繰り出して該ハードコート層上に前記反射防止層を塗布することが好ましい。ハードコート層と反射防止層は連続して塗布することも出来るが、ハードコート層を塗布した後、一旦ロール状に巻き取ることにより、ハードコート層表面が十分になまされ、反射防止層塗布時の故障が改善される効果を期待出来る。
また、反射防止層を塗布する前に、ハードコート層表面を表面処理することも好ましい。表面処理は、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられ、好ましくはアルカリ処理法、コロナ処理法であり、特に好ましくはアルカリ処理法である。
更に、本発明の反射防止フィルムは、前記高屈折率層(または中屈折率層)及び低屈折率層を塗布した後に熱処理することが好ましい。具体的な熱処理として特に限定されるものではないが、透明樹脂フィルム上に前記反射防止層を積層した後、ロール状に巻き取った状態で50〜150℃、1〜30日の範囲で熱処理を行う製造方法によって製造されることが好ましい。
(反射防止層の物性)
本発明に係る反射防止フィルムの反射率は分光光度計により測定を行うことが出来る。その際、サンプルの測定側の裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行ってから、可視光領域(400〜700nm)の反射光を測定する。反射率は低いほど好ましいが、可視光領域の波長における平均値が1.5%以下であることが好ましく、最低反射率は0.8%以下であることが好ましい。また、可視光の波長領域において平坦な形状の反射スペクトルを有することが好ましい。なお、当該フィルムにおいては、可視光領域(400nm〜700nm)の波長における反射率の平均値が1.5%以下であれば、当該フィルムは反射防止層を有しているとみなすことが出来る。
また、反射防止処理を施した偏光板表面の反射色相は、反射防止膜の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、FPDテレビ等の最表面に使用する場合にはニュートラルな色調が要望される。この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で0.17≦x≦0.27、0.07≦y≦0.17である。
高屈折率層と低屈折率層の膜厚は、各々の層の屈折率より反射率、反射光の色味を考慮して常法に従って計算で求められる。
(透明樹脂フィルム)
次に、本発明に用いられる透明樹脂フィルムについて説明する。
本発明に用いられる透明樹脂フィルムとしては、製造が容易であること、ハードコート層との接着性が良好である、光学的に等方性である、光学的に透明であること等が好ましい要件として挙げられる。
本発明でいう透明とは、可視光の透過率60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。
上記の性質を有していれば特に限定はないが、例えば、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオノア(以上、日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム、ポリ乳酸フィルムまたはガラス板等を挙げることが出来る。中でも、セルロースエステル系フィルム、ポリカーボネート系フィルム、ポリエステルフィルム、ポリスルホン(ポリエーテルスルホンを含む)系フィルム、シクロオレフィンポリマーフィルムが好ましく、本発明においては、特にセルロースエステル系フィルム(例えば、コニカミノルタタック、製品名KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC4CR、KC8UE、KC4UE(以上、コニカミノルタオプト(株)製))が、製造上、コスト面、透明性、接着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
本発明においては、透明樹脂フィルムとしてはセルロースエステル系フィルム(以下セルロースエステルフィルムともいう)を用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。
特にアセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースの混合脂肪酸エステルを有する透明樹脂フィルム上にハードコート層と反射防止層を設けた反射防止フィルムであることが好ましい。
2.3≦X+Y≦3.0
0.1≦Y≦1.5
特に、2.5≦X+Y≦2.9
0.3≦Y≦1.2であることが好ましい。
本発明に用いられるセルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることが出来る。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することが出来る。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることが出来る。
アシル化剤が酸クロライド(CH3COCl、C25COCl、C37COCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10−45804号に記載の方法等を参考にして合成することが出来る。また、本発明に用いられるセルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。2位、3位、6位の水酸基に対する置換度は平均的に置換していても、6位の置換度が高くもしくは低くても良く、いずれも好ましく用いることが出来る。
本発明に用いられるセルロースエステルとしては特に限定されるものではないが、セルロースアセテートプロピオネート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基またはブチレート基が結合したセルロースの混合脂肪酸エステルが特に好ましく用いられる。尚、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。
プロピオネート基を置換基として含むセルロースアセテートプロピオネートは耐水性に優れ、液晶画像表示装置用のフィルムとして有用である。
アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することが出来る。
セルロースエステルの数平均分子量は、70000〜250000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、さらに好ましくは、80000〜150000である。
これらセルロースエステルは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造されることが好ましい。
これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解出来、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、1,3−ジメチル−2−イミダゾリジノン等を挙げることが出来るが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。
