JPWO2006075712A1 - 活性エネルギー線硬化型硬化性組成物および該硬化物 - Google Patents

活性エネルギー線硬化型硬化性組成物および該硬化物 Download PDF

Info

Publication number
JPWO2006075712A1
JPWO2006075712A1 JP2006552993A JP2006552993A JPWO2006075712A1 JP WO2006075712 A1 JPWO2006075712 A1 JP WO2006075712A1 JP 2006552993 A JP2006552993 A JP 2006552993A JP 2006552993 A JP2006552993 A JP 2006552993A JP WO2006075712 A1 JPWO2006075712 A1 JP WO2006075712A1
Authority
JP
Japan
Prior art keywords
group
active energy
energy ray
curable
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006552993A
Other languages
English (en)
Other versions
JP5394608B2 (ja
Inventor
大野 重樹
重樹 大野
中川 佳樹
佳樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006552993A priority Critical patent/JP5394608B2/ja
Publication of JPWO2006075712A1 publication Critical patent/JPWO2006075712A1/ja
Application granted granted Critical
Publication of JP5394608B2 publication Critical patent/JP5394608B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/046Polymers of unsaturated carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/10Acylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5397Phosphine oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本発明は、耐熱性、耐侯性、耐油性、圧縮永久歪等に優れた硬化物を提供することができる、硬化性、特に深部硬化性に優れた活性エネルギー線硬化型硬化性組成物及び該硬化物を提供することを目的とする。また、本発明は、下記(A)成分及び(B)成分を必須成分として含有することを特徴とする活性エネルギー線硬化型硬化性組成物、及びその硬化物に関する。(A)一般式(1):−OC(O)C(Ra)=CH2(1)で表される基を、1分子あたり少なくとも1個以上、分子末端に有するビニル系重合体。(B)一般式(2):R1R2P(=O)C(=O)R3(2)で示される、少なくとも1つのアシルホスフィンオキシド光重合開始剤。

