JPWO2004052057A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
JPWO2004052057A1
JPWO2004052057A1 JP2004556825A JP2004556825A JPWO2004052057A1 JP WO2004052057 A1 JPWO2004052057 A1 JP WO2004052057A1 JP 2004556825 A JP2004556825 A JP 2004556825A JP 2004556825 A JP2004556825 A JP 2004556825A JP WO2004052057 A1 JPWO2004052057 A1 JP WO2004052057A1
Authority
JP
Japan
Prior art keywords
organic
transport layer
organic compound
electron transport
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004556825A
Other languages
English (en)
Inventor
長柄 良明
良明 長柄
孝則 村崎
孝則 村崎
山本 一郎
一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
JNC Corp
Original Assignee
Toyota Industries Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Chisso Corp filed Critical Toyota Industries Corp
Publication of JPWO2004052057A1 publication Critical patent/JPWO2004052057A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Abstract

本発明の有機EL素子が備える電子輸送層は、第一の有機化合物及び第二の有機化合物を少なくとも含有する。第一の有機化合物は、第二の有機化合物の電子移動度よりも高い電子移動度を有し、第二の有機化合物は、第一の有機化合物のガラス転移温度よりも高いガラス転移温度を有する。そのため、本発明の有機EL素子は、長い寿命及び高い発光効率を有する。第一の有機化合物は好ましくはシロール誘導体であり、第二の有機化合物は好ましくはキノリノラト系金属錯体である。