また、下記の製膜工程に示すように、溶媒蒸発工程において流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30〜80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。
上記記載の良溶媒の中でも溶解性に優れるメチレンクロライド或いは酢酸メチルが好ましく用いられる。
上記有機溶媒の他に、0.1〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。特に好ましくは5〜30質量%で前記アルコールが含まれることが好ましい。これらは上記記載のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。
炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることが出来る。
これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70〜95質量%に対してエタノール5〜30質量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることも出来る。このとき、冷却溶解法によりドープを調製してもよい。
本発明の反射防止フィルムにセルロースエステルフィルムを用いる場合、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤、脂肪酸エステル系可塑剤、多価カルボン酸エステル系可塑剤等を好ましく用いることが出来る。
中でも、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、グリコレート系可塑剤、多価カルボン酸エステル系可塑剤等が好ましい。特に多価アルコールエステル系可塑剤を用いることが好ましく、ハードコート層の鉛筆硬度が4H以上を安定に得ることが出来るため好ましい。
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。
本発明に好ましく用いられる多価アルコールは次の一般式(I)で表される。
一般式(I) R1−(OH)n
但し、R1はn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/またはフェノール性水酸基を表す。
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることが出来るが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることが出来る。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
本発明の多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることが出来る。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
好ましいモノカルボン酸の例としては以下のようなものを挙げることが出来るが、本発明はこれに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることが出来る。炭素数は1〜20であることが更に好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることが出来る。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることが出来る。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタレンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることが出来る。特に安息香酸が好ましい。
多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
以下に、多価アルコールエステルの具体的化合物を例示する。
グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることが出来る。アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等
が挙げられる。
フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
多価カルボン酸エステル系可塑剤も好ましく用いることが出来る。具体的には特開2002−265639号公報の段落番号[0015]〜[0020]記載の多価カルボン酸エステルを可塑剤の一つとして添加することが好ましい。
また、他の可塑剤としてリン酸エステル系可塑剤を用いることも出来、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
セルロースエステルフィルム中の可塑剤の総含有量は、固形分総量に対し、5〜20質量%が好ましく、6〜16質量%が更に好ましく、特に好ましくは8〜13質量%である。また、2種の可塑剤の含有量は各々少なくとも1質量%以上であり、好ましくは各々2質量%以上含有することである。
多価アルコールエステル系可塑剤は1〜12質量%含有することが好ましく、特に3〜11質量%含有することが好ましい。少ないと平面性の劣化が認められ、多過ぎるとブリードアウトがしやすい。多価アルコールエステル系可塑剤とその他の可塑剤との質量比率は1:4〜4:1の範囲であることが好ましく、1:3〜3:1であることが更に好ましい。可塑剤の添加量が多過ぎても、また少な過ぎてもフィルムが変形しやすく好ましくない。
本発明の反射防止フィルムには、紫外線吸収剤が好ましく用いられる。
紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。
本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。
ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。
UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。
UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
また、特開2001−187825号に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。
また、特開平6−148430号に記載の一般式(1)または一般式(2)、特願2000−156039の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等が市販されている。