Description

本発明は、活性エネルギー線硬化型硬化性組成物及び該組成物の硬化物に関する。さらに詳しくは、分子末端に(メタ)アクリロイルオキシ系基を有するビニル系重合体、及びアシルホスフィンオキシド光重合開始剤を必須成分とする活性エネルギー線硬化型硬化性組成物、及び該組成物の硬化物に関する。
アクリルゴムは、その耐熱性、耐油性等の特徴から、自動車のエンジン周りを中心とした機能部品、保安部品等として使用されている、優れた材料の一つである。
(メタ)アクリル系重合体を含むガスケットが報告されているが(特許文献1)、速硬化が可能な活性エネルギー線硬化型硬化性組成物ではない。
一方、ウレタン(メタ)アクリレート樹脂を主成分としたものを使用した場合、耐油性に優れたものもあるが(特許文献2)、主鎖中にエーテル結合やエステル結合を有するため、長期耐熱性に問題がある。
本発明者らは、これまでに主鎖をリビングラジカル重合により得られる(メタ)アクリル系重合体とし、その末端に(メタ)アクリロイル基を有する重合体について報告している(特許文献3、4)。しかし厚みのある硬化物を作成する場合には、活性エネルギー照射面から遠い部分の硬化が不充分である、いわゆる深部硬化性が悪いという課題があった。また、光開始剤を用いた場合、前記硬化物の高温圧縮時(JIS K 6262に規定される圧縮永久歪試験時)に硬化物が破壊するという課題があった。
特開2000−154370号公報 特開昭64−112号公報 特開2000−72816号公報 特開2000−95826号公報
本発明は、耐熱性、耐侯性、耐油性、圧縮永久歪等に優れた硬化物を提供することができる、硬化性、特に深部硬化性に優れた活性エネルギー線硬化型硬化性組成物及び該硬化物を提供することを目的とする。
本発明は、以下の構成からなる活性エネルギー線硬化型硬化性組成物及び該硬化物に関する。
(1)下記(A)成分及び(B)成分を必須成分として含有することを特徴とする活性エネルギー線硬化型硬化性組成物。
(A)一般式(1):
−OC(O)C(R)=CH (1)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す)
で表される基を1分子あたり少なくとも1個以上、分子末端に有するビニル系重合体。
(B)一般式(2):
P(=O)C(=O)R (2)
〔式中、Rは、炭素数1〜12のアルキル、ベンジル、置換されていてもよいフェニル、シクロヘキシル、−COR、−OR(Rは、炭素数1〜8のアルキル、フェニル又はベンジルを表す)、又は一般式(3):
−A−(R)P(=O)C(=O)R (3)
で示される基(Aは、炭素数1〜18のアルキレン、フェニレン又はビフェニレンを表す)を表し;
は、炭素数1〜12のアルキル、ベンジル、置換されていてもよいフェニル、シクロヘキシル、又は−CORを表し;
は、置換されていてもよいフェニル、又は一般式(4):
−B−C(=O)P(=O)R (4)
で示される基(Bは、炭素数1〜12のアルキレン、シクロヘキシレン、又はフェニレンを表す)を表す〕
で示される、少なくとも1つのアシルホスフィンオキシド光重合開始剤。
(2)(A)成分の主鎖を構成するビニル系モノマーが、(メタ)アクリル系モノマーである(1)記載の活性エネルギー線硬化型硬化性組成物。
(3)(A)成分の主鎖を構成するビニル系モノマーが、アクリル酸エステルモノマーである(1)〜(2)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(4)(A)成分の主鎖を構成するビニル系モノマーが、アクリル酸ブチル、アクリル酸エチル及び2−メトキシエチルアクリレートから選ばれる少なくとも1つを含むものである(1)〜(3)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(5)(A)成分の式(1)におけるRが、水素原子又はメチル基である(1)〜(4)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(6)前記(A)成分が、
末端にハロゲン基を有するビニル系重合体に、
一般式(5):
+−OC(O)C(R)=CH (5)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す、Mはアルカリ金属イオン又は4級アンモニウムイオンを表す)
で示される化合物を反応させること
により製造される(1)〜(5)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(7)末端にハロゲン基を有するビニル系重合体が、一般式(6):
−CRX (6)
(式中、R、Rはビニル系モノマーのエチレン性不飽和基に結合した基、Xは塩素原子、臭素原子又はヨウ素原子を表す)
で示される基を有する(6)記載の活性エネルギー線硬化型硬化性組成物。
(8)前記(A)成分が、
末端に水酸基を有するビニル系重合体に、
一般式(7):
C(O)C(R)=CH (7)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す、Xは塩素原子、臭素原子又は水酸基を表す)
で示される化合物を反応させること
により製造される(1)〜(5)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(9)前記(A)成分が、
(1)末端に水酸基を有するビニル系重合体に、ジイソシアネート化合物を反応させ、
(2)残存イソシアネート基と、一般式(8):
HO−R’− OC(O)C(R)=CH (8)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す、R’は炭素数2〜20の2価の有機基を表す)
で示される化合物と反応させること
により製造される(1)〜(5)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(10)前記(A)成分の主鎖が、ビニル系モノマーのリビングラジカル重合により製造される(1)〜(9)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(11)リビングラジカル重合が原子移動ラジカル重合である(10)記載の活性エネルギー線硬化型硬化性組成物。
(12)原子移動ラジカル重合の触媒である遷移金属錯体が、銅、ニッケル、ルテニウム又は鉄の錯体より選ばれる(11)記載の活性エネルギー線硬化型硬化性組成物。
(13)遷移金属錯体が銅の錯体である(12)記載の活性エネルギー線硬化型硬化性組成物。
(14)前記(A)成分の主鎖が、連鎖移動剤を用いたビニル系モノマーの重合により製造される(1)〜(9)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(15)前記(A)成分の数平均分子量が3000以上である(1)〜(14)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(16)前記(A)成分のビニル系重合体が、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量と数平均分子量の比の値が1.8未満である(1)〜(15)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(17)前記(A)成分及び(B)成分の他に、(C)成分として(B)成分以外の光重合開始剤を含有する(1)〜(16)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(18)前記(C)成分の光重合開始剤が、α−ヒドロキシケトン化合物及びフェニルケトン誘導体から選ばれる少なくとも1種である(17)記載の活性エネルギー線硬化型硬化性組成物。
(19)ラジカル重合性の基を有する、モノマー及び/又はオリゴマーを含有する(1)〜(18)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(20)アニオン重合性の基を有する、モノマー及び/又はオリゴマーを含有する(1)〜(18)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(21)(メタ)アクリロイル系基を有する、モノマー及び/又はオリゴマーを含有する(1)〜(18)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(22)(メタ)アクリロイル系基を有し、さらに数平均分子量が5000以下である、モノマー及び/又はオリゴマーを含有する(21)記載の活性エネルギー線硬化型硬化性組成物。
(23)(A)成分100重量部に対し、(B)成分0.001〜10重量部を含有することを特徴とする(1)〜(22)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(24)(A)成分100重量部に対し、(B)成分0.001〜0.5重量部を含有することを特徴とする(1)〜(23)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(25)(B)成分のアシルホスフィンオキシド光重合開始剤が、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイドから選ばれる少なくとも1つを含むものである(1)〜(24)のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
(26)(1)〜(25)のいずれかに記載の活性エネルギー線硬化型硬化性組成物に、活性エネルギー線を照射させることにより得られる硬化物。
以下に、本発明の活性エネルギー線硬化型硬化性組成物及び該硬化物について述べる。
本発明の活性エネルギー線硬化型硬化性組成物は、下記(A)成分及び(B)成分を必須成分として含有することを特徴とするものである。
(A)一般式(1):
−OC(O)C(R)=CH (1)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す)
で表される基を、1分子あたり少なくとも1個以上、分子末端に有するビニル系重合体。
(B)一般式(2):
P(=O)C(=O)R (2)
〔式中、Rは、炭素数1〜12のアルキル、ベンジル、置換されていてもよいフェニル、シクロヘキシル、−COR、−OR(Rは、炭素数1〜8のアルキル、フェニル又はベンジルを表す)、又は一般式(3):
−A−(R)P(=O)C(=O)R (3)
で示される基(Aは、炭素数1〜18のアルキレン、フェニレン又はビフェニレンを表す)を表し;
は、炭素数1〜12のアルキル、ベンジル、置換されていてもよいフェニル、シクロヘキシル、又は−CORを表し;
は、置換されていてもよいフェニル、又は一般式(4):
−B−C(=O)P(=O)R (4)
で示される基(Bは、炭素数1〜12のアルキレン、シクロヘキシレン、又はフェニレンを表す)を表す〕
で示される、少なくとも1つのアシルホスフィンオキシド光重合開始剤。
<<(A)成分>>
(A)成分は、一般式(1):
−OC(O)C(R)=CH (1)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す)
で表される基((メタ)アクリロイルオキシ系基)を、1分子あたり少なくとも1個以上、分子末端に有するビニル系重合体である。
前記(メタ)アクリロイルオキシ系基は、架橋点間分子量を均一かつ大きくする、好ましくは500〜100000にすることによりゴム弾性を得るという観点から、ビニル系重合体の分子末端に存在する。
(メタ)アクリロイルオキシ系基中のRは、水素原子又は炭素数1〜20の有機基を表し、好ましくは水素原子又は炭素数1〜20の炭化水素基である。
前記炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、ニトリル基等が挙げられ、これらは水酸基等の置換基を有していてもよい。
前記炭素数1〜20のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等が挙げられる。
炭素数6〜20のアリール基としては、例えばフェニル基、ナフチル基等が挙げられる。
炭素数7〜20のアラルキル基としては、例えばベンジル基、フェニルエチル基等が挙げられる。
の好ましい具体例としては、例えば−H、−CH、−CHCH、−(CHCH(nは2〜19の整数を表す)、−C、−CHOH、−CN等が挙げられ、より好ましくは−H、−CHである。
(A)成分の主鎖を構成するビニル系モノマーとしては特に限定はなく、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシ)プロピルトリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等の(メタ)アクリル系モノマー;スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等の芳香族ビニル系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニル系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは、単独で用いてもよく、複数を組み合わせて用いてもよい。
なかでも、生成物の物性等の点から、芳香族ビニル系モノマー及び(メタ)アクリル系モノマーが好ましい。より好ましくは、アクリル酸エステルモノマー、メタクリル酸エステルモノマーであり、さらに好ましくは、アクリル酸ブチル、アクリル酸エチル、2−メトキシエチルアクリレートである。さらに、現場成形ガスケットにおける耐油性等の観点から、主鎖を構成するビニル系モノマーは、アクリル酸ブチル、アクリル酸エチル及び2−メトキシエチルアクリレートから選ばれる少なくとも1つを含むことが特に好ましい。
本発明においては、これらの好ましいモノマーを他の前記モノマーと共重合させてもよく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお、上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を表す。
(A)成分の分子量分布(ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)の比)には、特に限定はないが、好ましくは1.8未満、より好ましくは1.7以下、さらに好ましくは1.6以下、特に好ましくは1.5以下、特別に好ましくは1.4以下、最も好ましくは1.3以下である。
なお、本発明におけるGPC測定の際には、通常は、クロロホルム又はテトラヒドロフランを移動相として、ポリスチレンゲルカラムを使用し、分子量の値はポリスチレン換算値で求めている。
(A)成分の数平均分子量の下限は、好ましくは500、より好ましくは3000であり、上限は、好ましくは100000、より好ましくは40000である。分子量が500未満であると、ビニル系重合体の本来の特性が発現されにくくなる傾向があり、100000をこえると、ハンドリングが困難になりやすい傾向がある。
<(A)成分の製法>
(A)成分の製法については特に限定はない。
ビニル系重合体は一般に、アニオン重合あるいはラジカル重合によって製造されるが、モノマーの汎用性あるいは制御の容易さからラジカル重合が好ましい。ラジカル重合の中でも、リビングラジカル重合あるいは連鎖移動剤を用いたラジカル重合によって製造されるのが好ましく、特に前者が好ましい。
(A)成分の製造に用いられるラジカル重合法は、重合開始剤としてアゾ系化合物、過酸化物等を用いて、特定の官能基を有するモノマーとビニル系モノマーとを単に共重合させる「一般的なラジカル重合法」と、末端等の制御された位置に特定の官能基を導入することが可能な「制御ラジカル重合法」に分類することができる。
「一般的なラジカル重合法」は簡便な方法であるが、この方法では特定の官能基を有するモノマーは確率的にしか重合体中に導入されないので、官能化率の高い重合体を得ようとした場合には、このモノマーをかなり大量に使う必要があり、逆に少量の使用ではこの特定の官能基が導入されない重合体の割合が大きくなるという問題がある。また、フリーラジカル重合であるため、分子量分布が広く粘度の高い重合体しか得られないという問題もある。
「制御ラジカル重合法」は、さらに、特定の官能基を有する連鎖移動剤を用いて重合を行なうことにより末端に官能基を有するビニル系重合体が得られる「連鎖移動剤法」と、重合生長末端が停止反応等を起こさずに生長することによりほぼ設計どおりの分子量の重合体が得られる「リビングラジカル重合法」とに、分類することができる。
「連鎖移動剤法」は、官能化率の高い重合体を得ることが可能であるが、開始剤に対してかなり大量の特定の官能基を有する連鎖移動剤が必要であり、処理も含めて経済面で問題がある。また、前記の「一般的なラジカル重合法」と同様、フリーラジカル重合であるため分子量分布が広く、粘度の高い重合体しか得られないという問題もある。
これらの重合法とは異なり、「リビングラジカル重合法」は、重合速度が高く、ラジカル同士のカップリング等による停止反応が起こりやすいため制御が難しいとされるラジカル重合でありながら、停止反応が起こりにくく、分子量分布の狭い(Mw/Mnが1.1〜1.5程度)重合体が得られるとともに、モノマーと開始剤の仕込み比によって分子量を自由にコントロールすることができる。
したがって、「リビングラジカル重合法」は、分子量分布が狭く、粘度が低い重合体を得ることができる上に、特定の官能基を有するモノマーを重合体のほぼ任意の位置に導入することができるため、前記特定の官能基を有するビニル系重合体の製造方法としてはより好ましいものである。
なお、リビング重合とは、狭義においては、末端が常に活性を持ち続けて分子鎖が生長していく重合のことをいうが、一般には、末端が不活性化されたものと活性化されたものが平衡状態にありながら生長していく擬リビング重合も含まれる。本発明における定義も後者である。
「リビングラジカル重合法」は、近年様々なグループで積極的に研究がなされている。
その例としては、例えばジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー(J.Am.Chem.Soc.)、1994年、116巻、7943頁に示されるようなコバルトポルフィリン錯体を用いるもの、マクロモレキュルズ(Macromolecules)、1994年、27巻、7228頁に示されるようなニトロキシド化合物等のラジカル捕捉剤を用いるもの、有機ハロゲン化物等を開始剤とし遷移金属錯体を触媒とする「原子移動ラジカル重合」(Atom Transfer Radical Polymerization:ATRP)等が挙げられる。
「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒としてビニル系モノマーを重合する「原子移動ラジカル重合法」は、前記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有するビニル系重合体の製造方法としては、さらに好ましい。
前記原子移動ラジカル重合法としては、例えばMatyjaszewskiら、ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁、マクロモレキュルズ(Macromolecules)1995年、28巻、7901頁、サイエンス(Science)1996年、272巻、866頁、WO96/30421号パンフレット,WO97/18247号パンフレットあるいはSawamotoら、マクロモレキュルズ(Macromolecules)1995年、28巻、1721頁等に記載の方法が挙げられる。