Description

本発明は有機電界発光素子(有機EL素子)に関する。
有機EL素子は、次世代ディスプレイ用の素子として注目されている。一般的な有機EL素子では、ガラス基板の上にインジウムスズ酸化物(ITO)等の透明導電材料からなる陽極が設けられ、その陽極の上にホール注入層、ホール輸送層、発光層、電子輸送層及び陰極が順番に設けられている。陽極と陰極との間に直流電圧が印加されると、陽極からホール注入層へはホールが注入され、陰極から電子輸送層へは電子が注入される。注入されたホールはホール輸送層を介して発光層まで輸送され、注入された電子もまた発光層まで輸送される。そして、発光層においてホールと電子とが再結合し、その結果光が発せられる。
近年、有機EL素子は長寿命であることを望まれている。有機EL素子の寿命を示す指標として初期輝度半減期が知られている。初期輝度半減期とは、有機EL素子の輝度が初期輝度の半分にまで低下するのに要する時間であり、この半減期が長いほど有機EL素子の寿命は長いとみなされる。
初期輝度半減期を短くする主な原因としては、例えば、電流注入によって発生する熱あるいは経時変化による有機EL素子中の有機化合物の結晶化、有機化合物の酸化分解及び還元分解のような電気化学的な分解、有機化合物の化学的な分解、有機化合物の凝集、隣接する層同士の間の剥離、隣接する層同士の間での錯体形成が挙げられる。
一方、キノリノラト系金属錯体、とりわけAlq3と略されるトリス−(8−キノリノラト)アルミニウム、あるいはBAlqと略されるビス(2−メチル−8−キノリノラト)(p−フェニルフェノラト)アルミニウムからなる電子輸送層を備えた有機EL素子は、比較的長い初期輝度半減期を有することが知られている。しかしその反面、Alq3又はBAlqからなる電子輸送層の電子移動度はあまり高くない。そのため、Alq3又はBAlqからなる電子輸送層を備えた有機EL素子の発光効率はあまり高くない。
なお、電子輸送層を形成するその他の材料としては、特開平09−87616号公報、特開平09−194487号公報及び特開2002−100479号公報に開示されるものが知られている。
本発明の目的は、長寿命で尚かつ発光効率の高い有機EL素子を提供することにある。
上記の目的を達成するために、本発明の一態様では、以下の有機EL素子が提供される。その有機EL素子は、一対の電極と、その一対の電極の間に設けられた電子輸送層を含む複数の有機化合物含有層とを備える。電子輸送層は、第一の有機化合物及び第二の有機化合物を少なくとも含有する。第一の有機化合物は、第二の有機化合物の電子移動度よりも高い電子移動度を有する。第二の有機化合物は、第一の有機化合物のガラス転移温度よりも高いガラス転移温度を有する。
本発明の別の態様では、以下の有機EL素子が提供される。その有機EL素子は、一対の電極と、その一対の電極の間に設けられた電子輸送層を含む複数の有機化合物含有層とを備える。電子輸送層は、第一の有機化合物及び第二の有機化合物を少なくとも含有する。第一の有機化合物は、第二の有機化合物の電子移動度よりも高い電子移動度を有する。電子輸送層が第一の有機化合物のみから形成される有機EL素子を第一の有機EL素子とし、電子輸送層が第二の有機化合物のみから形成される有機EL素子を第二の有機EL素子とした場合、第二の有機EL素子の初期輝度半減期が第一の有機EL素子の初期輝度半減期よりも長くなるように第一及び第二の有機化合物は選択されている。
図1は、本発明の一実施形態に係る有機EL素子の断面図である。
以下、本発明の一実施形態を図1に基づいて説明する。
図1に示すように、本実施形態に係る有機EL素子10は、基板1と、基板1の上に設けられた陽極2と、陽極2の上に設けられた有機層8と、有機層8の上に設けられた陰極7とを備える。有機層8は、有機化合物含有層としての、ホール注入層3、ホール輸送層4、発光層5及び電子輸送層6を含む。これらの層3〜6は、陽極2と対向する有機層8の側面から陰極7と対向する有機層8の側面に向かって順番に並んでいる。
ホール注入層3及びホール輸送層4は必ずしも必要でなく省かれてもよい。ただし、有機層8がホール注入層3及びホール輸送層4を含むことによって、有機EL素子10の発光効率は向上し、有機EL素子10の初期輝度半減期は延長する。
基板1は、有機EL素子10において支持体として機能する。基板1は、ガラス板、プラスチックシート、プラスチックフィルム、金属板又は金属箔であってもよいし、あるいはシリコン等のセラミックから形成されてもよい。防湿性、耐衝撃性、耐熱性及び表面平滑性に優れることから、基板1はポリエチレンテレフタレート、ポリカーボネート又はポリメタクリレートから形成されることが好ましい。防湿性を向上させるべく、基板1の表面にはシリコン窒化膜、シリコン酸化膜又はシリコン酸化窒化膜が設けられてもよい。ただし、発光層5から発せられる光(可視光)が基板1を通じて有機EL素子10から出射される場合には、基板1は可視光を透過可能である必要がある。
陽極2は、ホール注入層3にホールを注入する役割を有する。陽極2を形成する材料は、金属、合金、電気伝導性化合物及びそれらの混合物のいずれであってもよいが、低い電気抵抗及び大きい仕事関数を有することが望ましい。陽極2を形成する好ましい材料の例としては、ITO、酸化スズ、酸化亜鉛、酸化亜鉛と酸化インジウムとの混合物、窒化チタン等の金属酸化物及び金属窒化物;金、白金、銀、銅、アルミニウム、ニッケル、鉛、クロム、モリブデン、タングステン、タンタル、ニオブ等の金属;ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン等の導電性高分子が挙げられる。陽極2は、単一種類の材料から形成されてもよいし、複数種類の材料から形成されてもよい。陽極2の厚みは、好ましくは10nm〜1μmであり、より好ましくは10nm〜300nmである。陽極2は、スパッタリング法、イオンプレーティング法、真空蒸着法、スピンコート法などの公知の方法によって形成される。発光層5から発せられる光(可視光)が陽極2を通じて有機EL素子10から出射される場合には、陽極2は可視光を透過可能である必要がある。可視光に対する陽極2の透過率は好ましくは10%以上である。
ホール注入層3は、陽極2から注入されるホールをホール輸送層4へ注入する役割と、陽極2と有機層8とを密着させる役割とを有する。ホール注入層3を形成する材料は、陽極2との高い密着性、低いイオン化ポテンシャル、及び高いガラス転移温度を有することが望ましい。ホール注入層3を形成する材料の例としては、フタロシアニン誘導体、ポルフィリン誘導体、ポリフェニレンビニレン誘導体、スターバーストアミン誘導体、ポリアニリン、及びポリチオフェンが挙げられる。好ましいフタロシアニン誘導体は銅フタロシアニン及び無金属フタロシアニンであり、好ましいスターバーストアミン誘導体は4,4’,4”−トリス(3−メチルフェニルフェニル−アミン)トリフェニルアミンである。ホール注入層3は、単一種類の材料から形成されてもよいし、複数種類の材料から形成されてもよい。ホール注入層3の厚みは、好ましくは5nm〜100nmであり、より好ましくは10nm〜50nmである。ホール注入層3は、真空蒸着法、スピンコート法、ディップ法などの公知の方法によって形成される。
ホール輸送層4は、注入されたホールを発光層5へ輸送する役割を有する。ホール輸送層4を形成する材料は、ホール注入層3又は陽極2からホール注入されやすい性質を有すること、及び注入されたホールを発光層5へ効率よく輸送する能力を有することが望ましい。ホール輸送層4を形成する材料の例としては、トリアリールアミン誘導体、トリフェニルアミン構造を主鎖並びに/若しくは側鎖とする繰り返し構造を持つ化合物、トリフェニルメタン誘導体、ヒドラゾン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、トリフェニルメタン誘導体、フルオレニルジフェニルアミン誘導体、ベンジジン誘導体、ピラゾリン誘導体、スチルベン誘導体、スチリルアミン誘導体、ポリフェニレンビニレン誘導体、カルバゾール誘導体、フェニレンジアミン誘導体、及びスピロ化合物のほか、ホール注入層3を形成する材料として先に例示した材料が挙げられる。好ましいトリアリールアミン誘導体はトリフェニルアミン及びトリフェニルアミンの2量体、3量体、4量体及び5量体であり、好ましいベンジジン誘導体は、N,N’−ジナフチル−N,N’−ジフェニルベンジジンであり、好ましいカルバゾール誘導体は4,4’−N,N’−ジカルバゾールビフェニル及びポリ(N−ビニルカルバゾール)である。ホール輸送層4は単一種類の材料から形成されてもよいし、複数種類の材料から形成されてもよい。ホール輸送層4の厚みは、好ましくは5nm〜100nm、より好ましくは10nm〜50nmである。ホール輸送層4は、真空蒸着法、スピンコート法、ディップ法などの公知の方法によって形成される。