また、本発明に用いられるセルロースエステルフィルムには滑り性を付与するため、後述の活性線硬化型樹脂を含む塗布層で記載するものと同様の微粒子を用いることが出来る。
〈微粒子〉
セルロースエステルフィルムには、微粒子を含有することが好ましい。
微粒子としては、無機化合物の例としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることが出来る。微粒子は珪素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。
微粒子の一次粒子の平均粒子径は5〜50nmが好ましく、さらに好ましいのは7〜20nmである。これらは主に粒子径0.05〜0.3μmの2次凝集体として含有されることが好ましい。セルロースエステルフィルム中のこれらの微粒子の含有量は0.05〜1質量%であることが好ましく、特に0.1〜0.5質量%が好ましい。共流延法による多層構成のセルロースエステルフィルムの場合は、表面にこの添加量の微粒子を含有することが好ましい。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。
酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。
微粒子としてポリマー粒子を用いることも出来、ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることが出来る。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することが出来る。
これらの中でもアエロジル200V、アエロジルR972Vがセルロースエステルフィルムの濁度を低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本発明で用いられるセルロースエステルフィルムにおいてはハードコート層の裏面側の動摩擦係数が1.0以下であることが好ましい。
〈セルロースエステルフィルムの製造方法〉
次に、セルロースエステルフィルムの製造方法について説明する。
セルロースエステルフィルムの製造は、セルロースエステル及び添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、さらに乾燥する工程、仕上がったフィルムを巻取る工程により行われる。
ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減出来て好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、さらに好ましくは、15〜25質量%である。
ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70〜98質量%であり、貧溶剤が2〜30質量%である。良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。そのため、セルロースエステルのアシル基置換度によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。
本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。
また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n−ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01〜2質量%含有していることが好ましい。
上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることが出来る。加熱と加圧を組み合わせると常圧における沸点以上に加熱出来る。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤または膨潤させた後、さらに良溶剤を添加して溶解する方法も好ましく用いられる。
加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45〜120℃であり、60〜110℃がより好ましく、70℃〜105℃がさらに好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
または冷却溶解法も好ましく用いられ、これによって酢酸メチル等の溶媒にセルロースエステルを溶解させることが出来る。
次に、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生しやすいという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001〜0.008mmの濾材がより好ましく、0.003〜0.006mmの濾材がさらに好ましい。
濾材の材質は特に制限はなく、通常の濾材を使用することが出来るが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にセルロースエステルフィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm2以下であることが好ましい。より好ましくは100個/cm2以下であり、さらに好ましくは50個/m2以下であり、さらに好ましくは0〜10個/cm2以下である。また、0.01mm以下の輝点も少ない方が好ましい。
ドープの濾過は通常の方法で行うことが出来るが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45〜120℃であり、45〜70℃がより好ましく、45〜55℃であることがさらに好ましい。
濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることがさらに好ましい。
ここで、ドープの流延について説明する。
流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1〜4mとすることが出来る。流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速く出来るので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃がさらに好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、さらに好ましくは20〜40質量%または60〜130質量%であり、特に好ましくは、20〜30質量%または70〜120質量%である。
本発明においては、残留溶媒量は下記式で定義される。
残留溶媒量(質量%)={(M−N)/N}×100
尚、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、さらに乾燥し、残留溶媒量を1質量%以下にすることが好ましく、さらに好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