本発明において、これらのうちのどの方法を使用するかには特に制約はないが、基本的には制御ラジカル重合法が利用され、さらに制御の容易さ等からリビングラジカル重合法が好ましく、特に原子移動ラジカル重合法が好ましい。
まず、制御ラジカル重合法のうちの一つ、連鎖移動剤を用いた重合法について説明する。
連鎖移動剤(テロマー)を用いたラジカル重合には特に限定はないが、本発明に適した末端構造を有するビニル系重合体を得る方法としては、次の2つの方法が例示される。
特開平4−132706号公報に示されているようなハロゲン化炭化水素を連鎖移動剤として用いてハロゲン末端の重合体を得る方法と、特開昭61−271306号公報、特許2594402号公報、特開昭54−47782号公報に示されているような水酸基含有メルカプタンあるいは水酸基含有ポリスルフィド等を連鎖移動剤として用いて水酸基末端の重合体を得る方法である。
次に、リビングラジカル重合法について説明する。
そのうち、まず、ニトロキシド化合物等のラジカル捕捉剤(キャッピング剤)を用いる方法について説明する。
この重合法では、一般に安定なニトロキシフリーラジカル(=N−O・)をラジカルキャッピング剤として用いる。このような化合物には特に限定はないが、2,2,6,6−置換−1−ピペリジニルオキシラジカルや2,2,5,5−置換−1−ピロリジニルオキシラジカル等、環状ヒドロキシアミンからのニトロキシフリーラジカルが好ましい。置換基としてはメチル基やエチル基等の炭素数4以下のアルキル基が適当である。
前記ニトロキシフリーラジカル化合物の具体例としては、特に限定はないが、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル(TEMPO)、2,2,6,6−テトラエチル−1−ピペリジニルオキシラジカル、2,2,6,6−テトラメチル−4−オキソ−1−ピペリジニルオキシラジカル、2,2,5,5−テトラメチル−1−ピロリジニルオキシラジカル、1,1,3,3−テトラメチル−2−イソインドリニルオキシラジカル、N,N−ジ−t−ブチルアミンオキシラジカル等が挙げられる。
前記ニトロキシフリーラジカルの代わりに、ガルビノキシル(galvinoxyl)フリーラジカル等の安定なフリーラジカルを用いても構わない。
前記ラジカルキャッピング剤はラジカル発生剤と併用される。ラジカルキャッピング剤とラジカル発生剤との反応生成物が重合開始剤となって付加重合性モノマーの重合が進行すると考えられる。
両者の使用割合には特に限定はないが、ラジカルキャッピング剤1モルに対し、ラジカル開始剤0.1〜10モルが適切である。
ラジカル発生剤としては、種々の化合物を使用することができるが、重合温度条件下でラジカルを発生し得るパーオキシドが好ましい。
前記パーオキシドとしては、特に限定はないが、ベンゾイルパーオキシド、ラウロイルパーオキシド等のジアシルパーオキシド類、ジクミルパーオキシド、ジ−t−ブチルパーオキシド等のジアルキルパーオキシド類、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート等のパーオキシカーボネート類、t−ブチルパーオキシオクトエート、t−ブチルパーオキシベンゾエート等のアルキルパーエステル類等が挙げられる。特にベンゾイルパーオキシドが好ましい。
さらに、パーオキシドの代わりにアゾビスイソブチロニトリルのようなラジカル発生性アゾ化合物等のラジカル発生剤も使用し得る。
マクロモレキュルズ(Macromolecules)1995年,28巻,2993頁に報告されているように、ラジカルキャッピング剤とラジカル発生剤を併用する代わりに、下記のようなアルコキシアミン化合物を開始剤として用いても構わない。
Figure 2006075712
アルコキシアミン化合物を開始剤として用いる場合、それが前記のような水酸基等の官能基を有するものを用いると末端に官能基を有する重合体が得られる。これを本発明に利用すると、末端に官能基を有する重合体が得られる。
前記ニトロキシド化合物等のラジカル捕捉剤を用いる重合で用いられるモノマー、溶媒、重合温度等の重合条件には特に限定はないが、次に説明する原子移動ラジカル重合について用いるものと同様で構わない。
次に、本発明に使用するリビングラジカル重合法としてより好ましい原子移動ラジカル重合法について説明する。
この原子移動ラジカル重合法では、有機ハロゲン化物、特に反応性の高い炭素−ハロゲン結合を有する有機ハロゲン化物(例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物)、あるいはハロゲン化スルホニル化合物等が開始剤として用いられる。
具体的に例示するならば、
−CHX、C−C(H)(X)CH、C−C(X)(CH
(式中、Cはフェニル基、Xは塩素原子、臭素原子又はヨウ素原子)
−C(H)(X)−CO、R−C(CH)(X)−CO、R−C(H)(X)−C(O)R、R−C(CH)(X)−C(O)R
(式中、R、Rは水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基又は炭素数7〜20のアラルキル基、Xは塩素原子、臭素原子又はヨウ素原子)
−C−SO
(式中、Rは水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基又は炭素数7〜20のアラルキル基、Xは塩素原子、臭素原子又はヨウ素原子)
等が挙げられる。
原子移動ラジカル重合法の開始剤として、重合を開始する官能基以外の官能基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物を用いることもできる。このような場合、一方の主鎖末端に前記官能基を、他方の主鎖末端に前記一般式(1)で表される構造を有するビニル系重合体が製造される。
前記官能基としては、アルケニル基、架橋性シリル基、ヒドロキシル基、エポキシ基、アミノ基、アミド基等が挙げられる。
前記アルケニル基を有する有機ハロゲン化物には特に限定はなく、例えば一般式(9):
1011C(X)−R12−R13−C(R)=CH (9)
(式中、Rは水素原子又はメチル基、R10、R11は水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基又は他端において相互に連結したもの、R12は−C(O)O−(エステル基)、−C(O)−(ケト基)、又はo−,m−,p−フェニレン基、R13は直接結合又は1個以上のエーテル結合を含有していてもよい炭素数1〜20の2価の有機基、Xは塩素原子、臭素原子又はヨウ素原子)
で示されるものが例示される。
前記置換基R10、R11の具体例としては、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。R10とR11は、他端において連結して環状骨格を形成していてもよい。
13の1個以上のエーテル結合を含有していてもよい炭素数1〜20の2価の有機基としては、例えば1個以上のエーテル結合を含有していてもよい炭素数1〜20のアルキレン基等が挙げられる。
一般式(9)で示されるアルケニル基を有する有機ハロゲン化物の具体例としては、
XCHC(O)O(CHCH=CH
CC(H)(X)C(O)O(CHCH=CH
(HC)C(X)C(O)O(CHCH=CH
CHCHC(H)(X)C(O)O(CHCH=CH
Figure 2006075712
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは0〜20の整数)
XCHC(O)O(CHO(CHCH=CH
CC(H)(X)C(O)O(CHO(CHCH=CH
(HC)C(X)C(O)O(CHO(CHCH=CH
CHCHC(H)(X)C(O)O(CHO(CHCH=CH
Figure 2006075712
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−(CH−CH=CH
o,m,p−CHC(H)(X)−C−(CH−CH=CH
o,m,p−CHCHC(H)(X)−C−(CH−CH=CH
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは0〜20の整数)
o,m,p−XCH−C−(CH−O−(CH−CH=CH
o,m,p−CHC(H)(X)−C−(CH−O−(CH−CH=CH
o,m,p−CHCHC(H)(X)−C−(CH−O−(CHCH=CH
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−O−(CH−CH=CH
o,m,p−CHC(H)(X)−C−O−(CH−CH=CH
o,m,p−CHCHC(H)(X)−C−O−(CH−CH=CH
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは0〜20の整数)
o,m,p−XCH−C−O−(CH−O−(CH−CH=CH
o,m,p−CHC(H)(X)−C−O−(CH−O−(CH−CH=CH
o,m,p−CHCHC(H)(X)−C−O−(CH−O−(CH−CH=CH
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは1〜20の整数、mは0〜20の整数)
前記アルケニル基を有する有機ハロゲン化物としては、さらに一般式(10):
C=C(R)−R13−C(R10)(X)−R14−R11 (10)
(式中、R、R10、R11、R13、Xは前記に同じ、R14は、直接結合、−C(O)O−(エステル基)、−C(O)−(ケト基)又はo−,m−,p−フェニレン基を表す)
で示される化合物が挙げられる。
13は、直接結合又は炭素数1〜20の2価の有機基(1個以上のエーテル結合を含有していてもよい)であるが、直接結合である場合は、ハロゲン原子の結合している炭素にビニル基が結合しており、ハロゲン化アリル化物である。この場合は、隣接ビニル基によって炭素−ハロゲン結合が活性化されているので、R14としてC(O)O基やフェニレン基等を有する必要は必ずしもなく、直接結合であってもよい。R13が直接結合でない場合、炭素−ハロゲン結合を活性化するために、R14としてはC(O)O基、C(O)基、フェニレン基が好ましい。
一般式(10)で示される化合物を具体的に例示するならば、
CH=CHCHX、CH=C(CH)CHX、
CH=CHC(H)(X)CH、CH=C(CH)C(H)(X)CH
CH=CHC(X)(CH、CH=CHC(H)(X)C
CH=CHC(H)(X)CH(CH
CH=CHC(H)(X)C、CH=CHC(H)(X)CH
CH=CHCHC(H)(X)−COR、
CH=CH(CHC(H)(X)−COR、
CH=CH(CHC(H)(X)−COR、
CH=CH(CHC(H)(X)−COR、
CH=CHCHC(H)(X)−C
CH=CH(CHC(H)(X)−C
CH=CH(CHC(H)(X)−C
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、Rは炭素数1〜20のアルキル基、アリール基、アラルキル基)
等をあげることができる。
前記アルケニル基を有するハロゲン化スルホニル化合物の具体例をあげるならば、
o−,m−,p−CH=CH−(CH−C−SOX、
o−,m−,p−CH=CH−(CH−O−C−SO
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは0〜20の整数)
等をあげることができる。
前記架橋性シリル基を有する有機ハロゲン化物には特に限定はなく、例えば一般式(11):
1011C(X)−R12−R13−C(H)(R)CH−[Si(R152−b(Y)O]−Si(R163−a(Y) (11)
(式中、R、R10、R11、R12、R13、Xは前記に同じ、R15、R16は、いずれも炭素数1〜20のアルキル基、アリール基、アラルキル基、又は(R’)SiO−(R’は炭素数1〜20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、R15又はR16が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい、Yは水酸基又は加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0、1、2又は3、bは0、1又は2、mは0〜19の整数、ただし、a+mb≧1であることを満足する)
に示すものが例示される。
一般式(11)で示される化合物を具体的に例示するならば、
XCHC(O)O(CHSi(OCH
CHC(H)(X)C(O)O(CHSi(OCH
(CHC(X)C(O)O(CHSi(OCH
XCHC(O)O(CHSi(CH)(OCH
CHC(H)(X)C(O)O(CHSi(CH)(OCH
(CHC(X)C(O)O(CHSi(CH)(OCH
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは0〜20の整数)
XCHC(O)O(CHO(CHSi(OCH
CC(H)(X)C(O)O(CHO(CHSi(OCH
(HC)C(X)C(O)O(CHO(CHSi(OCH
CHCHC(H)(X)C(O)O(CHO(CHSi(OCH
XCHC(O)O(CHO(CHSi(CH)(OCH
CC(H)(X)C(O)O(CHO(CH−Si(CH)(OCH
(HC)C(X)C(O)O(CHO(CH−Si(CH)(OCH
CHCHC(H)(X)C(O)O(CHO(CH−Si(CH)(OCH
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、nは1〜20の整数、mは0〜20の整数)
o,m,p−XCH−C−(CHSi(OCH
o,m,p−CHC(H)(X)−C−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−(CHSi(OCH
o,m,p−XCH−C−(CHSi(OCH
o,m,p−CHC(H)(X)−C−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−(CHSi(OCH
o,m,p−XCH−C−(CH−O−(CHSi(OCH
o,m,p−CHC(H)(X)−C−(CH−O−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−(CH−O−(CHSi(OCH
o,m,p−XCH−C−O−(CHSi(OCH
o,m,p−CHC(H)(X)−C−O−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−O−(CH−Si(OCH
o,m,p−XCH−C−O−(CH−O−(CH−Si(OCH
o,m,p−CHC(H)(X)−C−O−(CH−O−(CHSi(OCH
o,m,p−CHCHC(H)(X)−C−O−(CH−O−(CHSi(OCH
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子)
等が挙げられる。
前記架橋性シリル基を有する有機ハロゲン化物としては、さらに一般式(12):
(R163−a(Y)Si−[OSi(R152−b(Y)−CH−C(H)(R)−R13−C(R10)(X)−R14−R11 (12)
(式中、R、R10、R11、R13、R14、R15、R16、a、b、X、Yは前記に同じ、mは0〜19の整数)
で示されるものが例示される。
一般式(12)で示される化合物を具体的に例示するならば、
(CHO)SiCHCHC(H)(X)C
(CHO)(CH)SiCHCHC(H)(X)C
(CHO)Si(CHC(H)(X)−COR、
(CHO)(CH)Si(CHC(H)(X)−COR、
(CHO)Si(CHC(H)(X)−COR、
(CHO)(CH)Si(CHC(H)(X)−COR、
(CHO)Si(CHC(H)(X)−COR、
(CHO)(CH)Si(CHC(H)(X)−COR、
(CHO)Si(CHC(H)(X)−COR、
(CHO)(CH)Si(CHC(H)(X)−COR、
(CHO)Si(CHC(H)(X)−C
(CHO)(CH)Si(CHC(H)(X)−C
(CHO)Si(CHC(H)(X)−C
(CHO)(CH)Si(CHC(H)(X)−C
(以上の式中、Xは塩素原子、臭素原子又はヨウ素原子、Rは炭素数1〜20のアルキル基、アリール基、アラルキル基)
等が挙げられる。
前記ヒドロキシル基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物には特に限定はなく、下記のようなものが例示される。
HO−(CH−OC(O)C(H)(R)(X)
(式中、Xは塩素原子、臭素原子又はヨウ素原子、Rは水素原子又は炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
前記アミノ基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物には特に限定はなく、下記のようなものが例示される。
N−(CH−OC(O)C(H)(R)(X)
(式中、Xは塩素原子、臭素原子又はヨウ素原子、Rは水素原子又は炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
前記エポキシ基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物には特に限定はなく、下記のようなものが例示される。
Figure 2006075712
(式中、Xは塩素原子、臭素原子又はヨウ素原子、Rは水素原子又は炭素数1〜20のアルキル基、アリール基、アラルキル基、nは1〜20の整数)
一般式(1)で表される基を1分子あたり2個以上、分子末端に有するビニル系重合体を得るためには、2個以上の開始点を有する有機ハロゲン化物又はハロゲン化スルホニル化合物を開始剤として用いるのが好ましい。具体的に例示するならば、
Figure 2006075712
Figure 2006075712
等が挙げられる。
前記重合において用いられるビニル系モノマーには特に制約はなく、既に例示したものをすべて好適に用いることができる。
また、重合触媒として用いられる遷移金属錯体には特に限定はないが、好ましくは周期律表第7族、8族、9族、10族又は11族元素を中心金属とする金属錯体、例えば銅、ニッケル、ルテニウム、鉄の錯体である。さらに好ましいものとして、0価の銅、1価の銅、2価のルテニウム、2価の鉄又は2価のニッケルの錯体が挙げられる。なかでも、銅の錯体が好ましい。
前記1価の銅化合物を具体的に例示するならば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅等が挙げられる。
銅化合物を用いる場合、触媒活性を高めるために2,2′−ビピリジル、その誘導体、1,10−フェナントロリン、その誘導体、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2−アミノエチル)アミン等のポリアミン等の配位子を添加することができる。
また、2価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl(PPh)も触媒として好適である。
ルテニウム化合物を触媒として用いる場合、活性化剤としてアルミニウムアルコキシド類を添加することができる。
さらに、2価の鉄のビストリフェニルホスフィン錯体(FeCl(PPh)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl(PPh)、2価のニッケルのビストリブチルホスフィン錯体(NiBr(PBu)も、触媒として好適である。
重合は、無溶剤又は各種の溶剤中で行なうことができる。