発光層5は、陽極2から注入及び輸送されたホールと陰極7から注入及び輸送された電子とが発光層5にて再結合することに基づいて光(可視光)を発する。ホールと電子とが再結合すると励起子が生成し、その励起子が基底状態に戻るときに光が発せられる。発光層5を形成する材料は、高い蛍光量子効率、ホールと電子を効率よく輸送する能力、及び高いガラス転移温度を有することが望ましい。発光層5を形成する材料の例としては、ジスチリルアリレーン誘導体、ジスチリルベンゼン誘導体、ジスチリルアミン誘導体、キノリノラト系金属錯体、トリアリールアミン誘導体、アゾメチン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、シロール誘導体(シラシクロペンタジエン誘導体)、ナフタレン誘導体、アントラセン誘導体、ジカルバゾール誘導体、ペリレン誘導体、オリゴチオフェン誘導体、クマリン誘導体、ピレン誘導体、テトラフェニルブタジエン誘導体、ベンゾピラン誘導体、ユーロピウム錯体、ルブレン誘導体、キナクリドン誘導体、トリアゾール誘導体、ベンゾオキサゾール誘導体、及びベンゾチアゾール誘導体が挙げられる。好ましいキノリノラト系金属錯体はAlq3及びBAlqであり、好ましいトリアリールアミン誘導体はトリフェニルアミンの4量体であり、好ましいジスチリルアリレーン誘導体は4,4’−ビス(2,2’−ジフェニルビニル)ビフェニル(DPVBi)である。発光層5は、単一の層にて構成されてもよいし、複数の層にて構成されてもよい。発光層5はまた、単一種類の材料から形成されてもよいし、複数種類の材料から形成されてもよい。有機EL素子10の発光効率の向上及び初期輝度半減期の延長を目的に、発光層5は、ホスト化合物と、そのホスト化合物にドープされたゲスト化合物とから構成されてもよい。ドープされるゲスト化合物の濃度は、発光層5の全体にわたって均−であってもよいし、不均一であってもよい。発光層5の厚みは好ましくは1nm〜100nmであり、より好ましくは10〜50nmである。発光層5は真空蒸着法などの公知の方法によって形成される。
電子輸送層6は、陰極7から注入される電子を発光層5へ輸送する役割と、発光層5で生成する励起子が拡散して陰極7にて消光するのを防ぐ役割とを有する。電子輸送層6は、二種類の有機化合物すなわち第一及び第二の有機化合物から形成されるか、あるいはそれら二種類の有機化合物を主成分として含有している。第一及び第二の有機化合物は、陰極7から電子注入されやすい性質を有すること、及び注入された電子を効率よく輸送する能力を有することが望ましい。第一及び第二の有機化合物は、以下の要件1〜3のうち要件1を含む少なくとも二つの要件を満たす。
要件1:有機EL素子10の実際の使用時に印加される電界の強度の範囲内において、第一の有機化合物の電子移動度は第二の有機化合物の電子移動度よりも高い。
要件2:第二の有機化合物のガラス転移温度は第一の有機化合物のガラス転移温度よりも高い。
要件3:電子輸送層6が第一の有機化合物のみで形成される有機EL素子10を第一の有機EL素子とし、電子輸送層6が第二の有機化合物のみで形成される有機EL素子10を第二の有機EL素子とした場合、第二の有機EL素子の初期輝度半減期は第一の有機EL素子の初期輝度半減期よりも長い。
第一の有機化合物はシロール誘導体であることが好ましい。好ましいシロール誘導体は特開平09−87616号公報及び特開平09−194487号公報に記載のシロール誘導体であり、より好ましいシロール誘導体は2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール及び2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールである。
第二の有機化合物は、金属錯体;バソクプロイン及びバソフェナントロリン等のフェナントロリン誘導体;あるいは3−(4−ビフェニル)−4−(4−エチルフェニル)−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体であることが好ましい。好ましい金属錯体は、Alq3、BAlq、トリス(2−メチル−8−キノリノラト)アルミニウム、トリス(5−メチル−8−キノリノラト)アルミニウム、モノ(4−メチル−8−キノリノラト)ビス(8−キノリノラト)アルミニウム、モノ(4−エチル−8−キノリノラト)モノ(4−メチル−8−キノリノラト)モノ(8−キノリノラト)アルミニウム、トリス(3,4−ジメチル−8−キノリノラト)アルミニウム、トリス(4−メトキシ−8−キノリノラト)アルミニウム、トリス(4,5−ジメチル−8−キノリノラト)アルミニウム、トリス(4,6−ジメチル−8−キノリノラト)アルミニウム、トリス(5−クロロ−8−キノリノラト)アルミニウム、トリス(5−ブロモ−8−キノリノラト)アルミニウム、トリス(5,7−ジクロロ−8−キノリノラト)アルミニウム、トリス(5−シアノ−8−キノリノラト)アルミニウム、トリス(5−スルホニル−8−キノリノラト)アルミニウム、トリス(5−プロピル−8−キノリノラト)アルミニウム、ビス(8−キノリノラト)亜鉛、ビス(2−メチル−8−キノリノラト)亜鉛、ビス(2,4−ジメチル−8−キノリノラト)亜鉛、ビス(2−メチル−5−クロロ−8−キノリノラト)亜鉛、ビス(2−メチル−5−シアノ−8−キノリノラト)亜鉛、ビス(3,4−ジメチル−8−キノリノラト)亜鉛、ビス(4,6−ジメチル−8−キノリノラト)亜鉛、ビス(5−クロロ−8−キノリノラト)亜鉛、ビス(5,7−ジクロロ−8−キノリノラト)亜鉛、ビス(ベンゾ[f]−8−キノリノラト)亜鉛、ビス(8−キノリノラト)ベリリウム、ビス(2−メチル−8−キノリノラト)ベリリウム、ビス(2,4−ジメチル−8−キノリノラト)ベリリウム、ビス(2−メチル−5−クロロ−8−キノリノラト)ベリリウム、ビス(2−メチル−5−シアノ−8−キノリノラト)ベリリウム、ビス(3,4−ジメチル−8−キノリノラト)ベリリウム、ビス(4,6−ジメチル−8−キノリノラト)ベリリウム、ビス(5−クロロ−8−キノリノラト)ベリリウム、ビス(4,6−ジメチル−8−キノリノラト)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリノラト)ベリリウム、ビス(8−キノリノラト)マグネシウム、ビス(2−メチル−8−キノリノラト)マグネシウム、ビス(2,4−ジメチル−8−キノリノラト)マグネシウム、ビス(2−メチル−5−クロロ−8−キノリノラト)マグネシウム、ビス(2−メチル−5−シアノ−8−キノリノラト)マグネシウム、ビス(3,4−ジメチル−8−キノリノラト)マグネシウム、ビス(4,6−ジメチル−8−キノリノラト)マグネシウム、ビス(5−クロロ−8−キノリノラト)マグネシウム、ビス(5,7−ジクロロ−8−キノリノラト)マグネシウム、ビス(10−ベンゾ[h]キノリノラト)マグネシウム、トリス(8−キノリノラト)インジウム、8−キノリノラトリチウム、トリス(5−クロロ−8−キノリノラト)ガリウム、ビス(5−クロロ−8−キノリノラト)カルシウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(ジフェニルメチルシラノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(tert−ブチルジフェニルシラノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(トリス−(4,4−ビフェニル)シラノラト)ガリウム、ビス(2−メチル−8−キノリノラト)(1−ナフトラト)ガリウム、ビス(2−メチル−8−キノリノラト)(2−ナフトラト)ガリウム、及びビス(8−キノリノラト)銅等のキノリノラト系金属錯体である。