本発明の反射防止フィルム用のセルロースエステルフィルムを作製するためには、金属支持体より剥離した直後のウェブの残留溶剤量の多いところで搬送方向に延伸し、さらにウェブの両端をクリップ等で把持するテンター方式で幅方向に延伸を行うことが特に好ましい。縦方向、横方向ともに好ましい延伸倍率は1.01〜1.3倍であり、1.05〜1.15倍がさらに好ましい。縦方向及び横方向延伸により面積が1.12〜1.44倍となっていることが好ましく、1.15〜1.32倍となっていることが好ましい。これは縦方向の延伸倍率×横方向の延伸倍率で求めることが出来る。縦方向と横方向の延伸倍率の何れかが1.01倍未満ではハードコート層を形成する際の紫外線照射による平面性の劣化が生じやすくなる。
剥離直後に縦方向に延伸するために、剥離張力及びその後の搬送張力によって延伸することが好ましい。例えば剥離張力を210N/m以上で剥離することが好ましく、特に好ましくは220〜300N/mである。
ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことが出来るが、簡便さの点で熱風で行うことが好ましい。
ウェブの乾燥工程における乾燥温度は30〜160℃で段階的に高くしていくことが好ましく、50〜160℃の範囲で段階的に高くすることが寸法安定性をよくするためさらに好ましい。
セルロースエステルフィルムの膜厚は、特に限定はされないが10〜200μmが好ましく用いられる。特に10〜70μmの薄膜フィルムでは平面性と耐擦傷性に優れた反射防止フィルムを得ることが困難であったが、本発明によれば、平面性と耐擦傷性に優れた薄膜の反射防止フィルムが得られ、また生産性にも優れているため、セルロースエステルフィルムの膜厚は10〜70μmであることが特に好ましい。さらに好ましくは20〜60μmである。最も好ましくは35〜60μmである。また、共流延法によって多層構成としたセルロースエステルフィルムも好ましく用いることが出来る。セルロースエステルが多層構成の場合でも紫外線吸収剤と可塑剤を含有する層を有しており、それがコア層、スキン層、もしくはその両方であってもよい。
本発明の反射防止フィルムは、幅1.4〜4mのものが好ましく用いられる。長さは300〜5000mのロール状フィルムで有ることが好ましく、特に1000〜4000mであることが好ましい。また、セルロースエステルフィルムのハードコート層を設ける面の中心線平均粗さ(Ra)は0.001〜1μmのものを用いることが出来る。
セルロースエステルフィルムの幅が広くなると紫外線硬化の際の照射光の照度ムラが無視出来なくなり、平面性が劣化するばかりか、硬度のムラも生じ、この上に反射防止層を形成した場合に反射ムラが顕著になるという問題があった。本発明の反射防止フィルムは少ない照射量で十分な硬度が得られるため、照射光の幅手方向に照射量のムラがあっても幅手方向の硬度ムラが生じにくく、平面性にも優れた反射防止フィルムが得られるため、広幅のセルロースエステルフィルムで著しい効果が認められる。特に幅1.4〜4mのものが好ましく用いられ、特に好ましくは1.4〜3mである。4mを超えると搬送が困難となる。
(偏光板)
本発明の偏光板について述べる。
偏光板は一般的な方法で作製することが出来る。本発明の反射防止フィルム裏面側(反射防止層を有さない側)をアルカリ鹸化処理する。ポリビニルアルコールフィルムをヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、該鹸化処理した反射防止フィルムを、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面にも該反射防止フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明の反射防止フィルムに対して、もう一方の面に用いられる偏光板保護フィルムとしては、面内リターデーションRoが590nmで、0〜10nm、Rtが−30〜30nmのセルロースエステルフィルム、或いは特開2003−12859記載のセルロースエステルフィルムが好ましい例として挙げらる。或いは該偏光板保護フィルムは、位相差フィルムもしくは光学補償フィルムを兼ねることが好ましく、面内リターデーションRoが590nmで、20〜70nm、Rtが100〜400nmの位相差を有する光学補償フィルム(位相差フィルム)であることが好ましい。これらは例えば、特開2002−71957号、特願2002−155395号記載の方法で作製することが出来る。またはさらにディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することが出来る。本発明の反射防止フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることが出来る。
裏面側に用いられる偏光板保護フィルムとしては、市販のセルロースエステルフィルムとして、KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC4FR−1、KC8UE、KC4UE(以上、コニカミノルタオプト(株)製)等が好ましく用いられる。
反射防止フィルム側の偏光板保護フィルムと裏面側に用いられる偏光板保護フィルムの膜厚は同じ膜厚同士を組み合わせても良く、反射防止フィルム側の膜厚を80μm、裏面側に用いられる偏光板保護フィルムの膜厚を40〜60μmというように膜厚の異なる偏光板保護フィルムを組み合わせて偏光板とすることも出来る。
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本発明の反射防止フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
(表示装置)
本発明の偏光板の反射防止フィルム面を表示装置の鑑賞面側に組み込むことによって、種々の視認性に優れた本発明の表示装置を作製することが出来る。本発明の反射防止フィルムは反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。また、本発明の反射防止フィルムは反射防止層の反射光の色ムラが著しく少なく、また、反射率が低く、平面性に優れ、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。特に画面が30型以上の大画面の表示装置では、色ムラや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例において「部」或いは「%」の表示を用いるが、特に断りがない限り「質量部」或いは「質量%」を表す。
実施例1
〔ハードコート層の塗布〕
ロール状(長さ3000m)の厚さ80μmのトリアセチルセルロースフィルム(商品名:KC8UX2M、コニカミノルタオプト(株)社製)を透明樹脂フィルムとして繰り出し、下記ハードコート層塗布液を塗布幅1.4mでダイコートし、80℃で乾燥した後、120mJ/cm2の紫外線を高圧水銀灯で照射して硬化後の膜厚が6μmになるようにハードコート層を設けた。