溶剤の種類としては、ベンゼン、トルエン等の炭化水素系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メタノール、エタノール、プロパノール、イソプロパノール、n−ブチルアルコール、tert−ブチルアルコール等のアルコール系溶剤、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤等が挙げられる。これらは単独で使用してもよく2種以上を混合して用いてもよい。
また、重合は、室温〜200℃、好ましくは50〜150℃の範囲で行なうことができる。
<官能基導入法>
(A)成分の製造方法には特に限定はないが、例えば前述の方法により反応性官能基を有するビニル系重合体を製造し、反応性官能基を(メタ)アクリロイルオキシ系基を有する置換基に変換することにより製造することができる。
以下に、反応性官能基を有するビニル系の重合体の末端を一般式(1)で表される基に変換する方法について説明する。
ビニル系重合体の末端に(メタ)アクリロイルオキシ系基を導入する方法には特に限定はないが、例えば以下の方法が挙げられる。
(導入方法1)末端にハロゲン基を有するビニル系重合体と、一般式(5):
+−OC(O)C(R)=CH (5)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す、Mはアルカリ金属イオン又は4級アンモニウムイオンを表す)
で示される化合物との反応による方法。
末端にハロゲン基を有するビニル系重合体としては、一般式(6):
−CRX (6)
(式中、R、Rはビニル系モノマーのエチレン性不飽和基に結合した基、Xは塩素原子、臭素原子又はヨウ素原子を表す)
で示される末端基を有するものが好ましい。
(導入方法2)末端に水酸基を有するビニル系重合体と、一般式(7):
C(O)C(R)=CH (7)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す、Xは塩素原子、臭素原子又は水酸基を表す)
で示される化合物との反応による方法。
(導入方法3)末端に水酸基を有するビニル系重合体に、ジイソシアネート化合物を反応させ、残存イソシアネート基と、一般式(8):
HO−R’− OC(O)C(R)=CH (8)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す、R’は炭素数2〜20の2価の有機基を表す)
で示される化合物との反応による方法。
以下に、前記各方法について詳細に説明する。
[導入方法1]
導入方法1は、末端にハロゲン基を有するビニル系重合体と、一般式(5)で示される化合物との反応による方法である。
末端にハロゲン基を有するビニル系重合体には、特に限定はないが、一般式(6)に示す末端基を有するものが好ましい。
一般式(6)中のR、Rにおけるビニル系モノマーのエチレン性不飽和基に結合した基としては、水素原子、メチル基、カルボニル基、カルボキシレート基、トルイル基、フルオロ基、クロロ基、トリアルコキシシリル基、フェニルスルホン酸基、カルボン酸イミド基、シアノ基等が挙げられる。
末端にハロゲン基を有するビニル系重合体、特に一般式(6)で表される末端基を有するビニル系重合体は、前述の有機ハロゲン化物又はハロゲン化スルホニル化合物を開始剤とし、遷移金属錯体を触媒としてビニル系モノマーを重合する方法、あるいはハロゲン化合物を連鎖移動剤としてビニル系モノマーを重合する方法により製造されるが、好ましくは前者である。
一般式(5)で表される化合物には特に限定はない。
一般式(5)中のRにおける炭素数1〜20の有機基としては、前記と同様のものが例示され、その具体例も前記と同様のものが例示される。
一般式(5)中のMは、オキシアニオンの対カチオンであり、その例としては、アルカリ金属イオン、4級アンモニウムイオン等が挙げられる。
前記アルカリ金属イオンとしては、例えばリチウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。4級アンモニウムイオンとしては、例えばテトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラベンジルアンモニウムイオン、トリメチルドデシルアンモニウムイオン、テトラブチルアンモニウムイオン、ジメチルピペリジニウムイオン等が挙げられる。これらのうち、好ましいものとしてはアルカリ金属イオン、より好ましいものとしてはナトリウムイオン、カリウムイオンが挙げられる。
一般式(5)で示される化合物の使用量は、一般式(6)で示される末端基に対して、好ましくは1〜5当量、より好ましくは1.0〜1.2当量である。
前記反応を実施する溶剤には特に限定はないが、求核置換反応であるため極性溶媒が好ましく、例えばテトラヒドロフラン、ジオキサン、ジエチルエーテル、アセトン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホリックトリアミド、アセトニトリル等が好ましく用いられる。
反応温度には特に限定はないが、好ましくは0〜150℃、より好ましくは10〜100℃である。
[導入方法2]
導入方法2は、末端に水酸基を有するビニル系重合体と、一般式(7)で示される化合物との反応による方法である。
一般式(7)で表される化合物には特に限定はない。
一般式(7)中のRにおける炭素数1〜20の有機基としては、前記と同様のものが例示され、その具体例も前記と同様のものが例示される。
末端に水酸基を有するビニル系重合体は、前述の有機ハロゲン化物又はハロゲン化スルホニル化合物を開始剤とし、遷移金属錯体を触媒としてビニル系モノマーを重合させる方法、あるいは水酸基を有する化合物を連鎖移動剤としてビニル系モノマーを重合させる方法により製造されるが、好ましくは前者である。
末端に水酸基を有するビニル系重合体を製造する方法には特に限定はないが、例えば以下の方法が例示される。
(a)リビングラジカル重合によりビニル系重合体を合成する際に、一般式(13):
C=C(R17)−R18−R19−OH (13)
(式中、R17は水素原子又は炭素数1〜20の有機基、R18は−C(O)O−(エステル基)又はo−、m−もしくはp−フェニレン基、R19は直接結合又は1個以上のエーテル結合を含有していてもよい炭素数1〜20の2価の有機基を表す)
で示される一分子中に重合性のアルケニル基及び水酸基を併せもつ化合物等を第2のモノマーとして反応させる方法。
前記R17としては、水素原子、メチル基が好ましい。また、R18がエステル基のものは(メタ)アクリレート系化合物、R18がフェニレン基のものはスチレン系化合物である。
なお、一分子中に重合性のアルケニル基及び水酸基を併せもつ化合物を反応させる時期に制限はないが、特にゴム的な性質を期待する場合には、重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。
(b)リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして、一分子中に重合性の低いアルケニル基及び水酸基を有する化合物を反応させる方法。
このような化合物には特に限定はないが、例えば一般式(14):
C=C(R17)−R20−OH (14)
(式中、R17は前記と同じ、R20は1個以上のエーテル結合を有していてもよい炭素数1〜20の2価の有機基を表す)
に示される化合物等が挙げられる。
前記一般式(14)で示される化合物には特に限定はないが、入手が容易であるという点から、10−ウンデセノール、5−ヘキセノール、アリルアルコールのようなアルケニルアルコールが好ましい。
(c)特開平4−132706号公報等に開示されているような方法で、原子移動ラジカル重合により得られる一般式(6)で示される炭素−ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲン原子を、加水分解あるいは水酸基含有化合物と反応させることにより、末端に水酸基を導入する方法。
(d)原子移動ラジカル重合により得られる一般式(6)で示される炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、一般式(15):
(R21)(R22)−R20−OH (15)
(式中、R20及びMは前記と同じ、R21、R22はともにカルバニオンCを安定化する電子吸引基又は一方が前記電子吸引基で、他方が水素原子、炭素数1〜10のアルキル基又はフェニル基を表す)
で示される水酸基を有する安定化カルバニオン等を反応させてハロゲンを置換する方法。
前記電子吸引基としては、−COR(エステル基)、−C(O)R(ケト基)、−CON(R)(アミド基)、−COSR(チオエステル基)、−CN(ニトリル基)、−NO(ニトロ基)等が挙げられ、−COR、−C(O)R、−CNが特に好ましい。置換基Rは、炭素数1〜20のアルキル基、炭素数6〜20のアリール基又は炭素数7〜20のアラルキル基であり、好ましくは炭素数1〜10のアルキル基又はフェニル基である。
(e)原子移動ラジカル重合により得られる一般式(6)で示される炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、しかるのちにアルデヒド類又はケトン類を反応させる方法。
(f)重合体末端のハロゲン原子、好ましくは一般式(6)で示される炭素−ハロゲン結合を少なくとも1個有するビニル系重合体に、一般式(16):
HO−R20−O (16)
(式中、R20及びMは前記と同じ)
で表される水酸基含有化合物等や、
一般式(17):
HO−R20−C(O)O (17)
(式中、R20及びMは前記と同じ)
で示される水酸基含有化合物等を反応させて、前記ハロゲン原子を水酸基含有置換基に置換する方法。
(a)〜(b)のような水酸基を導入する方法にハロゲン原子が直接関与しない場合、制御がより容易である点から(b)の方法がさらに好ましい。
また、(c)〜(f)のような炭素−ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲン原子を変換することにより水酸基を導入する場合、制御がより容易である点から(f)の方法がさらに好ましい。
一般式(7)で示される化合物の使用量は、ビニル系重合体の末端水酸基に対して、好ましくは1〜10当量、より好ましくは1〜5当量である。
前記反応を実施する溶剤には特に限定はないが、求核置換反応であるため極性溶剤が好ましく、例えばテトラヒドロフラン、ジオキサン、ジエチルエーテル、アセトン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホリックトリアミド、アセトニトリル等が好ましく用いられる。
反応温度には特に限定はないが、好ましくは0〜150℃、より好ましくは10〜100℃である。
[導入方法3]
導入方法3は、末端に水酸基を有するビニル系重合体に、ジイソシアネート化合物を反応させ、残存イソシアネート基と、一般式(8):
HO−R’−OC(O)C(R)=CH (8)
(式中、Rは水素原子又は炭素数1〜20の有機基を表す、R’は炭素数2〜20の2価の有機基を表す)
で示される化合物との反応による方法である。
一般式(8)中のRにおける炭素数1〜20の有機基としては、前記と同様のものが例示され、その具体例も前記と同様のものが例示される。
一般式(8)中のR’の炭素数2〜20の2価の有機基としては、例えば炭素数2〜20のアルキレン基(エチレン基、プロピレン基、ブチレン基等)、炭素数6〜20のアリーレン基、炭素数7〜20のアラルキレン基等が挙げられる。
一般式(8)で示される化合物には特に限定はないが、特に好ましい化合物としては、メタクリル酸2−ヒドロキシプロピル等が挙げられる。
また、末端に水酸基を有するビニル系重合体は、前記のとおりである。
ジイソシアネート化合物には特に限定はなく、従来公知のものをいずれも使用することができる。具体例としては、例えばトルイレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、メタキシリレンジイソシアネート、1,5−ナフタレンジイソシアネート、水素化ジフェニルメタンジイソシアネート、水素化トルイレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート等をあげることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。また、ブロックイソシアネートを使用しても構わない。より優れた耐候性を得る点から、ヘキサメチレンジイソシアネート、水素化ジフェニルメタンジイソシアネート等の芳香環を有しないジイソシアネート化合物を用いるのが好ましい。
ジイソシアネート化合物の使用量は、ビニル系重合体の末端水酸基に対して、好ましくは1〜10当量、より好ましくは1〜5当量である。
一般式(8)で示される化合物の使用量は、残存イソシアネート基に対して、好ましくは1〜10当量、より好ましくは1〜5当量である。
また、反応溶剤には特に限定はないが、非プロトン性溶剤等が好ましい。
反応温度には特に限定はないが、好ましくは0〜250℃、より好ましくは20〜200℃である。
<<(B)成分>>
(B)成分は、一般式(2):
P(=O)C(=O)R (2)
〔式中、Rは、炭素数1〜12のアルキル、ベンジル、置換されていてもよいフェニル、シクロヘキシル、−COR、−OR(Rは、炭素数1〜8のアルキル、フェニル又はベンジルを表す)、又は一般式(3):
−A−(R)P(=O)C(=O)R (3)
で示される基(Aは、炭素数1〜18のアルキレン、フェニレン又はビフェニレンを表す)を表し;
は、炭素数1〜12のアルキル、ベンジル、置換されていてもよいフェニル、シクロヘキシル、又は−CORを表し;
は、置換されていてもよいフェニル、又は一般式(4):
−B−C(=O)P(=O)R (4)
で示される基(Bは、炭素数1〜12のアルキレン、シクロヘキシレン、又はフェニレンを表す)を表す〕
で示される、少なくとも1つのアシルホスフィンオキシド光重合開始剤である。
、Rの炭素数1〜12のアルキルとしては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル等が挙げられる。
の炭素数1〜8のアルキルとしては、上記アルキルの例示のうち、炭素数1〜8のものが挙げられる。
、R、Rの置換されていてもよいフェニルとしては、非置換のフェニル;ハロゲン、炭素数1〜8のアルキル及び/又は炭素数1〜8のアルコキシにより1〜4個置換されているフェニル等が挙げられる。また、ハロゲンとしては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。炭素数1〜8のアルコキシとしては、メトキシ、エトキシ、プロポキシ、ブトキシ、ヘキシルオキシ、オクチルオキシ等が挙げられる。
Aの炭素数1〜18のアルキレンとしては、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、ヘプチレン、オクチレン、ノニレン、デシレン、テトラデシレン、オクタデシレン等が挙げられる。
Bの炭素数1〜12のアルキレンとしては、上記アルキレンの例示のうち、炭素数1〜12のものが挙げられる。
(B)成分のアシルホスフィンオキシド光重合開始剤は、上記式(2)で表されるものであれば特に限定はなく、各種のものを用いることができる。例示するならば、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド、ビス(2,6−ジメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−イソブチルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−イソブチルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−フェニルフォスフィンオキサイド等が挙げられる。好ましくは、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイドである。
これらのアシルホスフィンオキシド光重合開始剤は、単独で用いてもよく2種以上を混合して用いてもよい。
アシルホスフィンオキシド光重合開始剤(B)の添加量は、特に制限はないが、硬化性と未反応物ブリード防止の観点から、(A)成分100重量部に対して、0.001〜10重量部が好ましく、0.01〜5重量部がより好ましい。また、高温時の圧縮性改善の観点からは、(A)成分100重量部に対して、0.001〜0.5重量部が好ましく、0.01〜0.5重量部がより好ましい。
<<(C)成分>>
(C)成分として、(B)成分以外の光重合開始剤を用いてもよい。
(C)成分としては、特に制限はないが、光ラジカル開始剤と光アニオン開始剤が好ましく、特に光ラジカル開始剤が好ましい。
光ラジカル開始剤としては、例えば、アセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−メチルアセトフェノン、3−ペンチルアセトフェノン、2,2−ジエトキシアセトフェノン、4−メトキシアセトフェノン、3−ブロモアセトフェノン、4−アリルアセトフェノン、p−ジアセチルベンゼン、3−メトキシベンゾフェノン、4−メチルベンゾフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−クロロ−4’−ベンジルベンゾフェノン、3−クロロキサントーン、3,9−ジクロロキサントーン、3−クロロ−8−ノニルキサントーン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4−ジメチルアミノフェニル)ケトン、ベンジルメトキシケタール、2−クロロチオキサントーン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、ジベンゾイル等が挙げられる。
これらのうち、α−ヒドロキシケトン化合物(例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン等)、フェニルケトン誘導体(例えば、アセトフェノン、プロピオフェノン、ベンゾフェノン、3−メチルアセトフェノン、4−メチルアセトフェノン、3−ペンチルアセトフェノン、2,2−ジエトキシアセトフェノン、4−メトキシアセトフェノン、3−ブロモアセトフェノン、4−アリルアセトフェノン、3−メトキシベンゾフェノン、4−メチルベンゾフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−クロロ−4’−ベンジルベンゾフェノン、ビス(4−ジメチルアミノフェニル)ケトン等)が好ましい。
また、光アニオン開始剤としては、例えば、1,10−ジアミノデカン、4,4’−トリメチレンジピペリジン、カルバメート類及びその誘導体、コバルト−アミン錯体類、アミノオキシイミノ類、アンモニウムボレート類等が挙げられる。
これらの開始剤は、単独で用いても、2種以上混合して用いても、又は、他の化合物と組み合わせて用いてもよい。他の化合物と併用する場合の組合せとしては、具体的には、ジエタノールメチルアミン、ジメチルエタノールアミン、トリエタノールアミン等のアミンとの組合せ、さらにこれにジフェニルヨードニウムクロリド等のヨードニウム塩を組み合わせたもの、メチレンブルー等の色素及びアミンと組み合わせたもの等が挙げられる。
なお、上記光重合開始剤を使用する場合、必要により、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン、パラターシャリーブチルカテコール等の重合禁止剤類を添加することもできる。
また、近赤外光重合開始剤として、近赤外光吸収性陽イオン染料を使用しても構わない。