電子輸送層6が第一及び第二の有機化合物以外の第三の有機化合物を含有する場合には、その第三の有機化合物もまた上記の要件1〜3のうち要件1を含む少なくとも二つの要件を満たすことが好ましい。第三の有機化合物の例としては、シロール誘導体、キノリノラト系金属錯体、オキサゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ピロール誘導体、ベンゾピロール誘導体、ピラゾール誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、チアジアゾール誘導体、チオナフテン誘導体、イミダゾール誘導体、ベンゾイミダゾール誘導体、トリアゾール誘導体、ジスチリルベンゼン誘導体、及びスピロ化合物が挙げられる。キノリノラト系金属錯体は、配位子として8−キノリノラト、2−メチル−8−キノリノラト、4−メチル−8−キノリノラト、5−メチル−8−キノリノラト、3,4−ジメチル−8−キノリノラト、4−エチル−8−キノリノラト、4,5−ジメチル−8−キノリノラト、4,6−ジメチル−8−キノリノラト、4−メトキシ−8−キノリノラト、10−ベンゾ[h]キノリノラト、ベンゾ[f]−8−キノリノラト、8−キノリノラトの2量体、又は7−プロピル−8−キノリノラトを持ち、尚かつ中心金属としてアルミニウム、ベリリウム、亜鉛、マグネシウム、ガリウム、インジウム、銅、カルシウム、錫、又は鉛を持つことが好ましい。
電子輸送層6に占める第一の有機化合物の重量割合は、好ましくは1%以上かつ50%以下である。第一の有機化合物は、400以上の分子量を有することが好ましい。第一の有機化合物の重量割合が1%以上かつ50%以下である場合、並びに第一の有機化合物が400以上の分子量を有する場合には、有機EL素子10の初期輝度半減期が延長し尚かつ発光効率が向上する。
電子輸送層6は、第一の有機化合物と第二の有機化合物とが共蒸着されることによって形成されてもよいし、あるいは第一の有機化合物からなる第一の層と第二の有機化合物からなる第二の層とが積層されることによって形成されてもよい。電子輸送層6が共蒸着により形成される場合、電子輸送層6中の第一及び第二の有機化合物の各濃度は電子輸送層6の厚み方向において均一であってもよいし、不均一であってもよい。電子輸送層6が積層により形成される場合、第一の層の上に第二の層が設けられてもよいし、あるいは第二の層の上に第一の層が設けられてもよい。
電子輸送層6の厚みは、好ましくは5〜100nmであり、より好ましくは5〜50nmである。電子輸送層6は、真空蒸着法などの公知の方法によって形成される。電子輸送層6は、発光機能等の電子輸送機能以外の機能を有してもよい。
陰極7は電子輸送層6に電子を注入する役割を有する。陰極7を形成する材料は金属、合金、電気伝導性化合物及びそれらの混合物のいずれであってもよい。陰極7を形成する材料は、低い電気抵抗及び小さい仕事関数を有することが望ましい。陰極7を形成する好ましい材料の例としては、金、銀、銅、アルミニウム、インジウム、カルシウム、スズ等の金属;アルミニウム−カルシウム合金及びアルミニウム−リチウム合金をはじめとするアルミニウム合金、マグネシウム−銀合金及びマグネシウム−インジウム合金をはじめとするマグネシウム合金等の合金;及び陽極2を形成する材料として先に例示した材料が挙げられる。陰極7は単一種類の材料からなるものであってもよいし、複数種類の材料からなるものであってもよい。陰極7の厚さは、好ましくは5nm〜1μmであり、より好ましくは10nm〜500nmである。陰極7は、真空蒸着法、スパッタリング法、イオンプレーティング法、電子ビーム蒸着法などの公知の方法によって形成される。発光層5から発せられる光(可視光)が陰極7を通じて有機EL素子10から出射される場合には、陰極7は可視光を透過可能である必要がある。可視光に対する陰極7の透過率は好ましくは10%以上である。
陰極7から電子輸送層6への電子注入特性を向上させるべく、あるいは陰極7と電子輸送層6との密着性を向上させるべく、陰極7と電子輸送層6との間には陰極界面層が設けられてもよい。陰極界面層を形成する材料の例としては、フッ化リチウム、酸化リチウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム等のアルカリ金属及びアルカリ土類金属のフッ化物、酸化物、塩化物及び硫化物が挙げられる。陰極界面層は、単一種類の材料から形成されてもよいし、複数種類の材料から形成されてもよい。陰極界面層の厚みは、好ましくは0.1nm〜10nmであり、より好ましくは0.3nm〜3nmである。陰極界面層は、厚みが均一であってもよいし、不均一であってもよい。陰極界面層はまた、島状であってもよい。陰極界面層は真空蒸着法などの公知の方法によって形成される。
陰極界面層は、電子輸送層6を形成する材料として先に例示した材料と、陰極7を形成する材料として先に例示した材料とが共蒸着されることによって形成されてもよい。
発光層5と電子輸送層6との間にはホールブロック層が設けられてもよい。ホールブロック層は、ホールの通過をブロックすることにより、陽極2から発光層5まで注入及び輸送されたホールの一部が電子と再結合することなく電子輸送層6にまで達するのを防止する。これにより有機EL素子の発光効率の低下は抑制される。ホールブロック層を形成する材料は、発光層5を形成する材料のイオン化ポテンシャルよりも大きいイオン化ポテンシャルを有することが望ましい。ホールブロック層を形成する材料の例としては、電子輸送層6を形成する材料として先に例示した材料のうちで発光層5を形成する材料のイオン化ポテンシャルよりも大きいイオン化ポテンシャルを有する材料が挙げられる。ホールブロック層を形成する材料のイオン化ポテンシャルは、発光層5を形成する材料のイオン化ポテンシャルよりも0.1eV以上大きいことが好ましい。この場合、ホールブロック層がホールの通過を効果的にブロックする。ホールブロック層は単一の層で構成されてもよいし、複数の層で構成されてもよい。ホールブロック層はまた、単一種類の材料から形成されてもよいし、複数種類の材料から形成されてもよい。ホールブロック層の厚みは、好ましくは0.5〜50nmであり、より好ましくは1〜10nmである。ホールブロック層は、真空蒸着法などの公知の方法によって形成される。
基板1上に設けられる陽極2、有機層8及び陰極7は逆順に設けられてもよい。すなわち、基板1の上に陰極7が設けられ、その陰極7の上に有機層8が設けられ、その有機層8の上に陽極2が設けられてもよい。有機層8に含まれるホール注入層3、ホール輸送層4、発光層5及び電子輸送層6は、図1の有機EL素子10の場合と同様、陽極2と対向する有機層8の側面から陰極7と対向する有機層8の側面に向かって順番に並んでいる。この場合も、ホール注入層3及びホール輸送層4は省かれてもよく、陽極2及び陰極7の少なくとも一方は透明である。以上のように構成された別例の有機EL素子は、必要に応じて上述の陰極界面層又はホールブロック層を含んでもよい。
以下、実施例を挙げて本発明を具体的に説明するが、当然ながら本発明は実施例に限定して解釈されない。
実施例1では、まず、透明ガラス製の基板1の上にITO製で厚さ190nmの陽極2が形成される。陽極2が設けられた基板1はアルカリ洗浄及び純水洗浄された後に乾燥され、さらに紫外線オゾン洗浄される。その後、下記式(1)で表される銅フタロシアニンからなる厚さ10nmのホール注入層3が陽極2の上に真空蒸着法により設けられる。銅フタロシアニンの蒸着はカーボンるつぼにて真空度約5.0×10−5Paの雰囲気下で行なわれ、蒸着速度は0.1nm/sである。
Figure 2004052057