(ハードコート層用塗布液)
アセトン 45質量部
酢酸エチル 45質量部
PGME(プロピレングリコールモノメチルエーテル) 10質量部
ペンタエリスリトールトリアクリレート 30質量部
ペンタエリスリトールテトラアクリレート 45質量部
ウレタンアクリレート(商品名U−4HA 新中村化学工業社製) 25質量部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ社製) 5質量部
2−メチル−1−[4−(メチルチオ)フェニル]−2−モノフォリノ−1−オン
(イルガキュア907、チバ・スペシャルティ・ケミカルズ社製) 3質量部
BYK−331(シリコーン界面活性剤、ビックケミー・ジャパン(株)社製)
0.5質量部
〔バックコート層の塗布〕
上記ハードコート層を塗設した面の反対側に、下記バックコート層塗布液をウェット膜厚14μmになるようにダイコートし、70℃で乾燥し、巻き取ることでロール状のハードコートフィルム1−1を作製した。
〈バックコート層用塗布液〉
ジアセチルセルロース(アセチル基置換度2.4) 0.2質量部
アセトン 35質量部
メタノール 30質量部
メチルエチルケトン 35質量部
超微粒子シリカ アエロジル200V(日本アエロジル(株)製)2%アセトン分散液
0.12質量部
ハードコートフィルム1−1の界面活性剤BYK−331(0.5質量部)の代わりに表1、表2記載の界面活性剤及び添加量に変えた以外は同様にして、表1、表2記載のハードコートフィルム1−2〜1−61を作製した。尚、表中KF−351(0.3質量部)/メガファックF−482(0.2質量部)という記載は、2種の界面活性剤を()内の質量部で併用していることを意味している。
次に上記作製したハードコートフィルム1−1〜1−61をロール状態のまま、40℃相対湿度80%恒温槽で4日保存した。次に、保存後のハードコートフィルムを再び繰り出して、ハードコート層表面上に下記のようにして中屈折率層、次いで低屈折率層の順に反射防止層を塗布し、反射防止フィルム1−1〜1−61を作製した。
〔反射防止フィルムの作製〕
(中屈折率層の塗布)
ハードコート層表面上に、下記中屈折率層塗布液をダイコートし、80℃で乾燥した後、120mJ/cm2の紫外線を高圧水銀灯で照射して、硬化後の膜厚が110nmとなるように中屈折率層を設けた。屈折率は1.60であった。
〈中屈折率層塗布液〉
〈粒子分散液Aの作製〉
メタノール分散アンチモン複酸化物コロイド(固形分60%、日産化学工業(株)社製アンチモン酸亜鉛ゾル、商品名:セルナックスCX−Z610M−F2)6.0kgにイソプロピルアルコール12.0kgを攪拌しながら徐々に添加し、粒子分散液Aを調整した。
PGME(プロピレングリコールモノメチルエーテル) 40質量部
イソプロピルアルコール 25質量部
メチルエチルケトン 25質量部
ペンタエリスリトールトリアクリレート 0.9質量部
ペンタエリスリトールテトラアクリレート 1.0質量部
ウレタンアクリレート(商品名:U−4HA 新中村化学工業社製)
0.6質量部
粒子分散液A 20質量部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ社製) 0.4質量部
2−メチル−1−[4−(メチルチオ)フェニル]−2−モノフォリノプロパン−1−オン(イルガキュア907、チバ・スペシャルティ・ケミカルズ社製)
0.2質量部
10%FZ−2207、プロピレングリコールモノメチルエーテル溶液(日本ユニカー社製) 0.4質量部
(低屈折率層の塗布)
上記中屈折率層上に、下記の低屈折率層塗布液をダイコートし、80℃で乾燥した後、120mJ/cm2の紫外線を高圧水銀灯で照射して膜厚が92nmになるように低屈折率層を設け、反射防止フィルムを作製した。屈折率は1.38であった。
(低屈折率層塗布液)
〈テトラエトキシシラン加水分解物Aの調製〉
テトラエトキシシラン230g(商品名:KBE04、信越化学工業社製)とエタノール440gを混合し、これに2%酢酸水溶液120gを添加した後に、室温(25℃)にて26時間攪拌することでテトラエトキシシラン加水分解物Aを調製した。
プロピレングリコールモノメチルエーテル 430質量部
イソプロピルアルコール 430質量部
テトラエトキシシラン加水分解物A 120質量部
γ−メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業社製) 3.0質量部
イソプロピルアルコール分散中空シリカゾル(固形分20%、触媒化成工業社製シリカゾル、商品名:ELCOM V−8209) 40質量部
アルミニウムエチルアセトアセテート・ジイソプロピレート 3.0質量部
(川研ファインケミカル社製ALCH)
10%FZ−2207、プロピレングリコールモノメチルエーテル溶液(日本ユニカー社製) 3.0質量部
[反射防止フィルムの評価]
上記作製した反射防止フィルムを用いて以下の項目について評価を行った。結果については表1、表2に記載する。
1.耐薬品性
〈耐溶剤性〉
反射防止フィルムの表面をメチルエチルケトンを含浸したベンコット(旭化成(株)製BEMCOT M−3)で同一箇所を強く30回擦り、擦った後の表面状態の変化を以下の基準で観察した。
○:変化なし
△:わずかに膜剥がれなどが発生する
×:膜剥がれなど外観に変化を生ずる
〈耐アルカリ性〉
反射防止フィルムの表面を20%水酸化ナトリウム水溶液を含浸したベンコット(旭化成(株)製BEMCOT M−3)で同一箇所を強く30回擦り、擦った後の表面状態の変化を以下の基準で観察した。
○:変化なし
△:わずかに膜剥がれなどが発生する
×:膜剥がれなど外観に変化を生ず
〈耐酸性〉
反射防止フィルムの表面を20%塩酸水溶液を含浸したベンコット(旭化成(株)製BEMCOT M−3)で同一箇所を強く30回擦り、擦った後の表面状態の変化を以下の基準で観察した。
○:変化なし
△:わずかに膜剥がれなどが発生する
×:膜剥がれなど外観に変化を生ずる
2.表面硬度
反射防止フィルムを25℃、相対湿度60%の条件で2時間調湿した後、JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400が規定する鉛筆硬度評価法に従い、1kgのおもりを用いて各硬度の鉛筆で引っ掻きを5回繰り返し、傷が1本までの硬度を測定した。尚、JIS K 5400で定義される傷は塗膜の破れ、塗膜のすり傷であり、塗膜のへこみは対象としないと記載されているが、ここでは、塗膜のへこみも含めて傷と判断している。数字か高いほど、高硬度を示す。
3.耐湿熱性密着
反射防止フィルムを3cm×4cmサイズでカットし、反射防止層を表面にして60℃90%高温高湿サーモにて250時間保存後、該反射防止層の表面に片刃のカミソリの刃を面に対して90°の角度で切り込みを1mm間隔で縦横に11本入れ、1mm角の碁盤目を100個作製した。この上に市販のセロハン製テープを貼り付け、その一端を手で持って垂直に力強く引っ張って剥がし、切り込み線からの貼られたテープ面積に対する薄膜が剥がされた面積の割合を目視で観察し、下記の基準で評価した。この結果も表1、表2に示す。