近赤外光吸収性陽イオン染料としては、650〜1500nmの領域の光エネルギーで励起する、例えば特開平3−111402号公報、特開平5−194619号公報等に開示されている近赤外光吸収性陽イオン染料−ボレート陰イオン錯体等を用いるのが好ましく、ホウ素系増感剤を併用することがさらに好ましい。
光重合開始剤(C)の添加量は、特に制限はないが、硬化性と未反応物ブリード防止の観点から、(A)成分100重量部に対して、0.001〜10重量部が好ましい。
<<活性エネルギー線硬化型硬化性組成物>>
本発明の活性エネルギー線硬化型硬化性組成物は、上述のように、(A)成分及び(B)成分を必須成分として含有するものである。また、必要に応じて、(C)成分を含有させることもできる。
さらに、限定はされないが、表面硬化性の向上、タフネスの付与、粘度低減による作業性の向上等を目的として、重合性のモノマー及び/又はオリゴマー等を併用することもできる。
<重合性のモノマー及び/又はオリゴマー>
前記重合性のモノマー及び/又はオリゴマーとしては、ラジカル重合性の基を有する、モノマー及び/又はオリゴマー、あるいは、アニオン重合性の基を有する、モノマー及び/又はオリゴマーが、反応性の点から好ましい。
ラジカル重合性の基としては、(メタ)アクリロイル系基等のアクリル官能性基、スチレン基、アクリロニトリル基、ビニルエステル基、N−ビニルピロリドン基、アクリルアミド基、共役ジエン基、ビニルケトン基、ハロゲン化ビニル基・ハロゲン化ビニリデン基等が挙げられる。なかでも、本発明に使用するビニル系重合体と類似する(メタ)アクリロイル系基を有するものが好ましい。
アニオン重合性の基としては、(メタ)アクリロイル系基等のアクリル官能性基、スチレン基、アクリロニトリル基、N−ビニルピロリドン基、アクリルアミド基、共役ジエン基、ビニルケトン基等が挙げられる。なかでも、本発明に使用するビニル系重合体と類似する(メタ)アクリロイル系基を持つものが好ましい。
前記モノマーの具体例としては、(メタ)アクリレート系モノマー、環状アクリレート、スチレン系モノマー、アクリロニトリル、ビニルエステル系モノマー、N−ビニルピロリドン、アクリルアミド系モノマー、共役ジエン系モノマー、ビニルケトン系モノマー、ハロゲン化ビニル・ハロゲン化ビニリデン系モノマー、多官能モノマー等が挙げられる。
(メタ)アクリレート系モノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシ)プロピルトリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等が挙げられる。また、下式で示される化合物等も挙げることができる。なお、下式において、nは0〜20の整数を示す。
Figure 2006075712
Figure 2006075712
Figure 2006075712
Figure 2006075712
Figure 2006075712
スチレン系モノマーとしては、スチレン、α−メチルスチレン等が挙げられる。
ビニルエステル系モノマーとしては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等が挙げられる。
アクリルアミド系モノマーとしては、アクリルアミド、N,N−ジメチルアクリルアミド等が挙げられる。
共役ジエン系モノマーとしては、ブタジエン、イソプレン等が挙げられる。
ビニルケトン系モノマーとしては、メチルビニルケトン等が挙げられる。
ハロゲン化ビニル・ハロゲン化ビニリデン系モノマーとしては、塩化ビニル、臭化ビニル、ヨウ化ビニル、塩化ビニリデン、臭化ビニリデン等が挙げられる。
多官能モノマーとしては、トリメチロールプロパントリアクリレート、ネオペンチルグリコールポリプロポキシジアクリレート、トリメチロールプロパンポリエトキシトリアクリレート、ビスフェノールFポリエトキシジアクリレート、ビスフェノールAポリエトキシジアクリレート、ジペンタエリスリトールポリヘキサノリドヘキサクリレート、トリス(ヒドロキシエチル)イソシアヌレートポリヘキサノリドトリアクリレート、トリシクロデカンジメチロールジアクリレート2−(2−アクリロイルオキシ−1,1−ジメチル)−5−エチル−5−アクリロイルオキシメチル−1,3−ジオキサン、テトラブロモビスフェノールAジエトキシジアクリレート、4,4−ジメルカプトジフェニルサルファイドジメタクリレート、ポリテトラエチレングリコールジアクリレート、1,9−ノナンジオールジアクリレート、ジトリメチロールプロパンテトラアクリレート等が挙げられる。
オリゴマーとしては、ビスフェノールA型エポキシアクリレート樹脂、フェノールノボラック型エポキシアクリレート樹脂、クレゾールノボラック型エポキシアクリレート樹脂、COOH基変性エポキシアクリレート系樹脂等のエポキシアクリレート系樹脂;ポリオール(ポリテトラメチレングリコール、エチレングリコールとアジピン酸のポリエステルジオール、ε−カプロラクトン変性ポリエステルジオール、ポリプロピレングリコール、ポリエチレングリコール、ポリカーボネートジオール、水酸基末端水添ポリイソプレン、水酸基末端ポリブタジエン、水酸基末端ポリイソブチレン等)と有機イソシアネート(トリレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート等)から得られたウレタン樹脂を、水酸基含有(メタ)アクリレート{ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリアクリレート等}と反応させて得られたウレタンアクリレート系樹脂;前記ポリオールにエステル結合を介して(メタ)アクリル基を導入した樹脂;ポリエステルアクリレート系樹脂等が挙げられる。
上記のうち、(メタ)アクリロイル系基を有する、モノマー及び/又はオリゴマーが好ましい。また、(メタ)アクリロイル系基を有するモノマー及び/又はオリゴマーの数平均分子量は、5000以下であることが好ましい。さらに、表面硬化性の向上や、作業性の向上のための粘度低減のために、モノマーを用いる場合には、分子量が1000以下であることが、相溶性が良好であるという理由からさらに好ましい。
重合性のモノマー及び/又はオリゴマーの使用量は、表面硬化性、タフネス、粘度低減、硬化物の機械物性の観点から、(A)成分100重量部に対して、0.1〜100重量部が好ましい。
<各種添加剤>
本発明の活性エネルギー線硬化型硬化性組成物には、物性を調節するために各種添加剤等を配合してもよい。
<溶剤>
本発明の活性エネルギー線硬化型硬化性組成物には、塗工時の作業性、硬化前後の乾燥性等の観点から、有機溶剤を添加してもよい。
有機溶剤としては、通常、沸点が50〜180℃のものが、塗工時の作業性、硬化前後の乾燥性に優れることから好ましい。具体的には、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等のアルコール系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;トルエン、キシレン等の芳香族系溶剤;ジオキサン等の環状エーテル系溶剤等が挙げられる。これらの溶剤は単独で用いてもよく2種以上を混合して用いてもよい。
溶剤の使用量は、硬化物の仕上がり、作業性、乾燥のバランスの観点から、(A)成分100重量部に対して、1〜900重量部が好ましい。
<補強性シリカ>
本発明の活性エネルギー線硬化型硬化性組成物には、硬化物の強度向上等の観点から、補強性シリカを添加してもよい。
補強性シリカとしては、ヒュームドシリカ、沈降法シリカ等が挙げられる。これらの中でも粒子径が50μm以下であり、比表面積が80m/g以上のものが、補強性の効果から好ましい。なお、比表面積の測定法は後述のとおりである。
また、表面処理シリカ、例えば、オルガノシラン、オルガノシラザン、ジオルガノシクロポリシロキサン等で表面処理されたものは、成形に適した流動性を発現しやすいため、さらに好ましい。
補強性シリカ系のより具体的な例としては、特に限定はないが、フュームドシリカの1つである日本アエロジル(株)のアエロジルや、沈降法シリカの1つである日本シリカ工業(株)のNipsil等が挙げられる。
前記補強性シリカは単独で使用してもよく、2種以上を併用してもよい。
補強性シリカの添加量には特に制限はないが、前記(A)成分及び(B)成分の合計100重量部に対して、0.1〜100重量部、好ましくは0.5〜80重量部、より好ましくは1〜50重量部である。配合量が0.1重量部未満の場合、補強性の改善効果が充分でないことがあり、100重量部をこえると、該組成物の作業性が低下したりすることがある。
<充填材>
本発明の活性エネルギー線硬化型硬化性組成物には、前記補強性シリカの他に、各種充填材を必要に応じて用いてもよい。
該充填材には特に限定はないが、木粉、パルプ、木綿チップ、アスベスト、ガラス繊維、炭素繊維、マイカ、クルミ殻粉、もみ殻粉、グラファイト、ケイソウ土、白土、ドロマイト、無水ケイ酸、含水ケイ酸、カーボンブラック等のような補強性充填材;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、べんがら、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、亜鉛末、炭酸亜鉛及びシラスバルーン等のような充填材;石綿、ガラス繊維及びガラスフィラメント、炭素繊維、ケブラー繊維、ポリエチレンファイバー等のような繊維状充填材等が挙げられる。これら充填材のうちではカーボンブラック、炭酸カルシウム、酸化チタン、タルク等が好ましい。また、低強度で伸びが大である硬化物を得たい場合には、主に酸化チタン、炭酸カルシウム、タルク、酸化第二鉄、酸化亜鉛及びシラスバルーン等から選ばれる充填材を添加することができる。
なお、一般的に、炭酸カルシウムは、比表面積が小さいと、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が充分でないことがある。比表面積の値が大きいほど、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果はより大きくなる。また、炭酸カルシウムは、表面処理剤を用いて表面処理を施してある方がより好ましい。表面処理炭酸カルシウムを用いた場合、表面処理していない炭酸カルシウムを用いた場合に比較して、本発明の組成物の作業性を改善し、該硬化性組成物の接着性と耐候接着性の改善効果がより向上すると考えられる。
前記表面処理剤としては、脂肪酸、脂肪酸石鹸、脂肪酸エステル等の有機物や各種界面活性剤、シランカップリング剤やチタネートカップリング剤等の各種カップリング剤が用いられる。具体例としては、これらに限定されるものではないが、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸等の脂肪酸、それら脂肪酸のナトリウム塩、カリウム塩、それら脂肪酸のアルキルエステル等が挙げられる。界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル硫酸エステルや長鎖アルコール硫酸エステル等のナトリウム塩、カリウム塩等の硫酸エステル型陰イオン界面活性剤、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、パラフィンスルホン酸、α−オレフィンスルホン酸、アルキルスルホコハク酸等のナトリウム塩、カリウム塩等のスルホン酸型陰イオン界面活性剤等が挙げられる。
表面処理剤の処理量は、炭酸カルシウムに対して、0.1〜20重量%の範囲で処理するのが好ましく、1〜5重量%の範囲で処理するのがより好ましい。処理量が0.1重量%未満の場合には、作業性、接着性と耐候接着性の改善効果が充分でないことがあり、20重量%をこえると、該組成物の貯蔵安定性が低下することがある。
特に限定はないが、炭酸カルシウムを用いる場合、配合物のチクソ性や硬化物の破断強度、破断伸び、接着性と耐候接着性等の改善効果を特に期待する場合には、膠質炭酸カルシウムを用いるのが好ましい。
一方、重質炭酸カルシウムは配合物の低粘度化や増量、コストダウン等を目的として添加することがあるが、この重質炭酸カルシウムを用いる場合は必要に応じて下記のようなものを使用することができる。
重質炭酸カルシウムとは、天然のチョーク(白亜)、大理石、石灰石等を機械的に粉砕・加工したものである。粉砕方法については乾式法と湿式法があるが、湿式粉砕品は本発明の組成物の貯蔵安定性を悪化させることが多いために好ましくないことが多い。重質炭酸カルシウムは、分級により、様々な平均粒子径を有する製品となる。特に限定はないが、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果を期待する場合には、比表面積の値が1.5m/g以上50m/g以下のものが好ましく、2m/g以上50m/g以下がさらに好ましく、2.4m/g以上50m/g以下がより好ましく、3m/g以上50m/g以下が特に好ましい。比表面積が1.5m/g未満の場合には、その改善効果が充分でないことがある。もちろん、単に粘度を低下させる場合や増量のみを目的とする場合等はこの限りではない。
なお、比表面積の値とは、測定方法としてJIS K 5101に準じて行なった空気透過法(粉体充填層に対する空気の透過性から比表面積を求める方法)による測定値をいう。測定機器としては、島津製作所製の比表面積測定器SS−100型を用いるのが好ましい。
これらの充填材は目的や必要に応じて単独で用いてもよく、2種以上を併用してもよい。特に限定はされないが、例えば、必要に応じて比表面積の値が1.5m/g以上の重質炭酸カルシウムと膠質炭酸カルシウムを組み合わせると、配合物の粘度の上昇を程々に抑え、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が大いに期待できる。
充填材を用いる場合の添加量は、(A)成分100重量部に対して、充填材を5〜1000重量部の範囲で使用するのが好ましく、20〜500重量部の範囲で使用するのがより好ましく、40〜300重量部の範囲で使用するのが特に好ましい。配合量が5重量部未満の場合には、硬化物の破断強度、破断伸び、接着性と耐候接着性の改善効果が充分でないことがあり、1000重量部をこえると該組成物の作業性が低下することがある。充填材は単独で使用してもよいし、2種以上併用してもよい。
<接着性付与樹脂>
本発明の活性エネルギー線硬化型硬化性組成物は、好ましくは(メタ)アクリル系重合体を主成分とするものであるため、接着性付与樹脂を添加する必要は必ずしもないが、必要に応じて、各種のものを使用することができる。具体例をあげるならば、フェノール樹脂、変性フェノール樹脂、シクロペンタジエン−フェノール樹脂、キシレン樹脂、クマロン樹脂、石油樹脂、テルペン樹脂、テルペンフェノール樹脂、ロジンエステル樹脂等である。
接着性付与樹脂の使用量は、硬化物の機械物性、耐熱性、耐油性と接着性のバランスの観点から、(A)成分100重量部に対して、0.1〜100重量部が好ましい。
<老化防止剤>
本発明の活性エネルギー線硬化型硬化性組成物には、老化防止剤を配合してもよい。
アクリル系重合体は本来、耐熱性、耐候性、耐久性に優れた重合体であるので、老化防止剤は必ずしも必要ではないが、従来公知の酸化防止剤、光安定剤を適宜用いることができる。また、老化防止剤は、重合時の重合制御にも用いることができ、物性制御を行なうことができる。
酸化防止剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235〜242)等に記載された種々のものが挙げられるが、これらに限定されるわけではない。
酸化防止剤としては、例えば、MARK PEP−36、MARK AO−23(以上いずれもアデカア−ガス化学(株)製)等のチオエーテル系;Irgafos38、Irgafos168、IrgafosP−EPQ(以上いずれも日本チバガイギー(株)製)等のリン系酸化防止剤;ヒンダードフェノール系化合物等が挙げられる。なかでも、以下に示したようなヒンダードフェノール系化合物が好ましい。
ヒンダードフェノール系化合物としては、具体的には以下のものが例示できる。2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、モノ(又はジ又はトリ)(α−メチルベンジル)フェノール、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,5−ジ−tert−ブチルハイドロキノン、2,5−ジ−tert−アミルハイドロキノン、トリエチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4−2,4−ビス[(オクチルチオ)メチル]o−クレゾール、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−オクチルフェニル)−ベンゾトリアゾール、メチル−3−[3−t−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル]プロピオネート−ポリエチレングリコール(分子量約300)との縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート等が挙げられる。
商品名で言えば、ノクラック200、ノクラックM−17、ノクラックSP、ノクラックSP−N、ノクラックNS−5、ノクラックNS−6、ノクラックNS−30、ノクラック300、ノクラックNS−7、ノクラックDAH(以上いずれも大内新興化学工業(株)製)、MARK AO−30、MARK AO−40、MARK AO−50、MARK AO−60、MARK AO−616、MARK AO−635、MARK AO−658、MARK AO−80、MARK AO−15、MARK AO−18、MARK 328、MARK AO−37(以上いずれもアデカアーガス化学(株)製)、IRGANOX−245、IRGANOX−259、IRGANOX−565、IRGANOX−1010、IRGANOX−1024、IRGANOX−1035、IRGANOX−1076、IRGANOX−1081、IRGANOX−1098、IRGANOX−1222、IRGANOX−1330、IRGANOX−1425WL(以上いずれも日本チバガイギー(株)製)、SumilizerGA−80(以上いずれも住友化学(株)製)等が例示できるがこれらに限定されるものではない。
さらに、アクリレート基とフェノール基を併せ持つモノアクリレートフェノール系酸化防止剤、ニトロキシド化合物等が挙げられる。
モノアクリレートフェノール系酸化防止剤としては、例えば、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート(商品名スミライザーGM)、2,4−ジ−t−アミル−6−[1−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)エチル]フェニルアクリレート(商品名スミライザーGS)等が例示される。
ニトロキシド化合物としては、限定はされないが、2,2,6,6−置換−1−ピペリジニルオキシラジカルや2,2,5,5−置換−1−ピロリジニルオキシラジカル等、環状ヒドロキシアミンからのニトロキシフリーラジカルが例示される。置換基としては、メチル基やエチル基等の炭素数4以下のアルキル基が適当である。
具体的なニトロキシフリーラジカル化合物としては、限定はされないが、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル(TEMPO)、2,2,6,6−テトラエチル−1−ピペリジニルオキシラジカル、2,2,6,6−テトラメチル−4−オキソ−1−ピペリジニルオキシラジカル、2,2,5,5−テトラメチル−1−ピロリジニルオキシラジカル、1,1,3,3−テトラメチル−2−イソインドリニルオキシラジカル、N,N−ジ−t−ブチルアミンオキシラジカル等が挙げられる。