次いで、下記式(2)で表されるトリフェニルアミンの4量体からなる厚さ10nmのホール輸送層4がホール注入層3の上に真空蒸着法により設けられる。トリフェニルアミンの4量体の蒸着は、カーボンるつぼにて真空度約5.0×10−5Paの雰囲気下で行なわれ、蒸着速度は0.1nm/sである。
Figure 2004052057
次に、発光層5として、下記式(3)で表されるDPVBiからなる厚さ30nmの発光層5がホール輸送層4の上に真空蒸着法により設けられる。DPVBiの蒸着は、真空度約5.0×10−5Paで行なわれ、蒸着速度0.1nm/sである。なお、DPVBiからなる発光層5は青色光を発する。
Figure 2004052057
続いて、式(4)で表される第一の有機化合物としての2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールと、式(5)で表される第二の有機化合物としてのAlq3とが発光層5の上に真空度約5.0×10−5Paの雰囲気下で共蒸着され、厚さ20nmの電子輸送層6が形成される。このとき、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの重量割合が1%となるように、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの蒸着速度とAlq3の蒸着速度の比率は調整される。ただし、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの蒸着速度とAlq3の蒸着速度との和は常に約0.1nm/sである。なお、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールは、シロール誘導体の一種であって570.8の分子量を有し、Alq3はキノリノラト系金属錯体の一種である。
Figure 2004052057
Figure 2004052057
なお、Alq3と2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールとを比較すると、示差走査熱量分析法によって測定されるガラス転移温度に関してはAlq3の方が高く、Time of Flight(TOF)法によって測定される実用上の電界強度下での電子移動度に関しては2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの方が高い。TOF法は、試料表面にパルス光を照射し、パルス光によって発生したキャリアが試料内を移動することによって生じた過渡電流を測定して電子移動度を測定する方法である。また、Alq3単独で形成された電子輸送層6を備える有機EL素子と、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール単独で形成された電子輸送層6を備える有機EL素子とを比較すると、Alq3単独で形成された電子輸送層6を備える有機EL素子の方が初期輝度半減期が長い。
電子輸送層6の形成後には、フッ化リチウムからなる厚さ0.5mmの陰極界面層が電子輸送層6の上に真空蒸着法により設けられる。フッ化リチウムの蒸着は、カーボンるつぼにて真空度約5.0×10−5Paの雰囲気下で行なわれ、蒸着速度は0.03nm/sである。
次に、アルミニウムからなる厚さ100nmの陰極7が陰極界面層の上に真空蒸着法により設けられる。アルミニウムの蒸着は、タングステンボートにて真空度約5.0×10−5Paの雰囲気下で行なわれ、蒸着速度は1.0nm/sである。
以上のようにして作製された有機EL素子の初期輝度半減期および輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表1に示す。輝度は輝度測定器(株式会社トプコンの輝度計BM7)を用いて測定した。初期輝度半減期は、初期状態の有機EL素子が2400cd/mの輝度で発光するのに必要とされる量の電流が有機EL素子に供給し続けられたときに、1200cd/mにまで輝度が低下するのに要する時間として測定した。
実施例2〜6
実施例2〜6では、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの重量割合がそれぞれ10%、20%、30%、40%、50%である以外は、全て実施例1と同条件で有機EL素子が作製される。作製された各有機EL素子の初期輝度半減期及び輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表1に示す。
比較例1
比較例1では、電子輸送層6を、二種類の材料によって形成するのに代えて、Alq3のみで形成する他は、実施例1と同様にして有機EL素子が作製される。Alq3の蒸着は真空度約5.0×10−5Paの雰囲気下で0.1nm/sの速度で行なわれ、電子輸送層6の厚さは20nmである。作製された有機EL素子の初期輝度半減期および輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表1及び表3に示す。
比較例2
比較例2では、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの重量割合が60%である以外は、全て実施例1と同条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期及び輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表1に示す。
Figure 2004052057
評価
表1に示すように、Alq3と2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールを共蒸着して電子輸送層6を形成した実施例1〜実施例6及び比較例2の有機EL素子は、比較例1のAlq3のみで電子輸送層6を形成した有機EL素子に比べて、電力効率、電流効率とも優れる。また、実施例1〜6及び比較例1の有機EL素子は、比較例2の有機EL素子に比べて初期輝度半減期が長い。従って、電子輸送層6に占める2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの重量割合が1%以上50%以下のときに、長い初期輝度半減期と高い発光効率とが両立されることが示唆される。
実施例7では、第二の有機化合物としてAlq3に代えてBAlqを用いるように変更した以外は、実施例1と同様の条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期および輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表2に示す。BAlqはキノリノラト系金属錯体の一種であり、下記式(6)に示す構造を有する。
Figure 2004052057
なお、BAlqと2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールとを比較すると、ガラス転移温度に関してはBAlqの方が高く、実用上の電界強度下での電子移動度に関しては2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの方が高い。また、BAlq単独で形成された電子輸送層6を備える有機EL素子と、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール単独で形成された電子輸送層6を備える有機EL素子とを比較すると、BAlq単独で形成された電子輸送層6を備える有機EL素子の方が初期輝度半減期が長い。
実施例8〜12
実施例8〜12では、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの重量割合がそれぞれ10%、20%、30%、40%、50%である以外は、全て実施例7と同条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期及び輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表2に示す。
比較例3
比較例3では、電子輸送層6を、二種類の材料によって形成するのに代えて、BAlqのみで形成する他は、実施例1と同様にして有機EL素子が作製される。なお、BAlqの蒸着速度は0.1nm/sであり、電子輸送層6の厚さは20nmである。作製された有機EL素子の初期輝度半減期および輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表2及び表4に示す。
比較例4
比較例4では、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの重量割合が60%である以外は、全て実施例7と同条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期及び輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表2に示す。
Figure 2004052057
評価
表2に示すように、BAlqと2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールを共蒸着して電子輸送層を形成した実施例7〜実施例12及び比較例4の有機EL素子は、比較例3のBAlqのみで電子輸送層6を形成した有機EL素子に比べて、電力効率、電流効率とも優れる。また、実施例7〜実施例12及び比較例3の有機EL素子は、比較例4の有機EL素子に比べて初期輝度半減期が長い。従って、電子輸送層6に占める2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールの重量割合が1%以上50%以下のときに、長い初期輝度半減期と高い発光効率とが両立されることが示唆される。
実施例13では、第一の有機化合物として2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールに代えて2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールを用いるように変更した以外は、実施例1と同様の条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期および輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表3に示す。2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールはシロール誘導体の一種であり、下記式(7)に示す構造を有し、598.8の分子量を有する。
Figure 2004052057
なお、Alq3と2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールとを比較すると、ガラス転移温度に関してはAlq3の方が高く、実用上の電界強度下で電子移動度に関しては2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールの方が高い。また、Alq3単独で形成された電子輸送層6を備える有機EL素子と、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロール単独で形成された電子輸送層6を備える有機素子とを比較すると、Alq3単独で形成された電子輸送層6を備える有機EL素子の方が初期輝度半減期が長い。
実施例14〜18
実施例14〜18では、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールの重量割合がそれぞれ10%、20%、30%、40%、50%である以外は、全て実施例13と同条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期及び輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表3に示す。
比較例5
比較例5では、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールの重量割合が60%である以外は、全て実施例13と同条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期及び輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表3に示す。
Figure 2004052057
評価
表3に示すように、Alq3と2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールを共蒸着して電子輸送層を形成した実施例13〜実施例18及び比較例5の素子は、比較例1のAlq3のみで電子輸送層6を形成した素子に比べて、電力効率、電流効率とも優れる。また、実施例13〜実施例18及び比較例1の有機EL素子は、比較例5の有機EL素子に比べて初期輝度半減期が長い。従って、電子輸送層6に占める2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールの重量割合が1%以上50%以下のときに、長い初期輝度半減期と高い発光効率とが両立されることが示唆される。
実施例19では、第二の有機化合物としてAlq3に代えてBAlqを用いるように変更した以外は、実施例13と同様の条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期および輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表4に示す。
なお、BAlqと2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールとを比較すると、ガラス転移温度に関してはBAlqの方が高く、実用上の電界強度下で電子移動度に関しては2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールの方が高い。また、BAlq単独で形成された電子輸送層6を備える有機EL素子と、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロール単独で形成された電子輸送層6を備える有機EL素子とを比較すると、BAlq単独で形成された電子輸送層6を備える有機EL素子の方が初期輝度半減期が長い。
実施例20〜24
実施例20〜24では、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールの重量割合がそれぞれ10%、20%、30%、40%、50%である以外は、全て実施例19と同条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期及び輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表4に示す。
比較例6
比較例6では、電子輸送層6に対する2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールの重量割合が60%である以外は、全て実施例19と同条件で有機EL素子が作製される。作製された有機EL素子の初期輝度半減期及び輝度1000cd/mにおける電力効率と電流効率とを測定した結果を表4に示す。
Figure 2004052057
評価
表4に示すように、BAlqと2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールを共蒸着して電子輸送層6を形成した実施例19〜実施例24及び比較例6の有機EL素子は、比較例3のBAlqのみで電子輸送層6を形成した有機EL素子に比べて、電力効率、電流効率とも優れる。また、実施例19〜実施例24及び比較例3の有機EL素子は、比較例6の有機EL素子に比べて、初期輝度半減期が長い。従って、電子輸送層6に占める2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ビス(2−メチルフェニル)シロールの重量割合が1%以上50%以下のときに、長い初期輝度半減期と高い発光効率とが両立されることが示唆される。

Claims (12)

  1. 一対の電極と、その一対の電極の間に設けられた電子輸送層を含む複数の有機化合物含有層とを備えた有機電界発光素子であって、
    電子輸送層は、第一の有機化合物及び第二の有機化合物を少なくとも含有し、
    第一の有機化合物は、第二の有機化合物の電子移動度よりも高い電子移動度を有し、
    第二の有機化合物は、第一の有機化合物のガラス転移温度よりも高いガラス転移温度を有する
    ことを特徴とする有機電界発光素子。
  2. 一対の電極と、その一対の電極の間に設けられた電子輸送層を含む複数の有機化合物含有層とを備えた有機電界発光素子であって、
    電子輸送層は、第一の有機化合物及び第二の有機化合物を少なくとも含有し、
    第一の有機化合物は、第二の有機化合物の電子移動度よりも高い電子移動度を有し、
    電子輸送層が第一の有機化合物のみから形成される有機電界発光素子を第一の有機電界発光素子とし、電子輸送層が第二の有機化合物のみから形成される有機電界発光素子を第二の有機電界発光素子とした場合、第二の有機電界発光素子の初期輝度半減期が第一の有機電界発光素子の初期輝度半減期よりも長くなるように第一及び第二の有機化合物が選択されている
    ことを特徴とする有機電界発光素子。
  3. 請求の範囲第1項又は第2項に記載の有機電界発光素子において、第一の有機化合物がシロール誘導体であることを特徴とする有機電界発光素子。
  4. 請求の範囲第1項〜第3項のいずれか一項に記載の有機電界発光素子において、第一の有機化合物が400以上の分子量を有することを特徴とする有機電界発光素子。
  5. 請求の範囲第1項〜第4項のいずれか一項に記載の有機電界発光素子において、第二の有機化合物が金属錯体であることを特徴とする有機電界発光素子。
  6. 請求の範囲第5項に記載の有機電界発光素子において、前記金属錯体がキノリノラト系金属錯体であることを特徴とする有機電界発光素子。
  7. 請求の範囲第1項〜第6項のいずれか一項に記載の有機電界発光素子において、電子輸送層に占める第一の有機化合物の重量割合が1%以上かつ50%以下であることを特徴とする有機電界発光素子。
  8. 請求の範囲第1項〜第7項のいずれか一項に記載の有機電界発光素子において、第一及び第二の有機化合物が電子輸送層中に混在していることを特徴とする有機電界発光素子。
  9. 請求の範囲第8項に記載の有機電界発光素子において、第一及び第二の有機化合物が共蒸着されることによって電子輸送層が形成されていることを特徴とする有機電界発光素子。
  10. 請求の範囲第1項〜第7項のいずれか一項に記載の有機電界発光素子において、第一の有機化合物からなる第一の層及び第二の有機化合物からなる第二の層を電子輸送層が含むことを特徴とする有機電界発光素子。
  11. 請求の範囲第1項〜第10項のいずれか一項に記載の有機電界発光素子において、電子輸送層が5〜100nmの厚みを有することを特徴とする有機電界発光素子。
  12. 請求の範囲第1項〜第11項のいずれか一項に記載の有機電界発光素子において、一対の電極の間には有機化合物含有層としてホール注入層、ホール輸送層及び発光層がさらに設けられていることを特徴とする有機電界発光素子。
JP2004556825A 2002-11-06 2003-11-05 有機電界発光素子 Pending JPWO2004052057A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002322773 2002-11-06
JP2002322773 2002-11-06
PCT/JP2003/014108 WO2004052057A1 (ja) 2002-11-06 2003-11-05 有機電界発光素子

Publications (1)

Publication Number Publication Date
JPWO2004052057A1 true JPWO2004052057A1 (ja) 2006-04-06

Family

ID=32462545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004556825A Pending JPWO2004052057A1 (ja) 2002-11-06 2003-11-05 有機電界発光素子

Country Status (6)

Country Link
US (1) US20070018568A1 (ja)
EP (1) EP1560469A1 (ja)
JP (1) JPWO2004052057A1 (ja)
KR (1) KR100757721B1 (ja)
TW (1) TWI242038B (ja)
WO (1) WO2004052057A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610956B2 (ja) * 2004-07-15 2011-01-12 富士フイルム株式会社 有機電界発光素子
JP2006032638A (ja) * 2004-07-15 2006-02-02 Fuji Photo Film Co Ltd 発光素子
JP4846276B2 (ja) * 2005-06-14 2011-12-28 富士フイルム株式会社 有機電界発光素子
DE502005004675D1 (de) * 2005-12-21 2008-08-21 Novaled Ag Organisches Bauelement
JP2009124114A (ja) * 2007-10-22 2009-06-04 Chisso Corp シロール誘導体化合物を用いた電子輸送・注入層用材料及び有機電界発光素子
US9159945B2 (en) * 2012-12-13 2015-10-13 Universal Display Corporation System and method for matching electrode resistances in OLED light panels
US9812316B2 (en) * 2014-03-06 2017-11-07 Sharp Kabushiki Kaisha Mixed material, method for producing same, and organic element using same
JP6659067B2 (ja) * 2016-02-18 2020-03-04 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987616A (ja) * 1995-07-17 1997-03-31 Chisso Corp シラシクロペンタジエン誘導体を用いた有機電界発光素子
JP2002015871A (ja) * 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2004063209A (ja) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd 白色有機エレクトロルミネッセンス素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650200B2 (ja) * 1995-12-29 2005-05-18 Tdk株式会社 キノキサリン系化合物を用いた有機el用素子
EP1113017B1 (en) * 1998-07-09 2005-12-21 Chisso Corporation Silole derivatives and organic electroluminescent element containing the same
JP2000196140A (ja) * 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
KR200171788Y1 (ko) * 1999-09-10 2000-03-15 주식회사홍익안전 벽면용 도로유지표지
JP5223163B2 (ja) * 2001-09-07 2013-06-26 東レ株式会社 発光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987616A (ja) * 1995-07-17 1997-03-31 Chisso Corp シラシクロペンタジエン誘導体を用いた有機電界発光素子
JP2002015871A (ja) * 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2004063209A (ja) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd 白色有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEM.MATER., vol. 13, no. 8, JPN6009015548, 2001, US, pages 2680 - 2683, ISSN: 0001290478 *

Also Published As

Publication number Publication date
EP1560469A1 (en) 2005-08-03
KR100757721B1 (ko) 2007-09-11
WO2004052057A1 (ja) 2004-06-17
US20070018568A1 (en) 2007-01-25
TW200415227A (en) 2004-08-16
KR20050084641A (ko) 2005-08-26
TWI242038B (en) 2005-10-21

Similar Documents

Publication Publication Date Title
KR100777174B1 (ko) 유기 전계 발광 소자
TWI495707B (zh) 有機發光二極體及其製造方法
JP4368638B2 (ja) 有機エレクトロルミネッセント素子
JP4886352B2 (ja) 有機エレクトロルミネッセンス素子
EP2299786B1 (en) Stacked organic light-emitting diode
KR100875872B1 (ko) 유기 el 소자
JP4915650B2 (ja) 有機エレクトロルミネッセンス素子
KR100970362B1 (ko) 백색 발광 유기 el (일렉트로루미네선스) 소자 및 그색도 조정 방법
JP2008098180A (ja) 有機素子
JP2006172763A (ja) 有機el素子
JP2002043063A (ja) 有機発光素子
JP2004207102A (ja) 有機エレクトロルミネッセンス素子
JP2004079413A (ja) 有機エレクトロルミネッセント素子
JP3825725B2 (ja) 有機エレクトロルミネッセンス素子
JP4915651B2 (ja) 有機エレクトロルミネッセンス素子
JPWO2004052057A1 (ja) 有機電界発光素子
JP3967946B2 (ja) 有機電界発光素子
JP2008053558A (ja) 有機エレクトロルミネッセンス素子
EP1009042A2 (en) Electroliuminescent device with arylethylene derivatives in hole transport layer
JP2003282265A (ja) 有機電界発光素子
JP5658028B2 (ja) 有機el素子
JP4950632B2 (ja) 有機エレクトロルミネッセンス素子
JP4886476B2 (ja) 有機エレクトロルミネッセンス素子
JP2004253373A (ja) 有機el素子
So et al. Organic Molecular Light-Emitting Materials and Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202