◎:全く剥離されなかった
○:剥離された面積割合が5%未満であった
△:剥離された面積割合が10%未満であった
×:剥離された面積割合が10%以上であった
表1、表2の結果から判るようにシリコーン界面活性剤と非イオン性のポリオキシエーテル化合物を添加し、シリコーン界面活性剤と非イオン性のポリオキシエーテル化合物の含有質量比が、本発明の範囲内にある試料は、耐薬品性、表面硬度、及び耐湿熱性密着のどの項目に対しても良好な性能を発揮していることが判る。
また、耐擦傷性(反射防止フィルムの表面をスチールウールを用いて同一箇所を10往復擦り、その擦った後の擦傷状態の観察結果をいう。スチールウール:日本スチールウール(株)製、グレードNo.0000、荷重500g/cm2、先端部接触面積:1cm×1cm)、及び防汚性(表面に黒の油性マジック(ZEBRA社製 マッキー極細)で文字を書いた後、ベンコット(旭化成(株)製BEMCOT M−3)を用いてきれいになるまで拭き取り、これを同一箇所で20回往復繰り返した後の拭き取り性の観察結果)についても良好であった。
また、本発明の反射防止層を積層したロール状ハードコートフィルムのハードコート層表面を倍率50倍のルーペを用いてハジキ及び抜けの状態の観察したところ、ハジキ、抜け等は全く見られず、良好な塗布性も有していた。
実施例2
実施例1のハードコートフィルム1−13、1−35、1−43、1−51、1−56、1−58及び1−60においてハードコートフィルムの保存条件を7日間に変更し、耐湿熱性密着評価の保存時間を500時間に変更した以外は、実施例1と同様にして反射防止フィルム2−1〜2−7を作製し、実施例1と同様な評価を行った。更に、下記方法で強制劣化試験によりクラック耐性についても評価を行った。これらの評価結果を表3に示す。
(クラック耐性)
サイクルサーモ試験機を用いて反射防止フィルムを80℃、20%RHで24時間、80℃、80%RHで24時間保存し、これを17日間繰り返した。次に17日間繰り返した試料を直径が5、10、20mmの丸棒に巻き付けてクラックの発生状況を観察した。尚、丸棒の直径が大きい条件でクラックが発生している程、クラックの耐性が弱いことを示す。
表3の結果から判るように、より過酷な条件では、非イオン性のポリオキシエーテル化合物の中でも一般式(1)で表される化合物とシリコーン界面活性剤を本発明の範囲内で併用することで、クラックに対する耐性、及び耐湿熱性密着に対して特に良好な性能を発揮することが判る。
実施例3
次いで、実施例1、2で作製した反射防止フィルム1−1〜1−61、2−1〜2−7を用いて下記のようにして偏光板を作製し、それらの偏光板を液晶表示パネル(画像表示装置)に組み込み、視認性を評価した。
下記の方法に従って、上記反射防止フィルム1−1〜1−61、2−1〜2−7とセルロースエステル系光学補償フィルムであるKC8UCR5(コニカミノルタオプト(株)製)各々1枚を偏光板保護フィルムとして用いて偏光板1−1〜1−61、2−1〜2−7を作製した。
(a)偏光膜の作製
けん化度99.95モル%、重合度2400のポリビニルアルコール(以下PVAと略す)100質量部に、グリセリン10質量部および水170質量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理してPVAフィルムを得た。得られたPVAフィルムは平均厚みが40μm、水分率が4.4%、フィルム幅が3mであった。
前記したPVAフィルムを予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で連続的に処理して偏光フィルムを作製した。PVAフィルムを30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で6倍に一軸延伸を行い、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの30℃の水溶液中に5分間浸漬して固定処理を行った。その後、PVAフィルムを取り出し、40℃で熱風乾燥し、さらに100℃で5分間熱処理を行った。得られた偏光膜は平均厚みが13μm、偏光性能については透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。
(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と偏光板用保護フィルムとを貼り合わせて偏光板1−1〜1−61、2−1〜2−7を作製した。
工程1:光学補償フィルムと反射防止フィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。反射防止フィルムの反射防止層を設けた面には予め剥離性の保護フィルム(PET製)を張り付けて保護した。
同様に光学補償フィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。
工程2:前述の偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。
工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理した光学補償フィルムと反射防止フィルムで挟み込んで、積層配置した。
工程4:2つの回転するローラにて20〜30N/cm2の圧力で約2m/minの速度で貼り合わせた。このとき気泡が入らないように注意して実施した。
工程5:80℃の乾燥機中にて工程4で作製した試料を2分間乾燥処理し、偏光板を作製した。
市販の液晶表示パネル(VA型)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた偏光板1−1〜1−61、2−1〜2−7を張り付けた。
上記のようにして得られた液晶パネル1−1〜1−61、2−1〜2−7を床から80cmの高さの机上に配置し、床から3mの高さの天井部に昼色光直管蛍光灯(FLR40S・D/M−X 松下電器産業(株)製)40W×2本を1セットとして1.5m間隔で10セット配置した。このとき評価者が液晶パネル表示面正面にいるときに、評価者の頭上より後方に向けて天井部に前記蛍光灯がくるように配置した。液晶パネルは机に対する垂直方向から25°傾けて蛍光灯が写り込むようにして画面の見易さ(視認性)を下記のようにランク評価した。
A:最も近い蛍光灯の写り込みから気にならず、フォントの大きさ8以下の文字もはっきりと読める
B:近くの蛍光灯の写りこみはやや気になるが、遠くは気にならず、フォントの大きさ8以下の文字もなんとかと読める
C:遠くの蛍光灯の写りこみも気になり、フォントの大きさ8以下の文字を読むのは困難である
D:蛍光灯の写り込みがかなり気になり、写り込みの部分はフォントの大きさ8以下の文字を読むことは出来ない
評価の結果、本発明の反射防止フィルム、偏光板を用いた液晶パネルは何れもA、またはBの評価結果であり、CまたはDの評価結果であった、比較の反射防止フィルム、偏光板を用いた液晶パネルより視認性が良好であった。特に、本発明の液晶パネル2−1〜2−7はすべてA評価であり、視認性に優れていた。