ニトロキシフリーラジカルの代わりに、ガルビノキシル(galvinoxyl)フリーラジカル等の安定なフリーラジカルを用いても構わない。
酸化防止剤は光安定剤と併用してもよく、併用することによりその効果をさらに発揮し、特に耐熱性が向上することがあるため特に好ましい。予め酸化防止剤と光安定剤を混合してあるチヌビンC353、チヌビンB75(以上いずれも日本チバガイギー(株)製)等を使用してもよい。
分子中に(メタ)アクリロイルオキシ系基を有するビニル系重合体や(メタ)アクリル系重合体を光ラジカル硬化により硬化物を作製する場合、重合が早く進行するためにその制御が難しく、重合が行き過ぎた場合には過架橋状態となり、得られた硬化物が十分な伸びを示さない等、機械強度が不十分な場合が少なくない。重合を制御する方法として、重合に関与する官能基をメタアクリロイル基にすることにより、アクリロイル基の場合よりも重合性を低下させることもできるが、この場合極端に重合性が低下することが多く、実用的ではない。また一般に、重合禁止剤を用いることがあるが、これは重合そのものを抑制させる目的であり、重合の制御には適さない。一方、得られた硬化物の耐熱性、耐侯性を向上させるために、老化防止剤を添加することがあるが、これは硬化物の初期物性を向上させる目的では使用されていない。
上記モノアクリレートフェノール系酸化防止剤は、酸化防止剤としてだけではなく、添加することにより重合を制御することができる。硬化物の物性制御を容易に行えることから、上述と同じものが例示される。当該モノアクリレートフェノール系酸化防止剤は、単独で用いてもよいし、2種以上を組み合わせてもよい。
モノアクリレートフェノール系酸化防止剤をはじめとする上記各種酸化防止剤の使用量は、特に限定されないが、得られる硬化物の機械物性に効果を与えることを目的として、(A)成分100重量部に対して、0.01重量部以上が好ましく、0.05重量部以上がより好ましい。また、5.0重量部以下が好ましく、3.0重量部以下がより好ましく、2.0重量部以下がさらに好ましい。
<可塑剤>
本発明の活性エネルギー線硬化型硬化性組成物には、可塑剤を配合してもよい。
可塑剤としては物性の調整、性状の調節等の目的により、ジブチルフタレート、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート等の非芳香族二塩基酸エステル類;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート等のポリアルキレングリコールのエステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;塩化パラフィン類;アルキルジフェニル、部分水添ターフェニル等の炭化水素系油等が挙げられる。これらを単独、又は2種以上混合して使用することができるが、必ずしも必要とするものではない。なお、これら可塑剤は、重合体製造時に配合することも可能である。
可塑剤の使用量は、伸び付与、作業性、硬化物からのブリード防止の観点から、(A)成分100重量部に対して、5〜800重量部が好ましい。
<接着性改良剤>
本発明の活性エネルギー線硬化型硬化性組成物には、各種支持体(プラスチックフィルム等)に対する接着性を向上させるために、各種接着性改良剤を添加してもよい。
接着性改良剤としては、例示するならば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n−プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ−グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシランγ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。
接着性改良剤の使用量は、硬化物の機械物性(伸びと強度)と接着性のバランスの観点から、(A)成分100重量部に対して、0.1〜20重量部が好ましい。
<<硬化物>>
<硬化方法>
本発明の活性エネルギー線硬化型硬化性組成物は、例えば、UVや電子線等の活性エネルギー線を照射することにより硬化させることができ、硬化物を得ることができる。
<活性エネルギー線硬化>
活性エネルギー線源としては特に限定はないが、その光重合開始剤の性質に応じて、例えば高圧水銀灯、低圧水銀灯、電子線照射装置、ハロゲンランプ、発光ダイオード、半導体レーザー、メタルハライド等による光及び電子線の照射等が挙げられる。
また、活性エネルギー線の照射線量としては、活性エネルギー線硬化型硬化性組成物を硬化させることができる量であれば特に限定されないが、好ましくは6000mj/cm以上、より好ましくは12000mj/cm以上である。
<好ましい活性エネルギー線硬化型硬化性組成物及びその硬化物>
本発明の活性エネルギー線硬化型硬化性組成物は、上記(A)成分及び(B)成分を必須成分として含有することを特徴とするものであるが、上述したように、以下のようなものが好ましい。
(A)成分の重合体は、アクリル酸エステル系重合体が好ましく、主鎖がリビングラジカル重合、さらには原子移動ラジカル重合により製造されることが好ましい。
(B)成分のアシルホスフィンオキシド光重合開始剤は、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイドから選ばれる少なくとも1つを含むことが好ましい。
また、(A)成分及び(B)成分の他に、(C)成分として(B)成分以外の光重合開始剤を添加することが好ましい。
さらに、硬化物の強度向上、伸びの付与、作業性の向上等の観点から、アクリレートモノマーの添加が有効である。
また、本発明の活性エネルギー線硬化型硬化性組成物を硬化させるために、UV、電子線を使用することが好ましい。
<<用途>>
本発明の硬化性組成物は、特に限定はされないが、太陽電池裏面封止材等の電気・電子部品材料、電線・ケーブル用絶縁被覆材等の電気絶縁材料、コーティング材、発泡体、電気電子用ポッティング材、フィルム、ガスケット、注型材料、人工大理石、各種成形材料、及び、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材等の様々な用途に利用可能である。
更に、本発明の硬化性組成物から得られたゴム弾性を示す成形体は、ガスケット、パッキン類を中心に広く使用することができる。
例えば自動車分野では、ボディ部品として、気密保持のためのシール材、ガラスの振動防止材、車体部位の防振材、特にウインドシールガスケット、ドアガラス用ガスケットに使用することができる。シャーシ部品として、防振、防音用のエンジン及びサスペンジョンゴム、特にエンジンマウントラバーに使用することができる。エンジン部品としては、冷却用、燃料供給用、排気制御用等のホース類、エンジンオイル用シール材等に使用することができる。また、排ガス清浄装置部品、ブレーキ部品にも使用できる。
家電分野では、パッキン、Oリング、ベルト等に使用できる。具体的には、照明器具用の飾り類、防水パッキン類、防振ゴム類、防虫パッキン類、クリーナ用の防振・吸音と空気シール材、電気温水器用の防滴カバー、防水パッキン、ヒータ部パッキン、電極部パッキン、安全弁ダイアフラム、酒かん器用のホース類、防水パッキン、電磁弁、スチームオーブンレンジ及びジャー炊飯器用の防水パッキン、給水タンクパッキン、吸水バルブ、水受けパッキン、接続ホース、ベルト、保温ヒータ部パッキン、蒸気吹き出し口シール等、燃焼機器用のオイルパッキン、Oリング、ドレインパッキン、加圧チューブ、送風チューブ、送・吸気パッキン、防振ゴム、給油口パッキン、油量計パッキン、送油管、ダイアフラム弁、送気管等、音響機器用のスピーカーガスケット、スピーカーエッジ、ターンテーブルシート、ベルト、プーリー等が挙げられる。
建築分野では、構造用ガスケット(ジッパーガスケット)、空気膜構造屋根材、防水材、定形シーリング材、防振材、防音材、セッティングブロック、摺動材等に使用できる。
スポ―ツ分野では、スポーツ床として全天候型舗装材、体育館床等、スポーツシューズとして靴底材、中底材等、球技用ボールとしてゴルフボール等に使用できる。
防振ゴム分野では、自動車用防振ゴム、鉄道車両用防振ゴム、航空機用防振ゴム、防舷材等に使用できる。
海洋・土木分野では、構造用材料として、ゴム伸縮継手、支承、止水板、防水シート、ラバーダム、弾性舗装、防振パット、防護体等、工事副材料としてゴム型枠、ゴムパッカー、ゴムスカート、スポンジマット、モルタルホース、モルタルストレーナ等、工事補助材料としてゴムシート類、エアホース等、安全対策商品としてゴムブイ、消波材等、環境保全商品としてオイルフェンス、シルトフェンス、防汚材、マリンホース、ドレッジングホース、オイルスキマー等に使用できる。
その他、板ゴム、マット、フォーム板等にも使用できる。
本発明の活性エネルギー線硬化型硬化性組成物を使用することにより、活性エネルギー線による硬化性、特に深部硬化性に優れ、耐熱性、耐侯性、耐油性、圧縮永久歪等に優れた硬化物を提供することができる。また、特定量のアシルホスフィンオキシド光重合開始剤を用いることにより、さらに高温時の圧縮永久歪も優れたものとできる。
以下に、本発明の具体的な実施例を比較例と併せて説明するが、本発明は、下記実施例に限定されるものではない。
下記実施例中、数平均分子量及び分子量分布(重量平均分子量と数平均分子量の比)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。なお、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(shodex GPC K−804;昭和電工(株)製)、GPC溶媒としてクロロホルムを用いた。
また、下記実施例中、平均末端(メタ)アクリロイルオキシ基数は、重合体1分子当たりに導入された(メタ)アクリロイルオキシ基数であり、H−NMR分析及びGPCにより求められた数平均分子量に基づいて算出した。
なお、下記実施例中の部は重量部数を表す。
製造例1(アクリロイルオキシ基両末端ポリ(アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレート)の合成)
臭化第一銅を触媒、ペンタメチルジエチレントリアミンを配位子、ジエチル−2,5−ジブロモアジペートを開始剤として、アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレートをモル数で25/46/29の比率で重合し、数平均分子量21000、分子量分布1.16の末端臭素基ポリ(アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレート)を得た。
この重合体400gをN,N−ジメチルアセトアミド(400mL)に溶解させ、アクリル酸カリウム10.7gを加え、窒素雰囲気下、70℃で6時間加熱攪拌し、アクリロイルオキシ基両末端ポリ(アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレート)(以下、重合体〔1〕という)の混合物を得た。この混合液中のN,N−ジメチルアセトアミドを減圧留去したのち、残渣にトルエンを加えて、不溶分を濾過により除去した。濾液のトルエンを減圧留去して、重合体〔1〕を精製した。
精製後のアクリロイルオキシ基両末端重合体〔1〕の数平均分子量は21400、分子量分布は1.17、平均末端アクリロイルオキシ基数は1.8(すなわち、末端へのアクリロイルオキシ基の導入率は90%)であった。
実施例1
製造例1で得られた重合体〔1〕100部に、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(商品名:IRGACURE819;チバスペシャルティケミカルズ製)0.5部、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名:DAROCURE1173;チバスペシャルティケミカルズ製)1部を加え、充分に混合して硬化性組成物を得た。
実施例2
製造例1で得られた重合体〔1〕100部に、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(商品名:IRGACURE819;チバスペシャルティケミカルズ製)0.5部、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(商品名:IRGACURE184;チバスペシャルティケミカルズ製)1部を加え、充分に混合して硬化性組成物を得た。
比較例1
製造例1で得られた重合体〔1〕100部に、2,2−ジエトキシアセトフェノン1部を加え、充分に混合して硬化性組成物を得た。
比較例2
製造例1で得られた重合体〔1〕100部に、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名:DAROCURE1173;チバスペシャルティケミカルズ製)1部を加え、充分に混合して硬化性組成物を得た。
上記実施例1〜2、比較例1〜2で得られた硬化性組成物のUV硬化性、深部硬化性を以下のようにして測定し、その結果を表1に示した。
<UV硬化性試験>
上記実施例、比較例で作成した活性エネルギー線硬化型硬化性組成物を、2mm厚のシート状にし、メタルハライドランプ(80W/cm、照射距離15cm、ベルトスピード2.0m/分)照射下、硬化するまで必要な回数を通過させて硬化させた。
2mm厚のシートが、充分に硬化していることを、指触により確認できるまでに必要な照射回数を、UV硬化性の指標とした。
<深部硬化性試験>
上記実施例、比較例で作成した活性エネルギー線硬化型硬化性組成物を、直径28mm、厚さ12mmの円柱型に流し込み、メタルハライドランプ(80W/cm、照射距離15cm)を30秒間照射した。このとき硬化した部分の厚みを、深部硬化性の指標とした。
Figure 2006075712
表1の結果から、アシルホスフィンオキシド光重合開始剤を含有する実施例の硬化性組成物を用いると、アシルホスフィンオキシド光重合開始剤を含有しない比較例の硬化性組成物を用いた場合に比べて、活性エネルギー線のより少ない照射量で硬化させることができ、さらに深部硬化性もより優れたものであることがわかる。
製造例2(アクリロイルオキシ基両末端ポリ(アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレート)の合成)
臭化第一銅を触媒、ペンタメチルジエチレントリアミンを配位子、ジエチル−2,5−ジブロモアジペートを開始剤として、アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレートをモル比25/46/29で重合し、数平均分子量16500、分子量分布1.13の末端臭素基ポリ(アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレート)を得た。
この重合体400gをN,N−ジメチルアセトアミド(400mL)に溶解させ、アクリル酸カリウム14.3gを加え、窒素雰囲気下、70℃で6時間加熱攪拌し、アクリロイルオキシ基両末端ポリ(アクリル酸n−ブチル/アクリル酸エチル/2−メトキシエチルアクリレート)(以下、重合体〔2〕という)の混合物を得た。この混合液中のN,N−ジメチルアセトアミドを減圧留去したのち、残渣にトルエンを加えて、不溶分を濾過により除去した。濾液のトルエンを減圧留去して、重合体〔2〕を精製した。
精製後のアクリロイルオキシ基両末端重合体〔2〕の数平均分子量は16900、分子量分布は1.14、平均末端アクリロイルオキシ基数は1.8(すなわち、末端へのアクリロイルオキシ基の導入率は90%)であった。
実施例3
製造例2で得られた重合体〔2〕100部に、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(商品名:IRGACURE819;チバスペシャルティケミカルズ製)0.5部、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名:DAROCURE1173;チバスペシャルティケミカルズ製)1部を加え、充分に混合して硬化性組成物を得た。
実施例4
製造例2で得られた重合体〔2〕100部に、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(商品名:IRGACURE819;チバスペシャルティケミカルズ製)0.35部、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(商品名:IRGACURE184;チバスペシャルティケミカルズ製)0.7部を加え、充分に混合して硬化性組成物を得た。
実施例5
製造例2で得られた重合体〔2〕100部に、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(商品名:IRGACURE819;チバスペシャルティケミカルズ製)0.05部、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名:DAROCURE1173;チバスペシャルティケミカルズ製)0.1部を加え、充分に混合して硬化性組成物を得た。
実施例6
製造例2で得られた重合体〔2〕100部に、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(商品名:IRGACURE819;チバスペシャルティケミカルズ製)0.75部、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名:DAROCURE1173;チバスペシャルティケミカルズ製)1.5部を加え、充分に混合して硬化性組成物を得た。
上記実施例3〜6で得られた硬化性組成物を用い、その硬化物の圧縮永久歪、引張り物性を以下のようにして測定し、その結果を表2に示した。
<圧縮永久歪試験>
上記実施例で作成した活性エネルギー線硬化型硬化性組成物を、2mm厚のシート状にし、メタルハライドランプ(80W/cm、照射距離15cm、ベルトスピード2.0m/分)を60秒間照射して、JIS K 6262に規定の圧縮永久歪測定用サンプルを作成した。作成したサンプルを使用して、JIS K 6262に準拠し、温度150℃、70時間の試験条件で、圧縮永久歪試験を実施した。
<引張り物性評価>
上記実施例で作成した活性エネルギー線硬化型硬化性組成物を、2mm厚のシート状にし、メタルハライドランプ(80W/cm、照射距離15cm、ベルトスピード2.0m/分)を30秒間照射して、シートサンプルを作成した。これを用い、JIS K 6251の方法に従って引張り試験用のダンベルを作成した。
引張り試験は、JIS K 6251の方法に従い、テストスピード200mm/min、23℃×55%R.H.の条件下で実施した。
Figure 2006075712
表2の結果から、実施例3〜6のいずれの硬化物でも、引張り特性から判断して十分な硬化性が得られており、また、特定量の(B)成分を用いた実施例3〜5の硬化物においては、さらに高温条件下における圧縮永久歪時の破壊が防止されており、高温時においても優れた永久圧縮歪を実現できることがわかる。
本発明は、(メタ)アクリロイルオキシ系基を分子末端に少なくとも1個有するビニル系重合体、及び、アシルホスフィンオキシド光重合開始剤からなる活性エネルギー線硬化型硬化性組成物からなり、その硬化性組成物を硬化させる際に、活性エネルギー線の照射量を従来より少なくでき、かつ、深部硬化性の改善ができる。このように、本発明の活性エネルギー線硬化型硬化性組成物を使用することにより、活性エネルギー線による硬化性、特に深部硬化性に優れ、耐熱性、耐侯性、耐油性、圧縮永久歪等に優れた硬化物を提供することができる。また、特定量のアシルホスフィンオキシド光重合開始剤を用いることにより、さらに高温時の圧縮永久歪も優れたものとできる。

Claims (26)

  1. 下記(A)成分及び(B)成分を必須成分として含有することを特徴とする活性エネルギー線硬化型硬化性組成物。
    (A)一般式(1):
    −OC(O)C(R)=CH (1)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表す)
    で表される基を、1分子あたり少なくとも1個以上、分子末端に有するビニル系重合体。
    (B)一般式(2):
    P(=O)C(=O)R (2)
    〔式中、Rは、炭素数1〜12のアルキル、ベンジル、置換されていてもよいフェニル、シクロヘキシル、−COR、−OR(Rは、炭素数1〜8のアルキル、フェニル又はベンジルを表す)、又は一般式(3):
    −A−(R)P(=O)C(=O)R (3)
    で示される基(Aは、炭素数1〜18のアルキレン、フェニレン又はビフェニレンを表す)を表し;
    は、炭素数1〜12のアルキル、ベンジル、置換されていてもよいフェニル、シクロヘキシル、又は−CORを表し;
    は、置換されていてもよいフェニル、又は一般式(4):
    −B−C(=O)P(=O)R (4)
    で示される基(Bは、炭素数1〜12のアルキレン、シクロヘキシレン、又はフェニレンを表す)を表す〕
    で示される、少なくとも1つのアシルホスフィンオキシド光重合開始剤。
  2. (A)成分の主鎖を構成するビニル系モノマーが、(メタ)アクリル系モノマーである請求項1記載の活性エネルギー線硬化型硬化性組成物。
  3. (A)成分の主鎖を構成するビニル系モノマーが、アクリル酸エステルモノマーである請求項1〜2のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  4. (A)成分の主鎖を構成するビニル系モノマーが、アクリル酸ブチル、アクリル酸エチル及び2−メトキシエチルアクリレートから選ばれる少なくとも1つを含むものである請求項1〜3のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  5. (A)成分の式(1)におけるRが、水素原子又はメチル基である請求項1〜4のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  6. 前記(A)成分が、
    末端にハロゲン基を有するビニル系重合体に、
    一般式(5):
    +−OC(O)C(R)=CH (5)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表す、Mはアルカリ金属イオン又は4級アンモニウムイオンを表す)
    で示される化合物を反応させること
    により製造される請求項1〜5のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  7. 末端にハロゲン基を有するビニル系重合体が、一般式(6):
    −CRX (6)
    (式中、R、Rはビニル系モノマーのエチレン性不飽和基に結合した基、Xは塩素原子、臭素原子又はヨウ素原子を表す)
    で示される基を有する請求項6記載の活性エネルギー線硬化型硬化性組成物。
  8. 前記(A)成分が、
    末端に水酸基を有するビニル系重合体に、
    一般式(7):
    C(O)C(R)=CH (7)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表す、Xは塩素原子、臭素原子又は水酸基を表す)
    で示される化合物を反応させること
    により製造される請求項1〜5のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  9. 前記(A)成分が、
    (1)末端に水酸基を有するビニル系重合体に、ジイソシアネート化合物を反応させ、
    (2)残存イソシアネート基と、一般式(8):
    HO−R’− OC(O)C(R)=CH (8)
    (式中、Rは水素原子又は炭素数1〜20の有機基を表す、R’は炭素数2〜20の2価の有機基を表す)
    で示される化合物と反応させること
    により製造される請求項1〜5のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  10. 前記(A)成分の主鎖が、ビニル系モノマーのリビングラジカル重合により製造される請求項1〜9のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  11. リビングラジカル重合が原子移動ラジカル重合である請求項10記載の活性エネルギー線硬化型硬化性組成物。
  12. 原子移動ラジカル重合の触媒である遷移金属錯体が、銅、ニッケル、ルテニウム又は鉄の錯体より選ばれる請求項11記載の活性エネルギー線硬化型硬化性組成物。
  13. 遷移金属錯体が銅の錯体である請求項12記載の活性エネルギー線硬化型硬化性組成物。
  14. 前記(A)成分の主鎖が、連鎖移動剤を用いたビニル系モノマーの重合により製造される請求項1〜9のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  15. 前記(A)成分の数平均分子量が3000以上である請求項1〜14のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  16. 前記(A)成分のビニル系重合体が、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量と数平均分子量の比の値が1.8未満である請求項1〜15のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  17. 前記(A)成分及び(B)成分の他に、(C)成分として(B)成分以外の光重合開始剤を含有する請求項1〜16のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  18. 前記(C)成分の光重合開始剤が、α−ヒドロキシケトン化合物及びフェニルケトン誘導体から選ばれる少なくとも1種である請求項17記載の活性エネルギー線硬化型硬化性組成物。
  19. ラジカル重合性の基を有する、モノマー及び/又はオリゴマーを含有する請求項1〜18のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  20. アニオン重合性の基を有する、モノマー及び/又はオリゴマーを含有する請求項1〜18のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  21. (メタ)アクリロイル系基を有する、モノマー及び/又はオリゴマーを含有する請求項1〜18のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  22. (メタ)アクリロイル系基を有し、数平均分子量が5000以下である、モノマー及び/又はオリゴマーを含有する請求項21記載の活性エネルギー線硬化型硬化性組成物。
  23. (A)成分100重量部に対し、(B)成分0.001〜10重量部を含有することを特徴とする請求項1〜22のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  24. (A)成分100重量部に対し、(B)成分0.001〜0.5重量部を含有することを特徴とする請求項1〜23のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  25. (B)成分のアシルホスフィンオキシド光重合開始剤が、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイドから選ばれる少なくとも1つを含むものである請求項1〜24のいずれかに記載の活性エネルギー線硬化型硬化性組成物。
  26. 請求項1〜25のいずれかに記載の活性エネルギー線硬化型硬化性組成物に、活性エネルギー線を照射させることにより得られる硬化物。
JP2006552993A 2005-01-14 2006-01-13 活性エネルギー線硬化型硬化性組成物および該硬化物 Active JP5394608B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006552993A JP5394608B2 (ja) 2005-01-14 2006-01-13 活性エネルギー線硬化型硬化性組成物および該硬化物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005007783 2005-01-14
JP2005007783 2005-01-14
JP2006552993A JP5394608B2 (ja) 2005-01-14 2006-01-13 活性エネルギー線硬化型硬化性組成物および該硬化物
PCT/JP2006/300388 WO2006075712A1 (ja) 2005-01-14 2006-01-13 活性エネルギー線硬化型硬化性組成物および該硬化物

Publications (2)

Publication Number Publication Date
JPWO2006075712A1 true JPWO2006075712A1 (ja) 2008-06-12
JP5394608B2 JP5394608B2 (ja) 2014-01-22

Family

ID=36677735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006552993A Active JP5394608B2 (ja) 2005-01-14 2006-01-13 活性エネルギー線硬化型硬化性組成物および該硬化物

Country Status (4)

Country Link
US (1) US20090192238A1 (ja)
EP (1) EP1837352B1 (ja)
JP (1) JP5394608B2 (ja)
WO (1) WO2006075712A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292898A (ja) * 2008-06-03 2009-12-17 Kaneka Corp 硬化性組成物およびその硬化物
JP5738641B2 (ja) * 2011-03-25 2015-06-24 株式会社日本触媒 光学用紫外線硬化型樹脂組成物、硬化物及び表示装置
EP2915822A1 (en) * 2014-03-06 2015-09-09 Université de Haute Alsace Light induced free radical and/or cationic photopolymerization method
JP6763612B2 (ja) * 2015-06-05 2020-09-30 株式会社タイカ 活性エネルギー線硬化性樹脂組成物、その硬化物からなるシール材及び緩衝材
JP6525316B2 (ja) * 2015-07-29 2019-06-05 東リ株式会社 床材

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134101A (ja) * 1991-06-24 1993-05-28 Mitsubishi Rayon Co Ltd プラスチツクレンズ用組成物およびプラスチツクレンズの製造方法
RU2091385C1 (ru) * 1991-09-23 1997-09-27 Циба-Гейги АГ Бисацилфосфиноксиды, состав и способ нанесения покрытий
DE69727714T2 (de) * 1996-07-15 2004-11-25 Sekisui Kagaku Kogyo K.K. Verfahren zum Verbinden von Teilen
US5981113A (en) * 1996-12-17 1999-11-09 3M Innovative Properties Company Curable ink composition and imaged retroreflective article therefrom
JPH11210981A (ja) * 1998-01-20 1999-08-06 Showa Denko Kk 管状成形体内面の被覆または補修用光硬化性材料及びその被覆方法
EP1059308B1 (en) * 1998-02-27 2006-10-11 Kaneka Corporation Polymer and curable composition
JP2000072815A (ja) * 1998-02-27 2000-03-07 Kanegafuchi Chem Ind Co Ltd 重合体及び硬化性組成物
DE69930253T2 (de) * 1998-06-01 2006-12-07 Kaneka Corp. Verfahren zur polymerherstellung, polymer und härtbare zusammensetzung enthaltend das polymer
JP3977959B2 (ja) * 1998-06-01 2007-09-19 株式会社カネカ 重合体の製造方法、該重合体及び該重合体からなる硬化性組成物
CN1294171C (zh) * 1998-06-19 2007-01-10 钟渊化学工业株式会社 支链聚合物的制备方法和聚合物
JP4405619B2 (ja) * 1998-07-23 2010-01-27 株式会社カネカ 硬化性組成物
JP4215898B2 (ja) * 1998-08-27 2009-01-28 株式会社カネカ 粘着剤組成物
JP2001049198A (ja) * 1999-08-06 2001-02-20 Jsr Corp 光ディスク用接着剤
JP4352526B2 (ja) * 1999-09-17 2009-10-28 ユニマテック株式会社 主鎖両末端官能基含有フッ素オリゴマー、その製造方法および硬化性組成物
JP2002293853A (ja) * 2001-03-29 2002-10-09 Kansai Paint Co Ltd 光硬化性樹脂組成物
JP2003026715A (ja) * 2001-05-11 2003-01-29 Shin Etsu Polymer Co Ltd 紫外線硬化型成形用材料、耐候性付与紫外線硬化型成形用材料、それらの硬化方法及びそれらから製造される成形品
JP3989259B2 (ja) * 2002-02-08 2007-10-10 三菱レイヨン株式会社 銀または銀合金製記録膜を有する光ディスクの硬化物層用活性エネルギー線硬化性組成物、及び光ディスク
WO2005021634A2 (en) * 2003-02-20 2005-03-10 Texas Research International, Inc. Ultraviolet light curing compositions for composite repair
EP1640391B1 (en) * 2003-06-30 2012-12-19 Kaneka Corporation Curing composition
JPWO2005021602A1 (ja) * 2003-09-01 2006-10-26 協和発酵ケミカル株式会社 ポリアルケニルエーテル
JP4426866B2 (ja) * 2004-02-19 2010-03-03 積水化学工業株式会社 加熱消滅性材料
EP1873175A1 (en) * 2005-04-14 2008-01-02 Kaneka Corporation Curable composition, adhesive composition containing such curable composition, and adhesive
JPWO2007029733A1 (ja) * 2005-09-08 2009-03-19 株式会社カネカ 硬化性組成物
US20090170975A1 (en) * 2005-09-22 2009-07-02 Kaneka Corporation Photoradical- and photocation-curable composition
EP2586804B1 (en) * 2005-12-28 2014-04-02 Kaneka Corporation Photoradically and thermally radically curable composition

Also Published As

Publication number Publication date
WO2006075712A1 (ja) 2006-07-20
US20090192238A1 (en) 2009-07-30
EP1837352A4 (en) 2009-10-21
EP1837352B1 (en) 2015-03-04
EP1837352A1 (en) 2007-09-26
JP5394608B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5002261B2 (ja) 光ラジカル硬化/光カチオン硬化併用硬化性組成物
JP2007077182A (ja) 活性エネルギー硬化型組成物およびそれを硬化させて得られる硬化物
JPWO2005087890A1 (ja) 活性エネルギー硬化型現場成形ガスケット用組成物および現場成形ガスケット
JP2006278476A (ja) 放熱シート用組成物及びそれを硬化させてなる放熱シート
JP5388161B2 (ja) 熱ラジカル硬化/熱潜在硬化型エポキシ併用硬化性組成物
JP4800629B2 (ja) 耐熱老化性が改善された硬化性組成物
JP4865246B2 (ja) 熱ラジカル硬化/熱カチオン硬化併用硬化性組成物
JP4787018B2 (ja) 現場成形ガスケット用組成物及びガスケット、並びに、(メタ)アクリル系重合体及びその硬化性組成物
JP2008150502A (ja) 硬化性組成物およびその硬化物
JP5242170B2 (ja) 光ラジカル硬化/熱ラジカル硬化併用硬化性組成物
JP5394608B2 (ja) 活性エネルギー線硬化型硬化性組成物および該硬化物
JP2009179743A (ja) 放熱シート用組成物及びそれを硬化させてなる放熱シート
JP5657900B2 (ja) 熱伝導材料
JP4786921B2 (ja) 現場成形ガスケット用組成物および現場成形ガスケット
JP5512923B2 (ja) ノイズ抑制シート用組成物及びそれを硬化させてなるノイズ抑制シート
JP4805593B2 (ja) 液状モールディング用硬化性組成物
JP2006299257A (ja) 接着剤組成物
JP2006274099A (ja) プリプレグ用硬化性組成物及びそれを硬化させてなるプリプレグ
JP2006274085A (ja) 液状硬化性組成物および硬化物
JP2006299233A (ja) 反応性ホットメルト接着剤
JP2012188550A (ja) 硬化性組成物およびその硬化物
JP4800649B2 (ja) 発泡性樹脂組成物及びこれを用いた発泡体
JP2006273918A (ja) 電気、電子部品材料用組成物及び電気、電子部品材料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R150 Certificate of patent or registration of utility model

Ref document number: 5394608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250