Claims (7)

  1. 透明樹脂フィルムの少なくとも一方の面上にハードコート層、反射防止層を有する反射防止フィルムにおいて、該ハードコート層が活性線硬化樹脂、シリコーン界面活性剤及びポリオキシエーテル化合物を少なくとも含有し、該シリコーン界面活性剤とポリオキシエーテル化合物との含有質量比が1.0:1.0〜0.10:1.0であることを特徴とする反射防止フィルム。
  2. 前記ポリオキシエーテル化合物がポリオキシエチレンオレイルエーテル化合物であることを特徴とする請求の範囲第1項に記載の反射防止フィルム。
  3. 前記反射防止層が、中空シリカ系微粒子を含有する低屈折率層を有することを特徴とする請求の範囲第1項または第2項に記載の反射防止フィルム。
  4. 請求の範囲第1項〜第3項のいずれか1項に記載の反射防止フィルムの製造方法であって、透明樹脂フィルムの一方の面上にハードコート層を塗布形成し、ロール状に巻き取った後、再度繰り出して該ハードコート層上に反射防止層を塗布することを特徴とする反射防止フィルムの製造方法。
  5. 請求の範囲第4項に記載の反射防止フィルムの製造方法により製造されたことを特徴とする反射防止フィルム。
  6. 請求の範囲第1項、第2項、第3項、または第5項のいずれか1項に記載の反射防止フィルムを偏光子の少なくとも一方の面に貼合したことを特徴とする偏光板。
  7. 請求の範囲第1項、第2項、第3項、または第5項のいずれか1項に記載の反射防止フィルム、または請求の範囲第6項に記載の偏光板を用いることを特徴とする表示装置。
JP2008501714A 2006-02-27 2007-02-20 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置 Expired - Fee Related JP4992122B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008501714A JP4992122B2 (ja) 2006-02-27 2007-02-20 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006049919 2006-02-27
JP2006049919 2006-02-27
JP2008501714A JP4992122B2 (ja) 2006-02-27 2007-02-20 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
PCT/JP2007/053040 WO2007097303A1 (ja) 2006-02-27 2007-02-20 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置

Publications (2)

Publication Number Publication Date
JPWO2007097303A1 true JPWO2007097303A1 (ja) 2009-07-16
JP4992122B2 JP4992122B2 (ja) 2012-08-08

Family

ID=38437343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008501714A Expired - Fee Related JP4992122B2 (ja) 2006-02-27 2007-02-20 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置

Country Status (5)

Country Link
US (1) US7771826B2 (ja)
JP (1) JP4992122B2 (ja)
KR (1) KR101300850B1 (ja)
CN (1) CN101389981A (ja)
WO (1) WO2007097303A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1782105A4 (en) * 2004-08-02 2009-11-04 Fujifilm Corp OPTICAL FILM, MANUFACTURING METHOD, POLARIZATION PLATE AND IMAGE DISPLAY DEVICE
JP4845619B2 (ja) * 2006-07-19 2011-12-28 東芝機械株式会社 シート・フィルムの斜め延伸方法およびクリップ式シート・フィルム延伸装置
JP4335901B2 (ja) * 2006-11-14 2009-09-30 日東電工株式会社 偏光板の製造方法
WO2008090797A1 (ja) * 2007-01-23 2008-07-31 Toshiba Kikai Kabushiki Kaisha クリップ式シート・フィルム延伸装置
JP5366426B2 (ja) 2008-04-04 2013-12-11 東芝機械株式会社 多孔性フィルムの製膜方法及び多孔性フィルム製膜用の逐次二軸延伸装置
KR20100002719A (ko) * 2008-06-30 2010-01-07 주식회사 엘지화학 폴리비닐알코올계 필름의 제조방법, 이로부터 형성된폴리비닐알코올계 필름 및 이를 구비한 편광판
JP4682368B2 (ja) 2009-08-11 2011-05-11 独立行政法人産業技術総合研究所 球状コアシェル型酸化セリウム/高分子ハイブリッドナノ粒子の集積体及びその製造方法
JP2011127046A (ja) * 2009-12-18 2011-06-30 Fujifilm Corp セルロースエステルフィルム、偏光板及び液晶表示装置
CN102190912A (zh) * 2010-03-01 2011-09-21 住龙纳米技术材料(深圳)有限公司 用于太阳电池的防反射膜及其制造方法、涂料和光伏器件以及太阳电池模块
KR101241286B1 (ko) * 2011-03-10 2013-03-14 (주)세렉트론 칼슘-인계의 세라믹을 포함하는 피디피용 보호막 및 그 제조 방법
US8901544B2 (en) 2011-12-06 2014-12-02 Corning Incorporated Organic thin film transistor with ion exchanged glass substrate
KR101629943B1 (ko) * 2014-02-21 2016-06-13 주식회사 엘지화학 전자 칠판
CN106104310B (zh) * 2014-03-06 2018-07-20 柯尼卡美能达株式会社 层叠膜及其制造方法
US9400343B1 (en) * 2014-04-30 2016-07-26 Magnolia Optical Technologies, Inc. Highly durable hydrophobic antireflection structures and method of manufacturing the same
CN106537190B (zh) 2014-05-23 2019-08-16 康宁股份有限公司 具有减少的划痕与指纹可见性的低反差减反射制品
US9761817B2 (en) 2015-03-13 2017-09-12 Corning Incorporated Photo-patternable gate dielectrics for OFET
KR102026551B1 (ko) * 2015-07-30 2019-09-27 후지필름 가부시키가이샤 적층체, 고체 촬상 소자, 적층체의 제조 방법, 키트
US20180326696A1 (en) * 2017-05-10 2018-11-15 Kuraray Europe Gmbh Interlayer film with shade band
US20190033491A1 (en) * 2017-07-28 2019-01-31 Ppg Industries Ohio, Inc. Multi-layer antireflective coated articles
KR102244791B1 (ko) 2017-12-15 2021-04-26 주식회사 엘지화학 편광판, 편광판-캐리어 필름 적층체, 편광판-캐리어 필름 적층체의 제조방법, 편광판의 제조방법 및 활성 에너지선 경화형 조성물
KR102236534B1 (ko) * 2018-11-02 2021-04-06 주식회사 엘지화학 편광자의 제조 방법
KR102449532B1 (ko) * 2019-07-30 2022-09-29 히가시야마 필름 가부시키가이샤 반사 방지 필름
JP2022152936A (ja) * 2021-03-29 2022-10-12 コニカミノルタ株式会社 光学フィルム及びその製造方法、並びにそれを具備した偏光板及び表示装置
CN114507017B (zh) * 2022-03-16 2023-03-17 福耀玻璃工业集团股份有限公司 涂液、玻璃与超隔绝抗菌夹层玻璃

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404289B1 (ko) * 1995-06-09 2005-01-17 미쯔비시 레이온 가부시끼가이샤 내찰상성유기경질코트층및흐림방지형유기경질코트층을가진수지성형품,그의제조방법및이를사용한피복재
JP2005157037A (ja) * 2003-11-27 2005-06-16 Konica Minolta Opto Inc 反射防止フィルム、偏光板および画像表示装置
JP2005283786A (ja) * 2004-03-29 2005-10-13 Jsr Corp マイクロレンズ反射防止膜用硬化性組成物及びこれを用いたマイクロレンズ用反射防止積層体
JP2005338549A (ja) * 2004-05-28 2005-12-08 Konica Minolta Opto Inc 反射防止フィルム、偏光板及び画像表示装置

Also Published As

Publication number Publication date
US7771826B2 (en) 2010-08-10
JP4992122B2 (ja) 2012-08-08
WO2007097303A1 (ja) 2007-08-30
US20090002821A1 (en) 2009-01-01
CN101389981A (zh) 2009-03-18
KR101300850B1 (ko) 2013-08-27
KR20080100435A (ko) 2008-11-18

Similar Documents

Publication Publication Date Title
JP4992122B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JP5332607B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、ハードコートフィルム、偏光板及び表示装置
KR101182002B1 (ko) 반사 방지 필름, 반사 방지 필름의 제조 방법, 편광판 및표시 장치
JP4655663B2 (ja) 塗布層を有するロール状フィルムの製造方法、ロール状光学フィルム、偏光板、液晶表示装置
JP4857801B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JP4924344B2 (ja) 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置
JP2009042351A (ja) 光学フィルム、偏光板及び表示装置
JP2009036818A (ja) 防眩性フィルム、防眩性反射防止フィルム、偏光板および画像表示装置
JP2008224718A (ja) 防眩性反射防止フィルム及び表示装置
JPWO2008105117A1 (ja) 防眩性フィルム、防眩性反射防止フィルム、これらを用いた偏光板、及び表示装置
KR20060044595A (ko) 반사 방지 필름, 편광판 및 화상표시장치
JP2006227162A (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JP2007017946A (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び液晶表示装置
JP5168278B2 (ja) 防眩性フィルム、これを用いた防眩性反射防止フィルム、偏光板、及び表示装置
JP2007025329A (ja) 反射防止フィルム、その製造方法、偏光板及び表示装置
JP2005309120A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2005338549A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2005157037A (ja) 反射防止フィルム、偏光板および画像表示装置
JP2008134394A (ja) 反射防止フィルム、偏光板及び表示装置
JP2005208477A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2008158156A (ja) 防眩性反射防止フィルム、その製造方法及び表示装置
JP5299271B2 (ja) 防眩性フィルム、その製造方法、防眩性フィルムを用いた偏光板、及び表示装置
JP2007003766A (ja) 光学フィルム、光学フィルムの製造方法、偏光板及び表示装置
JP2008176116A (ja) 防眩性フィルム、防眩性反射防止フィルム、これらを用いた偏光板、及び表示装置
JPWO2008010376A1 (ja) 反射防止フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees