JPWO2004032320A1 - マイクロ共振装置、マイクロフィルタ装置、マイクロ発振器および無線通信機器 - Google Patents

マイクロ共振装置、マイクロフィルタ装置、マイクロ発振器および無線通信機器 Download PDF

Info

Publication number
JPWO2004032320A1
JPWO2004032320A1 JP2004541277A JP2004541277A JPWO2004032320A1 JP WO2004032320 A1 JPWO2004032320 A1 JP WO2004032320A1 JP 2004541277 A JP2004541277 A JP 2004541277A JP 2004541277 A JP2004541277 A JP 2004541277A JP WO2004032320 A1 JPWO2004032320 A1 JP WO2004032320A1
Authority
JP
Japan
Prior art keywords
microresonator
micro
micro movable
electrode
movable part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004541277A
Other languages
English (en)
Other versions
JP4121502B2 (ja
Inventor
敏 森下
敏 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2004032320A1 publication Critical patent/JPWO2004032320A1/ja
Application granted granted Critical
Publication of JP4121502B2 publication Critical patent/JP4121502B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02393Post-fabrication trimming of parameters, e.g. resonance frequency, Q factor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/462Microelectro-mechanical filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane
    • H03H2009/02503Breath-like, e.g. Lam? mode, wine-glass mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02511Vertical, i.e. perpendicular to the substrate plane

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Micromachines (AREA)

Abstract

このマイクロ共振装置は、基板(10)と、この基板(10)設けられたマイクロ共振体(13)と、二つのマイクロ可動部(16,16)と、この二つのマイクロ可動部(16,16)を駆動するマイクロ可動部駆動機構(17)とを備える。そして、このマイクロ可動部駆動機構(17)により、前記二つのマイクロ可動部(16,16)を前記マイクロ共振体(13)に機械的に作用させて、前記マイクロ共振体(13)の共振周波数を変えることができる。

Description

本発明は、基板上に集積回路の一部として組み込み可能なマイクロ共振装置に関し、特に、マイクロ・エレクトロ・メカニカル・システムを利用したマイクロフィルタ装置およびマイクロ発振器、並びに無線通信機器に関する。
マイクロ・エレクトロ・メカニカル・システム(MEMS)を用いたマイクロ共振子は、例えば、文献1(F.D.Bannon,III,J.R.Clark,and C.T.−C.Nguyen,IEEE J.Solid−State Circuits,vol.35,No.4,pp.512−526,April 2000)に示されているように、その固有振動数(共振周波数)を利用してその周波数の信号のみを正確に通過させ、その他の周波数信号および雑音を減衰させることができる。他の受動素子(コンデンサやインダクター)を用いる場合や能動素子を用いる場合に比べて、集積回路に組み込める超小型サイズで極めて狭帯域なフィルタ(高Qフィルタ)が実現できることから、その検討が進められている。
図30は、従来技術によるシリコン基板上にポリシリコン膜で形成されたマイクロ共振子300を備えるマイクロフィルタの例である。入力電極301に与えられた交流信号によって、交流信号の周波数がマイクロ共振子300の共振周波数に類似の場合、マイクロ共振子300は振動し、選択されたAC信号が出力端302から伝送される。
図30に示すような共振子の共振周波数は、上記文献1に示されるように、ほぼ次式で表される。
Figure 2004032320
Figure 2004032320
ここで、kは定数、ρは共振子材料の密度、Eは共振子材料のヤング率、Lrは共振子の実効長さ、hは共振子の厚さである。共振子材料にポリシリコン(E=150GPa)を用い、共振子の膜厚を2μmとすると、この式からも明らかなように、共振子の長さが数10μmから数μm程度の共振子を用いれば、数100MHzからGHz帯の周波数のものが得られることがわかる。
しかし、実際に基板上にLSI(集積回路)プロセスで作製して所望の共振周波数の共振子が得られるかとなると、LSIプロセスにおいても設計上許容しなければならない加工精度のマージンがあり、そのマージンに応じて共振子の長さにばらつきが存在することになる。したがって、出来上がった共振子には、加工技術では制御できない共振周波数の不正確さは避けられないことになる。これは、MEMSを作製する上で重大な欠点となる。
さらに、従来、MEMS材料として使用されているポリシリコンでは、共振子サイズを結晶粒サイズよりも小さくすることは困難であり、共振子表面に凹凸が形成され共振子の膜厚がばらついてしまう。また、共振子内に多数の粒界が存在し、結晶方位が不揃いなため、正確な機械的特性(ヤング率)も得られない。内部応力もまた不均一になりそりや縮みなどの原因となる、これら膜厚の不均一性、機械特性のばらつき、応力によるそりや縮みは全て共振周波数の不正確さの要因となる。共振子の長さのように平面的に非破壊で測定可能なものであれば、LSI製造工程で使用される高性能の測長技術により、出来上がり寸法をある程度の精度で確認することができるが、内部応力や不均一なそりや縮みは、平面的に非破壊な測定方法で正確に確かめることも不可能なため、製造工程のなかで検査し、修正を加えることも困難である。
また、図30に示すように、基板表面に積層して形成する表面MEMSでは、共振子の支持部や下部電極の影響で共振子に角部303の曲がり(曲率)やくぼみ304、凸部305が形成される。これらは、製造工程におけるマスクのアライメントのズレや、加工形状および堆積膜厚のバラツキなどに依存して形状が異なることから、共振周波数のばらつき要因となる。
特開2001−94062号公報には、シリコン・オン・インシュレータ(SOI)基板を使用し、単結晶シリコンの共振子を形成し、ポリシリコンのもつ多結晶性に起因する膜厚バラツキや機械的特性のばらつきの問題を解決する技術が開示されているが、加工精度ばらつきによる共振周波数の不正確さを本質的に解決するものではない。
特開2001−94062号公報には、その製造工程において、イオン注入により共振子の密度を変え、共振子の共振周波数を制御する方法が開示されているが、この手法では、共振子のサイズや機械的特性を正確に測定し、注入前の共振周波数を正確に見積もることができなければ、所望の共振周波数にするためのドーズ量を決定できない。つまり、共振子の寸法測定に使用する検査装置の測定誤差と、そして、2μm程度の厚さと数μm以上の長さを有する共振子内でイオン注入後の濃度分布を完全に把握することが困難であることを考慮すると、注入後の共振子における機械的特性のばらつきを正確に予測することは困難であり、この手法で製造工程に起因する共振周波数の不正確さを本質的に解決するのは困難である。
さらに、共振子の共振周波数ならびに共振ピークの振幅増幅率(Q値)は、文献2(Y.T.Cheng et al.,Proceedings of MEMS Conf.p18,2001)に開示されているように、共振子を封止したキャビティ内の圧力に強く依存するため、製造途中で共振子の共振特性を調整したとしても、最終の共振特性は、封止圧力のばらつきにより変動してしまうことになる。封止工程で封止を行なう真空装置内の圧力を精度よく調整するとしても、排気系の位置や装置内の構造により圧力分布が存在する。しかも、基板が搬送され、封止作業がおこなわれる基板上の共振子近傍の圧力を直接計測することは困難であり、実際に、圧力計が測定できるのは、封止工程を行なっている真空装置内で、封止作業に支障をきたさない周辺部にならざるを得ない。さらに、圧力計の絶対値精度においても原理的に数%の以下の精度を再現性よく実現することは困難である。また、排気系の排気能力の安定性を考慮しなくてはならない。基板を搬入し、真空装置内で封止工程を行なう際の、基板、封止材料および封止作業を行なうマニピュレータなどの可動部からの脱ガス量など変動要素もある。以上のような複雑な要因に対し、基板上の共振子近傍の微細な封止領域の圧力を正確に狙い通りの圧力に制御することは極めて困難であり、封止前に共振子の共振特性を調整しても、封止後には、殆どの場合において、ずれてしまうことになる。
さらに、完成した共振子においても、使用環境、つまり、外部温度変化や封止圧力の変動あるいは劣化によって共振周波数は変動する。温度変化は、封止内部からの脱ガスや圧力変動、共振子そのものの熱膨張により共振周波数の変動をもたらす。つまり、使用環境下や経時劣化による変動があっても、共振周波数が最適に調整できる機能がなければ使えないことになる。
上記文献1に共振子(共振周波数10MHz程度)に印加するバイアス電位によっての共振周波数を変更する方法が開示されているが、この手法では、入力電極と共振子の間の電位差によって生じる静電力で、共振子を入力電極側に引き寄せ、共振子の共振周波数を変えている。したがって、共振子の持つバネの力に対して静電力の強さを相対的に大きくすることによって、より共振子が入力電極に近づき、共振周波数の変化も大きくできることになる。ところが、共振周波数がさらに大きくなものに適用するとなると、共振子の長さは短くなり、それにともない入力電極のサイズも小さくなるため、必然的に静電力は小さくなる。さらに、共振子の長さが短くなると共振子のバネの力は強くなることから、相対的な静電力の大きさは急激に弱まり、バイアス電位による共振周波数の変動範囲はほとんど確認できないレベルにまで低下する。つまり、バイアス電位を利用する方法は、高周波領域の共振周波数をもつ共振子に対して、上述の加工精度のばらつきや封止圧力のばらつきによる共振周波数の不正確さを補償するだけの制御を可能にするものとはいい難い。
さらに、上記文献1に示してあるように、バイアス電位による制御は、バイアス電圧を上げるほど、共振周波数を低下させ、共振ピークにおける振幅増幅率(Q値)も低下させる。実際の使用環境では、封止圧力の劣化(圧力の上昇)、温度上昇など、いずれにおいても、共振周波数が低下するため、共振周波数は高める側への制御が必要となる。しかしながら、バイアス電圧はMEMSの出力と比例関係があるため、バイアス電位を必要以上に低下させられず、基本的に周波数を高める側への制御できる手法ではないという問題がある。
また、集積回路への組み込みを考えると、通常CMOS回路は、3〜5V程度の電圧を使用しているため、MEMS用制御電圧を上げるとしても、40V程度が限界と考えられる。というのは、この程度場合でも、MEMS制御回路用にゲート絶縁膜やウェル構造などを、電圧に応じたスケーリングのために、低電圧用、中電圧用、高電圧用と3種類程度の使い分けが必要となり、製造工程が複雑になり、コストの増が避けられないからである。バイアス電圧を用いる方法では、実際には、制御可能な電圧の上限も低く、制御範囲が狭いことも問題となる。
そこで、本発明は、上述のような従来技術の問題点を解決するために成されたものであって、基板上に集積回路の一部として組み込み可能なマイクロ共振装置であって、共振子を封入した後においても共振子の加工精度のばらつきや封入圧力のばらつきによる変動を補償し、共振周波数を調整できるマイクロ共振装置、特に、周波数可変マイクロフィルタ装置およびマイクロ発振器、並びに無線通信機器を提供することにある。
この発明のマイクロ共振装置は、基板と、
この基板に設けられたマイクロ共振体と、
このマイクロ共振体に機械的に作用する少なくとも一つのマイクロ可動部と、
このマイクロ可動部を駆動して、前記マイクロ共振体に対する前記マイクロ可動部の機械的な作用状態を変化させるマイクロ可動部駆動機構と
を備えていることを特徴とする。
より詳しくは、前記マイクロ共振体は、選択されたパラメーターの変動に応答して振動し、また、マイクロ可動部は、外部からの操作によって所定の力で前記マイクロ共振体に機械的あるいは力学的に作用し、前記マイクロ共振体の共振周波数、あるいは共振ピークにおける振幅増幅率、あるいは入力可能信号強度を変えることができる。
このマイクロ共振装置によれば、共振子を封入した後においても共振子の加工精度のばらつきや封入圧力のばらつきによる共振周波数の不確かさを補償し、共振周波数の調整が可能なマイクロ共振装置の提供が可能となった。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部は、前記マイクロ共振体の振動領域あるいは振幅の分布形状を変える。
この一実施形態のマイクロ共振装置によれば、前記マイクロ共振体の共振周波数、あるいは共振ピークの振幅増幅率(Q値)、あるいは入力可能信号強度を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部は、前記マイクロ共振体の支持端付近における振動の吸収を制御する。
この一実施形態のマイクロ共振装置によれば、前記マイクロ共振体の共振周波数、あるいは共振ピークの振幅増幅率(Q値)、あるいは入力可能信号強度を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、前記マイクロ可動部を、前記マイクロ共振体に接触させ、または、前記マイクロ共振体から離す。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、前記マイクロ可動部を前記マイクロ共振体に所定の大きさの力で接触させ、または、前記マイクロ可動部を前記マイクロ共振体に接触させている力の大きさを変える。
この一実施形態のマイクロ共振装置によれば、前記マイクロ共振体の共振周波数、あるいは共振ピークの振幅増幅率(Q値)、あるいは入力可能信号強度を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、前記マイクロ可動部が前記マイクロ共振体に接触する位置あるいは接触する方向を変える。
この一実施形態のマイクロ共振装置によれば、外部からの操作によって、前記マイクロ共振体の共振周波数、あるいは共振ピークの振幅増幅率(Q値)、あるいは入力可能信号強度を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部が前記マイクロ共振体に接触する位置は、前記マイクロ共振体の支持端付近あるいは振動の節位置付近である。
この一実施形態のマイクロ共振装置によれば、マイクロ共振体の共振周波数が不安定になることを抑制できる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部が前記マイクロ共振体に接触する位置は、前記マイクロ共振体の振動の振幅ピーク位置よりも振幅の小さい領域である。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振周波数が不安定になることを抑制できる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部と前記マイクロ共振体との接触によって形成される交線のうち、前記マイクロ共振体の主たる振動が起こる側に形成される交線が、前記マイクロ共振体の主たる共振周波数に関わる寸法の実効値を示す線分方向に対して、ほぼ垂直に位置するように構成される。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ共振体が、マイクロ共振子とマイクロ共振子支持部を備え、前記マイクロ可動部と前記マイクロ共振体との接触によって形成される交線のうち、前記マイクロ共振体の主たる振動がおこる側に形成される交線が、前記マイクロ共振子と前記マイクロ共振子支持部が形成する交線のうち前記マイクロ共振体の主たる振動が起こる側か、あるいは最も離れたところに形成された交線にほぼ平行に位置するように構成される。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ共振体が、マイクロ共振子とマイクロ共振子支持部を備え、前記マイクロ可動部と前記マイクロ共振体との接触によって形成される交線のうち、前記マイクロ共振体の主たる振動が起こる側に形成される交線が、前記マイクロ共振子と前記マイクロ共振子支持部が形成する交線のうち最も前記マイクロ共振体の主たる振動がおこる側に形成された交線位置から、前記マイクロ共振体の主たる共振周波数に関わる寸法の実効値を示す線分の端位置までの距離を2倍に延長した位置より、前記マイクロ共振体の主たる振動がおこる側に位置するように構成される。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ共振体が、マイクロ共振子とマイクロ共振子支持部を備え、前記マイクロ可動部と前記マイクロ共振体との接触によって形成される交線のうち、前記マイクロ共振体の主たる振動の起こる側とは反対側に形成される交線が、前記マイクロ共振子と前記マイクロ共振子支持部が形成する交線のうち最も前記マイクロ共振体の主たる振動がおこる側に形成された交線位置より、前記マイクロ共振体の主たる振動が起こる側とは反対側に位置するように構成される。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部は、大きさ、あるいは形状、あるいは材質の異なる複数存在し、この異なるマイクロ可動部を前記マイクロ共振体に機械的に作用させる。
この一実施形態のマイクロ共振装置によれば、共振ピーク強度および共振ピークの振幅増幅率(Q値)をあまり下げずに共振周波数を変更する場合と、共振ピーク強度および共振ピークの振幅増幅率(Q値)をある程度下げて共振周波数を変更する場合とに、使い分けた制御が可能となる。
さらには、マイクロ共振体の両端に対し、それぞれマイクロ可動部を用意し、一つはマイクロ共振子の実効長さを示す線分の端位置近傍に、もう一つはマイクロ共振子の実効長さを示す線分の端位置から少し離した位置に接触するように配置することによって、粗調整用に共振周波数を大きく変更させたい場合と、さらに小さく共振周波数の微調整したい場合と、マイクロ可動部を使い分けて接触させることができ、マイクロ可動部を一箇所のみ接触させて制御する場合に比べて、振動ピーク強度の低下が少なく、振動ピークの振幅増幅率(Q値)の劣化を抑えた広範囲のマイクロ共振子の共振周波数精密調整が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、少なくとも前記マイクロ共振体に接触する前記マイクロ可動部先端部の共振周波数は、前記マイクロ共振体の共振周波数よりも大きい。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部をマイクロ共振子に接触させても、接触させない場合に比べて、振動ピーク強度の低下も少なく、振動ピークの振幅増幅率(Q値)の劣化を抑えた共振周波数の調整が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部と前記マイクロ共振体とは、それぞれ、相互に接触する接触部を有し、この接触部において、前記マイクロ可動部側あるいは前記マイクロ共振体側の表面の少なくともいずれか一方に固着防止層が形成されている。
この一実施形態のマイクロ共振装置によれば、接触時に固着することを防止しながら、接触による共振周波数の調整を繰り返し行なうことができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部の前記マイクロ共振体との接触部における前記マイクロ共振体の実効寸法を示す方向の長さは、前記マイクロ共振体の厚みより長くなっている。
この一実施形態のマイクロ共振装置によれば、効果的に共振周波数を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部と前記マイクロ共振体とが相対的に押し付けられる力の方向は、前記マイクロ共振体の主たる共振周波数に関わる寸法の実効値を示す線分方向に対してほぼ垂直である。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の実効的な長さを効果的に変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部と前記マイクロ共振体とが相対的に押し付けられる力の方向は、前記マイクロ共振体の主たる振動の振幅方向に対してほぼ平行か、あるいはほぼ垂直である。
この一実施形態のマイクロ共振装置によれば、押し付けられる力がマイクロ共振体の接触面に対して垂直に加えられ、効果的に実効長さを変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、可撓性を有する板状の圧電部材を備えている。
この一実施形態のマイクロ共振装置によれば、占有面積を小さくした駆動機構が基板上に作製可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、厚み変形型の圧電部材を備えている。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部の押し付け位置を変えることができる駆動機構を小さな占有面積で基板上に作製可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、すべり変形型の圧電部材を備えている。
この一実施形態のマイクロ共振装置によれば、より再現性の高い高精度の押し付け位置の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、静電駆動型のアクチュエータを備えている。
この一実施形態のマイクロ共振装置によれば、圧電材料を用いずに、通常のMEMSプロセスあるいはCMOSプロセスで用いられている材料で基板上に製作でき、基板垂直方向および水平方向の駆動力の発生が容易にかつ薄膜で実現可能となる。
また、一実施形態のマイクロ共振装置では、前記静電駆動型のアクチュエータは、前記基板に固定された第1の電極と、前記第1の電極から一定の距離に形成され、前記マイクロ可動部と連結し、外部から与えられる電圧により生じる前記第1の電極との電位差によって、前記第1の電極に接近または離れるように移動して前記マイクロ可動部を動かす第2の電極と、前記第2の電極に電気的に接続し、前記第2の電極および前記第2の電極に連結した構造を支持する弾性体とを備える。
この一実施形態のマイクロ共振装置によれば、共振周波数の制御範囲を広くでき、また、数10V以下の低電圧での制御も十分可能となる。さらに、マイクロ共振子の両端に異なるマイクロ可動部を使い分けてマイクロ共振体に接触させること、あるいは、粗調整用マイクロ可動部と微調整用マイクロ可動部を使い分けてマイクロ共振体に接触させることができる。そして、本発明は、基板に対して垂直な方向ならびに平行な方向に振動するマイクロ共振子、そして、基板に対して平行な方向に縦の振動モードで振動するマイクロ共振子に本発明が容易に適用できる。
また、一実施形態のマイクロ共振装置では、前記弾性体は、前記第2の電極が前記第1の電極から所定の距離のところまで前記第1の電極に接近すると、支点位置が変わって、前記弾性体の弾性係数が大きくなる。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部をマイクロ共振体に接触させるまでの移動時には、小さな弾性定数のため低電圧で長い距離が移動でき、マイクロ可動部がマイクロ共振体に接触してからは、高い弾性定数となるため、第2の電極の移動距離を抑えられ、プル・インを防止しながらマイクロ可動部の押し込む力を強めることができる。
また、一実施形態のマイクロ共振装置では、前記静電駆動型のアクチュエータは、前記第2の電極が前記第1の電極から所定の距離のところまで前記第1の電極に接近するときに、前記第2の電極および前記第2の電極に連結した構造を支持する第2の弾性体を備える。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部がマイクロ共振体に接触し、押し込む段階から、第2の電極を支持する構造の弾性係数を大きくすることができ、マイクロ可動部をマイクロ共振体に接触させるまでの移動時には、小さな弾性定数のため、低電圧で多くの距離が移動でき、マイクロ可動部がマイクロ共振体に接触してからは、高い弾性定数となるため、第2の電極の移動距離を抑え、プル・インを防止しながら、マイクロ可動部の押し込む力を強めることができる。
また、一実施形態のマイクロ共振装置では、前記所定の距離は、前記第1の電極および前記第2の電極に電位差が与えられていない釣り合い状態における、前記第1の電極と前記第2の電極との間の距離の3分の2よりも大きく設定されている。
この一実施形態のマイクロ共振装置によれば、第2の電極が第1の電極に近づきすぎてプル・インを引き起こす前にマイクロ可動部をマイクロ共振体に接触させることができる。
また、一実施形態のマイクロ共振装置では、前記所定の距離は、前記第1の電極および前記第2の電極に電位差が与えられていない釣り合い状態における、前記第1の電極と前記第2の電極との間の距離から前記マイクロ可動部と前記マイクロ共振体との間の距離を引いた距離近傍に設定されている。
この一実施形態のマイクロ共振装置によれば、第2の電極が第1の電極に近づきすぎてプル・インを引き起こす前にマイクロ可動部をマイクロ共振体に接触させることができる。
また、一実施形態のマイクロ共振装置では、前記弾性体および前記第2の電極に連結した構造は、前記第2の電極が前記第1の電極に接近するときに、前記第1の電極と前記第2の電極との位置がほぼ平行に保たれるような折れ曲がり部を備えている。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部の押し付け時に、押し付ける力の方向が垂直方向からずれるのを抑制し、また、第2の電極が水平より傾くのを防止することができる。
また、一実施形態のマイクロ共振装置では、前記静電駆動型のアクチュエータは、前記第2の電極から一定の距離に、前記第1の電極とは反対側に形成され、外部から与えられる電圧により生じる前記第2の電極との電位差によって、前記第2の電極および前記マイクロ可動部に駆動力を与える第3の電極を備える。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部とマイクロ共振体が固着して元の釣り合いの位置にもどらなかった場合においても、外部からの入力によって、マイクロ共振装置を解体することなく、マイクロ共振装置としての機能を復旧させる事ができる。
また、一実施形態のマイクロ共振装置では、前記静電駆動型のアクチュエータは、前記マイクロ可動部と連動する構造部から前記第1の電極と前記第2の電極とが対向する方向と直交する方向に一定の距離に形成されると共に、外部から与えられる電圧により生じる前記構造部との電位差によって、前記マイクロ可動部に対し、前記第1の電極と前記第2の電極とが対向する方向とは直交する方向の駆動力を与える第4の電極を備える。
この一実施形態のマイクロ共振装置によれば、上述の第3の電極を用いる方法よりもプロセスの簡略化とコスト削減し、固着を取り外す操作が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ共振体および前記マイクロ可動部は、その組成に少なくとも2つの元素が含まれる材料からなり、この元素のうち1つの元素は、高融点金属元素である。
この一実施形態のマイクロ共振装置によれば、室温程度の低温で堆積しても膜組成や膜質が容易に制御できるようになり、膜堆積時に膜はがれ等の破壊が起こるのを防ぎ、また、応力等負荷によるマイクロ構造の変形や破壊に対する耐性を向上できる。
また、一実施形態のマイクロ共振装置では、前記高融点金属元素は、タングステン、タンタル、モリブデンのいずれかである。
この一実施形態のマイクロ共振装置によれば、窒素等を含有させても高いヤング率のマイクロ構造部材がえられる。
また、一実施形態のマイクロ共振装置では、前記マイクロ共振体および前記マイクロ可動部は、その組成に少なくとも2つの元素が含まれる材料からなり、この材料は、高融点金属元素と、少なくとも窒素、酸素、炭素のいずれかの元素を含む。
この一実施形態のマイクロ共振装置によれば、室温程度の低温で堆積しても膜組成や膜質が容易に制御できるようになり、膜堆積時に膜はがれ等の破壊が起こるのを防ぎ、また、応力等負荷によるマイクロ構造の変形や破壊に対する耐性を向上できる。
また、一実施形態のマイクロ共振装置では、前記マイクロ共振体および前記マイクロ可動部は、その組成に少なくとも2つの元素が含まれる材料からなり、この材料は、組成あるいは内部残留応力の異なる少なくとも2つの層で構成される。
この一実施形態のマイクロ共振装置によれば、膜堆積時に膜はがれ等の破壊が起こるのを防ぎ、また、応力等負荷によるマイクロ構造の変形や破壊に対する耐性を向上できる。
また、この発明のマイクロフィルタ装置は、前記マイクロ共振装置と、前記マイクロ共振体に容量結合した入力電極と、前記マイクロ共振装置により選択された周波数信号を取り出すための出力電極と、前記マイクロ可動部駆動機構を駆動する入力電極とを有していることを特徴としている。
この発明のマイクロフィルタ装置によれば、製造後にマイクロ可動部の制御でマイクロ共振装置の共振周波数(マイクロフィルタ装置の中心周波数)を広範囲に調整可能となるため、従来法ではできなかった、製造時の加工ばらつきや封入圧力のばらつきによるマイクロ共振装置の共振周波数(マイクロフィルタ装置の中心周波数)の不確かさに対して、所望の(設計)値に補正・調整することが可能になる。さらに、従来法では歩留まりがとれない範囲の加工精度の製造装置および製造工程を用いても、歩留まりが取れるようになる。また、封入後にマイクロ可動部の制御によってマイクロフィルタ装置の中心周波数のズレを補正することができるため、使用時の外部環境(温度)の変化やマイクロ共振装置そのものの経時劣化(封止圧力の劣化ならびにマイクロ共振子材料の機械特性の劣化など)に対してもフィルタ出力を補正・最適調整することができ、フィルタとしての使用可能な環境条件範囲を拡大し、製品寿命を延ばすことができる。
また、一実施形態のマイクロフィルタ装置では、前記マイクロ共振装置の出力と前記マイクロ可動部駆動機構を駆動する入力とに接続されたマイクロ可動部制御回路を備え、このマイクロ可動部制御回路は、選択すべき所望の周波数と前記マイクロ共振装置により選択出力される信号の周波数にズレが存在するとき、前記マイクロ共振装置から所望の周波数信号が出力されるように、前記マイクロ可動部を調整する。
この一実施形態のマイクロフィルタ装置によれば、実際の使用環境の変化および使用時のマイクロ共振装置の状態に応じて、その場でマイクロフィルタ装置の周波数出力の調整が可能となり、共振体部が固着した場合にも、マイクロフィルタ装置を解体することなく、外部からの入力でマイクロ共振装置の機能復帰ができる。
また、一実施形態のマイクロフィルタ装置では、前記マイクロ可動部制御回路に接続された記憶素子を備え、この記憶素子は、前記選択すべき所望の周波数との差を補正するよう調整した前記マイクロ可動部駆動機構の制御値を記憶し、前記マイクロ可動部制御回路は、起動動作時に、前記記憶素子に記憶された前記マイクロ可動部駆動機構の制御値をもとに、前記マイクロ可動部を制御して、出力される周波数信号を調整する。
この一実施形態のマイクロフィルタ装置によれば、まったくの初期値から調整するよりも大幅に時間短縮ができる。
また、一実施形態のマイクロフィルタ装置では、前記記憶素子に記憶される前記マイクロ可動部駆動機構の制御値は、前記マイクロ可動部駆動機構の電極に印加する電圧、あるいは電極間に印加される電圧差のいずれかを与える設定値を含んでいる。
この一実施形態のマイクロフィルタ装置によれば、まったくの初期値から調整するよりも大幅に時間短縮ができる。
また、一実施形態のマイクロフィルタ装置では、前記マイクロ可動部制御回路は、前記選択出力される信号の周波数に存在するズレを所望の周波数に調整する際、前記記憶素子にあらかじめ記憶された前記マイクロ可動部駆動機構の制御電圧の最適制御ステップを用いて段階的に調整する。
この一実施形態のマイクロフィルタ装置によれば、いろいろなマイクロ共振装置あるいはマイクロフィルタ装置に対しても、調整幅を予測して簡便に周波数のズレを調整することができる。また、制御ステップを段階的に行なうことにより、正確に定常状態の周波数出力を確認して制御することができ、周波数を精度よく調整し短時間で最終結果を得ることができる。
また、この発明のマイクロ発振器は、前記マイクロ共振装置と、前記マイクロ共振体に容量結合した入力電極と、前記マイクロ共振装置により出力された周波数信号を取り出すための出力電極と、前記マイクロ可動部駆動機構を駆動する入力電極とを有していることを特徴としている。
この発明のマイクロ発振器によれば、製造後にマイクロ可動部の制御でマイクロ共振装置により出力される周波数を大幅に調整可能となるため、従来法ではできなかった、製造時の加工ばらつきや封入圧力のばらつきによるマイクロ共振装置の共振周波数あるいはマイクロ発振器の出力周波数の不確かさに対しても、所望値(設計値)にズレを調整可能となる。従来法にくらべ製造後の調整範囲が大幅に改善されるため、従来法では歩留まりがとれない同じ加工精度の製造装置および製造工程を用いても、歩留まりが取れるようになる。また、封入後にマイクロ可動部の制御によってマイクロ発振器の出力周波数のズレや変動をその場で補正することができるため、使用時の外部環境(温度)の変化やマイクロ共振装置そのものの経時劣化(封止圧力の劣化ならびにマイクロ共振子材料の機械特性の劣化など)に対しても出力の周波数特性を補正・最適調整することができ、発振器としての使用可能な環境条件範囲を拡大し、製品寿命を延ばすことができる。さらには、マイクロ可動部は、マイクロ共振体とともに、基板上に形成できるため、いろいろな周波数特性をもつマイクロ共振装置を並べて作製することが可能となり、いろいろ周波数特性のマイクロ共振装置とマイクロ可動部をならべることで、マイクロ発振器全体としての周波数特性の制御可能範囲が拡大し、使用目的や使用環境に応じて使い分けることができる。また、複数のマイクロ共振装置を組み合わせることで、ミキシングした出力を得ることも可能となる。
また、一実施形態のマイクロ発振器では、前記マイクロ共振装置の出力と前記マイクロ可動部駆動機構を駆動する入力とに接続されたマイクロ可動部制御回路を備え、このマイクロ可動部制御回路は、前記マイクロ共振装置により出力された周波数の変動を補正あるいは最適化するように、出力を検知しながら前記マイクロ可動部を調整する。
この一実施形態のマイクロ発振器によれば、実際の使用環境および使用時のマイクロ共振装置の状態に応じて、その場でマイクロ発振器の周波数出力の調整が可能となる。また、マイクロ可動部が固着した場合にも、マイクロ発振器を解体することなく、外部からの入力でマイクロ共振装置の機能復帰ができる。
また、一実施形態のマイクロ発振器では、前記マイクロ可動部制御回路に接続された記憶素子を備え、この記憶素子は、出力されるべき所望の周波数と実際の周波数との差を補正あるいは最適化するよう調整した前記マイクロ可動部駆動機構の制御値を記憶し、前記マイクロ可動部制御回路は、起動動作時に、前記記憶素子に記憶された前記マイクロ可動部駆動機構の制御値をもとに、前記マイクロ可動部を制御する。
この一実施形態のマイクロ発振器によれば、出荷時またはユーザーの通常の使用環境で行なった調整時のマイクロ可動部の制御値、あるいは、前回使用時に調整したマイクロ可動部の制御値を記憶素子に記録し、その値を基に、起動時にその選択されたマイクロ可動部を調整することで、まったくの初期値から調整するよりも大幅に時間短縮ができる。
また、一実施形態のマイクロ発振器では、前記記憶素子に記憶される前記マイクロ可動部駆動機構の制御値は、前記マイクロ可動部駆動機構の電極に印加する電圧、あるいは電極間に印加される電圧差のいずれかを与える設定値を含んでいる。
この一実施形態のマイクロ発振器によれば、まったくの初期値から調整するよりも大幅に時間短縮ができる。
また、一実施形態のマイクロ発振器では、前記マイクロ可動部制御回路は、前記出力された周波数における変動を補正あるいは最適化する際、前記記憶素子にあらかじめ記憶された前記マイクロ可動部駆動機構の制御電圧の最適制御ステップを用いて段階的に調整する。
この一実施形態のマイクロ発振器によれば、いろいろなマイクロ共振装置あるいはマイクロ発振器に対しても、予測された制御幅で簡便に周波数のズレを調整することができる。また、制御ステップを段階的に行なうことにより、正確に定常状態の出力周波数を確認して制御できるため、周波数を精度よく短時間に調整することができる。
また、この発明の無線通信機器は、送信部と、受信部と、前記送信部からの送信信号と前記受信部への受信信号とを分離するデュプレクサと、前記送信信号を電波として送信すると共に前記受信信号を電波として受信するアンテナと、少なくとも前記送信部および前記受信部に接続された前記マイクロフィルタ装置とを備えることを特徴としている。
この発明の無線通信機器によれば、前記マイクロフィルタ装置を備えるので、外部環境の変動やマイクロ共振装置そのものの内部変動によって、前記マイクロフィルタ装置の周波数特性に変動が生じても、通信状態と対比しながら前記マイクロ可動部の制御を行ない、前記周波数特性を調整し、通信状態を最適に保つことができる。
また、この発明の無線通信機器は、送信部と、受信部と、前記送信部からの送信信号と前記受信部への受信信号とを分離するデュプレクサと、前記送信信号を電波として送信すると共に前記受信信号を電波として受信するアンテナと、少なくとも前記送信部および前記受信部に接続された前記マイクロ発振器とを備えることを特徴としている。
この発明の無線通信機器によれば、前記マイクロ発振器を備えるので、外部環境の変動やマイクロ共振装置そのものの内部変動により、前記マイクロ発振器の周波数特性に変動が生じても、前記マイクロ可動部を調整して前記周波数特性変動を補正あるいは最適化することができる。
図1は、本発明の第1の実施形態のマイクロ共振装置を示す構成図である。
図2は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ共振体の模式断面図である。
図3は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ共振体の模式断面図である。
図4は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ共振体の模式断面図である。
図5は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ共振体の模式断面図である。
図6は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ共振子の周波数と振幅の関係図である。
図7は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部の接触面の構成図である。
図8は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部の接触面の平面図である。
図9は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部の模式断面図である。
図10は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ可動部の模式断面図である。
図11は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部駆動機構を示す構成図である。
図12は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部駆動機構(釣り合いの位置)を示す図11のA1−A2模式断面図である。
図13は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部駆動機構(押し付けの位置)を示す図11のA1−A2模式断面図である。
図14は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ可動部駆動機構を示す構成図である。
図15は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ可動部駆動機構(釣り合いの位置)を示す図14のB1−B2模式断面図である。
図16は、本発明の第1の実施形態のマイクロ共振装置における電極への印加電圧と移動距離の関係図である。
図17は、本発明の第1の実施形態のマイクロ共振装置における電極への印加電圧と固定力(作用する力の大きさ)の関係図である。
図18は、本発明の第1の実施形態のマイクロ共振装置における固着防止機構の模式断面図である。
図19は、本発明の第1の実施形態のマイクロ共振装置における他の固着防止機構の模式断面図である。
図20は、本発明の第2の実施形態のマイクロ共振装置を示す構成図である。
図21は、本発明の第2の実施形態のマイクロ共振装置におけるマイクロ共振体の平面図である。
図22は、本発明の第2の実施形態のマイクロ共振装置におけるマイクロ共振体の平面図である。
図23は、本発明の第2の実施形態のマイクロ共振装置におけるマイクロ可動部駆動機構を示す構成図である。
図24は、本発明の第2の実施形態のマイクロ共振装置におけるマイクロ可動部構造を示す構成図である。
図25は、本発明の第2の実施形態のマイクロ共振装置における他のマイクロ可動部構造を示す構成図である。
図26は、本発明の第3の実施形態のマイクロ共振装置を示す構成図である。
図27は、本発明の第3の実施形態のマイクロ共振装置におけるマイクロ共振体の模式断面図である。
図28は、本発明の第3の実施形態のマイクロ共振装置におけるマイクロ共振体の模式断面図である。
図29は、共振子形状が円形の場合のマイクロ可動部接触面の平面図である。
図30は、従来のマイクロ共振装置を示す構成図である。
図31は、本発明の第1の実施形態のマイクロ共振装置における別のマイクロ可動部駆動機構を示す構成図である。
図32A乃至図32Bは、本発明の第1の実施形態のマイクロ共振装置における別のマイクロ可動部駆動機構を示す構成図である。
図33は、本発明の第2の実施形態のマイクロ共振装置における他のマイクロ共振体の平面図である。
図34は、本発明の第2の実施形態のマイクロ共振装置における他のマイクロ可動部駆動機構を示す構成図である。
図35A乃至図35Fは、本発明の第1の実施形態のマイクロ共振装置における製造方法を示す工程図である。
図36A乃至図36Cは、本発明の第1の実施形態のマイクロ共振装置における他の製造方法を示す工程図である。
図37A乃至図37Cは、本発明の第3の実施形態のマイクロ共振装置における製造方法を示す工程図である。
図38A乃至図38Fは、本発明の第2の実施形態のマイクロ共振装置における製造方法を示す工程図である。
図39は、本発明の第4の実施形態のマイクロフィルタ装置または第5の実施形態のマイクロ発振器を示す構成図である。
図40は、本発明の第4の実施形態のマイクロフィルタ装置または第5の実施形態のマイクロ発振器における制御値を説明するための制御電圧と周波数の関係図である。
図41は、本発明の第4の実施形態のマイクロフィルタ装置または第5の実施形態のマイクロ発振器における制御動作を説明するためのタイミングチャートである。
図42は、本発明の第6の実施形態の無線通信機器を示す簡略構成図である。
図43は、本発明の第7の実施形態の無線通信機器を示す簡略構成図である。
以下に、本発明の好適な実施形態について添付の図面を参照して説明する。
(第1の実施形態)
図1は、本発明によるマイクロ共振装置の第1の実施形態を示す構成図である。
基板10に形成され、選択されたパラメーターの変動に応答して振動するマイクロ共振子11とその支持部12からなるマイクロ共振体13と、外部からの操作によってマイクロ共振体13に機械的あるいは力学的に作用することによって、前記マイクロ共振子の共振周波数、あるいは共振ピークにおける振幅増幅率、あるいは入力可能信号強度を変えることのできるマイクロ可動部16を備えている。
本実施例においては、基板10にSOI基板を用い、マイクロ共振子11に不純物のドープされた単結晶シリコンを用いているが、本発明は、基板材料や、マイクロ共振子材料および形態を限定するものではなく、SOI基板の代わりにシリコン単結晶基板、GaAs基板、ガラス基板などを使用してもかまわない。また、不純物のドープされた単結晶シリコンの変わりに、不純物のドープされた多結晶シリコン膜あるいはアモルファスシリコン、SiGe膜、SiC膜、Ni、タングステン、さらには、窒化タングステン、窒化タンタルなどの高融点金属の窒化物を用い、図30に示す従来例のごとき形態のマイクロ共振子を用いることもできる。
また、本実施例においては、入力電極15から与えられる高周波電気信号のうち、マイクロ共振子11の共振周波数近傍の周波数信号における変動に選択的に応じてマイクロ共振子11が振動するが、入力方式や入力信号はこれに限るものではなく、低周波の圧力変動や音響信号、機械振動を与えてもかまわない、マイクロ共振子11の共振周波数を所望の周波数になるよう設計することで、同様に選択的に応答させることができる。
本実施例において、マイクロ可動部16は、外部からの操作の際にマイクロ共振体13に機械的あるいは力学的に接触する、またはマイクロ共振体13から離れるように動かすことができ、所定の力でマイクロ可動部16を前記マイクロ共振体13に接触させたり、あるいは接触させている力の大きさを変えたり、接触させる位置を変えたりすることができる駆動機構17を備えている。18は、マイクロ可動部16とマイクロ共振体13の接触面を示す。
図2から図5を用いてマイクロ可動部16をマイクロ共振体13に接触させる、つまり機械的あるいは力学的に作用させることの効果を説明する。図2は、図1に示した第1の実施形態のマイクロ共振子11について、長さ方向の断面を示したものである。この断面図からわかるようにマイクロ共振子11はマイクロ共振子支持部12と接触する下部にくらべ、上部は共振子の自由度が高く、マイクロ共振子の共振周波数に関わる実効長さ21は、実際に計測できるマイクロ共振子の長さ20よりも少し長くなっている。ここで用いた共振周波数に関わる実効長さについて説明する。いかなる形態の共振子においても、共振子を振動させるためには共振子を少なくとも支持する必要があるが、共振子を理想的に点や面で支持あるいは固定することは事実上困難である。どうしても3次元的(立体的に)にマイクロ共振子に接触する支持部の振動への関与を完全に無くすことはできない。とくにマイクロ共振体のように、微細になればなるほど製造プロセスの限界もあり支持構造の接触する領域の割合の相対的な大きくなり、構造上この支持部の振動への関与を無視できなくなる。このため、実際のマイクロ共振子の共振周波数は、マイクロ共振子の外形寸法で決まる値からずれることになる。そこで、この共振周波数のずれを考慮したマイクロ共振子の共振周波数に関わる寸法を実効寸法としている。図2に示したマイクロ共振子の場合、共振周波数のずれ分をマイクロ共振子の長さの外形寸法との差ととらえ、得られた共振周波数から求めたものをマイクロ共振子の実効長さとして用いている。
そこで、図3に示すように、マイクロ可動部16をマイクロ共振子11の支持端付近で比較的自由度の高いところに接触させると、マイクロ共振子11の支持端付近の自由度が変わり、マイクロ共振子11の振動領域と振幅の分布形状が変わる。これによってマイクロ共振子11の共振周波数を変えることができるのである。多くの場合、共振周波数変更後のマイクロ共振子の実効長さ22は、マイクロ共振子の下部の長さ20とマイクロ可動部16間の長さ23の間に位置している。
図30に示す従来例のごときマイクロ共振体では、図4に示すように、支持端付近にも振動に対するある程度の自由度が存在するために、マイクロ共振子24の実効長さ25は、共振子下側寸法26よりも長くなる。このような場合においても、図5に示すように、マイクロ可動部30をマイクロ共振子24の支持端付近に接触させることによりマイクロ共振子24の振動領域と振幅の分布形状が変わる。これによって共振周波数を変えることができる。ここで、マイクロ可動部30をマイクロ共振子24に接触させる位置は、マイクロ共振子24の上面36に限るものではない。たとえば、マイクロ共振子24並びに支持部34の側面35でもよい。図4に示すように、支持端の自由度が比較的高いマイクロ共振体の場合には、マイクロ共振子の振動が支持部側に広がりやすいために支持端付近のいずれかの場所にマイクロ可動部を接触させて、支持部側への振動エネルギーのロスを抑制する、つまり支持側への振動エネルギーの吸収を制御することによってマイクロ共振体の共振周波数など共振特性を制御できる。
次に、具体例に基づき、第1の実施形態に従いマイクロ共振体の共振周波数が調整できることを示す。図6に、図4に示すような形態のマイクロ共振体でマイクロ共振子の中央に様々な周波数の振動を与えたときに共振子の応答を求めた結果を示す。共振体にはポリシリコン膜を用いている。共振体の寸法は、下部の長さ5.0μm、上部の長さ7.4μm、高さ1.0μm、幅1.0μmとした。また、マイクロ可動部の接触面の大きさは1.0μm×1.0μmである。周波数を横軸に縦軸に共振子の応答(振幅)を示している。グラフの曲線Aは、マイクロ共振体にマイクロ可動部を接触させていないときの結果で、曲線B、Cは、図5に示すように、マイクロ共振体上面に(片側のみ)マイクロ可動部の位置を変えて接触させたときの結果である。B、Cは、それぞれマイクロ共振子下側の端位置(交差位置)から共振子の中央よりに0.1μm、支持側よりに0.5μmずらした位置に接触させた場合に対応する。AとBの結果において共振周波数(中心周波数)は207.09MHzから220.23MHzに変化しており、その変化量は6.34%であった。しかも、本例は、周波数を高める側に調整が可能なことを示している。また、共振ピークにおける振幅増幅率(Q値)は、21.5%変化している。このように、マイクロ可動部をマイクロ共振体に接触させ、マイクロ共振子に作用させることでマイクロ共振子の共振周波数および共振ピークの振幅増幅率が容易に調整可能となった。
ここでは、マイクロ共振体が非常に硬く、マイクロ可動部の接触によって起こるマイクロ共振体の変形が無視できる程度である場合を示したが、実際には、力学的に押し付けることによって、マイクロ共振体に僅かな変形が起こっており、厚さ、曲率などの寸法の変化とともに、局所的な応力の発生・ひずみ・密度変化などをひきおこすことによってマイクロ共振子の共振周波数を変化させることができる。図5に示した例においても、マイクロ可動部の押し付ける力を弱めたり、押し付ける位置をより自由度の小さいところに変えたりすると、マイクロ可動部のマイクロ共振体との接触部の振動を拘束力が弱まり、共振周波数の変化量を少なくすることができる。マイクロ共振体にシリコンではなく、金属材料やプラスチックなど硬度の低い材料を用い、マイクロ可動部にシリコンや酸化シリコン、タングステン、ダイヤモンドなどマイクロ共振体より硬度の高い材料を用いた場合により変形の効果は大きくなる。
ここで、上述の結果が従来技術では如何に実現困難な結果であるかについて以下に説明する。通常MEMS共振子に使用される厚さ2μmのシリコンあるいはポリシリコンを、現在の最先端のLSIプロセスに使用される微細加工技術を用い、さらに最善のケースとして、マスク1枚で共振子の寸法を決める加工ができると仮定する。
まず、2μm厚のシリコンあるいはポリシリコンを加工するためのマスクには、通常のゲートポリシリコンの加工に使用するレジストにくらべ厚さが2〜3倍の厚膜レジストを用いるか、酸化シリコン膜などのハードマスクを用いる必要があるため、共振子の寸法に応じて加工マージンとして誤差が含まれる。誤差の量は、最善のケースを想定しても、共振子の寸法が数μm程度のとき±0.03μm、数10μm程度のとき±0.05μm、数100μm程度であれば±0.1μm程度見込まれる。
次に、厚さ2μmのシリコンあるいはポリシリコンの加工において、条件の最適化と処理時制御に細心の注意を払い、側壁の凹凸を0.01μm以内に押さえることができ、側壁の角度が89±1度の範囲で加工できたとして、側壁角度のばらつきは、寸法にして0.035μmに相当する。共振子の長さとしては両側の加工が影響するので少なくとも計0.09μmの誤差が発生することになる。
これらの加工精度のばらつきを考慮すると、例えば、共振子の設計寸法が100μmの場合、加工ばらつき0.2μmをふくむと、共振周波数は1.657MHzから1.670MHzまで0.8%ばらつくことになるが、これを従来のバイアス電位で制御するとなると、制御電圧は、0.2V以下になる。ばらつき範囲としては狭いが、共振子のサイズが100μmのため電圧降下を考えると、制御電圧が低く過ぎて制御困難となる。共振子の設計寸法10μmの場合、加工ばらつき0.12μmを含むと、共振周波数は162.438MHzから166.760MHzまで2.60%ばらつくことになるが、これを従来のバイアス電位で制御するとなると、制御電圧は、170V以上必要になる。これは、前述の通り集積回路に組み込むことを考えると大きすぎて適用困難である。設計寸法6μmの場合、加工ばらつき0.09μmを含むと、共振周波数は448.554MHzから476.293MHzまで6.00%のばらつきとになる。共振周波数への影響がさらに大きくなり、これを従来のバイアス電位で制御するとすると、制御電圧は、700V以上必要となる。
以上に示したように、従来のバイアス電位による制御方法では、現実的に制御できる範囲は、共振子寸法が数10μm付近、共振周波数が数10MHz帯の限られた領域となり、第1の実施形態で示したような制御を実現することはできないことがわかる。このことから容易に推測できるように、共振子の電位の制御や、外部からの電界、あるいは電気的に制御する磁界で共振周波数を制御しようとする方法では、その適用できる周波数帯が極めて狭い範囲に限られてしまうことがわかる。
また、従来のイオン注入により共振子の密度を制御し共振周波数を変える方法では、上述したような、加工精度のばらつきによる少なくとも数%以上の不確かさを密度で補償するために、要求される周波数精度に応じて所望の共振周波数のものが得られるよう注入量を振り分け、その数に応じてマイクロ共振子を基板上に準備しなければならない。しかし、注入前の段階で厳密な共振周波数がわからないために、少なくとも数10、数100通りの振り分けが必要となる。さらに、注入前の共振子のばらついた寸法がどの共振子がどれだけばらついているのか1対1にわかっているわけではないので、実際には注入量を数100通り振り分けても、等しく数百通りに密度を振り分けたものができるわけではなく、所望の共振周波数ものが得られるかどうか予測できない。後工程の封入圧力のばらつきを考慮すると、さらに所望のものを得られる確率は低くなり、最終的には、集積回路の一部に組み込むには、あまりにもコストと時間を浪費する、歩留まりの低い手法となる。このことから、イオン注入同様に、原子・分子の蒸着や付着により共振子の密度あるいは膜厚で制御しようとする手法では、第1の実施形態のように集積回路の一部として組み込み共振周波数制御を実施することは困難である。
図7にマイクロ可動部16とマイクロ共振体13の好適な接触形態を示す。マイクロ可動部16とマイクロ共振体13の接触する接触面18は、マイクロ共振子11の支持端付近、あるいは振動端付近が望ましい。マイクロ共振子11の主たる振動部分ではなく、支持端付近の振動の小さい部分に接触させることで、マイクロ共振体13とマイクロ可動部16の密着性を高めることができ、接触部の不安定さのためにマイクロ共振子11の共振周波数が変動することを防止できる。
さらには、マイクロ可動部16とマイクロ共振体13の交線のうち最もマイクロ共振子11の振動が起こる側の交線40が、マイクロ共振子11の主たる共振周波数に関わる寸法の実効値を示す線分方向41(マイクロ共振子の実効長さ方向)に対してほぼ垂直に位置するように構成される。このように配置することで、平面方向のマイクロ共振子11の実効長さばらつきを抑え、また、平面方向に高次の共振モードが強められたり、新たに発生したりすることを抑制できるため、マイクロ共振子11の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。ここで、図1、図3および図5に示したように、マイクロ可動部を作用させるのは、必ずしもマイクロ共振体の両端で行なう必要はない。いずれか一方にマイクロ可動部を作用させることにより共振周波数など共振特性を変更する効果が得られる。
さらには、図8に示すように、マイクロ可動部16とマイクロ共振体13の接触によって形成される交線のうち、最もマイクロ共振子11の主たる振動がおこる側に形成される交線43が、マイクロ共振子11とマイクロ共振子の支持部12が形成する交線のうち最もマイクロ共振体11の主たる振動が起こる側に形成された交線42にほぼ平行に位置するよう構成するのが望ましい。マイクロ可動部16が接触前のマイクロ共振子11の平面方向における実効長さの分布に関わっていた交線42に対して、交線43がほぼ平行になるようにすることで、マイクロ可動部16を接触させたときに、接触前とは著しく異なる平面方向の振動モードをもつようになることを抑制し、マイクロ共振子11の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。ここでは、図3に示すごときマイクロ共振子11を例に示したが、図5に示すごときマイクロ共振子24のような場合は、図5に示すように、マイクロ可動部30とマイクロ共振体24の接触によって形成される交線のうち、最もマイクロ共振子24の主たる振動がおこる側に形成される交線33が、マイクロ共振子24とマイクロ共振子の支持部が形成する交線のうち最もマイクロ共振体24の主たる振動が起こる側から離れた交線32にほぼ平行になるようにすることで同じ効果が得られる。これは、マイクロ共振子24の場合は、マイクロ共振子の下側よりもむしろ上面とマイクロ共振子の支持部との交線32の方が、マイクロ共振子24の実効長さに強く影響しているからである。
また、図8に示すように、マイクロ可動部16とマイクロ共振体13の接触によって形成される交線43は、マイクロ共振子11とマイクロ共振子支持部12が形成する交線42の位置から、前記マイクロ共振子の主たる共振周波数に関わる寸法の実効値を示す線分44の端位置45までの距離の2倍の位置46より、マイクロ共振体11の主たる振動がおこる側に位置することが望ましい。図3に示すごときマイクロ共振体11では、これ以上マイクロ共振子11の主たる振動の起こる側から遠い位置では、マイクロ可動部16を接触させてもマイクロ共振子11の共振周波数への寄与は小さいからである。
また、マイクロ可動部16とマイクロ共振体11の接触によって形成される交線47は、マイクロ共振子11とマイクロ共振子支持部12が形成する交線42の位置より、マイクロ共振体11の主たる振動が起こる側とは反対側に位置することが望ましい。これ以上マイクロ共振子11の主たる振動が起こる側に接触させると、マイクロ共振子支持部12との重なり部分がなくなり、マイクロ共振子11の可動部のみに接触すると、マイクロ共振子11からマイクロ可動部16へ振動エネルギーが伝わりすぎ、振動エネルギーのロスが大きくなり、共振ピークにおける振幅増幅率が著しく低下してしまう。また、マイクロ共振子11の振動によりマイクロ可動部16の固定力が変動し、接触面の僅かな浮き上がりなどが起こる危険性があり、共振周波数が不安定になる。図5に示すごときマイクロ共振体24においても結果は同じである。
また、図8に示すごときマイクロ共振体13では、マイクロ共振子11の幅よりマイクロ共振子支持部12の幅が広くなっており、マイクロ共振子11とはことなる振動の固有値をもつよう構成してある。これにより、マイクロ可動部16が接触したときの接触面18の幅も同様にマイクロ共振子支持部12側の方が広くなり、マイクロ共振子支持部12側の接触面内では振動を効率よく吸収し抑えることができる。幅が同じ、すなわち、同じ振動モードで振動しやすいと、マイクロ共振子の振動が支持部側に伝わりすぎて、図5に示すごときマイクロ共振体のように、マイクロ共振子の実効長さがマイクロ共振子支持部の端の方まできてしまうことになる。したがって、図5に示すごときマイクロ共振体においても、マイクロ共振子支持部のところは、マイクロ共振子と少なくとも幅が異なるようにするのが望ましい。ポリシリコンを用いた図5に示すごときマイクロ共振体で、共振体の寸法が、下部の長さ5.0μm、上部の長さ7.4μm、高さ1.0μm、幅1.0μmの場合において、支持部の幅がマイクロ共振子と同じ1.0μmの場合と、支持部のみ幅を4.0μmに広げた場合では、支持部を4.0μmに広げた方が、共振周波数が約10%高くなった。支持部の幅を広げることにより支持側への振動の広がりを抑制して実効長さを短くすることができた。
さらに、好適な実施形態では、少なくともマイクロ共振体に直に接触するマイクロ可動部の共振周波数は、マイクロ共振子の共振周波数よりも大きくする。ここでは、図9に示すようにマイクロ可動部50の先端部51の幅52を狭くし、マイクロ共振体に直に接する先端部51の局所的な共振周波数をマイクロ共振子の共振周波数よりも大きくなるようにした。先端51は弾性定数も大きくなり非常に振動しにくくなり、これによって、図6に示すように、マイクロ可動部をマイクロ共振子に接触させても、接触させない場合に比べて、振動ピーク強度の低下も少なく、振動ピークの振幅増幅率(Q値)の劣化を抑えた共振周波数の調整が可能となる。ポリシリコン膜をマイクロ共振体およびマイクロ可動部に用いた図5に示すごとき例で、共振体の寸法が、下部の長さ2.0μm、上部の長さ4.4μm、高さ1.0μm、幅1.0μmに対して、長さ1.0μm、幅4.0μm、高さ2.0μmのマイクロ可動部を接触させた場合には、マイクロ可動部も振動し、共振ピークの振幅の低下やサブ共振ピークの増大がみられたが、図9に示すように、マイクロ可動部の先端部を高さ1.0μmにわたって、長さ1.0μm、幅1.0μmにして、先端部の局所的な共振周波数(固有値)をマイクロ共振体よりも小さくすることによって、図6に示した結果のように、サブ共振ピークの増大の見られないようにすることができた。
さらに好ましくは、マイクロ可動部の先端部の大きさおよび形状を変え、共振周波数(固有値)が異なる複数のマイクロ可動部を備え、例えば、マイクロ共振体に対し、2種類の共振周波数をもつマイクロ可動部を、それぞれ、一方の端と他方の端に接触させることができるよう配置し、共振周波数の大きい方とあまり大きくない方のマイクロ可動部を使い分けて接触させることで、共振ピーク強度および共振ピークの振幅増幅率(Q値)をあまり下げずに共振周波数を変更する場合と、共振ピーク強度および共振ピークの振幅増幅率(Q値)をある程度下げて共振周波数を変更する場合とに、使い分けた制御が可能となる。先端部の共振周波数を変える好適な実施形態としては、図9に示すように、先端部の幅52を小さくし、この先端部の幅52のみを変えることで容易に達成できる。先端部の共振周波数を変える方法はこれに限るものではないが、このように共振周波数の異なるマイクロ可動部を選択して接触させることによって接触面内からのマイクロ共振子部の振動吸収や干渉の程度が変わるため、共振周波数のみでなく、振幅の大きさをかえること、つまり、マイクロ共振子に入力可能な信号強度範囲を変えることが可能となる。
また、マイクロ共振体の両端に対し、それぞれマイクロ可動部を用意し、一つはマイクロ共振子の実効長さを示す線分の端位置近傍に、もう一つはマイクロ共振子の実効長さを示す線分の端位置から少し離した位置に接触するように配置する。つまり、これにより、粗調整用に共振周波数を大きく変更させたい場合と、さらに小さく共振周波数の微調整したい場合と、マイクロ可動部を使い分けて接触させることができ、マイクロ可動部を一箇所のみ接触させて制御する場合に比べて、振動ピーク強度の低下が少なく、振動ピークの振幅増幅率(Q値)の劣化を抑えた、広範囲のマイクロ共振子の共振周波数精密調整が可能となる。
また、好適な実施形態では、マイクロ可動部とマイクロ共振体の接触部において、可動する側であるマイクロ可動部側の表面に固着防止層が形成されている。図10にその一例を示す、マイクロ可動部60の先端を覆うように固着防止層61が形成されている。固着防止層は少なくともマイクロ共振体63の上部表面62とは異なる材料で構成され、接触時に圧力が加えられても圧着しにくい材料が選ばれる必要がある。また、さらに望ましくは、固着防止層材料の硬度は、マイクロ共振体およびマイクロ可動部の芯部分64と硬度の異なる材料が選ばれる。本実施例では、マイクロ共振体に単結晶シリコン、マイクロ可動部の固着防止層にはシリコン窒化膜が用いられている。
さらに好ましくは、マイクロ共振体表面と固着防止層表面はその平滑さにおいて異なるものであることが望ましく、ここではマイクロ共振体のシリコン表面が単調で平坦であるのに対し、固着防止層の窒化シリコン膜表面は、緩やかな曲線部分が含まれており、接触時に押し付けても完全に接触面すべてが密着せず、微小面積の空間あるいは隙間が残るよう構成されており、固着を防止する構造になっている。また、マイクロ共振体に単結晶シリコンではなく、ポリシリコンを用いた場合には、マイクロ共振子表面が緩やかで大きな凹凸を有するため、例えば、フッ素系ガスプラズマで処理可能な通常のドライエッチング装置を用い、例えば等方エッチング条件を用いてシリコン表面の平滑化処理を行って、マイクロ共振子側表面に固着防止層を形成するとよい。また、この際、66のように、平滑化の処理範囲は、少なくともマイクロ可動部の押し付け可能範囲を含むようにするのが望ましい。平滑化の方法はこれに限るものではなく、表面に例えば窒化シリコン膜をコーティングして平滑化することもできる。また、マイクロ可動部側の固着防止層の窒化シリコン膜側をマイクロ共振子側のポリシリコン膜表面よりも単調で平坦な表面をもつように構成させてもよい。これにより、接触時に接触面積をできるだけ確保しながら、押し付けても完全に接触面すべてが密着せず、微小面積の空間あるいは隙間が点在して残るよう構成することができ、接触時に固着することを防止しながら、接触による共振周波数の調整を繰り返し行なうことができる。
また、好適は実施形態においては、固着防止層は表面に近いほど小さな粒径の結晶で構成されており、表面層の粒径に依存する凹凸が小さく、平坦あるいは単調な曲線表面が形成されるようになっている。また、固着防止層の膜厚は、マイクロ共振体との接触時においても、マイクロ可動部とマイクロ共振体が直流的に絶縁されるのに十分な膜厚になっており、これにより、マイクロ可動部側の電位およびマイクロ共振体の電位をそれぞれ独立に制御することができ、マイクロ共振体の電位は、マイクロ共振体からの出力が最適化されるように調整でき、一方で、マイクロ可動部側では、電位をたとえば0Vに固定することができる。これによって、マイクロ共振体側からマイクロ可動部へのRF電位の漏れに対しても、後述のマイクロ可動部の駆動機構を安定動作できる。
また、好適な実施形態においては、図10に示すように、マイクロ可動部60のマイクロ共振子63の実効寸法を示す方向の長さ65は、マイクロ共振子63の厚み、あるいは、マイクロ共振子の主たる振動方向の長さより長くなっている。マイクロ共振子63の実効寸法を示す方向の長さ65がマイクロ共振子63の厚みより短くなっている場合には、マイクロ共振子の主たる振動が起こる側から伝わる振動エネルギーが、マイクロ可動部との接触部の下部を通過して反対側まで伝わりやすくなり、マイクロ可動部を接触させても共振周波数の変化量は小さく、効果的に共振周波数を変えることができなくなるためである。
マイクロ可動部とマイクロ共振体の接触部の押し付けられる力の方向は、マイクロ共振子の主たる共振周波数に関わる寸法の実効値を示す線分方向に対してほぼ垂直であることが望ましい。図3を例に説明すると、マイクロ共振子11の主たる共振周波数に関わる寸法の実効値を示す線分22の方向に対して、マイクロ可動部16がほぼ垂直に押さえつけられることで、マイクロ共振子11上部の自由度を効果的に拘束し、マイクロ共振子11の実効的な長さを効果的に変えることができるからである。このことは、図3に示すマイクロ共振体に限るものではなく、図5、図22および図28に示すごときマイクロ共振体についても同じ効果が得られる。
さらに好適な実施形態においては、マイクロ可動部とマイクロ共振体の接触部の押し付けられる力の方向は、マイクロ共振体の主たる振動の方向に対してほぼ平行に与えられる。これは、図3に示すマイクロ共振体を例に説明すると、マイクロ可動部16とマイクロ共振体13の接触面は、マイクロ共振子11の振動方向37に対してほぼ垂直な面と連結していることが望ましく、マイクロ可動部16とマイクロ共振体13の接触部の押し付けられる力は、この接触面に対して垂直に加えられる場合が、マイクロ共振子11の自由度を拘束し、実効長さを変えるのに効果的だからである。このことは、図3に示すマイクロ共振体に限るものではなく、図5及び図22に示すようなマイクロ共振体についても同様に効果が得られる。
次に、マイクロ可動部に取り付けられた駆動機構17の好適な実施形態について説明する。マイクロ可動部の駆動機構は、少なくともマイクロ可動部の押し付け方向の駆動力を備えており、図31に示すように、可撓性を有する圧電部材120を備えたバイモルフ型圧電素子129を用いることができる。圧電素子129の一方の端はバイモルフ素子固定部130で基板上に固定されており、もう一方の端にマイクロ共振体(図示せず)に接触するマイクロ可動部128が備えられている。バイモルフ型圧電素子は、例えば、特開平6−155355に開示されているように、第1の電極となる内部電極層125と第2の電極となる外部電極層126に電位差を与えることによってバイモルフ型圧電素子129が湾曲し、矢印124のようにマイクロ可動部128を備えた先端が移動する。これによってマイクロ可動部128に押し付け方向の駆動力を発生させることができる。本実施形態のように基板に平行な板状バイモルフ型圧電素子を用いれば、基板上への作製も容易であり、また、圧電素子の電極に配線するだけでよいため、占有面積を小さくしたマイクロ駆動機構が基板上に作製可能となる。図3および図5に記載のようにマイクロ共振体の両端にマイクロ可動部を押し付けることができるようにするには、図31に示すごときマイクロ可動部駆動機構を、さらに1つ備えればよい。
さらに好適なマイクロ可動部駆動機構の実施形態では、厚み変形型の圧電部材が備えられている。図31に示すように、バイモルフ型圧電素子固定部130に厚み変形型圧電部材131を用いれば、厚み変形型圧電素子の制御電極132および133に電位差を与えることにより、矢印136のように厚み方向に変形し、マイクロ可動部128が備えられたバイモルフ型圧電素子129を移動させることができる。この操作のみによってもマイクロ可動部128を押し付け方向に移動させることができるが、バイモルフ型圧電素子固定部130の高さを変えることができるので、バイモルフ型圧電素子129と組み合わせて操作することによって、マイクロ可動部128の押し付け位置を変えることが可能となる。本実施形態によれば、厚み変形型圧電素子は、電極層と圧電体層を積層するだけで形成できるため、基板上への形成が容易であり、占有面積の増加も抑えられる。
さらに好適なマイクロ可動部駆動機構の実施形態では、すべり変形型圧電部材が備えられている。図32Aに示すように、すべり変形型圧電部材141をバイモルフ型圧電素子固定部130に備えれば、両側の電極層146,147に電位差を与えることで、すべり変形型圧電部材141は、図32Bに示すように、矢印149のように変形し、バイモルフ型圧電素子129を移動させることができる。この操作のみによってもマイクロ可動部128の押し付け位置を変更することができるが、厚み変形型圧電素子140やバイモルフ型圧電素子129と組み合わせることによって、より再現性の高い、高精度の押し付け位置の変更が可能となる。
次に、静電駆動型アクチュエータを用いたマイクロ可動部駆動機構の好適な実施形態について図11から図15を参照しながら説明する。図11に示すように、マイクロ可動部の駆動機構は、基板上に固定された第1の電極70と、電極から一定の距離に形成され、マイクロ可動部71と連結し、外部から与えられる電圧72により生じる第1の電極70との電位差によって、第1の電極70に接近または離れるように移動し、これによりマイクロ可動部71を動かすことができる第2の電極73と、第2の電極73の側面に電気的に連結し、第2の電極73および電極に連結した構造を支持する弾性体74とを備えている。前述の従来例で示したバイアス電位で共振周波数を制御する方法では、入力電極に印加された電圧と共振子に印加された電圧の電位差によって生じる静電力を利用するため、電極サイズが共振子の周波数で決まる共振子のサイズで自動的に限定され、しかも共振周波数を高くするためには電極面積は小さくせざるをえないため、大きな静電引力が得られず、周波数制御に限界があった。また、共振子のサイズが小さくなると共振子の弾性定数が大きくなることから、静電力の影響が相対的に小さくなり共振周波数の制御はさらに困難になったが、本実施形態によれば、共振周波数を制御するためのマイクロ可動部を押し付ける力を得るための、第1の電極70と第2の電極73のサイズを、マイクロ共振子のサイズ(周波数)に関係なく自由に設定でき、かつ、マイクロ可動部71および第2の電極73に連結して支持する弾性体のサイズ(弾性定数)も自由に設定できることから、共振周波数の制御範囲を広くすることが可能となる。第2の電極73及びそれに連結した構造をささえる弾性体74にポリシリコンを用いて作製した場合で見積ると、厚さ1.0μmで幅3.0μm、長さ77.0μmのバネを繋いで折り返した構造で支持するとバネ定数は0.9N/m程度に小さくすることができる。また、第2の電極73の面積を10000μm2とし、第1の電極70と第2の電極に電圧を印加していない状態での距離を1.0μmとすると、マイクロ可動部71をマイクロ共振体に押し付けるのに必要な電圧は、第2の電極を0Vの場合、第1の電極に約1.5V印加するだけでよいことになる。
さらに、好適な実施形態では、図11および図12は、2組のマイクロ可動部駆動機構が連結しており、図3に示すマイクロ共振子のようにマイクロ共振子の両端に同時に等しくマイクロ可動部を接触させることができる。このような両端を支持部79が支える構造にすることによって、第2の電極73を上下方向に動かす際に、水平方向のズレを抑制することができる。また、連結部75により連結した構成にすることによって、第2の電極73および該電極に連結した構造を支持する弾性体74(第1段階のバネの形態1)は、第1の電極70と第2の電極73が所定の距離まで接近すると、マイクロ可動部71がマイクロ共振体80(図12にのみ図示)に接触し、この距離からは、支点位置が元の支点79とマイクロ可動部71とそれぞれ2箇所ずつの計4箇所で支える形態に変わる(第2段階のバネの形態1)。そして、マイクロ可動部71がマイクロ共振体80に接触し、押し込む段階から、第2の電極73および該電極に連結した構造を支持する構造の弾性係数を大きくすることができる。これにより、マイクロ可動部71をマイクロ共振体80に接触させるまでの移動時には、長さ81およびそこに連結する構造で決まる小さな弾性定数のため、上述の例のように低電圧で移動でき、マイクロ可動部71がマイクロ共振体80に接触してからは、長さ82およびそこに連結する構造で決まるため少なくとも前記長さ81およびそこに連結する構造で決まる弾性体よりも高い弾性定数となるため、第2の電極73の移動距離を抑えることができる。これによって、第2の電極73を支持する弾性体の力が第2の電極73と第1の電極70の間に働く静電力に対して持ちこたえられなくなり、第2の電極73が第1の電極70にくっついてしまう現象(プル・イン)が防止でき、マイクロ可動部の押し込む力を強めることができるようになる。
さらに、好適な実施形態では、第1の電極70からの距離が、第1の電極70および第2の電極73に電位差が与えられていない釣り合いの位置における該電極間の距離87の3分の2のところまで、第2の電極73が第1の電極70に近づくよりも先に、マイクロ可動部71がマイクロ共振体に接するようになっている。これにより、第2の電極73が第1の電極70に近づきすぎてプル・インを引き起こす前にマイクロ可動部71をマイクロ共振体に接触させることができる。
さらに、好適な実施形態では、図11に示すように、第2の電極73を支持する弾性体および第2の電極73に連結した構造は、折れ曲がり部を備えている。マイクロ可動部71の上部には凹部76が形成されており、図13に示すように、(ただし、わかりやすく説明するため図では変形量を強調して示してある)マイクロ可動部71の押し付け時に、マイクロ可動部に連結した部分に僅かな折れ曲がりが発生することによって、マイクロ可動部71の下面が水平より傾くのを防止し、押し付ける力の方向が垂直方向からずれるのを抑制することができるようになっている。また、第2の電極73の両側にも折れ曲がり部77、78が形成されている。これらは、図12に示す第2の電極73の両側にある弾性体の長さ83,84によって決まるそれぞれの弾性定数の大きさによって折れ曲がり部の幅を変えてある。これにより、図13に模式的に強調して示したように、マイクロ可動部71の押し付け時に、第2の電極73が水平より傾くのを防止し、移動方向が垂直方向からずれるのを抑制することができる。
さらに、マイクロ共振子の両側ではなく片側のみにマイクロ可動部を接触させる場合のマイクロ可動部駆動機構の好適な実施形態について、図14および図15を参照して説明する。本実施形態によれば、前述のように、マイクロ共振子の両端に異なるマイクロ可動部を使い分けてマイクロ共振体に接触させること、あるいは、粗調整用マイクロ可動部と微調整用マイクロ可動部を使い分けてマイクロ共振体に接触させることができる。
図14に示すように、マイクロ可動部駆動機構は、基板上に固定された第1の電極90と、該電極から一定の距離に形成され、マイクロ可動部91と連結し、外部から与えられる電圧92により生じる第1の電極90との電位差によって、第1の電極90に接近または離れるように移動することによってマイクロ可動部91を動かすことができる第2の電極93と、第2の電極93の側面に電気的に連結し、第2の電極93および該電極に連結した構造を支持する弾性体94(第1段階のバネの形態2)とを備えており、さらに、第2の電極93および該電極に連結した構造を支持する弾性体94には、第2支持部95が形成されている。このような構成で、第1の電極90と第2の電極93が所定の距離まで接近すると、第2支持部95およびマイクロ可動部91がそれぞれ基板上の第2支持部接触面96およびマイクロ共振体100(図15にのみ図示)に接触し、この距離からは、支点位置が元の支点97、第2支持部95およびマイクロ可動部91の3箇所で支える形態に変わる(第2段階のバネの形態2)。そして、マイクロ可動部91がマイクロ共振体100に接触し、押し込む段階から、第2の電極93を支持する構造の弾性係数を大きくすることができる。これにより、マイクロ可動部91をマイクロ共振体100に接触させるまでの移動時には、長さ101内の構造で決まる小さな弾性定数のため、低電圧で多くの距離が移動でき、マイクロ可動部91がマイクロ共振体100に接触してからは、長さ102内の構造で決まる高い弾性定数となるため、第2の電極93の移動距離を抑えられる。これにより、第2の電極93を支持する弾性体の力が第2の電極93と第1の電極90の間に働く静電力に対して持ちこたえられなくなり、第2の電極93が第1の電極90にくっついてしまうこと(プル・イン)が防止でき、マイクロ可動部の押し込む力を強めることができるようになる。本実施形態によれば、第2支持部95の位置を弾性体94のどこかに任意に形成できるため、マイクロ可動部91がマイクロ共振体100に接触してからの、長さ102で決まる高い弾性定数を任意に設定することができる。
さらに、好適な実施形態では、第1の電極90からの距離が、第1の電極90および第2の電極93に電位差が与えられていない釣り合いの位置における該電極間の距離105の3分の2のところまで、第2の電極93が第1の電極90に近づくよりも先に、マイクロ可動部91がマイクロ共振体に接するか、あるいは第2支持部95が基板上の第2支持部接触面96に接するようになっている。これにより、第2の電極93が第1の電極90に近づきすぎてプル・インを引き起こす前にマイクロ可動部91をマイクロ共振体に接触させることができる。
さらに、好適な実施形態では、第1の電極90からの距離が、第1の電極90および第2の電極93に電位差が与えられていない釣り合いの位置における該電極間の距離105から、マイクロ可動部91がマイクロ共振体に接するまでの移動距離104、あるいは第2支持部95が基板上の第2支持部接触面96に接するまでの距離を引いた距離になるところまで、第2の電極93が第1の電極90に近づくと、マイクロ可動部91がマイクロ共振体に接するか、あるいは第2支持部95が基板上の第2支持部接触面96に接するようになっている。これにより、第2の電極93が第1の電極90に近づきすぎてプル・インを引き起こす前にマイクロ可動部91をマイクロ共振体に接触させることができる。
さらに、好適な実施形態では、図14に示すように、第2支持部95およびマイクロ可動部91は、それぞれ上部に凹部99,98を備えている。これにより、マイクロ可動部91の押し付け時に、マイクロ可動部に連結した部分に微小量の折れ曲がりが発生することによって、マイクロ可動部91および第2支持部95の下面が水平より傾くのを防止し、押し付ける力の方向が垂直方向からずれるのを抑制し、また、第2の電極93が水平より傾くのを防止して移動方向が垂直方向からずれるのを抑制することができる。
次に、具体例に基づき、マイクロ可動部をマイクロ共振体に押し付ける固定動作の途中で弾性定数を切り替えることの効果を説明する。図16は、図14に示すごときマイクロ可動部を用いたときの、第1の電極に印加する制御電圧とマイクロ可動部の移動距離(z)の関係(図16)および第1の電極に印加する制御電圧とマイクロ可動部の固定力の関係(図17)を示している。ここではマイクロ可動部は制御電圧20Vでマイクロ共振体に接触するよう設計してある。マイクロ可動部の移動は、第1の電極と第2の電極の電位差によって起こるが、ここでは、第2の電極に固定電位として0Vが印加してあり、第1の電極に印加する制御電圧のみでマイクロ可動部を操作している。図16に示す破線は、第2支持部なし(第1段階のバネの形態2のみ)の結果で、この場合、マイクロ共振体との接触後、急速に移動距離が伸び、プル・インの危険性が高まっていることがわかる。しかし、実線で示す本発明の実施形態によれば、マイクロ共振体との接触後、殆ど距離は伸びておらず、完全にプル・インが抑制されていることがわかる。
図17に示すように、第2支持部なし(第1段階のバネの形態2のみ)の場合は、点線の曲線bが示すように、マイクロ共振体に接触後(>20V)、固定力が急速に大きくなっている。これは、プル・インの危険性が高まっていることを示すと同時に、固定力が制御しにくい手法であることを示している。マイクロ共振体に接触するまでの移動距離を低電圧で行なうためには、第1段階のバネ形態2の弾性定数を大きくすることができず、また、弾性定数が低いと、接触後も電極間の距離がどんどん減少する。したがってプル・インの危険性を避けるためには、制御電圧を上げられず、結局、高い固定力も得られない。ところが、本発明の実施形態によると、実線の曲線aが示すように、マイクロ共振体との接触後においても、プル・インの危険性がないため、制御電圧を上げることができ、固定力は、ほぼ線形と見なせる増加傾向を示している。マイクロ共振体との接触後の押し込み段階における固定力の制御性が著しく改善されていることがわかる。曲線cおよびdは、効果の説明のために、途中から第2支持部に切り替わる本実施例の場合において、それぞれ第1段階のバネの形態2、第2段階のバネの形態2が寄与する固定力を分離して示したものである。これから明らかなように、マイクロ共振体と接触後は、第1段階の形態2のバネは殆ど変化しておらず、接触後の押し込み段階では、殆ど弾性定数の大きな第2段階の形態のバネで固定力が決まっている事がわかる。移動距離の必要な接触前の段階では、弱い力で移動ができるよう、低い弾性定数の第1段階のバネ形態2で、そして、接触後の押し込み段階では、移動を抑えて高い固定力が得られるよう、高い弾性定数の第2段階のバネ形態2に切り替えるのである。この切り替えを最適化することで、上述のような接触後の押し込み段階の実用域で線形性を改善し、極めて高い制御性を得ることができる。
さらに好適な実施形態では、マイクロ可動部は、図18に示すように、第1の電極110と第2の電極111に電位差が与えられていない釣り合いの位置にあるときの第2の電極111から一定の距離に、第1の電極110とは反対側に形成され、外部から与えられる電圧113により生じる第2の電極111との電位差によって、第2の電極111および該電極に連結したマイクロ可動部に駆動力を与えることが出来る第3の電極112を備えている。これによって、マイクロ可動部とマイクロ共振子が固着して元の釣り合いの位置にもどらなかった場合においても、外部からの入力によって、第2の電極111を上下方向にゆすり動かすことができるため、これによって第2の電極に連結しているマイクロ可動部を上下方向に力を加えながらゆすり動かし、固着したマイクロ可動部をマイクロ共振体から離すことができるため、マイクロ共振装置を解体することなく、マイクロ共振装置としての機能を復旧させる事ができる。この際、第3の電極へ外部から与えられる電圧113は、電圧を徐々に上げていくことでも効果があるが、好ましくは、パルス信号やRF信号のように周期的な電圧の昇降を含む入力、あるいは、周期的なオン・オフ制御を含む入力により、変動を与えることが望ましい。さらには、第1の電極と連動させて、交互に周期的な電圧の変化を与えると、より効果が得られる。
さらに好適な実施形態では、マイクロ可動部の駆動機構は、図19(図14のC1−C2方向の断面)に示すように、第1の電極115と第2の電極116が対向する方向に対して直交する方向に、マイクロ可動部と連結した第2の電極116から一定の距離に形成され、外部から与えられる電圧118により生じる、第2の電極116との電位差によって、第2の電極と連結した前記マイクロ可動部に対し、第1の電極115と第2の電極116が対向する方向に対して直交する方向にゆすり動かすための駆動力を与えることができる第4の電極117を備えている。ここで、第4の電極117と一定の距離に対向するのは必ずしも第2の電極である必要はなく、マイクロ可動部に連結した構造であり第2の電極に電気的に連結した場所であればよく、電極の設置に自由度が高く、さらに、第4の電極が第2の電極と同じ層あるいは別の層に作製可能なため、上述の第3の電極を用いる方法よりもプロセスの簡略化によってコスト削減が図れる。また、第4の電極117は、図19に示すように、第2の電極116、あるいは、マイクロ可動部に連結した構造の両側に対向する向きに設置するとができるため、第1の電極115を用いなくても、上述と第3の電極112と第1の電極110を用いる方法と同様の固着を取り外す操作が可能となる。
静電駆動型アクチュエータを用いる場合には、圧電素子を用いる場合と比較して、駆動力を発生するための電極を作製するためのスペースを基板上に確保しなければならないが、ポリシリコンなど通常のMEMSプロセスやCMOSプロセスで用いられている材料が使え、基板垂直方向および基板水平方向の駆動力の発生が容易にかつ薄膜で実現可能となる。
(第2の実施形態)
本発明の第2の実施形態として、基板に対して平行な方向に振動するマイクロ共振子に本発明が容易に適用できることを、図20を参照しながら説明する。
基板210上に形成され、選択されたパラメーターの変動に応答して振動するマイクロ共振子211とその支持部212からなるマイクロ共振体213と、外部からの操作によってマイクロ共振体213に作用することによって、前記マイクロ共振子の共振周波数、あるいは共振ピークにおける振幅増幅率、あるいは入力可能信号強度を変えることのできるマイクロ可動部216を備えている。
本実施例においては、基板210にシリコン基板を用い、マイクロ共振子211に不純物のドープされたポリシリコンを用いている。そして、入力電極215から与えられる高周波電気信号のうち、マイクロ共振子211の共振周波数近傍の周波数信号における変動に選択的に応じてマイクロ共振子211が振動する。ここで、入力電極215は、マイクロ共振子211に対して、マイクロ可動部216と同じ側に配置されるのが望ましい。マイクロ共振子211と入力電極215の電位差によって、マイクロ共振子211の振動の中心が、僅かに入力電極215側に移動しても、マイクロ可動部216接触面のマイクロ共振子の主たる振動が起こる側エッジがしっかり接触するようにするためである。
本実施例において、マイクロ可動部216には、外部からの操作の際にマイクロ可動部216をマイクロ共振体213に接触させ、または離すように、マイクロ可動部216を動かすことができ、所定の力でマイクロ可動部216をマイクロ共振体213に接触させ、あるいは接触させている所定の力の大きさを変えることができるマイクロ可動部の駆動機構217を備えている。218は、マイクロ可動部216とマイクロ共振体213の接触面を示す。
図21を用いてマイクロ可動部216をマイクロ共振体213に接触させることの効果を説明する。図21は、図20に示した第2の実施形態のマイクロ共振子211について、主たる共振周波数に関わる寸法、つまり共振子の長さの実効値を表す方向の平面図である。図21に示すように、マイクロ共振子211の支持端は自由度が高いために、マイクロ共振子211の実効長さ225は、共振子下側寸法226よりも長く、共振子上側の寸法227に近くなる。このような場合においても、図22に示すように、マイクロ可動部216をマイクロ共振子221の支持端付近における自由度の高いところに接触させることにより、マイクロ共振子211の実効長さが変わり、共振周波数を変えることができるのである。このように、本実施形態によって、第1の実施形態同様に、容易にマイクロ共振子の共振周波数を変えることができる。多くの場合マイクロ共振子211の実効長さ225は、マイクロ共振子の下部の長さ226とマイクロ可動部216間の長さ229の間に位置している。
また、図33に示すマイクロ共振体243のように、マイクロ共振子241の支持部242が長い場合、あるいは、マイクロ共振子が曲がった形状の場合には、マイクロ共振子の振動領域が249のように広がるため、マイクロ可動部246は、振動端付近の例えば側面250に接触させると効果的である。
次に、図20に示したマイクロ可動部の駆動機構217の好適な実施形態について、図23を参照しながら説明する。図に示すように、駆動機構は、基板上に固定された第1の電極270と、該電極から一定の距離に形成され、マイクロ可動部(図示されていない)と連結部286で連結し、外部から与えられる電圧により生じる第1の電極270との電位差によって、第1の電極270に接近または離れるように移動することによってマイクロ可動部を動かすことができる第2の電極273と、第2の電極273の側面に電気的に連結し、第2の電極273および該電極に連結した構造を支持する弾性体274とを備えている。図23に示すように、本実施形態では、第1の電極270と第2の電極273は櫛型をしており、それぞれの櫛部が一定の距離287で形成されている。そして、第2の電極273の櫛部が第1の電極270の櫛部に接近または離れるように移動する。これにより、基板に対して平行な方向に振動するマイクロ共振子に対しても、容易に、マイクロ可動部を接触させ、押し付けたり、離す方向に移動させたりすることができる。ここでは、櫛部が櫛の長さ方向に対して垂直方向に電極が動く場合を示したが、櫛の長さ方向に対して平行な方向に電極が動く音叉型の櫛型電極を用いても同様にマイクロ可動部に駆動力を与えられることは明らかである。
本実施形態によれば、第1の電極270、第2の電極273および該電極に連結した構造、ならびにそれを支持する弾性体274の全てが、マイクロ共振体と同じ層で形成可能なため、基板に対して垂直方向に振動するマイクロ共振子の上に形成した図11および図14に示したマイクロ可動部の駆動機構に比べ、さらにプロセスの簡略化ならびにコスト削減が図れる。さらに、共振周波数を制御するためのマイクロ可動部を押し付ける力を得るために、第1の電極270と第2の電極273の櫛サイズおよび本数を、マイクロ共振子のサイズ(周波数)に関係なく自由に設定でき、かつ、マイクロ可動部および第2の電極273に連結して支持する弾性体274のサイズ(弾性定数)も自由に設定できることから、共振周波数の制御範囲が広くすることが可能となる。図23に示すごとき駆動機構をポリシリコンで作製し、櫛の厚さを1.0μm、長さを50.0μm、櫛の本数を100本、電圧を印加しない状態での第1の電極270と第2の電極273の距離287を2.0μmとし、弾性体274を厚さ1.0μm、長さを100.0μm、幅3.0μmとすると約20Vの電圧でマイクロ可動部を押し付けることができる。移動距離を増やす、あるいは駆動力を得るのに必要な電圧を低くするには、弾性体の弾性定数を小さくするか、櫛型電極を長くするかあるいは本数を増やすことで容易に達成できる。例えば、弾性体の長さを2倍するとマイクロ可動部を押し付けるための電圧を7Vに低減することができる。
さらに好適な実施形態では、図23に示すように、マイクロ可動部の駆動機構は、第2の電極273から一定の距離に、第1の電極270とは反対側に形成され、外部から与えられる電圧により生じる第2の電極273との電位差によって、第2の電極273および該電極と連結部286で連結するマイクロ可動部(図示されていない)に駆動力を与えることが出来る第3の電極290を備えている。
図23に示すように、本実施形態では、第3の電極290は櫛型をしており、その櫛部が第2電極273の櫛部と一定の距離288で形成されている。そして、第2の電極273の櫛部が第3の電極290の櫛部に接近または離れるように移動する。これにより、基板に対して平行な方向に振動するマイクロ共振子についても、マイクロ可動部が固着してもとの釣り合いの位置に戻らなかった際に、外部からの入力によって、第2の電極273を水平方向のマイクロ可動部を引き離す方向にゆすり動かすことができ、これによって第2の電極273に連結しているマイクロ可動部を水平方向に力を加えながら動かし、固着したマイクロ可動部をマイクロ共振体から離すことができるため、マイクロ共振装置を解体することなく、マイクロ共振装置としての機能を復旧させる事ができる。この際、第3の電極290へ外部から与えられる電圧は、電圧を徐々に上げていくことでも効果があるが、好ましくは、パルス信号やRF信号のように周期的な電圧の昇降を含む入力、あるいは、周期的なオン・オフ制御を含む入力により、変動を与えることが望ましい。さらには、第1の電極270と連動させて、交互に周期的な電圧の変化を与えると、より効果が得られる。さらに、本実施形態によれば、第1の電極270、第2の電極273および該電極に連結した構造、ならびにそれを支持する弾性体274とともに第3の電極290についても、マイクロ共振体と同じ層で形成可能なため、プロセスの簡略化ならびにコスト削減が図れる。さらに、本実施形態によれば、第3の電極290と第2の電極273のサイズを、マイクロ共振子のサイズ(周波数)に関係なく自由に設定でき、かつ、マイクロ可動部および第2の電極273に連結して支持する弾性体274のサイズ(弾性定数)も自由に設定できることから、様々な共振周波数のマイクロ共振装置に対して適用可能となる。ここでは、櫛部が櫛の長さ方向に対して垂直方向に電極が動く場合を示したが、櫛の長さ方向に対して平行な方向に電極が動く音叉型の櫛型電極を用いても同様にマイクロ可動部に駆動力を与えられることは明らかである。
また、図14に示すマイクロ可動部駆動機構の例えば弾性体94の部分に図23に示す駆動機構を接続することで、マイクロ可動部91の押し付け位置を変えることができる。櫛の厚さを1.0μm、長さを40.0μm、櫛の本数を30本、電圧を印加しない状態での第1の電極270と第2の電極273の距離287を1.0μmとし、弾性体274を厚さ1.0μm、長さを100.0μm、幅3.0μmとすると約2Vの電圧でマイクロ可動部の押し付け位置を1nm程度変えることができる。
さらに、図34に示すように、好適な実施形態では、マイクロ可動部駆動機構は、第1の電極260と第2の電極263が対向する方向とは直交する方向に駆動力を与えることができる第4の電極262を備えている。また、第2の電極263およびこれに連結した構造を支える弾性体264は、第1の電極260と第2の電極263が対向する方向および直交する方向に移動しやすいように配置してある。これにより、連結部266に接続された共振体マイクロ可動部(図に示されていない)の押し付け操作とともに押し付け位置を変える操作ができる。また、マイクロ可動部が固着してもとの釣り合いの位置に戻らなかった際に、外部からの入力によって、第2の電極263に連結しているマイクロ可動部を横方向に力を加えながらゆすり動かし、固着したマイクロ可動部をマイクロ共振体から離れやすくすることができる。さらに、第4の電極262は、第1の電極260、第2の電極263並びにマイクロ共振子と同じ層に作製可能なため、プロセスの簡略化とコスト削減が図れる。ここでは、マイクロ可動部駆動機構に移動方向の異なる櫛型電極の組み合わせた電極を用いたが、櫛型電極の配置や組合せはこれに限るものではない。しかし、図34のように配置することで、櫛形電極をバランスよく小スペースで形成することができる。
さらに、好適な実施形態では、図23および図34に示すマイクロ可動部駆動機構先端の連結部286あるいは266に、図24に示すような、連結部275で2組のマイクロ可動部271が連結しており、図2に示すごときマイクロ共振子のようにマイクロ共振子280の両端に同時に等しくマイクロ可動部を接触させることができる。このような構造を図23に示すマイクロ可動部駆動機構と一体に形成し、弾性体274あるいは264が支える構造にすることによって、第2の電極を水平方向に動かす際に、横方向のズレを抑制することができる。連結部275により連結した構成にすることの効果を図23の駆動機構と組み合わせた場合で説明する。第2の電極273および該電極に連結した構造を支持する弾性体274(第1段階のバネの形態3)は、第1の電極270と第2の電極273が所定の距離まで接近すると、マイクロ可動部271がマイクロ共振体280に接触し、この距離からは、支点位置が元の弾性体274と2つのマイクロ可動部271とで支える形態に変わる(第2段階のバネの形態3)。そして、マイクロ可動部271がマイクロ共振体280に接触し、押し込む段階から、第2の電極273および該電極に連結した構造を支持する構造の弾性係数を大きくすることができる。これにより、マイクロ可動部271をマイクロ共振体280に接触させるまでの移動時には、第1段階のバネ形態3の小さな弾性定数により、低電圧で多くの距離が移動でき、マイクロ可動部271がマイクロ共振体280に接触してからは、第2段階のバネ形態3の高い弾性定数となるため、第2の電極273の移動距離を抑えられ、第2の電極273を支持する弾性体の力が第2の電極273と第1の電極270の間に働く静電力に対して持ちこたえられなくなり、第2の電極273が第1の電極270にくっついてしまうこと(プル・イン)が防止でき、マイクロ可動部271の押し込む力を強めることができるようになる。
さらに、マイクロ共振子の片側のみにマイクロ可動部を接触させる場合のマイクロ可動部駆動機構の好適な実施形態について、図25を参照して説明する。図24のごとき2組のマイクロ可動部が連結している連結体295を用い、片側のマイクロ可動部291を、マイクロ共振体293に接触させ、もう一方のマイクロ可動部292を、マイクロ共振体とは別に形成したダミー294に接触させる。このような構成によって、マイクロ共振体の片側のみでも共振周波数制御を行なうことができ、前述のように、マイクロ共振子の両端に異なるマイクロ可動部を使い分けてマイクロ共振体に接触させること、あるいは、粗調整用マイクロ可動部と微調整用マイクロ可動部を使い分けてマイクロ共振体に接触させることができる。
さらに、好適な実施形態では、前記所定の距離が第1の電極270からの距離が、第1の電極270および第2の電極273に電位差が与えられていない釣り合いの位置における該電極間の距離287の3分の2のところまで、第2の電極273が第1の電極270に近づくよりも先に、マイクロ可動部がマイクロ共振体に接することにより、第2の電極273が第1の電極270に近づきすぎてプル・インを引き起こす前にマイクロ可動部をマイクロ共振体に接触させることができる。
(第3の実施形態)
本発明の第3の実施形態として、基板に対して平行な方向に縦あるいはバルクの振動モードで振動する、図27に示すマイクロ共振子に本発明が容易に適用できることを、図26を参照しながら説明する。
基板310上に形成され、選択されたパラメーターの変動に応答して振動するマイクロ共振子311とその支持部312からなるマイクロ共振体313と、外部からの操作によってマイクロ共振体313に作用することによって、マイクロ共振子311の共振周波数、あるいは共振ピークにおける振幅増幅率、あるいは入力可能信号強度を変えることのできるマイクロ可動部316を備えている。
本実施例においては、基板310にシリコン基板を用い、マイクロ共振子311に窒化タングステン膜を用いている。そして、入力電極315から与えられる高周波電気信号のうち、マイクロ共振子311の共振周波数近傍の周波数信号における変動に選択的に応じてマイクロ共振子311が振動する。
本実施例において、マイクロ可動部316は、外部からの操作によってマイクロ共振体313に接触させ、または離すように、動かすことができ、所定の力でマイクロ可動部316をマイクロ共振体313に接触させ、あるいは接触させている所定の力の大きさ、接触させている位置を変えることができるマイクロ可動部駆動機構317を備えている。
図27および図28を用いてマイクロ可動部316をマイクロ共振体313に接触させることの効果を説明する。図27は、図26に示した第3の実施形態のマイクロ共振子311について、主たる共振周波数に関わる寸法、つまり共振子の長さの実効値を表す方向の断面図である。図27に示すように、マイクロ共振子311の支持端上面は自由度が高いために、マイクロ共振子311の振動領域は共振子下側寸法よりも広がり、マイクロ共振子の実効長さ325は、共振子上側の寸法327に近くなる。このような場合においても、図28に示すように、マイクロ可動部316をマイクロ共振子311の支持端付近における自由度の高いところに接触させることにより、接触後のマイクロ共振子311の実効長さ328は、殆どの場合、共振体上面の長さ329とマイクロ共振子下部の長さ326の間に位置するように変わり、共振周波数を変えることができるのである。このように、本実施形態によって、第1、第2の実施形態同様に、容易に共振周波数を変えることができる。
本実施形態では、第1の実施形態同様、図11に示したごときマイクロ可動部駆動機構が利用できる。ただし、共振子の平面形状が方形ではなく円形の場合は、図29に示すように、好ましくは、マイクロ可動部はマイクロ共振体と同心円状に環状に接するよう構成する。338は接触面を示す。円形のマイクロ共振子の場合は、主たる共振周波数に関わる寸法、すなわち半径方向の共振子の実効長さを示す線分方向330が半径方向となるので、図のように、支持端付近に環状に接触させることで、全ての半径方向に対して、効果的に実効長さを変え、共振周波数を変えることができる。また、図に示すように4つに分けたマイクロ可動部に、図14に示すごときマイクロ可動部駆動機構をそれぞれ接続すれば、マイクロ可動部の押し付け位置を半径方向に変えることができる。
さらに、好適な実施形態では、マイクロ可動部とマイクロ共振体の接触部の押し付けられる力の方向は、基板平面に対して、かつ、マイクロ共振体の主たる振動の方向(半径方向)に対してほぼ垂直な方向である。バルクの振動モードで振動する共振体では、主たる振動方向と主たる共振周波数に関わる寸法を示す線分方向330が一致しているので、基板平面に対して垂直方向に押し付けることで効果的に共振周波数を変えることができる。
次に、図35に従い、SOI基板を使用した場合を例に、マイクロ共振装置の製造方法について説明する。好適な実施形態では、図35Aに示すように、SOI基板400表面のシリコン層にフォトレジストを使用した通常のドライエッチング技術でマイクロ共振体402を形成し、ついで、厚さ200nmの不純物をドープしたポリシリコンからなる第1の電極を含む1層目の導電層403を形成する。このときマイクロ共振体402の下部にあるSOI基板の酸化シリコン層を第1の犠牲層401として利用できる。また、1層目の導電層403を形成する工程において、マイクロ共振体402は1層目の犠牲層401上に形成されており、その上にリソグラフィー法でレジストをパターニングし、その上に1層目の導電層を堆積し、レジストを除去する工程で、リフトオフ法により第1の電極を含む1層目の導電層403を形成している。この際、マイクロ共振体部分は、1層目の導電層に電気的に接続される部分以外はレジストマスクに覆われているので、マイクロ共振体402の振動領域の上には1層目の導電層は形成されず、既に形成されているマイクロ共振体に影響はない。ついで、図35Bに示すように、マイクロ共振体402および前記1層目の導電層403上に、2層目の犠牲層として酸化シリコン膜404を2.0μm堆積し、ドライエッチング法を用いて前記酸化シリコン膜の一部を加工し、マイクロ共振体の一部を露出させる。ついで、図35Cに示すように、マイクロ可動部と前記マイクロ共振体のギャップとなる3層目の犠牲層406として酸化シリコン膜100nmを堆積し、不要な部分を取り除いた後、図35Dに示すように、固着防止層409として窒化シリコン膜100nmを堆積し、不要な部分を取り除く。ついで、図35Eに示すように、マイクロ可動部412、第2の電極および該電極に連結した構造413を含む2層目の導電層410を厚さ2.0μmの不純物をドープしたポリシリコン膜で形成する。ついで、図35Fに示すように、前記1、2、3層目の犠牲層を除去してマイクロ共振体402、マイクロ可動部412、第2の電極および該電極に連結した構造413を露出させ、マイクロ共振装置を形成する。
本実施形態では、図1および図2に示すごとき基板を掘り込んで形成するマイクロ共振子に対して、マイクロ共振体形成後に、その上に積層してマイクロ可動部およびマイクロ可動部駆動機構を容易に形成することができるので、マイクロ共振子を形成する工程を変えずに、後から全く別の工程としてマイクロ可動部を形成できる効果がある。
さらに、本実施形態では、第1の電極と第2の電極のギャップと、マイクロ可動部と前記マイクロ共振体のギャップと、異なる幅のギャップを精度よく形成しなければならない。そのため、図35に示すように、2層目の犠牲層404を加工する際、マイクロ共振体が露出するまで加工するが、同時に1層目の導電層403あるいはそれに電気的に結合した層が露出するまで加工している。そして露出した導電層上に3層目の犠牲層406を堆積している。これにより、第1の電極と第2の電極のギャップ416については、2層目の犠牲層404と3層目の犠牲層406の合計膜厚で、マイクロ可動部とマイクロ共振体のギャップ415については3層目の犠牲層406の堆積膜厚のみでギャップ幅が制御できるため、ばらつきの少ない高精度のギャップが2種類形成できる。
また、後の工程で堆積する2層目の導電層410と例えば2層目の犠牲層404から露出した1層目の導電層408を電気的に接続するためには、露出部408の上に堆積した3層目の犠牲層を除去しなければならないが、好適な実施形態においては、3層目の犠牲層406を形成する工程において、1層目の導電層408上に形成された3層目の犠牲層406を除去して1層目の導電層408を露出させる工程と、2層目の導電層410の折れ曲がり部となる位置にくぼみ407を形成するため、3層目の犠牲層406を加工する工程を同時に行なう。これにより、2層目の導電層410に折れ曲がり部を形成するためのパターニングと、1層目の導電層を露出させるためのパターニングが同じマスクで行なえるため工程の簡略化ができる。
さらに、本実施形態では、マイクロ共振体402下部に空間を形成するために行なう1層目の犠牲膜の除去工程と、マイクロ可動部周りに空間を形成するための2層目、3層目の犠牲膜の除去工程が同時に行なえるため工程数の増加を抑えることができる。
さらに、本実施形態において、マイクロ可動部の構成はこれに限るものではない。マイクロ可動部が、図14に示すごとき、マイクロ共振体の片側のみに接触可能な構成であっても、層の構成は同じなので、本実施形態に従って、容易に製造可能となる。
次に、基板上にマイクロ共振子を形成する場合の好適な実施形態について、図36を例に説明する。図36Aに示すように、シリコン基板420上に第1の電極を含む1層目の導電層424として不純物をドープしたポリシリコン層を200nm堆積し、パターニングした後、その上に1層目の犠牲層422として酸化シリコン膜200nmを形成する。そして、1層目の犠牲層422を加工し前記1層目の導電層424を露出させた後、前記1層目の犠牲層の上に不純物をドープしたポリシリコン膜2.0μmを堆積し、異方性ドライエッチングによりパターニングを行ない、図36Bに示すように、マイクロ共振体423を形成する。ついで、図36Cに示すように、前記マイクロ共振体423上に2層目の犠牲層427として酸化シリコン膜2.0μmを堆積し、異方性ドライエッチングにより前記2層目の犠牲層427を加工し、前記マイクロ共振体423の一部を露出させる。以下については図示されていないが、図35C〜図35Fに示すごとき工程によりマイクロ共振装置を製造できる。
ここでは、基板上にマイクロ共振体423を形成する必要があるが、本実施形態では、図36に示すように、マイクロ共振体423に対して容量的に結合する入力421およびマイクロ共振体に電気的に結合した電極426を形成する際に、第1の電極を含む1層目の導電層424を同じ層で(同じ工程で)形成し、また、1層目の導電層424の上に前記マイクロ共振体下部に空間を形成するための1層目の犠牲層422を形成している。これにより、マイクロ共振体とマイクロ可動部の製造工程の簡略化とともに、1層目の犠牲層422が除去されても基板上に第1の電極が固定されており、しかも第1の電極の平坦性が確保できるために第2の電極を含む2層目の導電層を形成したとき第1の電極と第2の電極を等しい距離に、平行に形成することができる。さらに2層目の導電層を形成したときの段差を緩和することができるため、以後の工程を図35に示す工程と同様に進めることができる。2層目の犠牲層を形成後CMP装置(化学的機械研磨装置)を用いてより平坦にすることもできるが、工程数が増加し、コストが増大してしまう問題がある。
さらに、本実施形態において、マイクロ可動部の構成はこれに限るものではない。マイクロ可動部が、図14に示すごとき、マイクロ共振体の片側のみに接触可能な構成であっても、層の構成は同じなので、本実施形態に従って、容易に製造可能となる。
また、マイクロ共振体についてもこれに限るものではない。図37に示すように、図26から28に記載のマイクロ共振体であっても同様に形成可能である。図37Aに示すように、基板430上に第1の電極を含む1層目の導電層436を、不純物をドープしたポリシリコン膜200nmで形成し、その上に1層目の犠牲層432として酸化シリコン膜200nmを堆積する。そして、1層目の犠牲層432を加工し前記1層目の導電層436を露出させ、前記1層目の犠牲層の上に不純物をドープしたポリシリコン層2.0μmを堆積し、ドライエッチング法によりパターニングを施し、図37Bに示すように、マイクロ共振体433を形成する。そして、図37Cに示すように、前記マイクロ共振体433上に2層目の犠牲層438として酸化シリコン膜2.0μmを堆積し、異方性エッチングにより、前記2層目の犠牲層438を加工し、前記マイクロ共振体433の一部を露出させる。以下については図示されていないが、図35C〜図35Fに示すごとき工程によりマイクロ共振装置を製造できる。
ここでは、図37に示すように、基板上にマイクロ共振体433並びにマイクロ共振体433に対して容量的に結合する入力電極434を形成する必要があるが、本実施形態では、1層目の犠牲層432を加工してマイクロ共振体433とともに入力電極434を形成することができる。さらに、本実施形態では、マイクロ共振体433に電気的に結合する電極431を形成する際に、第1の電極ならびに入力電極434に電気的に結合する電極を含む1層目の導電層436を同じ層で(同じ工程で)形成し、また、1層目の導電層436の上に前記マイクロ共振体下部に空間を形成するための1層目の犠牲層432を形成している。これにより、1層目の犠牲層432が除去されても基板上に第1の電極が固定されており、しかも第1の電極の平坦性が確保できるために第2の電極を含む2層目の導電層を形成したとき第1の電極と第2の電極を等しい距離に、平行に形成することができる。さらに2層目の導電層を形成したときの段差を緩和することができるため、以後の工程を図35に示す工程と同様に進めることができる。2層目の犠牲層を形成後CMP装置(化学的機械研磨装置)を用いてより平坦にすることもできるが、工程数が増加し、コストが増大してしまう問題がある。
次に、基板上に基板に平行な方向に振動するマイクロ共振子に対する好適な実施形態について、図38を例に説明する。これまでと同様に導電層に不純物をドープしたポリシリコン膜を用いることができるが、本発明の導電性材料はこれに限定するものではなく、他にアモルファスシリコン、SiGe膜、SiC膜、さらにはNi、タングステンなど金属材料を導電層に適用することができる。ここでは、さらに好適な実施形態として、タングステンなどの高融点金属に窒素を含有させた材料を適用した場合を例に説明する。図38Aに示すように、基板440上に窒素を含有するタングステンを反応性スパッタ法で200nm堆積し、マイクロ共振体と電気的に接続する電極441、固定電極の第1の電極に接続する電極442、第2の電極およびそれに連結した構造に接続する電極443などを含む1層目の導電層を形成する。堆積条件はスパッタ圧力2Pa、RFパワー300W,Ar流量33.6sccm、N2流量8.4sccm、基板温度室温である。ついで、図38Bに示すように、前記1層目の導電層上に酸化シリコン膜2.0μmを堆積して1層目の犠牲層447を形成し、前記1層目の犠牲膜447を加工し、前記1層目の導電層を露出させる。そして、図38Cに示すように、2層目の導電層として、窒素を含有するタングステン層をまず、スパッタ圧力2Pa、RFパワー300W,Ar流量33.6sccm、N2流量8.4sccm、基板温度室温で0.5μm堆積し、ついでスパッタ圧力を2.4Paに変えて、窒素を含有するタングステンをさらに1.2μm堆積し、またスパッタ圧力を2Paにもどし、窒素を含有するタングステンを0.3μm堆積する。この複数層で形成した窒素を含有するタングステン膜を異方性ドライエッチングによりパターニングし、マイクロ共振体448およびマイクロ可動部449を含む2層目の導電層を形成する。ここで、窒素を含むタングステン膜のドライエッチングには通常のタングステン膜の異方性エッチングに用いるプラズマエッチング装置および加工条件が用いられる。そして、図38Dに示すように、前記2層目の導電層上に、厚さ5μm程度のレジスト層455を塗布した後、フォトリソグラフィ法を実施してレジスト層を開口し、スパッタ法により固着防止層457を堆積する。ついで、図38Eに示すように、リフトオフ法を実施して前記レジスト層455とともに不要な部分に堆積した前記固着防止層456を除去する。これにより、マイクロ共振体448やマイクロ可動部449の先端のみに固着防止層457を形成し、他の領域に固着防止層が付着して、マイクロ可動部が応力によりひずんだり、弾性体の弾性定数や電極間のギャップに誤差が生じたりすることを防止できる。
さらに好適な実施形態では、リフトオフ後に前記2層目の導電層側壁に残る前記固着防止層457を異方性ドライエッチングによるエッチバックをおこなうことにより、前記2層目の導電層側壁の固着防止層表面を平坦で滑らかにすることができ、マイクロ共振体との接触面の密着度を高めることができる。
つぎに、1層目の犠牲膜461を除去して、図38Fに示すように、前記マイクロ共振体448および前記マイクロ可動部449を露出させる。犠牲層除去には、フッ化水素ガスをもちいたドライエッチング法が適用できる。これにより、マイクロ可動部が、マイクロ共振体と同時に2層の導電層のみで形成でき、導電層の層数を増加させることなしにマイクロ可動部を形成できる。図38では、電極やマイクロ可動部の構造の詳細は省略して示しているが、本実施形態は、マイクロ可動部駆動機構の第1、第2、第3の電極の形状を櫛型に限定するものではなく、平面的な構造は、平行平板型あるいは音叉型などによっても可能である。また、第2の電極を支持する弾性体の形態についても戻りバネ形態に限定を加えるものではなく、他の板バネなどの形態によっても可能である。
米国特許第6210988号公報にはLPCVD法により製膜したSiGe膜を用いることで、ポリシリコン膜に比べて低温の550℃程度で残留応力を制御したマイクロ構造の形成が可能であることが開示されているが、ここで用いた窒素を含有するタングステンの場合、スパッタ法を用いているので室温程度まで低温化することが可能となり、Si基板上にCMOSプロセスで作製したLSI上のみならず、ガラス基板や樹脂基板など、Cu配線や低誘電率の有機絶縁膜など耐熱性の低いプロセスを経た基板上にも適応が可能となる。また、他の金属材料と比較しても、たとえばタングステン材料のみ場合、成長方向に膜質あるいは内部応力を制御することが困難であるため、制御堆積時に内部応力が蓄積し、堆積中あるいは堆積後に膜はがれ等の破壊が起きたり、また、応力等負荷がかかった際にクラッキングなど欠陥が発生し、変形や破壊が起きたり、マイクロ構造の信頼性確保が困難であったが、窒素を含有させた場合、N2分圧やスパッタ圧力などによって室温程度の低温で容易に堆積する膜組成や膜質を変えることができる。例えば、スパッタ圧力1.5Paから3Pa程度まで変えることにより膜中の残留応力を引張応力から圧縮応力まで変化させることができた。このため、膜の堆積過程で、内部応力や組成の異なる層を、連続的、あるいは断続的に成長させることが可能になり、堆積中の内部応力ならびに堆積後の残留応力を殆どなくすことができた。また、成長方向に異なる組成や粒状態の膜を積層可能なため、堆積時の応力による破壊をなくし、製造後に外部から応力等が加えられ欠陥発生しても、欠陥が容易に膜を貫きにくくなり、クラッキングなどによる変形や破壊に対する耐性を高めることができた。ここでは窒素を含有させたが、この効果はこれに限るものではなく、炭素や酸素を含有させることは含有させるによっても達成可能である。また、タングステンのみでなくタンタルやモリブデン、チタン、ニッケル、アルミニウムなど他の金属を適用しても同様の効果が期待できるが、高ヤング率が得られるタングステン、タンタル、モリブデン、チタンなどの高融点金属が好ましい。窒素含有タングステンの場合、押し込み式の薄膜試験装置で計測したところ、窒素の含有率を0%から60%程度まで増やすことによりヤング率は360GPaから250GPa程度まで変化するが、ポリシリコンやSiGe膜よりも高いヤング率が得られる。
(第4の実施形態)
次に、第4の実施形態としてマイクロフィルタ装置について説明する。好適な実施形態では、図39に示すように、第1、第2、第3の実施形態にて示した本発明のマイクロ共振装置550を含み、マイクロ共振子に容量結合した入力電極551と、マイクロ共振子で選択された周波数信号を取り出すため出力電極552と、第1のマイクロ可動部を動かすための第1の駆動機構への入力電極553と、第2のマイクロ可動部を動かすための第2の駆動機構への入力電極554を有している。ここでは、マイクロ可動部を2つ備えているが、これに限るものではなく、1つのマイクロ可動部でもよい。本実施形態の構成により、製造後にマイクロ可動部駆動機構の入力電極に制御電圧を与えることでマイクロ共振装置550の共振周波数(マイクロフィルタ装置の中心周波数)を広範囲に調整可能となるため、従来法ではできなかった、製造時の加工ばらつきや封入圧力のばらつきによるマイクロ共振装置の共振周波数(マイクロフィルタ装置の中心周波数)の不確かさに対して、所望の(設計)値に補正・調整して使用することが可能になる。従来法にくらべ製造後の調整範囲が大幅に改善されるため、従来法では歩留まりがとれない範囲の加工精度の製造装置および製造工程を用いても、歩留まりが取れるようになる。また、封入後にマイクロ可動部の制御によってマイクロフィルタ装置の中心周波数のズレをその場で補正することができるため、使用時の外部環境(温度)の変化やマイクロ共振装置そのものの経時劣化(封止圧力の劣化ならびにマイクロ共振子材料の機械特性の劣化など)に対してもフィルタ出力を補正・最適調整することができ、フィルタとしての使用可能な環境条件範囲を拡大し、製品寿命を延ばすことができる。
さらに好適なマイクロフィルタ装置の実施形態では、マイクロ可動部の動作を制御するマイクロ可動部制御回路555を備えている。マイクロ可動部制御回路555は、出力がマイクロ可動部駆動機構への入力電極553および554に接続され、また、マイクロ共振装置550からの出力が入力されるようマイクロ共振装置の出力電極552に接続される。これにより、マイクロフィルタ装置で選択すべき所望の中心周波数と、マイクロ共振装置550からの出力552に出力される信号の周波数にズレが存在するときに、マイクロ可動部制御回路555に、例えば、調整用つまみあるいはスイッチを設けて、マイクロ可動部駆動機構への出力電圧を制御し、マイクロ共振装置550から所望の周波数信号が出力されるよう、周波数のズレを調整することが可能になる。例えば静電アクチュエータで駆動する駆動機構の場合、マイクロ可動部駆動機構は、第1の電極と第2の電極の電位差で駆動されるので、調整の際入力には、第1の電極と第2の電極の2つか、あるいはいずれか一方のみが選ばれる。好ましくは、第2の電極は固定電位にして、第1の電極の電圧を調整する。これによって、実際の使用環境の変化および使用時のマイクロ共振装置の状態に応じて、その場でマイクロフィルタ装置の周波数出力の調整が可能となる。また、マイクロ可動部が固着した場合には、第3の電極への入力電圧で調整される。これにより、マイクロフィルタ装置を解体することなく、外部からの入力で、マイクロ共振装置の機能復帰ができる。
さらに好適な実施形態では、マイクロ可動部およびマイクロ可動部の駆動機構は、マイクロ共振体とともに、基板上に形成できるため、いろいろな周波数特性をもつマイクロ共振装置を並べて作製することが可能となり、いろいろ周波数特性のマイクロ共振装置とマイクロ可動部を複数備えることで、マイクロフィルタ装置全体としての周波数特性の制御可能範囲が拡大し、使用目的や使用環境に応じて使い分けることができる。また、複数のマイクロ共振装置を組み合わせることで、ミキシングした出力を得ることも可能となる。
さらに好適な実施形態では、マイクロフィルタ装置は、記憶素子557を備えており、出荷時あるいは前回の調整時に、選択すべき所望の(設計した)周波数とのズレを補正するよう調整した前記マイクロ可動部制御回路の制御値(出力電圧、あるいは電圧出力のための設定値)を前記記憶素子557に記憶し、マイクロフィルタ装置の起動動作時に前記記憶素子に記憶された前記マイクロ可動部制御回路の制御値をもとに前記マイクロ可動部が制御され、前記選択すべき所望の中心周波数に調整される。
すでに述べたように、製造時の加工ばらつきや封止圧力のばらつきから共振周波数の不確かさを避けられず、所望のあるいは設計した周波数に一致したマイクロ共振装置を製造することは難しい。したがって、使用時には、マイクロ可動部の制御により周波数出力を調整しなければならないが、マイクロ可動部の制御電圧と出力周波数の関係、並びに制御電圧と共振ピークにおける振幅増幅率(あるいはQ値)の関係は、以下に示すように、単純な線形関係ではなく、調整幅を予測した調整が難しい。例えば、図17に曲線bで示したように、マイクロ可動部の制御電圧と、マイクロ可動部がマイクロ共振体を押し付ける力、すなわち固定力との関係は、通常、線形関係は得られない。本発明の実施形態では、図17の曲線aで示すように押し付け段階の実用領域で固定力の非線形性を改善しているが、完全に線形関係が得られるわけではない。さらに、固定力の大きさとマイクロ共振体の共振周波数の関係、あるいは固定力の大きさと共振ピークにおける振幅増幅率(あるいはQ値)との関係も線形関係ではなく、しかも、それぞれのマイクロ共振体の構造、マイクロ可動部の構造、ならびにマイクロ可動部の接触位置などに依存するため、それぞれの固有の相関関係に対応した固有の制御パターンがそれぞれに対して必要となるからである。したがって、図39に示すように、記憶素子557に接続し、出荷時またはユーザーの通常の使用環境で行なった調整時のマイクロ可動部制御回路の制御値、あるいは、前回使用時に調整したマイクロ可動部制御回路の制御値を記憶素子に記録し、その値を基に、起動時にその選択されたマイクロ可動部を調整することで、まったくの初期値から調整するよりも大幅に時間短縮ができる。
さらに好適な実施形態によれば、記憶素子と接続され、前記選択出力される周波数に存在するズレを所望の周波数に調整する際、前記記憶素子にあらかじめ記憶されたマイクロ可動部に対する制御電圧の最適制御ステップを用いて段階的に調整する。これによって、いろいろなマイクロ共振装置あるいはマイクロフィルタ装置に対しても、簡便に周波数のズレを調整することができる。さらに好適な実施形態の詳細を図40に従って説明する。既に述べたように、マイクロ可動部に対する制御電圧と、マイクロ可動部がマイクロ共振体を押し付ける力、すなわち固定力との大きさとの関係、さらに、固定力の大きさとマイクロ共振体の共振周波数の関係、あるいは固定力の大きさと共振ピークにおける振幅増幅率(あるいはQ値)との関係は全て単純な線形関係にはなく、また、それぞれの関係は、マイクロ共振体の構造、マイクロ可動部の構造、さらにはマイクロ可動部の接触位置にも依存するため、共振周波数および共振ピークにおける振幅増幅率(Q値あるいはフィルタの通過帯域)の変動を補正あるいは最適化するための制御パターンは、それぞれに異なる特性をもつ固有のパターンとなる。そこで、選択されたあるマイクロ共振体およびマイクロ可動部に対して、あらかじめマイクロ可動部の制御値とマイクロ共振装置あるいはマイクロフィルタ装置の出力の周波数特性との関係を測定し、例えば、図40に示すような実線560が得られたとすると、好ましくは、所望の選択すべき周波数fが得られるポイントAでの制御電圧Vを記憶し、次に、周波数を所定の刻み幅で変化させるのに必要な、マイクロ可動部の制御値の制御ステップを決め、そのステップを前記記憶素子に記録する。つまり、図40のように、fを中心に所定の間隔xで周波数が・・・f−2x、f−x、f、f+x、f+2x・・・と変わるポイントに対応する制御電圧の値、・・・V−d−2、V−d−1、V、V+d、V+d・・・を記憶させておく。周波数の刻み幅xは、マイクロフィルタ装置に望まれる周波数精度に依存するが、望まれる周波数精度あるいは周波数マージンに対して少なくとも2分の1以下であることが望ましい。ここでは、10分の1程度に設定している。これにより、記憶素子に記録された制御ステップ・・・V−d−2、V−d−1、V、V+d、V+d・・・にしたがってマイクロフィルタ装置の周波数出力の調整すると、周波数を所定の刻み幅xで段階的に、あたかも線形関係が得られているかのごとく変化させることができ、調整幅を予測した最適な調整アルゴリズムを組むことが可能になり、効率よく短時間での調整が可能となる。このように、記憶素子に全てのマイクロ共振装置、マイクロ可動部に対して、制御パターンを記憶させておくことで、どのマイクロ可動部を選択しても同様に効果的に短時間で調整が可能となる。また、あらかじめ選択されたマイクロ可動部の制御値と共振ピークの振幅増幅率(Q値あるいはフィルタの通過帯域)との関係を測定し、その結果を記憶しておくことで、周波数のみならず、共振ピークの振幅増幅率(Q値あるいはフィルタの通過帯域)についても効果的な調整が可能となる。
また、本実施形態において、図41の制御動作のタイミングチャートに示すように、制御ステップを段階的に行なう。これは、マイクロ可動部の制御電圧の設定から、マイクロ可動部が移動し、マイクロ共振体の振動が定常状態に達して、マイクロ共振装置あるいはマイクロフィルタ装置から安定した周波数出力が得られるまでに僅かな時間の遅れが生じるためである。図41に示すように、前記遅れ時間に対してマージンをもたせ、最適なシーケンスを組み、段階的に電圧を制御することで、制御時間を短縮できる。制御電圧を少しずつ連続的に変化をさせることによっても制御可能であるが、マイクロ共振体の振動が定常状態に入るまえにマイクロ可動部を移動させると、出力が不安定なまま調整を進め、正確に定常状態の周波数出力を確認しないままに制御することになるため、周波数を精度よく調整し最終結果を得るのにかえって時間がかかってしまうことになる。
さらに、本実施形態により、マイクロフィルタ装置を使用する温度など外部環境の変化やマイクロ共振装置そのものの経時劣化(マイクロ共振子の機械的特性の劣化や封止圧力の変動)によってマイクロ共振装置の共振周波数、あるいは、マイクロフィルタ装置の中心周波数にズレが生じた場合においても、効果的に調整が可能となる。図40に示すように、例えば、当初、実線560で示すような関係であった、マイクロ可動部の制御電圧と周波数の相関が、外部環境の変化あるいはマイクロ共振装置そのもの経時劣化によって点線561で示すように変化したことで、マイクロフィルタ装置から選択出力される周波数にズレが生じたとする。ズレの原因は、当初(前回)と同じ制御電圧をVに設定しても出力される周波数図のA点ではなくB点の周波数となることによる。しかし、元の実線560によって決定した制御電圧の制御ステップあるいは調整アルゴリズムにしたがってV−d−1、V−d−2、V−d−3と調整すれば、周波数の調整幅562はxとは完全には一致しないが、マイクロ共振装置のマイクロ共振子やマイクロ可動部に大きな構造変化がおきない限り、実線560と点線561の変化の割合に大差はないので、変化後の相関561に従っても、ほぼ等しい間隔でマイクロフィルタ装置から出力される周波数を変えることができる。そして、これにより、調整幅を予測した最適調整アルゴリズムを組むことができる。また、ズレ発生後の周波数の調整幅562がもともとも調整幅xからわずかに変化している場合、最適調整後の周波数と所望の周波数は完全に一致せず、ズレ563が生じることがある。しかし、調整幅xは、所望の周波数精度の2分の1以下で、十分小さく設定しておけば、周波数のマージン内に必ず調整することができる。このように、本実施形態によって、マイクロフィルタ装置を使用する外部環境の変化やマイクロ共振装置そのものの経時劣化によってマイクロ共振装置の共振周波数(マイクロフィルタ装置の中心周波数)にズレが生じた場合においても、記憶素子にあらかじめ記憶されたマイクロ可動部の制御電圧の最適制御ステップを用いて段階的に調整することで、簡便に効果的にズレを調整することができる。
好適な制御動作について、図41のタイミングチャートに従って説明する。Vは第1の電極の制御電圧、Vは第2の電極の制御電圧、fはマイクロフィルタ装置からの出力される信号の周波数を示す。時間tで記憶素子に記憶された初期値に基づいてVが与えられマイクロ可動部を所定の力で押し込み最初の出力を得る。出力された周波数が所望の中心周波数fとズレている場合には、記憶素子に記憶されている制御ステップに従い、出力周波数を検知してfと比較ながら所定の時間間隔をおいてV−d−1、V−d−2、V−d−3、・・とVを制御して調整される。
さらに、好適な実施形態では、記憶素子と接続され、前記選択出力される周波数に存在するズレを所望の周波数に調整する際、図41に示すように、マイクロ可動部の制御電圧Vに初期値(あるいは前回の制御値)Vを印加する前に、すなわち所定の力でマイクロ可動部をマイクロ共振体に接触させる前に、ちょうどマイクロ可動部が釣り合いの位置からマイクロ共振体のところまで移動させる、すなわちマイクロ可動部をマイクロ共振体に接触させるだけで、殆どマイクロ共振体を押し付けない程度の、マイクロ可動部の移動ステップが行なわれる。これによって、マイクロ可動部を接触させるべき位置に滑らかにマイクロ共振体に接触させることができ、再現性の高いマイクロ可動部の調整ができる。いきなりVを印加すると、マイクロ可動部がある程度の速度をもってマイクロ共振体に接触するため、跳ねや接触位置のズレなどが起こり、再現性の高いマイクロ可動部の制御ができないことがあるからである。
さらに、好適な実施形態では、図41に示すように、マイクロ可動部の制御シーケンスを組み、マイクロ可動部の制御電圧をマイクロ共振体への押し込み段階で変化させる際には、マイクロ共振装置あるいはマイクロフィルタ装置への入力信号強度が小さく下げされる。詳しく説明すると、例えば、図1に示すごときマイクロ共振体を備えたマイクロフィルタ装置に次のような高周波信号が入力されるとすると、
Figure 2004032320
ここで、Vは振幅、ωは周波数、tは時間である。マイクロフィルタ装置のマイクロ共振体がωの周波数で受ける力Fは、ほぼVに依存し、Vが大きいほどFは大きくなる。また、マイクロ共振体の振幅Aは、マイクロ共振体が受ける力Fに依存し、これもFが大きいほど大きくなる。したがって、マイクロフィルタへの入力信号の変数のうち、例えば、Vを小さくすれば、マイクロ共振体の共振の振幅を小さくすることができる。つまり、図41に示すように、マイクロ可動部の制御電圧を変えて、マイクロ可動部を押し付ける際に、制御電圧を変えてから、押し付ける力が変化して安定するまでの時間dの間において、例えば、マイクロフィルタへの入力信号のVを小さくし、信号強度を小さくすれば、マイクロ共振体の振幅Aは小さくなるので、マイクロ可動部を押し込む際の位置のズレや跳ねを防ぎ、滑らかに押し込む力を変えることができる。Vをゼロにして振動をなくすこともできるが、振幅のみを小さくし振動を継続させた方が、調整中に周波数が急変する跳びを防止し、周波数の微調整が行なうことができる。
さらに好適な実施形態では、図41に示すように、マイクロ可動部が釣り合いの位置からマイクロ共振体のところまで移動させる、すなわちマイクロ可動部をマイクロ共振体に接触させるだけで、殆どマイクロ共振体を押し付けない程度の、移動ステップが行なわれる際には、マイクロフィルタ装置への入力は、オフあるいは信号強度をゼロにされる。これにより、マイクロ可動部を接触させるべき位置に滑らかにマイクロ共振体に接触させることができ、再現性の高いマイクロ可動部の調整ができる。
(第5の実施形態)
次に、第5の実施形態としてマイクロ発振器について説明する。好適な実施形態では、図39に示すように、第1、第2、第3の実施形態にて示した本発明のマイクロ共振装置550を含み、マイクロ共振子に容量結合した入力電極551と、マイクロ共振子で選択された周波数信号を取り出すため出力電極552と、マイクロ可動部を動かすための駆動機構への入力電極553および554を有している。ここでは、マイクロ可動部を2つ備えているが、これに限るものではなく、1つのマイクロ可動部でもよい。本実施形態の構成により、製造後にマイクロ可動部駆動機構の入力電極に制御電圧を与えることでマイクロ共振装置550の共振周波数を広範囲に調整可能となるため、従来法ではできなかった、製造時の加工ばらつきや封入圧力のばらつきによるマイクロ共振装置の共振周波数の不確かさに対して、所望の(設計)値に補正・調整して使用することが可能になる。従来法にくらべ製造後の調整範囲が大幅に改善されるため、従来法では歩留まりがとれない範囲の加工精度の製造装置および製造工程を用いても、歩留まりが取れるようになる。また、封入後にマイクロ可動部の制御によってマイクロ発振器の出力周波数のズレをその場で補正することができるため、使用時の外部環境(温度)の変化やマイクロ共振装置そのものの経時劣化(封止圧力の劣化ならびにマイクロ共振子材料の機械特性の劣化など)に対しても出力を補正・最適調整することができ、発振器としての使用可能な環境条件範囲を拡大し、製品寿命を延ばすことができる。
本実施形態に示すマイクロ発振器は、基本部分のマイクロ共振装置の構成が第4の実施形態に示したマイクロフィルタ装置と同じであり、本実施形態においても、第4の実施形態のごとく、マイクロ可動部制御回路および記憶素子と接続することで、同様の効果が得られることは明らかである。
(第6の実施形態)
次に、第6の実施形態として、第4の実施形態に示したごとき本発明のマイクロフィルタ装置と、第5の実施形態に示したごとき本発明のマイクロ発振器とを、用いた無線通信機器について説明する。
図42に示すように、この無線通信機器は、送信部650と、受信部651と、前記送信部650からの送信信号と前記受信部651への受信信号とを分離するデュプレクサ652と、前記送信信号を電波として送信すると共に前記受信信号を電波として受信するアンテナ653と、前記送信部650および前記受信部651に接続された前記マイクロフィルタ装置600および前記マイクロ発振器601とを備える。
前記送信部650は、送信信号が流れる上流側から下流側へ、順次、ミキサ602、アンプ603およびPA(Power Amplifier;電力増幅回路)604を備え、このアンプ603とこのPA604との間に、前記マイクロフィルタ装置600が接続される。
前記受信部651は、受信信号が流れる上流側から下流側へ、順次、LNA(Low Noise Amplifier;低雑音増幅回路)605、ミキサ606およびアンプ607を備え、このLNA605とこのミキサ606との間に、前記マイクロフィルタ装置600が接続される。
また、前記マイクロ発振器601は、前記送信部650の前記ミキサ602と前記受信部651の前記ミキサ606との両方に接続される。なお、前記マイクロ発振器601には、例えば、VCO(Voltage Controlled Oscillator;発振回路)が接続される。
このように、高いQ値を持つ前記マイクロフィルタ装置600を無線通信機器の送受信部650,651の帯域通過フィルタとして使用することにより、ノイズとなる非線形成分を除去や、所望の周波数信号のみを通過させ他の周波数信号を全て除去するチャンネル選択などが可能となる。また、高いQ値を持つ前記マイクロ発振器601を無線通信機器の送受信部650,651の局所(局部)発振器などに使用することにより、位相ノイズ低減などの効果が得られる。
したがって、本発明において、製造後に調整可能な超小型のマイクロフィルタ装置600およびマイクロ発振器601を無線通信機器に搭載することが可能になり、外部環境の変動やマイクロ共振装置そのものの内部変動により、マイクロフィルタ装置600およびマイクロ発振器601の周波数特性に変動が生じても、通信状態と対比しながらマイクロ可動部の制御によりマイクロフィルタの周波数特性を調整し、通信状態を最適に保つことができるようになる。
要するに、従来の技術では、加工精度や封入圧力精度のばらつきのため、中心周波数を設計値に高精度に合わせたマイクロフィルタ装置およびマイクロ発振器を製造することができず、歩留まりが取れないばかりか、無線機器に搭載しても製造後の調整範囲が狭いために、外部環境変化やマイクロフィルタ装置およびマイクロ発振器そのものの経時劣化に対応できない問題がある。
(第7の実施形態)
さらに第7の実施形態として、本発明の他の無線通信機器について説明する。
図43に示すように、この無線通信機器は、前記デュプレクサ652と前記アンテナ653との間に接続されるチャンネル選択部660を備える。このチャンネル選択部660は、並列された複数のマイクロフィルタ装置600を備え、所望の周波数信号のみを通過させる。なお、その他の構造は、第6の実施形態と同じであるので、その説明を省略する。
なお、図示しないが、この発明の無線通信機器としては、前記マイクロフィルタ装置600と前記マイクロ発振器601との何れか一方を用いてもよい。
なお、この発明は、上述した実施形態に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更および追加が可能であることは、言うまでもない。
本発明は、基板上に集積回路の一部として組み込み可能なマイクロ共振装置に関し、特に、マイクロ・エレクトロ・メカニカル・システムを利用したマイクロフィルタ装置およびマイクロ発振器、並びに無線通信機器に関する。
マイクロ・エレクトロ・メカニカル・システム(MEMS)を用いたマイクロ共振子は、例えば、文献1(F.D.Bannon,III,J.R.Clark,and C. T.−C.Nguyen,IEEE J.Solid−State Circuits, vol.35,No.4,pp.512−526,April 2000)(非特許文献1)に示されているように、その固有振動数(共振周波数)を利用してその周波数の信号のみを正確に通過させ、その他の周波数信号および雑音を減衰させることができる。他の受動素子(コンデンサやインダクター)を用いる場合や能動素子を用いる場合に比べて、集積回路に組み込める超小型サイズで極めて狭帯域なフィルタ(高Qフィルタ)が実現できることから、その検討が進められている。
図30は、従来技術によるシリコン基板上にポリシリコン膜で形成されたマイクロ共振子300を備えるマイクロフィルタの例である。入力電極301に与えられた交流信号によって、交流信号の周波数がマイクロ共振子300の共振周波数に類似の場合、マイクロ共振子300は振動し、選択されたAC信号が出力端302から伝送される。
図30に示すような共振子の共振周波数は、上記文献1に示されるように、ほぼ次式で表される。
[式1]
Figure 2004032320
ここで、kは定数、ρは共振子材料の密度、Eは共振子材料のヤング率、Lrは共振子の実効長さ、hは共振子の厚さである。共振子材料にポリシリコン(E=150GPa)を用い、共振子の膜厚を2μmとすると、この式からも明らかなように、共振子の長さが数10μmから数μm程度の共振子を用いれば、数100MHzからGHz帯の周波数のものが得られることがわかる。
しかし、実際に基板上にLSI(集積回路)プロセスで作製して所望の共振周波数の共振子が得られるかとなると、LSIプロセスにおいても設計上許容しなければならない加工精度のマージンがあり、そのマージンに応じて共振子の長さにばらつきが存在することになる。したがって、出来上がった共振子には、加工技術では制御できない共振周波数の不正確さは避けられないことになる。これは、MEMSを作製する上で重大な欠点となる。
さらに、従来、MEMS材料として使用されているポリシリコンでは、共振子サイズを結晶粒サイズよりも小さくすることは困難であり、共振子表面に凹凸が形成され共振子の膜厚がばらついてしまう。また、共振子内に多数の粒界が存在し、結晶方位が不揃いなため、正確な機械的特性(ヤング率)も得られない。内部応力もまた不均一になりそりや縮みなどの原因となる、これら膜厚の不均一性、機械特性のばらつき、応力によるそりや縮みは全て共振周波数の不正確さの要因となる。共振子の長さのように平面的に非破壊で測定可能なものであれば、LSI製造工程で使用される高性能の測長技術により、出来上がり寸法をある程度の精度で確認することができるが、内部応力や不均一なそりや縮みは、平面的に非破壊な測定方法で正確に確かめることも不可能なため、製造工程のなかで検査し、修正を加えることも困難である。
また、図30に示すように、基板表面に積層して形成する表面MEMSでは、共振子の支持部や下部電極の影響で共振子に角部303の曲がり(曲率)やくぼみ304、凸部305が形成される。これらは、製造工程におけるマスクのアライメントのズレや、加工形状および堆積膜厚のバラツキなどに依存して形状が異なることから、共振周波数のばらつき要因となる。
特開2001−94062号公報(特許文献1)には、シリコン・オン・インシュレータ(SOI)基板を使用し、単結晶シリコンの共振子を形成し、ポリシリコンのもつ多結晶性に起因する膜厚バラツキや機械的特性のばらつきの問題を解決する技術が開示されているが、加工精度ばらつきによる共振周波数の不正確さを本質的に解決するものではない。
特開2001−94062号公報には、その製造工程において、イオン注入により共振子の密度を変え、共振子の共振周波数を制御する方法が開示されているが、この手法では、共振子のサイズや機械的特性を正確に測定し、注入前の共振周波数を正確に見積もることができなければ、所望の共振周波数にするためのドーズ量を決定できない。つまり、共振子の寸法測定に使用する検査装置の測定誤差と、そして、2μm程度の厚さと数μm以上の長さを有する共振子内でイオン注入後の濃度分布を完全に把握することが困難であることを考慮すると、注入後の共振子における機械的特性のばらつきを正確に予測することは困難であり、この手法で製造工程に起因する共振周波数の不正確さを本質的に解決するのは困難である。
さらに、共振子の共振周波数ならびに共振ピークの振幅増幅率(Q値)は、文献2(Y.T.Cheng et al.,Proceedings of MEMS Conf.p18,2001)(非特許文献2)に開示されているように、共振子を封止したキャビティ内の圧力に強く依存するため、製造途中で共振子の共振特性を調整したとしても、最終の共振特性は、封止圧力のばらつきにより変動してしまうことになる。封止工程で封止を行なう真空装置内の圧力を精度よく調整するとしても、排気系の位置や装置内の構造により圧力分布が存在する。しかも、基板が搬送され、封止作業がおこなわれる基板上の共振子近傍の圧力を直接計測することは困難であり、実際に、圧力計が測定できるのは、封止工程を行なっている真空装置内で、封止作業に支障をきたさない周辺部にならざるを得ない。さらに、圧力計の絶対値精度においても原理的に数%の以下の精度を再現性よく実現することは困難である。また、排気系の排気能力の安定性を考慮しなくてはならない。基板を搬入し、真空装置内で封止工程を行なう際の、基板、封止材料および封止作業を行なうマニピュレータなどの可動部からの脱ガス量など変動要素もある。以上のような複雑な要因に対し、基板上の共振子近傍の微細な封止領域の圧力を正確に狙い通りの圧力に制御することは極めて困難であり、封止前に共振子の共振特性を調整しても、封止後には、殆どの場合において、ずれてしまうことになる。
さらに、完成した共振子においても、使用環境、つまり、外部温度変化や封止圧力の変動あるいは劣化によって共振周波数は変動する。温度変化は、封止内部からの脱ガスや圧力変動、共振子そのものの熱膨張により共振周波数の変動をもたらす。つまり、使用環境下や経時劣化による変動があっても、共振周波数が最適に調整できる機能がなければ使えないことになる。
上記文献1に共振子(共振周波数10MHz程度)に印加するバイアス電位によっての共振周波数を変更する方法が開示されているが、この手法では、入力電極と共振子の間の電位差によって生じる静電力で、共振子を入力電極側に引き寄せ、共振子の共振周波数を変えている。したがって、共振子の持つバネの力に対して静電力の強さを相対的に大きくすることによって、より共振子が入力電極に近づき、共振周波数の変化も大きくできることになる。ところが、共振周波数がさらに大きくなものに適用するとなると、共振子の長さは短くなり、それにともない入力電極のサイズも小さくなるため、必然的に静電力は小さくなる。さらに、共振子の長さが短くなると共振子のバネの力は強くなることから、相対的な静電力の大きさは急激に弱まり、バイアス電位による共振周波数の変動範囲はほとんど確認できないレベルにまで低下する。つまり、バイアス電位を利用する方法は、高周波領域の共振周波数をもつ共振子に対して、上述の加工精度のばらつきや封止圧力のばらつきによる共振周波数の不正確さを補償するだけの制御を可能にするものとはいい難い。
さらに、上記文献1に示してあるように、バイアス電位による制御は、バイアス電圧を上げるほど、共振周波数を低下させ、共振ピークにおける振幅増幅率(Q値)も低下させる。実際の使用環境では、封止圧力の劣化(圧力の上昇)、温度上昇など、いずれにおいても、共振周波数が低下するため、共振周波数は高める側への制御が必要となる。しかしながら、バイアス電圧はMEMSの出力と比例関係があるため、バイアス電位を必要以上に低下させられず、基本的に周波数を高める側への制御できる手法ではないという問題がある。
また、集積回路への組み込みを考えると、通常CMOS回路は、3〜5V程度の電圧を使用しているため、MEMS用制御電圧を上げるとしても、40V程度が限界と考えられる。というのは、この程度場合でも、MEMS制御回路用にゲート絶縁膜やウェル構造などを、電圧に応じたスケーリングのために、低電圧用、中電圧用、高電圧用と3種類程度の使い分けが必要となり、製造工程が複雑になり、コストの増が避けられないからである。バイアス電圧を用いる方法では、実際には、制御可能な電圧の上限も低く、制御範囲が狭いことも問題となる。
特開2001−94062号公報 F.D.Bannon,III,J.R.Clark,and C. T.−C.Nguyen,IEEE J.Solid−State Circuits, vol.35,No.4,pp.512−526,April 2000 Y.T.Cheng et al.,Proceedings of MEMS Conf.p18,2001
そこで、本発明は、上述のような従来技術の問題点を解決するために成されたものであって、基板上に集積回路の一部として組み込み可能なマイクロ共振装置であって、共振子を封入した後においても共振子の加工精度のばらつきや封入圧力のばらつきによる変動を補償し、共振周波数を調整できるマイクロ共振装置、特に、周波数可変マイクロフィルタ装置およびマイクロ発振器、並びに無線通信機器を提供することにある。
この発明のマイクロ共振装置は、基板と、
この基板に設けられたマイクロ共振体と、
このマイクロ共振体に機械的に作用する少なくとも一つのマイクロ可動部と、
このマイクロ可動部を駆動して、前記マイクロ共振体に接触させ、または、前記マイクロ共振体から離すと共に、前記マイクロ共振体に対する前記マイクロ可動部の機械的な作用状態を変化させるマイクロ可動部駆動機構と
を備えていることを特徴とする。
より詳しくは、前記マイクロ共振体は、選択されたパラメーターの変動に応答して振動し、また、マイクロ可動部は、外部からの操作によって所定の力で前記マイクロ共振体に機械的あるいは力学的に作用し、前記マイクロ共振体の共振周波数、あるいは共振ピークにおける振幅増幅率、あるいは入力可能信号強度を変えることができる。
このマイクロ共振装置によれば、共振子を封入した後においても共振子の加工精度のばらつきや封入圧力のばらつきによる共振周波数の不確かさを補償し、共振周波数の調整が可能なマイクロ共振装置の提供が可能となった。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部は、前記マイクロ共振体の振動領域あるいは振幅の分布形状を変える。
この一実施形態のマイクロ共振装置によれば、前記マイクロ共振体の共振周波数、あるいは共振ピークの振幅増幅率(Q値)、あるいは入力可能信号強度を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部は、前記マイクロ共振体の支持端付近における振動の吸収を制御する。
この一実施形態のマイクロ共振装置によれば、前記マイクロ共振体の共振周波数、あるいは共振ピークの振幅増幅率(Q値)、あるいは入力可能信号強度を変えることができる
た、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、前記マイクロ可動部を前記マイクロ共振体に所定の大きさの力で接触させ、または、前記マイクロ可動部を前記マイクロ共振体に接触させている力の大きさを変える。
この一実施形態のマイクロ共振装置によれば、前記マイクロ共振体の共振周波数、あるいは共振ピークの振幅増幅率(Q値)、あるいは入力可能信号強度を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、前記マイクロ可動部が前記マイクロ共振体に接触する位置あるいは接触する方向を変える。
この一実施形態のマイクロ共振装置によれば、外部からの操作によって、前記マイクロ共振体の共振周波数、あるいは共振ピークの振幅増幅率(Q値)、あるいは入力可能信号強度を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部が前記マイクロ共振体に接触する位置は、前記マイクロ共振体の支持端付近あるいは振動の節位置付近である。
この一実施形態のマイクロ共振装置によれば、マイクロ共振体の共振周波数が不安定になることを抑制できる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部が前記マイクロ共振体に接触する位置は、前記マイクロ共振体の振動の振幅ピーク位置よりも振幅の小さい領域である。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振周波数が不安定になることを抑制できる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部と前記マイクロ共振体との接触によって形成される交線のうち、前記マイクロ共振体の主たる振動が起こる側に形成される交線が、前記マイクロ共振体の主たる共振周波数に関わる寸法の実効値を示す線分方向に対して、ほぼ垂直に位置するように構成される。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ共振体が、マイクロ共振子とマイクロ共振子支持部を備え、前記マイクロ可動部と前記マイクロ共振体との接触によって形成される交線のうち、前記マイクロ共振体の主たる振動がおこる側に形成される交線が、前記マイクロ共振子と前記マイクロ共振子支持部が形成する交線のうち前記マイクロ共振体の主たる振動が起こる側か、あるいは最も離れたところに形成された交線にほぼ平行に位置するように構成される。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ共振体が、マイクロ共振子とマイクロ共振子支持部を備え、前記マイクロ可動部と前記マイクロ共振体との接触によって形成される交線のうち、前記マイクロ共振体の主たる振動が起こる側に形成される交線が、前記マイクロ共振子と前記マイクロ共振子支持部が形成する交線のうち最も前記マイクロ共振体の主たる振動がおこる側に形成された交線位置から、前記マイクロ共振体の主たる共振周波数に関わる寸法の実効値を示す線分の端位置までの距離を2倍に延長した位置より、前記マイクロ共振体の主たる振動がおこる側に位置するように構成される。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ共振体が、マイクロ共振子とマイクロ共振子支持部を備え、前記マイクロ可動部と前記マイクロ共振体との接触によって形成される交線のうち、前記マイクロ共振体の主たる振動の起こる側とは反対側に形成される交線が、前記マイクロ共振子と前記マイクロ共振子支持部が形成する交線のうち最も前記マイクロ共振体の主たる振動がおこる側に形成された交線位置より、前記マイクロ共振体の主たる振動が起こる側とは反対側に位置するように構成される。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部は、大きさ、あるいは形状、あるいは材質の異なる複数存在し、この異なるマイクロ可動部を前記マイクロ共振体に機械的に作用させる。
この一実施形態のマイクロ共振装置によれば、共振ピーク強度および共振ピークの振幅増幅率(Q値)をあまり下げずに共振周波数を変更する場合と、共振ピーク強度および共振ピークの振幅増幅率(Q値)をある程度下げて共振周波数を変更する場合とに、使い分けた制御が可能となる。
さらには、マイクロ共振体の両端に対し、それぞれマイクロ可動部を用意し、一つはマイクロ共振子の実効長さを示す線分の端位置近傍に、もう一つはマイクロ共振子の実効長さを示す線分の端位置から少し離した位置に接触するように配置することによって、粗調整用に共振周波数を大きく変更させたい場合と、さらに小さく共振周波数の微調整したい場合と、マイクロ可動部を使い分けて接触させることができ、マイクロ可動部を一箇所のみ接触させて制御する場合に比べて、振動ピーク強度の低下が少なく、振動ピークの振幅増幅率(Q値)の劣化を抑えた広範囲のマイクロ共振子の共振周波数精密調整が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、少なくとも前記マイクロ共振体に接触する前記マイクロ可動部先端部の共振周波数は、前記マイクロ共振体の共振周波数よりも大きい。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部をマイクロ共振子に接触させても、接触させない場合に比べて、振動ピーク強度の低下も少なく、振動ピークの振幅増幅率(Q値)の劣化を抑えた共振周波数の調整が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部と前記マイクロ共振体とは、それぞれ、相互に接触する接触部を有し、この接触部において、前記マイクロ可動部側あるいは前記マイクロ共振体側の表面の少なくともいずれか一方に固着防止層が形成されている。
この一実施形態のマイクロ共振装置によれば、接触時に固着することを防止しながら、接触による共振周波数の調整を繰り返し行なうことができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部の前記マイクロ共振体との接触部における前記マイクロ共振体の実効寸法を示す方向の長さは、前記マイクロ共振体の厚みより長くなっている。
この一実施形態のマイクロ共振装置によれば、効果的に共振周波数を変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部と前記マイクロ共振体とが相対的に押し付けられる力の方向は、前記マイクロ共振体の主たる共振周波数に関わる寸法の実効値を示す線分方向に対してほぼ垂直である。
この一実施形態のマイクロ共振装置によれば、マイクロ共振子の実効的な長さを効果的に変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部の前記マイクロ共振体への機械的作用により、前記マイクロ可動部は、前記マイクロ共振体に接触し、前記マイクロ可動部と前記マイクロ共振体とが相対的に押し付けられる力の方向は、前記マイクロ共振体の主たる振動の振幅方向に対してほぼ平行か、あるいはほぼ垂直である。
この一実施形態のマイクロ共振装置によれば、押し付けられる力がマイクロ共振体の接触面に対して垂直に加えられ、効果的に実効長さを変えることができる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、可撓性を有する板状の圧電部材を備えている。
この一実施形態のマイクロ共振装置によれば、占有面積を小さくした駆動機構が基板上に作製可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、厚み変形型の圧電部材を備えている。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部の押し付け位置を変えることができる駆動機構を小さな占有面積で基板上に作製可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、すべり変形型の圧電部材を備えている。
この一実施形態のマイクロ共振装置によれば、より再現性の高い高精度の押し付け位置の変更が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ可動部駆動機構は、静電駆動型のアクチュエータを備えている。
この一実施形態のマイクロ共振装置によれば、圧電材料を用いずに、通常のMEMSプロセスあるいはCMOSプロセスで用いられている材料で基板上に製作でき、基板垂直方向および水平方向の駆動力の発生が容易にかつ薄膜で実現可能となる。
また、一実施形態のマイクロ共振装置では、前記静電駆動型のアクチュエータは、前記基板に固定された第1の電極と、前記第1の電極から一定の距離に形成され、前記マイクロ可動部と連結し、外部から与えられる電圧により生じる前記第1の電極との電位差によって、前記第1の電極に接近または離れるように移動して前記マイクロ可動部を動かす第2の電極と、前記第2の電極に電気的に接続し、前記第2の電極および前記第2の電極に連結した構造を支持する弾性体とを備える。
この一実施形態のマイクロ共振装置によれば、共振周波数の制御範囲を広くでき、また、数10V以下の低電圧での制御も十分可能となる。さらに、マイクロ共振子の両端に異なるマイクロ可動部を使い分けてマイクロ共振体に接触させること、あるいは、粗調整用マイクロ可動部と微調整用マイクロ可動部を使い分けてマイクロ共振体に接触させることができる。そして、本発明は、基板に対して垂直な方向ならびに平行な方向に振動するマイクロ共振子、そして、基板に対して平行な方向に縦の振動モードで振動するマイクロ共振子に本発明が容易に適用できる。
また、一実施形態のマイクロ共振装置では、前記弾性体は、前記第2の電極が前記第1の電極から所定の距離のところまで前記第1の電極に接近すると、支点位置が変わって、前記弾性体の弾性係数が大きくなる。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部をマイクロ共振体に接触させるまでの移動時には、小さな弾性定数のため低電圧で長い距離が移動でき、マイクロ可動部がマイクロ共振体に接触してからは、高い弾性定数となるため、第2の電極の移動距離を抑えられ、プル・インを防止しながらマイクロ可動部の押し込む力を強めることができる。
また、一実施形態のマイクロ共振装置では、前記静電駆動型のアクチュエータは、前記第2の電極が前記第1の電極から所定の距離のところまで前記第1の電極に接近するときに、前記第2の電極および前記第2の電極に連結した構造を支持する第2の弾性体を備える。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部がマイクロ共振体に接触し、押し込む段階から、第2の電極を支持する構造の弾性係数を大きくすることができ、マイクロ可動部をマイクロ共振体に接触させるまでの移動時には、小さな弾性定数のため、低電圧で多くの距離が移動でき、マイクロ可動部がマイクロ共振体に接触してからは、高い弾性定数となるため、第2の電極の移動距離を抑え、プル・インを防止しながら、マイクロ可動部の押し込む力を強めることができる。
また、一実施形態のマイクロ共振装置では、前記所定の距離は、前記第1の電極および前記第2の電極に電位差が与えられていない釣り合い状態における、前記第1の電極と前記第2の電極との間の距離の3分の2よりも大きく設定されている。
この一実施形態のマイクロ共振装置によれば、第2の電極が第1の電極に近づきすぎてプル・インを引き起こす前にマイクロ可動部をマイクロ共振体に接触させることができる。
また、一実施形態のマイクロ共振装置では、前記所定の距離は、前記第1の電極および前記第2の電極に電位差が与えられていない釣り合い状態における、前記第1の電極と前記第2の電極との間の距離から前記マイクロ可動部と前記マイクロ共振体との間の距離を引いた距離近傍に設定されている。
この一実施形態のマイクロ共振装置によれば、第2の電極が第1の電極に近づきすぎてプル・インを引き起こす前にマイクロ可動部をマイクロ共振体に接触させることができる。
また、一実施形態のマイクロ共振装置では、前記弾性体および前記第2の電極に連結した構造は、前記第2の電極が前記第1の電極に接近するときに、前記第1の電極と前記第2の電極との位置がほぼ平行に保たれるような折れ曲がり部を備えている。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部の押し付け時に、押し付ける力の方向が垂直方向からずれるのを抑制し、また、第2の電極が水平より傾くのを防止することができる。
また、一実施形態のマイクロ共振装置では、前記静電駆動型のアクチュエータは、前記第2の電極から一定の距離に、前記第1の電極とは反対側に形成され、外部から与えられる電圧により生じる前記第2の電極との電位差によって、前記第2の電極および前記マイクロ可動部に駆動力を与える第3の電極を備える。
この一実施形態のマイクロ共振装置によれば、マイクロ可動部とマイクロ共振体が固着して元の釣り合いの位置にもどらなかった場合においても、外部からの入力によって、マイクロ共振装置を解体することなく、マイクロ共振装置としての機能を復旧させる事ができる。
また、一実施形態のマイクロ共振装置では、前記静電駆動型のアクチュエータは、前記マイクロ可動部と連動する構造部から前記第1の電極と前記第2の電極とが対向する方向と直交する方向に一定の距離に形成されると共に、外部から与えられる電圧により生じる前記構造部との電位差によって、前記マイクロ可動部に対し、前記第1の電極と前記第2の電極とが対向する方向とは直交する方向の駆動力を与える第4の電極を備える。
この一実施形態のマイクロ共振装置によれば、上述の第3の電極を用いる方法よりもプロセスの簡略化とコスト削減し、固着を取り外す操作が可能となる。
また、一実施形態のマイクロ共振装置では、前記マイクロ共振体および前記マイクロ可動部は、その組成に少なくとも2つの元素が含まれる材料からなり、この元素のうち1つの元素は、高融点金属元素である。
この一実施形態のマイクロ共振装置によれば、室温程度の低温で堆積しても膜組成や膜質が容易に制御できるようになり、膜堆積時に膜はがれ等の破壊が起こるのを防ぎ、また、応力等負荷によるマイクロ構造の変形や破壊に対する耐性を向上できる。
また、一実施形態のマイクロ共振装置では、前記高融点金属元素は、タングステン、タンタル、モリブデンのいずれかである。
この一実施形態のマイクロ共振装置によれば、窒素等を含有させても高いヤング率のマイクロ構造部材がえられる。
また、一実施形態のマイクロ共振装置では、前記マイクロ共振体および前記マイクロ可動部は、その組成に少なくとも2つの元素が含まれる材料からなり、この材料は、高融点金属元素と、少なくとも窒素、酸素、炭素のいずれかの元素を含む。
この一実施形態のマイクロ共振装置によれば、室温程度の低温で堆積しても膜組成や膜質が容易に制御できるようになり、膜堆積時に膜はがれ等の破壊が起こるのを防ぎ、また、応力等負荷によるマイクロ構造の変形や破壊に対する耐性を向上できる。
また、一実施形態のマイクロ共振装置では、前記マイクロ共振体および前記マイクロ可動部は、その組成に少なくとも2つの元素が含まれる材料からなり、この材料は、組成あるいは内部残留応力の異なる少なくとも2つの層で構成される。
この一実施形態のマイクロ共振装置によれば、膜堆積時に膜はがれ等の破壊が起こるのを防ぎ、また、応力等負荷によるマイクロ構造の変形や破壊に対する耐性を向上できる。
また、この発明のマイクロフィルタ装置は、前記マイクロ共振装置と、前記マイクロ共振体に容量結合した入力電極と、前記マイクロ共振装置により選択された周波数信号を取り出すための出力電極と、前記マイクロ可動部駆動機構を駆動する入力電極とを有していることを特徴としている。
この発明のマイクロフィルタ装置によれば、製造後にマイクロ可動部の制御でマイクロ共振装置の共振周波数(マイクロフィルタ装置の中心周波数)を広範囲に調整可能となるため、従来法ではできなかった、製造時の加工ばらつきや封入圧力のばらつきによるマイクロ共振装置の共振周波数(マイクロフィルタ装置の中心周波数)の不確かさに対して、所望の(設計)値に補正・調整することが可能になる。さらに、従来法では歩留まりがとれない範囲の加工精度の製造装置および製造工程を用いても、歩留まりが取れるようになる。また、封入後にマイクロ可動部の制御によってマイクロフィルタ装置の中心周波数のズレを補正することができるため、使用時の外部環境(温度)の変化やマイクロ共振装置そのものの経時劣化(封止圧力の劣化ならびにマイクロ共振子材料の機械特性の劣化など)に対してもフィルタ出力を補正・最適調整することができ、フィルタとしての使用可能な環境条件範囲を拡大し、製品寿命を延ばすことができる。
また、一実施形態のマイクロフィルタ装置では、前記マイクロ共振装置の出力と前記マイクロ可動部駆動機構を駆動する入力とに接続されたマイクロ可動部制御回路を備え、このマイクロ可動部制御回路は、選択すべき所望の周波数と前記マイクロ共振装置により選択出力される信号の周波数にズレが存在するとき、前記マイクロ共振装置から所望の周波数信号が出力されるように、前記マイクロ可動部を調整する。
この一実施形態のマイクロフィルタ装置によれば、実際の使用環境の変化および使用時のマイクロ共振装置の状態に応じて、その場でマイクロフィルタ装置の周波数出力の調整が可能となり、共振体部が固着した場合にも、マイクロフィルタ装置を解体することなく、外部からの入力でマイクロ共振装置の機能復帰ができる。
また、一実施形態のマイクロフィルタ装置では、前記マイクロ可動部制御回路に接続された記憶素子を備え、この記憶素子は、前記選択すべき所望の周波数との差を補正するよう調整した前記マイクロ可動部駆動機構の制御値を記憶し、前記マイクロ可動部制御回路は、起動動作時に、前記記憶素子に記憶された前記マイクロ可動部駆動機構の制御値をもとに、前記マイクロ可動部を制御して、出力される周波数信号を調整する。
この一実施形態のマイクロフィルタ装置によれば、まったくの初期値から調整するよりも大幅に時間短縮ができる。
また、一実施形態のマイクロフィルタ装置では、前記記憶素子に記憶される前記マイクロ可動部駆動機構の制御値は、前記マイクロ可動部駆動機構の電極に印加する電圧、あるいは電極間に印加される電圧差のいずれかを与える設定値を含んでいる。
この一実施形態のマイクロフィルタ装置によれば、まったくの初期値から調整するよりも大幅に時間短縮ができる。
また、一実施形態のマイクロフィルタ装置では、前記マイクロ可動部制御回路は、前記選択出力される信号の周波数に存在するズレを所望の周波数に調整する際、前記記憶素子にあらかじめ記憶された前記マイクロ可動部駆動機構の制御電圧の最適制御ステップを用いて段階的に調整する。
この一実施形態のマイクロフィルタ装置によれば、いろいろなマイクロ共振装置あるいはマイクロフィルタ装置に対しても、調整幅を予測して簡便に周波数のズレを調整することができる。また、制御ステップを段階的に行なうことにより、正確に定常状態の周波数出力を確認して制御することができ、周波数を精度よく調整し短時間で最終結果を得ることができる。
また、この発明のマイクロ発振器は、前記マイクロ共振装置と、前記マイクロ共振体に容量結合した入力電極と、前記マイクロ共振装置により出力された周波数信号を取り出すための出力電極と、前記マイクロ可動部駆動機構を駆動する入力電極とを有していることを特徴としている。
この発明のマイクロ発振器によれば、製造後にマイクロ可動部の制御でマイクロ共振装置により出力される周波数を大幅に調整可能となるため、従来法ではできなかった、製造時の加工ばらつきや封入圧力のばらつきによるマイクロ共振装置の共振周波数あるいはマイクロ発振器の出力周波数の不確かさに対しても、所望値(設計値)にズレを調整可能となる。従来法にくらべ製造後の調整範囲が大幅に改善されるため、従来法では歩留まりがとれない同じ加工精度の製造装置および製造工程を用いても、歩留まりが取れるようになる。また、封入後にマイクロ可動部の制御によってマイクロ発振器の出力周波数のズレや変動をその場で補正することができるため、使用時の外部環境(温度)の変化やマイクロ共振装置そのものの経時劣化(封止圧力の劣化ならびにマイクロ共振子材料の機械特性の劣化など)に対しても出力の周波数特性を補正・最適調整することができ、発振器としての使用可能な環境条件範囲を拡大し、製品寿命を延ばすことができる。さらには、マイクロ可動部は、マイクロ共振体とともに、基板上に形成できるため、いろいろな周波数特性をもつマイクロ共振装置を並べて作製することが可能となり、いろいろ周波数特性のマイクロ共振装置とマイクロ可動部をならべることで、マイクロ発振器全体としての周波数特性の制御可能範囲が拡大し、使用目的や使用環境に応じて使い分けることができる。また、複数のマイクロ共振装置を組み合わせることで、ミキシングした出力を得ることも可能となる。
また、一実施形態のマイクロ発振器では、前記マイクロ共振装置の出力と前記マイクロ可動部駆動機構を駆動する入力とに接続されたマイクロ可動部制御回路を備え、このマイクロ可動部制御回路は、前記マイクロ共振装置により出力された周波数の変動を補正あるいは最適化するように、出力を検知しながら前記マイクロ可動部を調整する。
この一実施形態のマイクロ発振器によれば、実際の使用環境および使用時のマイクロ共振装置の状態に応じて、その場でマイクロ発振器の周波数出力の調整が可能となる。また、マイクロ可動部が固着した場合にも、マイクロ発振器を解体することなく、外部からの入力でマイクロ共振装置の機能復帰ができる。
また、一実施形態のマイクロ発振器では、前記マイクロ可動部制御回路に接続された記憶素子を備え、この記憶素子は、出力されるべき所望の周波数と実際の周波数との差を補正あるいは最適化するよう調整した前記マイクロ可動部駆動機構の制御値を記憶し、前記マイクロ可動部制御回路は、起動動作時に、前記記憶素子に記憶された前記マイクロ可動部駆動機構の制御値をもとに、前記マイクロ可動部を制御する。
この一実施形態のマイクロ発振器によれば、出荷時またはユーザーの通常の使用環境で行なった調整時のマイクロ可動部の制御値、あるいは、前回使用時に調整したマイクロ可動部の制御値を記憶素子に記録し、その値を基に、起動時にその選択されたマイクロ可動部を調整することで、まったくの初期値から調整するよりも大幅に時間短縮ができる。
また、一実施形態のマイクロ発振器では、前記記憶素子に記憶される前記マイクロ可動部駆動機構の制御値は、前記マイクロ可動部駆動機構の電極に印加する電圧、あるいは電極間に印加される電圧差のいずれかを与える設定値を含んでいる。
この一実施形態のマイクロ発振器によれば、まったくの初期値から調整するよりも大幅に時間短縮ができる。
また、一実施形態のマイクロ発振器では、前記マイクロ可動部制御回路は、前記出力された周波数における変動を補正あるいは最適化する際、前記記憶素子にあらかじめ記憶された前記マイクロ可動部駆動機構の制御電圧の最適制御ステップを用いて段階的に調整する。
この一実施形態のマイクロ発振器によれば、いろいろなマイクロ共振装置あるいはマイクロ発振器に対しても、予測された制御幅で簡便に周波数のズレを調整することができる。また、制御ステップを段階的に行なうことにより、正確に定常状態の出力周波数を確認して制御できるため、周波数を精度よく短時間に調整することができる。
また、この発明の無線通信機器は、送信部と、受信部と、前記送信部からの送信信号と前記受信部への受信信号とを分離するデュプレクサと、前記送信信号を電波として送信すると共に前記受信信号を電波として受信するアンテナと、少なくとも前記送信部および前記受信部に接続された前記マイクロフィルタ装置とを備えることを特徴としている。
この発明の無線通信機器によれば、前記マイクロフィルタ装置を備えるので、外部環境の変動やマイクロ共振装置そのものの内部変動によって、前記マイクロフィルタ装置の周波数特性に変動が生じても、通信状態と対比しながら前記マイクロ可動部の制御を行ない、前記周波数特性を調整し、通信状態を最適に保つことができる。
また、この発明の無線通信機器は、送信部と、受信部と、前記送信部からの送信信号と前記受信部への受信信号とを分離するデュプレクサと、前記送信信号を電波として送信すると共に前記受信信号を電波として受信するアンテナと、少なくとも前記送信部および前記受信部に接続された前記マイクロ発振器とを備えることを特徴としている。
この発明の無線通信機器によれば、前記マイクロ発振器を備えるので、外部環境の変動やマイクロ共振装置そのものの内部変動により、前記マイクロ発振器の周波数特性に変動が生じても、前記マイクロ可動部を調整して前記周波数特性変動を補正あるいは最適化することができる。
以下に、本発明の好適な実施形態について添付の図面を参照して説明する。
(第1の実施形態)
図1は、本発明によるマイクロ共振装置の第1の実施形態を示す構成図である。
基板10に形成され、選択されたパラメーターの変動に応答して振動するマイクロ共振子11とその支持部12からなるマイクロ共振体13と、外部からの操作によってマイクロ共振体13に機械的あるいは力学的に作用することによって、前記マイクロ共振子の共振周波数、あるいは共振ピークにおける振幅増幅率、あるいは入力可能信号強度を変えることのできるマイクロ可動部16を備えている。
本実施例においては、基板10にSOI基板を用い、マイクロ共振子11に不純物のドープされた単結晶シリコンを用いているが、本発明は、基板材料や、マイクロ共振子材料および形態を限定するものではなく、SOI基板の代わりにシリコン単結晶基板、GaAs基板、ガラス基板などを使用してもかまわない。また、不純物のドープされた単結晶シリコンの変わりに、不純物のドープされた多結晶シリコン膜あるいはアモルファスシリコン、SiGe膜、SiC膜、Ni、タングステン、さらには、窒化タングステン、窒化タンタルなどの高融点金属の窒化物を用い、図30に示す従来例のごとき形態のマイクロ共振子を用いることもできる。
また、本実施例においては、入力電極15から与えられる高周波電気信号のうち、マイクロ共振子11の共振周波数近傍の周波数信号における変動に選択的に応じてマイクロ共振子11が振動するが、入力方式や入力信号はこれに限るものではなく、低周波の圧力変動や音響信号、機械振動を与えてもかまわない、マイクロ共振子11の共振周波数を所望の周波数になるよう設計することで、同様に選択的に応答させることができる。
本実施例において、マイクロ可動部16は、外部からの操作の際にマイクロ共振体13に機械的あるいは力学的に接触する、またはマイクロ共振体13から離れるように動かすことができ、所定の力でマイクロ可動部16を前記マイクロ共振体13に接触させたり、あるいは接触させている力の大きさを変えたり、接触させる位置を変えたりすることができる駆動機構17を備えている。18は、マイクロ可動部16とマイクロ共振体13の接触面を示す。
図2から図5を用いてマイクロ可動部16をマイクロ共振体13に接触させる、つまり機械的あるいは力学的に作用させることの効果を説明する。図2は、図1に示した第1の実施形態のマイクロ共振子11について、長さ方向の断面を示したものである。この断面図からわかるようにマイクロ共振子11はマイクロ共振子支持部12と接触する下部にくらべ、上部は共振子の自由度が高く、マイクロ共振子の共振周波数に関わる実効長さ21は、実際に計測できるマイクロ共振子の長さ20よりも少し長くなっている。ここで用いた共振周波数に関わる実効長さについて説明する。いかなる形態の共振子においても、共振子を振動させるためには共振子を少なくとも支持する必要があるが、共振子を理想的に点や面で支持あるいは固定することは事実上困難である。どうしても3次元的(立体的に)にマイクロ共振子に接触する支持部の振動への関与を完全に無くすことはできない。とくにマイクロ共振体のように、微細になればなるほど製造プロセスの限界もあり支持構造の接触する領域の割合の相対的な大きくなり、構造上この支持部の振動への関与を無視できなくなる。このため、実際のマイクロ共振子の共振周波数は、マイクロ共振子の外形寸法で決まる値からずれることになる。そこで、この共振周波数のずれを考慮したマイクロ共振子の共振周波数に関わる寸法を実効寸法としている。図2に示したマイクロ共振子の場合、共振周波数のずれ分をマイクロ共振子の長さの外形寸法との差ととらえ、得られた共振周波数から求めたものをマイクロ共振子の実効長さとして用いている。
そこで、図3に示すように、マイクロ可動部16をマイクロ共振子11の支持端付近で比較的自由度の高いところに接触させると、マイクロ共振子11の支持端付近の自由度が変わり、マイクロ共振子11の振動領域と振幅の分布形状が変わる。これによってマイクロ共振子11の共振周波数を変えることができるのである。多くの場合、共振周波数変更後のマイクロ共振子の実効長さ22は、マイクロ共振子の下部の長さ20とマイクロ可動部16間の長さ23の間に位置している。
図30に示す従来例のごときマイクロ共振体では、図4に示すように、支持端付近にも振動に対するある程度の自由度が存在するために、マイクロ共振子24の実効長さ25は、共振子下側寸法26よりも長くなる。このような場合においても、図5に示すように、マイクロ可動部30をマイクロ共振子24の支持端付近に接触させることによりマイクロ共振子24の振動領域と振幅の分布形状が変わる。これによって共振周波数を変えることができる。ここで、マイクロ可動部30をマイクロ共振子24に接触させる位置は、マイクロ共振子24の上面36に限るものではない。たとえば、マイクロ共振子24並びに支持部34の側面35でもよい。図4に示すように、支持端の自由度が比較的高いマイクロ共振体の場合には、マイクロ共振子の振動が支持部側に広がりやすいために支持端付近のいずれかの場所にマイクロ可動部を接触させて、支持部側への振動エネルギーのロスを抑制する、つまり支持側への振動エネルギーの吸収を制御することによってマイクロ共振体の共振周波数など共振特性を制御できる。
次に、具体例に基づき、第1の実施形態に従いマイクロ共振体の共振周波数が調整できることを示す。図6に、図4に示すような形態のマイクロ共振体でマイクロ共振子の中央に様々な周波数の振動を与えたときに共振子の応答を求めた結果を示す。共振体にはポリシリコン膜を用いている。共振体の寸法は、下部の長さ5.0μm、上部の長さ7.4μm、高さ1.0μm、幅1.0μmとした。また、マイクロ可動部の接触面の大きさは1.0μm×1.0μmである。周波数を横軸に縦軸に共振子の応答(振幅)を示している。グラフの曲線Aは、マイクロ共振体にマイクロ可動部を接触させていないときの結果で、曲線B、Cは、図5に示すように、マイクロ共振体上面に(片側のみ)マイクロ可動部の位置を変えて接触させたときの結果である。B、Cは、それぞれマイクロ共振子下側の端位置(交差位置)から共振子の中央よりに0.1μm、支持側よりに0.5μmずらした位置に接触させた場合に対応する。AとBの結果において共振周波数(中心周波数)は207.09MHzから220.23MHzに変化しており、その変化量は6.34%であった。しかも、本例は、周波数を高める側に調整が可能なことを示している。また、共振ピークにおける振幅増幅率(Q値)は、21.5%変化している。このように、マイクロ可動部をマイクロ共振体に接触させ、マイクロ共振子に作用させることでマイクロ共振子の共振周波数および共振ピークの振幅増幅率が容易に調整可能となった。
ここでは、マイクロ共振体が非常に硬く、マイクロ可動部の接触によって起こるマイクロ共振体の変形が無視できる程度である場合を示したが、実際には、力学的に押し付けることによって、マイクロ共振体に僅かな変形が起こっており、厚さ、曲率などの寸法の変化とともに、局所的な応力の発生・ひずみ・密度変化などをひきおこすことによってマイクロ共振子の共振周波数を変化させることができる。図5に示した例においても、マイクロ可動部の押し付ける力を弱めたり、押し付ける位置をより自由度の小さいところに変えたりすると、マイクロ可動部のマイクロ共振体との接触部の振動を拘束力が弱まり、共振周波数の変化量を少なくすることができる。マイクロ共振体にシリコンではなく、金属材料やプラスチックなど硬度の低い材料を用い、マイクロ可動部にシリコンや酸化シリコン、タングステン、ダイヤモンドなどマイクロ共振体より硬度の高い材料を用いた場合により変形の効果は大きくなる。
ここで、上述の結果が従来技術では如何に実現困難な結果であるかについて以下に説明する。通常MEMS共振子に使用される厚さ2μmのシリコンあるいはポリシリコンを、現在の最先端のLSIプロセスに使用される微細加工技術を用い、さらに最善のケースとして、マスク1枚で共振子の寸法を決める加工ができると仮定する。
まず、2μm厚のシリコンあるいはポリシリコンを加工するためのマスクには、通常のゲートポリシリコンの加工に使用するレジストにくらべ厚さが2〜3倍の厚膜レジストを用いるか、酸化シリコン膜などのハードマスクを用いる必要があるため、共振子の寸法に応じて加工マージンとして誤差が含まれる。誤差の量は、最善のケースを想定しても、共振子の寸法が数μm程度のとき±0.03μm、数10μm程度のとき±0.05μm、数100μm程度であれば±0.1μm程度見込まれる。
次に、厚さ2μmのシリコンあるいはポリシリコンの加工において、条件の最適化と処理時制御に細心の注意を払い、側壁の凹凸を0.01μm以内に押さえることができ、側壁の角度が89±1度の範囲で加工できたとして、側壁角度のばらつきは、寸法にして0.035μmに相当する。共振子の長さとしては両側の加工が影響するので少なくとも計0.09μmの誤差が発生することになる。
これらの加工精度のばらつきを考慮すると、例えば、共振子の設計寸法が100μmの場合、加工ばらつき0.2μmをふくむと、共振周波数は1.657MHzから1.670MHzまで0.8%ばらつくことになるが、これを従来のバイアス電位で制御するとなると、制御電圧は、0.2V以下になる。ばらつき範囲としては狭いが、共振子のサイズが100μmのため電圧降下を考えると、制御電圧が低く過ぎて制御困難となる。共振子の設計寸法10μmの場合、加工ばらつき0.12μmを含むと、共振周波数は162.438MHzから166.760MHzまで2.60%ばらつくことになるが、これを従来のバイアス電位で制御するとなると、制御電圧は、170V以上必要になる。これは、前述の通り集積回路に組み込むことを考えると大きすぎて適用困難である。設計寸法6μmの場合、加工ばらつき0.09μmを含むと、共振周波数は448.554MHzから476.293MHzまで6.00%のばらつきとになる。共振周波数への影響がさらに大きくなり、これを従来のバイアス電位で制御するとすると、制御電圧は、700V以上必要となる。
以上に示したように、従来のバイアス電位による制御方法では、現実的に制御できる範囲は、共振子寸法が数10μm付近、共振周波数が数10MHz帯の限られた領域となり、第1の実施形態で示したような制御を実現することはできないことがわかる。このことから容易に推測できるように、共振子の電位の制御や、外部からの電界、あるいは電気的に制御する磁界で共振周波数を制御しようとする方法では、その適用できる周波数帯が極めて狭い範囲に限られてしまうことがわかる。
また、従来のイオン注入により共振子の密度を制御し共振周波数を変える方法では、上述したような、加工精度のばらつきによる少なくとも数%以上の不確かさを密度で補償するために、要求される周波数精度に応じて所望の共振周波数のものが得られるよう注入量を振り分け、その数に応じてマイクロ共振子を基板上に準備しなければならない。しかし、注入前の段階で厳密な共振周波数がわからないために、少なくとも数10、数100通りの振り分けが必要となる。さらに、注入前の共振子のばらついた寸法がどの共振子がどれだけばらついているのか1対1にわかっているわけではないので、実際には注入量を数100通り振り分けても、等しく数百通りに密度を振り分けたものができるわけではなく、所望の共振周波数ものが得られるかどうか予測できない。後工程の封入圧力のばらつきを考慮すると、さらに所望のものを得られる確率は低くなり、最終的には、集積回路の一部に組み込むには、あまりにもコストと時間を浪費する、歩留まりの低い手法となる。このことから、イオン注入同様に、原子・分子の蒸着や付着により共振子の密度あるいは膜厚で制御しようとする手法では、第1の実施形態のように集積回路の一部として組み込み共振周波数制御を実施することは困難である。
図7にマイクロ可動部16とマイクロ共振体13の好適な接触形態を示す。マイクロ可動部16とマイクロ共振体13の接触する接触面18は、マイクロ共振子11の支持端付近、あるいは振動端付近が望ましい。マイクロ共振子11の主たる振動部分ではなく、支持端付近の振動の小さい部分に接触させることで、マイクロ共振体13とマイクロ可動部16の密着性を高めることができ、接触部の不安定さのためにマイクロ共振子11の共振周波数が変動することを防止できる。
さらには、マイクロ可動部16とマイクロ共振体13の交線のうち最もマイクロ共振子11の振動が起こる側の交線40が、マイクロ共振子11の主たる共振周波数に関わる寸法の実効値を示す線分方向41(マイクロ共振子の実効長さ方向)に対してほぼ垂直に位置するように構成される。このように配置することで、平面方向のマイクロ共振子11の実効長さばらつきを抑え、また、平面方向に高次の共振モードが強められたり、新たに発生したりすることを抑制できるため、マイクロ共振子11の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。ここで、図1、図3および図5に示したように、マイクロ可動部を作用させるのは、必ずしもマイクロ共振体の両端で行なう必要はない。いずれか一方にマイクロ可動部を作用させることにより共振周波数など共振特性を変更する効果が得られる。
さらには、図8に示すように、マイクロ可動部16とマイクロ共振体13の接触によって形成される交線のうち、最もマイクロ共振子11の主たる振動がおこる側に形成される交線43が、マイクロ共振子11とマイクロ共振子の支持部12が形成する交線のうち最もマイクロ共振体11の主たる振動が起こる側に形成された交線42にほぼ平行に位置するよう構成するのが望ましい。マイクロ可動部16が接触前のマイクロ共振子11の平面方向における実効長さの分布に関わっていた交線42に対して、交線43がほぼ平行になるようにすることで、マイクロ可動部16を接触させたときに、接触前とは著しく異なる平面方向の振動モードをもつようになることを抑制し、マイクロ共振子11の共振ピークにおける振幅増幅率(Q値)の劣化を抑えた共振周波数の変更が可能となる。ここでは、図3に示すごときマイクロ共振子11を例に示したが、図5に示すごときマイクロ共振子24のような場合は、図5に示すように、マイクロ可動部30とマイクロ共振体24の接触によって形成される交線のうち、最もマイクロ共振子24の主たる振動がおこる側に形成される交線33が、マイクロ共振子24とマイクロ共振子の支持部が形成する交線のうち最もマイクロ共振体24の主たる振動が起こる側から離れた交線32にほぼ平行になるようにすることで同じ効果が得られる。これは、マイクロ共振子24の場合は、マイクロ共振子の下側よりもむしろ上面とマイクロ共振子の支持部との交線32の方が、マイクロ共振子24の実効長さに強く影響しているからである。
また、図8に示すように、マイクロ可動部16とマイクロ共振体13の接触によって形成される交線43は、マイクロ共振子11とマイクロ共振子支持部12が形成する交線42の位置から、前記マイクロ共振子の主たる共振周波数に関わる寸法の実効値を示す線分44の端位置45までの距離の2倍の位置46より、マイクロ共振体11の主たる振動がおこる側に位置することが望ましい。図3に示すごときマイクロ共振体11では、これ以上マイクロ共振子11の主たる振動の起こる側から遠い位置では、マイクロ可動部16を接触させてもマイクロ共振子11の共振周波数への寄与は小さいからである。
また、マイクロ可動部16とマイクロ共振体11の接触によって形成される交線47は、マイクロ共振子11とマイクロ共振子支持部12が形成する交線42の位置より、マイクロ共振体11の主たる振動が起こる側とは反対側に位置することが望ましい。これ以上マイクロ共振子11の主たる振動が起こる側に接触させると、マイクロ共振子支持部12との重なり部分がなくなり、マイクロ共振子11の可動部のみに接触すると、マイクロ共振子11からマイクロ可動部16へ振動エネルギーが伝わりすぎ、振動エネルギーのロスが大きくなり、共振ピークにおける振幅増幅率が著しく低下してしまう。また、マイクロ共振子11の振動によりマイクロ可動部16の固定力が変動し、接触面の僅かな浮き上がりなどが起こる危険性があり、共振周波数が不安定になる。図5に示すごときマイクロ共振体24においても結果は同じである。
また、図8に示すごときマイクロ共振体13では、マイクロ共振子11の幅よりマイクロ共振子支持部12の幅が広くなっており、マイクロ共振子11とはことなる振動の固有値をもつよう構成してある。これにより、マイクロ可動部16が接触したときの接触面18の幅も同様にマイクロ共振子支持部12側の方が広くなり、マイクロ共振子支持部12側の接触面内では振動を効率よく吸収し抑えることができる。幅が同じ、すなわち、同じ振動モードで振動しやすいと、マイクロ共振子の振動が支持部側に伝わりすぎて、図5に示すごときマイクロ共振体のように、マイクロ共振子の実効長さがマイクロ共振子支持部の端の方まできてしまうことになる。したがって、図5に示すごときマイクロ共振体においても、マイクロ共振子支持部のところは、マイクロ共振子と少なくとも幅が異なるようにするのが望ましい。ポリシリコンを用いた図5に示すごときマイクロ共振体で、共振体の寸法が、下部の長さ5.0μm、上部の長さ7.4μm、高さ1.0μm、幅1.0μmの場合において、支持部の幅がマイクロ共振子と同じ1.0μmの場合と、支持部のみ幅を4.0μmに広げた場合では、支持部を4.0μmに広げた方が、共振周波数が約10%高くなった。支持部の幅を広げることにより支持側への振動の広がりを抑制して実効長さを短くすることができた。
さらに、好適な実施形態では、少なくともマイクロ共振体に直に接触するマイクロ可動部の共振周波数は、マイクロ共振子の共振周波数よりも大きくする。ここでは、図9に示すようにマイクロ可動部50の先端部51の幅52を狭くし、マイクロ共振体に直に接する先端部51の局所的な共振周波数をマイクロ共振子の共振周波数よりも大きくなるようにした。先端51は弾性定数も大きくなり非常に振動しにくくなり、これによって、図6に示すように、マイクロ可動部をマイクロ共振子に接触させても、接触させない場合に比べて、振動ピーク強度の低下も少なく、振動ピークの振幅増幅率(Q値)の劣化を抑えた共振周波数の調整が可能となる。ポリシリコン膜をマイクロ共振体およびマイクロ可動部に用いた図5に示すごとき例で、共振体の寸法が、下部の長さ2.0μm、上部の長さ4.4μm、高さ1.0μm、幅1.0μmに対して、長さ1.0μm、幅4.0μm、高さ2.0μmのマイクロ可動部を接触させた場合には、マイクロ可動部も振動し、共振ピークの振幅の低下やサブ共振ピークの増大がみられたが、図9に示すように、マイクロ可動部の先端部を高さ1.0μmにわたって、長さ1.0μm、幅1.0μmにして、先端部の局所的な共振周波数(固有値)をマイクロ共振体よりも小さくすることによって、図6に示した結果のように、サブ共振ピークの増大の見られないようにすることができた。
さらに好ましくは、マイクロ可動部の先端部の大きさおよび形状を変え、共振周波数(固有値)が異なる複数のマイクロ可動部を備え、例えば、マイクロ共振体に対し、2種類の共振周波数をもつマイクロ可動部を、それぞれ、一方の端と他方の端に接触させることができるよう配置し、共振周波数の大きい方とあまり大きくない方のマイクロ可動部を使い分けて接触させることで、共振ピーク強度および共振ピークの振幅増幅率(Q値)をあまり下げずに共振周波数を変更する場合と、共振ピーク強度および共振ピークの振幅増幅率(Q値)をある程度下げて共振周波数を変更する場合とに、使い分けた制御が可能となる。先端部の共振周波数を変える好適な実施形態としては、図9に示すように、先端部の幅52を小さくし、この先端部の幅52のみを変えることで容易に達成できる。先端部の共振周波数を変える方法はこれに限るものではないが、このように共振周波数の異なるマイクロ可動部を選択して接触させることによって接触面内からのマイクロ共振子部の振動吸収や干渉の程度が変わるため、共振周波数のみでなく、振幅の大きさをかえること、つまり、マイクロ共振子に入力可能な信号強度範囲を変えることが可能となる。
また、マイクロ共振体の両端に対し、それぞれマイクロ可動部を用意し、一つはマイクロ共振子の実効長さを示す線分の端位置近傍に、もう一つはマイクロ共振子の実効長さを示す線分の端位置から少し離した位置に接触するように配置する。つまり、これにより、粗調整用に共振周波数を大きく変更させたい場合と、さらに小さく共振周波数の微調整したい場合と、マイクロ可動部を使い分けて接触させることができ、マイクロ可動部を一箇所のみ接触させて制御する場合に比べて、振動ピーク強度の低下が少なく、振動ピークの振幅増幅率(Q値)の劣化を抑えた、広範囲のマイクロ共振子の共振周波数精密調整が可能となる。
また、好適な実施形態では、マイクロ可動部とマイクロ共振体の接触部において、可動する側であるマイクロ可動部側の表面に固着防止層が形成されている。図10にその一例を示す、マイクロ可動部60の先端を覆うように固着防止層61が形成されている。固着防止層は少なくともマイクロ共振体63の上部表面62とは異なる材料で構成され、接触時に圧力が加えられても圧着しにくい材料が選ばれる必要がある。また、さらに望ましくは、固着防止層材料の硬度は、マイクロ共振体およびマイクロ可動部の芯部分64と硬度の異なる材料が選ばれる。本実施例では、マイクロ共振体に単結晶シリコン、マイクロ可動部の固着防止層にはシリコン窒化膜が用いられている。
さらに好ましくは、マイクロ共振体表面と固着防止層表面はその平滑さにおいて異なるものであることが望ましく、ここではマイクロ共振体のシリコン表面が単調で平坦であるのに対し、固着防止層の窒化シリコン膜表面は、緩やかな曲線部分が含まれており、接触時に押し付けても完全に接触面すべてが密着せず、微小面積の空間あるいは隙間が残るよう構成されており、固着を防止する構造になっている。また、マイクロ共振体に単結晶シリコンではなく、ポリシリコンを用いた場合には、マイクロ共振子表面が緩やかで大きな凹凸を有するため、例えば、フッ素系ガスプラズマで処理可能な通常のドライエッチング装置を用い、例えば等方エッチング条件を用いてシリコン表面の平滑化処理を行って、マイクロ共振子側表面に固着防止層を形成するとよい。また、この際、66のように、平滑化の処理範囲は、少なくともマイクロ可動部の押し付け可能範囲を含むようにするのが望ましい。平滑化の方法はこれに限るものではなく、表面に例えば窒化シリコン膜をコーティングして平滑化することもできる。また、マイクロ可動部側の固着防止層の窒化シリコン膜側をマイクロ共振子側のポリシリコン膜表面よりも単調で平坦な表面をもつように構成させてもよい。これにより、接触時に接触面積をできるだけ確保しながら、押し付けても完全に接触面すべてが密着せず、微小面積の空間あるいは隙間が点在して残るよう構成することができ、接触時に固着することを防止しながら、接触による共振周波数の調整を繰り返し行なうことができる。
また、好適は実施形態においては、固着防止層は表面に近いほど小さな粒径の結晶で構成されており、表面層の粒径に依存する凹凸が小さく、平坦あるいは単調な曲線表面が形成されるようになっている。また、固着防止層の膜厚は、マイクロ共振体との接触時においても、マイクロ可動部とマイクロ共振体が直流的に絶縁されるのに十分な膜厚になっており、これにより、マイクロ可動部側の電位およびマイクロ共振体の電位をそれぞれ独立に制御することができ、マイクロ共振体の電位は、マイクロ共振体からの出力が最適化されるように調整でき、一方で、マイクロ可動部側では、電位をたとえば0Vに固定することができる。これによって、マイクロ共振体側からマイクロ可動部へのRF電位の漏れに対しても、後述のマイクロ可動部の駆動機構を安定動作できる。
また、好適な実施形態においては、図10に示すように、マイクロ可動部60のマイクロ共振子63の実効寸法を示す方向の長さ65は、マイクロ共振子63の厚み、あるいは、マイクロ共振子の主たる振動方向の長さより長くなっている。マイクロ共振子63の実効寸法を示す方向の長さ65がマイクロ共振子63の厚みより短くなっている場合には、マイクロ共振子の主たる振動が起こる側から伝わる振動エネルギーが、マイクロ可動部との接触部の下部を通過して反対側まで伝わりやすくなり、マイクロ可動部を接触させても共振周波数の変化量は小さく、効果的に共振周波数を変えることができなくなるためである。
マイクロ可動部とマイクロ共振体の接触部の押し付けられる力の方向は、マイクロ共振子の主たる共振周波数に関わる寸法の実効値を示す線分方向に対してほぼ垂直であることが望ましい。図3を例に説明すると、マイクロ共振子11の主たる共振周波数に関わる寸法の実効値を示す線分22の方向に対して、マイクロ可動部16がほぼ垂直に押さえつけられることで、マイクロ共振子11上部の自由度を効果的に拘束し、マイクロ共振子11の実効的な長さを効果的に変えることができるからである。このことは、図3に示すマイクロ共振体に限るものではなく、図5、図22および図28に示すごときマイクロ共振体についても同じ効果が得られる。
さらに好適な実施形態においては、マイクロ可動部とマイクロ共振体の接触部の押し付けられる力の方向は、マイクロ共振体の主たる振動の方向に対してほぼ平行に与えられる。これは、図3に示すマイクロ共振体を例に説明すると、マイクロ可動部16とマイクロ共振体13の接触面は、マイクロ共振子11の振動方向37に対してほぼ垂直な面と連結していることが望ましく、マイクロ可動部16とマイクロ共振体13の接触部の押し付けられる力は、この接触面に対して垂直に加えられる場合が、マイクロ共振子11の自由度を拘束し、実効長さを変えるのに効果的だからである。このことは、図3に示すマイクロ共振体に限るものではなく、図5及び図22に示すようなマイクロ共振体についても同様に効果が得られる。
次に、マイクロ可動部に取り付けられた駆動機構17の好適な実施形態について説明する。マイクロ可動部の駆動機構は、少なくともマイクロ可動部の押し付け方向の駆動力を備えており、図31に示すように、可撓性を有する圧電部材120を備えたバイモルフ型圧電素子129を用いることができる。圧電素子129の一方の端はバイモルフ素子固定部130で基板上に固定されており、もう一方の端にマイクロ共振体(図示せず)に接触するマイクロ可動部128が備えられている。バイモルフ型圧電素子は、例えば、特開平6−155355に開示されているように、第1の電極となる内部電極層125と第2の電極となる外部電極層126に電位差を与えることによってバイモルフ型圧電素子129が湾曲し、矢印124のようにマイクロ可動部128を備えた先端が移動する。これによってマイクロ可動部128に押し付け方向の駆動力を発生させることができる。本実施形態のように基板に平行な板状バイモルフ型圧電素子を用いれば、基板上への作製も容易であり、また、圧電素子の電極に配線するだけでよいため、占有面積を小さくしたマイクロ駆動機構が基板上に作製可能となる。図3および図5に記載のようにマイクロ共振体の両端にマイクロ可動部を押し付けることができるようにするには、図31に示すごときマイクロ可動部駆動機構を、さらに1つ備えればよい。
さらに好適なマイクロ可動部駆動機構の実施形態では、厚み変形型の圧電部材が備えられている。図31に示すように、バイモルフ型圧電素子固定部130に厚み変形型圧電部材131を用いれば、厚み変形型圧電素子の制御電極132および133に電位差を与えることにより、矢印136のように厚み方向に変形し、マイクロ可動部128が備えられたバイモルフ型圧電素子129を移動させることができる。この操作のみによってもマイクロ可動部128を押し付け方向に移動させることができるが、バイモルフ型圧電素子固定部130の高さを変えることができるので、バイモルフ型圧電素子129と組み合わせて操作することによって、マイクロ可動部128の押し付け位置を変えることが可能となる。本実施形態によれば、厚み変形型圧電素子は、電極層と圧電体層を積層するだけで形成できるため、基板上への形成が容易であり、占有面積の増加も抑えられる。
さらに好適なマイクロ可動部駆動機構の実施形態では、すべり変形型圧電部材が備えられている。図32Aに示すように、すべり変形型圧電部材141をバイモルフ型圧電素子固定部130に備えれば、両側の電極層146,147に電位差を与えることで、すべり変形型圧電部材141は、図32Bに示すように、矢印149のように変形し、バイモルフ型圧電素子129を移動させることができる。この操作のみによってもマイクロ可動部128の押し付け位置を変更することができるが、厚み変形型圧電素子140やバイモルフ型圧電素子129と組み合わせることによって、より再現性の高い、高精度の押し付け位置の変更が可能となる。
次に、静電駆動型アクチュエータを用いたマイクロ可動部駆動機構の好適な実施形態について図11から図15を参照しながら説明する。図11に示すように、マイクロ可動部の駆動機構は、基板上に固定された第1の電極70と、電極から一定の距離に形成され、マイクロ可動部71と連結し、外部から与えられる電圧72により生じる第1の電極70との電位差によって、第1の電極70に接近または離れるように移動し、これによりマイクロ可動部71を動かすことができる第2の電極73と、第2の電極73の側面に電気的に連結し、第2の電極73および電極に連結した構造を支持する弾性体74とを備えている。前述の従来例で示したバイアス電位で共振周波数を制御する方法では、入力電極に印加された電圧と共振子に印加された電圧の電位差によって生じる静電力を利用するため、電極サイズが共振子の周波数で決まる共振子のサイズで自動的に限定され、しかも共振周波数を高くするためには電極面積は小さくせざるをえないため、大きな静電引力が得られず、周波数制御に限界があった。また、共振子のサイズが小さくなると共振子の弾性定数が大きくなることから、静電力の影響が相対的に小さくなり共振周波数の制御はさらに困難になったが、本実施形態によれば、共振周波数を制御するためのマイクロ可動部を押し付ける力を得るための、第1の電極70と第2の電極73のサイズを、マイクロ共振子のサイズ(周波数)に関係なく自由に設定でき、かつ、マイクロ可動部71および第2の電極73に連結して支持する弾性体のサイズ(弾性定数)も自由に設定できることから、共振周波数の制御範囲を広くすることが可能となる。第2の電極73及びそれに連結した構造をささえる弾性体74にポリシリコンを用いて作製した場合で見積ると、厚さ1.0μmで幅3.0μm、長さ77.0μmのバネを繋いで折り返した構造で支持するとバネ定数は0.9N/m程度に小さくすることができる。また、第2の電極73の面積を10000μm2とし、第1の電極70と第2の電極に電圧を印加していない状態での距離を1.0μmとすると、マイクロ可動部71をマイクロ共振体に押し付けるのに必要な電圧は、第2の電極を0Vの場合、第1の電極に約1.5V印加するだけでよいことになる。
さらに、好適な実施形態では、図11および図12は、2組のマイクロ可動部駆動機構が連結しており、図3に示すマイクロ共振子のようにマイクロ共振子の両端に同時に等しくマイクロ可動部を接触させることができる。このような両端を支持部79が支える構造にすることによって、第2の電極73を上下方向に動かす際に、水平方向のズレを抑制することができる。また、連結部75により連結した構成にすることによって、第2の電極73および該電極に連結した構造を支持する弾性体74(第1段階のバネの形態1)は、第1の電極70と第2の電極73が所定の距離まで接近すると、マイクロ可動部71がマイクロ共振体80(図12にのみ図示)に接触し、この距離からは、支点位置が元の支点79とマイクロ可動部71とそれぞれ2箇所ずつの計4箇所で支える形態に変わる(第2段階のバネの形態1)。そして、マイクロ可動部71がマイクロ共振体80に接触し、押し込む段階から、第2の電極73および該電極に連結した構造を支持する構造の弾性係数を大きくすることができる。これにより、マイクロ可動部71をマイクロ共振体80に接触させるまでの移動時には、長さ81およびそこに連結する構造で決まる小さな弾性定数のため、上述の例のように低電圧で移動でき、マイクロ可動部71がマイクロ共振体80に接触してからは、長さ82およびそこに連結する構造で決まるため少なくとも前記長さ81およびそこに連結する構造で決まる弾性体よりも高い弾性定数となるため、第2の電極73の移動距離を抑えることができる。これによって、第2の電極73を支持する弾性体の力が第2の電極73と第1の電極70の間に働く静電力に対して持ちこたえられなくなり、第2の電極73が第1の電極70にくっついてしまう現象(プル・イン)が防止でき、マイクロ可動部の押し込む力を強めることができるようになる。
さらに、好適な実施形態では、第1の電極70からの距離が、第1の電極70および第2の電極73に電位差が与えられていない釣り合いの位置における該電極間の距離87の3分の2のところまで、第2の電極73が第1の電極70に近づくよりも先に、マイクロ可動部71がマイクロ共振体に接するようになっている。これにより、第2の電極73が第1の電極70に近づきすぎてプル・インを引き起こす前にマイクロ可動部71をマイクロ共振体に接触させることができる。
さらに、好適な実施形態では、図11に示すように、第2の電極73を支持する弾性体および第2の電極73に連結した構造は、折れ曲がり部を備えている。マイクロ可動部71の上部には凹部76が形成されており、図13に示すように、(ただし、わかりやすく説明するため図では変形量を強調して示してある)マイクロ可動部71の押し付け時に、マイクロ可動部に連結した部分に僅かな折れ曲がりが発生することによって、マイクロ可動部71の下面が水平より傾くのを防止し、押し付ける力の方向が垂直方向からずれるのを抑制することができるようになっている。また、第2の電極73の両側にも折れ曲がり部77、78が形成されている。これらは、図12に示す第2の電極73の両側にある弾性体の長さ83,84によって決まるそれぞれの弾性定数の大きさによって折れ曲がり部の幅を変えてある。これにより、図13に模式的に強調して示したように、マイクロ可動部71の押し付け時に、第2の電極73が水平より傾くのを防止し、移動方向が垂直方向からずれるのを抑制することができる。
さらに、マイクロ共振子の両側ではなく片側のみにマイクロ可動部を接触させる場合のマイクロ可動部駆動機構の好適な実施形態について、図14および図15を参照して説明する。本実施形態によれば、前述のように、マイクロ共振子の両端に異なるマイクロ可動部を使い分けてマイクロ共振体に接触させること、あるいは、粗調整用マイクロ可動部と微調整用マイクロ可動部を使い分けてマイクロ共振体に接触させることができる。
図14に示すように、マイクロ可動部駆動機構は、基板上に固定された第1の電極90と、該電極から一定の距離に形成され、マイクロ可動部91と連結し、外部から与えられる電圧92により生じる第1の電極90との電位差によって、第1の電極90に接近または離れるように移動することによってマイクロ可動部91を動かすことができる第2の電極93と、第2の電極93の側面に電気的に連結し、第2の電極93および該電極に連結した構造を支持する弾性体94(第1段階のバネの形態2)とを備えており、さらに、第2の電極93および該電極に連結した構造を支持する弾性体94には、第2支持部95が形成されている。このような構成で、第1の電極90と第2の電極93が所定の距離まで接近すると、第2支持部95およびマイクロ可動部91がそれぞれ基板上の第2支持部接触面96およびマイクロ共振体100(図15にのみ図示)に接触し、この距離からは、支点位置が元の支点97、第2支持部95およびマイクロ可動部91の3箇所で支える形態に変わる(第2段階のバネの形態2)。そして、マイクロ可動部91がマイクロ共振体100に接触し、押し込む段階から、第2の電極93を支持する構造の弾性係数を大きくすることができる。これにより、マイクロ可動部91をマイクロ共振体100に接触させるまでの移動時には、長さ101内の構造で決まる小さな弾性定数のため、低電圧で多くの距離が移動でき、マイクロ可動部91がマイクロ共振体100に接触してからは、長さ102内の構造で決まる高い弾性定数となるため、第2の電極93の移動距離を抑えられる。これにより、第2の電極93を支持する弾性体の力が第2の電極93と第1の電極90の間に働く静電力に対して持ちこたえられなくなり、第2の電極93が第1の電極90にくっついてしまうこと(プル・イン)が防止でき、マイクロ可動部の押し込む力を強めることができるようになる。本実施形態によれば、第2支持部95の位置を弾性体94のどこかに任意に形成できるため、マイクロ可動部91がマイクロ共振体100に接触してからの、長さ102で決まる高い弾性定数を任意に設定することができる。
さらに、好適な実施形態では、第1の電極90からの距離が、第1の電極90および第2の電極93に電位差が与えられていない釣り合いの位置における該電極間の距離105の3分の2のところまで、第2の電極93が第1の電極90に近づくよりも先に、マイクロ可動部91がマイクロ共振体に接するか、あるいは第2支持部95が基板上の第2支持部接触面96に接するようになっている。これにより、第2の電極93が第1の電極90に近づきすぎてプル・インを引き起こす前にマイクロ可動部91をマイクロ共振体に接触させることができる。
さらに、好適な実施形態では、第1の電極90からの距離が、第1の電極90および第2の電極93に電位差が与えられていない釣り合いの位置における該電極間の距離105から、マイクロ可動部91がマイクロ共振体に接するまでの移動距離104、あるいは第2支持部95が基板上の第2支持部接触面96に接するまでの距離を引いた距離になるところまで、第2の電極93が第1の電極90に近づくと、マイクロ可動部91がマイクロ共振体に接するか、あるいは第2支持部95が基板上の第2支持部接触面96に接するようになっている。これにより、第2の電極93が第1の電極90に近づきすぎてプル・インを引き起こす前にマイクロ可動部91をマイクロ共振体に接触させることができる。
さらに、好適な実施形態では、図14に示すように、第2支持部95およびマイクロ可動部91は、それぞれ上部に凹部99,98を備えている。これにより、マイクロ可動部91の押し付け時に、マイクロ可動部に連結した部分に微小量の折れ曲がりが発生することによって、マイクロ可動部91および第2支持部95の下面が水平より傾くのを防止し、押し付ける力の方向が垂直方向からずれるのを抑制し、また、第2の電極93が水平より傾くのを防止して移動方向が垂直方向からずれるのを抑制することができる。
次に、具体例に基づき、マイクロ可動部をマイクロ共振体に押し付ける固定動作の途中で弾性定数を切り替えることの効果を説明する。図16は、図14に示すごときマイクロ可動部を用いたときの、第1の電極に印加する制御電圧とマイクロ可動部の移動距離(z)の関係(図16)および第1の電極に印加する制御電圧とマイクロ可動部の固定力の関係(図17)を示している。ここではマイクロ可動部は制御電圧20Vでマイクロ共振体に接触するよう設計してある。マイクロ可動部の移動は、第1の電極と第2の電極の電位差によって起こるが、ここでは、第2の電極に固定電位として0Vが印加してあり、第1の電極に印加する制御電圧のみでマイクロ可動部を操作している。図16に示す破線は、第2支持部なし(第1段階のバネの形態2のみ)の結果で、この場合、マイクロ共振体との接触後、急速に移動距離が伸び、プル・インの危険性が高まっていることがわかる。しかし、実線で示す本発明の実施形態によれば、マイクロ共振体との接触後、殆ど距離は伸びておらず、完全にプル・インが抑制されていることがわかる。
図17に示すように、第2支持部なし(第1段階のバネの形態2のみ)の場合は、点線の曲線bが示すように、マイクロ共振体に接触後(>20V)、固定力が急速に大きくなっている。これは、プル・インの危険性が高まっていることを示すと同時に、固定力が制御しにくい手法であることを示している。マイクロ共振体に接触するまでの移動距離を低電圧で行なうためには、第1段階のバネ形態2の弾性定数を大きくすることができず、また、弾性定数が低いと、接触後も電極間の距離がどんどん減少する。したがってプル・インの危険性を避けるためには、制御電圧を上げられず、結局、高い固定力も得られない。ところが、本発明の実施形態によると、実線の曲線aが示すように、マイクロ共振体との接触後においても、プル・インの危険性がないため、制御電圧を上げることができ、固定力は、ほぼ線形と見なせる増加傾向を示している。マイクロ共振体との接触後の押し込み段階における固定力の制御性が著しく改善されていることがわかる。曲線cおよびdは、効果の説明のために、途中から第2支持部に切り替わる本実施例の場合において、それぞれ第1段階のバネの形態2、第2段階のバネの形態2が寄与する固定力を分離して示したものである。これから明らかなように、マイクロ共振体と接触後は、第1段階の形態2のバネは殆ど変化しておらず、接触後の押し込み段階では、殆ど弾性定数の大きな第2段階の形態のバネで固定力が決まっている事がわかる。移動距離の必要な接触前の段階では、弱い力で移動ができるよう、低い弾性定数の第1段階のバネ形態2で、そして、接触後の押し込み段階では、移動を抑えて高い固定力が得られるよう、高い弾性定数の第2段階のバネ形態2に切り替えるのである。この切り替えを最適化することで、上述のような接触後の押し込み段階の実用域で線形性を改善し、極めて高い制御性を得ることができる。
さらに好適な実施形態では、マイクロ可動部は、図18に示すように、第1の電極110と第2の電極111に電位差が与えられていない釣り合いの位置にあるときの第2の電極111から一定の距離に、第1の電極110とは反対側に形成され、外部から与えられる電圧113により生じる第2の電極111との電位差によって、第2の電極111および該電極に連結したマイクロ可動部に駆動力を与えることが出来る第3の電極112を備えている。これによって、マイクロ可動部とマイクロ共振子が固着して元の釣り合いの位置にもどらなかった場合においても、外部からの入力によって、第2の電極111を上下方向にゆすり動かすことができるため、これによって第2の電極に連結しているマイクロ可動部を上下方向に力を加えながらゆすり動かし、固着したマイクロ可動部をマイクロ共振体から離すことができるため、マイクロ共振装置を解体することなく、マイクロ共振装置としての機能を復旧させる事ができる。この際、第3の電極へ外部から与えられる電圧113は、電圧を徐々に上げていくことでも効果があるが、好ましくは、パルス信号やRF信号のように周期的な電圧の昇降を含む入力、あるいは、周期的なオン・オフ制御を含む入力により、変動を与えることが望ましい。さらには、第1の電極と連動させて、交互に周期的な電圧の変化を与えると、より効果が得られる。
さらに好適な実施形態では、マイクロ可動部の駆動機構は、図19(図14のC1−C2方向の断面)に示すように、第1の電極115と第2の電極116が対向する方向に対して直交する方向に、マイクロ可動部と連結した第2の電極116から一定の距離に形成され、外部から与えられる電圧118により生じる、第2の電極116との電位差によって、第2の電極と連結した前記マイクロ可動部に対し、第1の電極115と第2の電極116が対向する方向に対して直交する方向にゆすり動かすための駆動力を与えることができる第4の電極117を備えている。ここで、第4の電極117と一定の距離に対向するのは必ずしも第2の電極である必要はなく、マイクロ可動部に連結した構造であり第2の電極に電気的に連結した場所であればよく、電極の設置に自由度が高く、さらに、第4の電極が第2の電極と同じ層あるいは別の層に作製可能なため、上述の第3の電極を用いる方法よりもプロセスの簡略化によってコスト削減が図れる。また、第4の電極117は、図19に示すように、第2の電極116、あるいは、マイクロ可動部に連結した構造の両側に対向する向きに設置するとができるため、第1の電極115を用いなくても、上述と第3の電極112と第1の電極110を用いる方法と同様の固着を取り外す操作が可能となる。
静電駆動型アクチュエータを用いる場合には、圧電素子を用いる場合と比較して、駆動力を発生するための電極を作製するためのスペースを基板上に確保しなければならないが、ポリシリコンなど通常のMEMSプロセスやCMOSプロセスで用いられている材料が使え、基板垂直方向および基板水平方向の駆動力の発生が容易にかつ薄膜で実現可能となる。
(第2の実施形態)
本発明の第2の実施形態として、基板に対して平行な方向に振動するマイクロ共振子に本発明が容易に適用できることを、図20を参照しながら説明する。
基板210上に形成され、選択されたパラメーターの変動に応答して振動するマイクロ共振子211とその支持部212からなるマイクロ共振体213と、外部からの操作によってマイクロ共振体213に作用することによって、前記マイクロ共振子の共振周波数、あるいは共振ピークにおける振幅増幅率、あるいは入力可能信号強度を変えることのできるマイクロ可動部216を備えている。
本実施例においては、基板210にシリコン基板を用い、マイクロ共振子211に不純物のドープされたポリシリコンを用いている。そして、入力電極215から与えられる高周波電気信号のうち、マイクロ共振子211の共振周波数近傍の周波数信号における変動に選択的に応じてマイクロ共振子211が振動する。ここで、入力電極215は、マイクロ共振子211に対して、マイクロ可動部216と同じ側に配置されるのが望ましい。マイクロ共振子211と入力電極215の電位差によって、マイクロ共振子211の振動の中心が、僅かに入力電極215側に移動しても、マイクロ可動部216接触面のマイクロ共振子の主たる振動が起こる側エッジがしっかり接触するようにするためである。
本実施例において、マイクロ可動部216には、外部からの操作の際にマイクロ可動部216をマイクロ共振体213に接触させ、または離すように、マイクロ可動部216を動かすことができ、所定の力でマイクロ可動部216をマイクロ共振体213に接触させ、あるいは接触させている所定の力の大きさを変えることができるマイクロ可動部の駆動機構217を備えている。218は、マイクロ可動部216とマイクロ共振体213の接触面を示す。
図21を用いてマイクロ可動部216をマイクロ共振体213に接触させることの効果を説明する。図21は、図20に示した第2の実施形態のマイクロ共振子211について、主たる共振周波数に関わる寸法、つまり共振子の長さの実効値を表す方向の平面図である。図21に示すように、マイクロ共振子211の支持端は自由度が高いために、マイクロ共振子211の実効長さ225は、共振子下側寸法226よりも長く、共振子上側の寸法227に近くなる。このような場合においても、図22に示すように、マイクロ可動部216をマイクロ共振子221の支持端付近における自由度の高いところに接触させることにより、マイクロ共振子211の実効長さが変わり、共振周波数を変えることができるのである。このように、本実施形態によって、第1の実施形態同様に、容易にマイクロ共振子の共振周波数を変えることができる。多くの場合マイクロ共振子211の実効長さ225は、マイクロ共振子の下部の長さ226とマイクロ可動部216間の長さ229の間に位置している。
また、図33に示すマイクロ共振体243のように、マイクロ共振子241の支持部242が長い場合、あるいは、マイクロ共振子が曲がった形状の場合には、マイクロ共振子の振動領域が249のように広がるため、マイクロ可動部246は、振動端付近の例えば側面250に接触させると効果的である。
次に、図20に示したマイクロ可動部の駆動機構217の好適な実施形態について、図23を参照しながら説明する。図に示すように、駆動機構は、基板上に固定された第1の電極270と、該電極から一定の距離に形成され、マイクロ可動部(図示されていない)と連結部286で連結し、外部から与えられる電圧により生じる第1の電極270との電位差によって、第1の電極270に接近または離れるように移動することによってマイクロ可動部を動かすことができる第2の電極273と、第2の電極273の側面に電気的に連結し、第2の電極273および該電極に連結した構造を支持する弾性体274とを備えている。図23に示すように、本実施形態では、第1の電極270と第2の電極273は櫛型をしており、それぞれの櫛部が一定の距離287で形成されている。そして、第2の電極273の櫛部が第1の電極270の櫛部に接近または離れるように移動する。これにより、基板に対して平行な方向に振動するマイクロ共振子に対しても、容易に、マイクロ可動部を接触させ、押し付けたり、離す方向に移動させたりすることができる。ここでは、櫛部が櫛の長さ方向に対して垂直方向に電極が動く場合を示したが、櫛の長さ方向に対して平行な方向に電極が動く音叉型の櫛型電極を用いても同様にマイクロ可動部に駆動力を与えられることは明らかである。
本実施形態によれば、第1の電極270、第2の電極273および該電極に連結した構造、ならびにそれを支持する弾性体274の全てが、マイクロ共振体と同じ層で形成可能なため、基板に対して垂直方向に振動するマイクロ共振子の上に形成した図11および図14に示したマイクロ可動部の駆動機構に比べ、さらにプロセスの簡略化ならびにコスト削減が図れる。さらに、共振周波数を制御するためのマイクロ可動部を押し付ける力を得るために、第1の電極270と第2の電極273の櫛サイズおよび本数を、マイクロ共振子のサイズ(周波数)に関係なく自由に設定でき、かつ、マイクロ可動部および第2の電極273に連結して支持する弾性体274のサイズ(弾性定数)も自由に設定できることから、共振周波数の制御範囲が広くすることが可能となる。図23に示すごとき駆動機構をポリシリコンで作製し、櫛の厚さを1.0μm、長さを50.0μm、櫛の本数を100本、電圧を印加しない状態での第1の電極270と第2の電極273の距離287を2.0μmとし、弾性体274を厚さ1.0μm、長さを100.0μm、幅3.0μmとすると約20Vの電圧でマイクロ可動部を押し付けることができる。移動距離を増やす、あるいは駆動力を得るのに必要な電圧を低くするには、弾性体の弾性定数を小さくするか、櫛型電極を長くするかあるいは本数を増やすことで容易に達成できる。例えば、弾性体の長さを2倍するとマイクロ可動部を押し付けるための電圧を7Vに低減することができる。
さらに好適な実施形態では、図23に示すように、マイクロ可動部の駆動機構は、第2の電極273から一定の距離に、第1の電極270とは反対側に形成され、外部から与えられる電圧により生じる第2の電極273との電位差によって、第2の電極273および該電極と連結部286で連結するマイクロ可動部(図示されていない)に駆動力を与えることが出来る第3の電極290を備えている。
図23に示すように、本実施形態では、第3の電極290は櫛型をしており、その櫛部が第2電極273の櫛部と一定の距離288で形成されている。そして、第2の電極273の櫛部が第3の電極290の櫛部に接近または離れるように移動する。これにより、基板に対して平行な方向に振動するマイクロ共振子についても、マイクロ可動部が固着してもとの釣り合いの位置に戻らなかった際に、外部からの入力によって、第2の電極273を水平方向のマイクロ可動部を引き離す方向にゆすり動かすことができ、これによって第2の電極273に連結しているマイクロ可動部を水平方向に力を加えながら動かし、固着したマイクロ可動部をマイクロ共振体から離すことができるため、マイクロ共振装置を解体することなく、マイクロ共振装置としての機能を復旧させる事ができる。この際、第3の電極290へ外部から与えられる電圧は、電圧を徐々に上げていくことでも効果があるが、好ましくは、パルス信号やRF信号のように周期的な電圧の昇降を含む入力、あるいは、周期的なオン・オフ制御を含む入力により、変動を与えることが望ましい。さらには、第1の電極270と連動させて、交互に周期的な電圧の変化を与えると、より効果が得られる。さらに、本実施形態によれば、第1の電極270、第2の電極273および該電極に連結した構造、ならびにそれを支持する弾性体274とともに第3の電極290についても、マイクロ共振体と同じ層で形成可能なため、プロセスの簡略化ならびにコスト削減が図れる。さらに、本実施形態によれば、第3の電極290と第2の電極273のサイズを、マイクロ共振子のサイズ(周波数)に関係なく自由に設定でき、かつ、マイクロ可動部および第2の電極273に連結して支持する弾性体274のサイズ(弾性定数)も自由に設定できることから、様々な共振周波数のマイクロ共振装置に対して適用可能となる。ここでは、櫛部が櫛の長さ方向に対して垂直方向に電極が動く場合を示したが、櫛の長さ方向に対して平行な方向に電極が動く音叉型の櫛型電極を用いても同様にマイクロ可動部に駆動力を与えられることは明らかである。
また、図14に示すマイクロ可動部駆動機構の例えば弾性体94の部分に図23に示す駆動機構を接続することで、マイクロ可動部91の押し付け位置を変えることができる。櫛の厚さを1.0μm、長さを40.0μm、櫛の本数を30本、電圧を印加しない状態での第1の電極270と第2の電極273の距離287を1.0μmとし、弾性体274を厚さ1.0μm、長さを100.0μm、幅3.0μmとすると約2Vの電圧でマイクロ可動部の押し付け位置を1nm程度変えることができる。
さらに、図34に示すように、好適な実施形態では、マイクロ可動部駆動機構は、第1の電極260と第2の電極263が対向する方向とは直交する方向に駆動力を与えることができる第4の電極262を備えている。また、第2の電極263およびこれに連結した構造を支える弾性体264は、第1の電極260と第2の電極263が対向する方向および直交する方向に移動しやすいように配置してある。これにより、連結部266に接続された共振体マイクロ可動部(図に示されていない)の押し付け操作とともに押し付け位置を変える操作ができる。また、マイクロ可動部が固着してもとの釣り合いの位置に戻らなかった際に、外部からの入力によって、第2の電極263に連結しているマイクロ可動部を横方向に力を加えながらゆすり動かし、固着したマイクロ可動部をマイクロ共振体から離れやすくすることができる。さらに、第4の電極262は、第1の電極260、第2の電極263並びにマイクロ共振子と同じ層に作製可能なため、プロセスの簡略化とコスト削減が図れる。ここでは、マイクロ可動部駆動機構に移動方向の異なる櫛型電極の組み合わせた電極を用いたが、櫛型電極の配置や組合せはこれに限るものではない。しかし、図34のように配置することで、櫛形電極をバランスよく小スペースで形成することができる。
さらに、好適な実施形態では、図23および図34に示すマイクロ可動部駆動機構先端の連結部286あるいは266に、図24に示すような、連結部275で2組のマイクロ可動部271が連結しており、図2に示すごときマイクロ共振子のようにマイクロ共振子280の両端に同時に等しくマイクロ可動部を接触させることができる。このような構造を図23に示すマイクロ可動部駆動機構と一体に形成し、弾性体274あるいは264が支える構造にすることによって、第2の電極を水平方向に動かす際に、横方向のズレを抑制することができる。連結部275により連結した構成にすることの効果を図23の駆動機構と組み合わせた場合で説明する。第2の電極273および該電極に連結した構造を支持する弾性体274(第1段階のバネの形態3)は、第1の電極270と第2の電極273が所定の距離まで接近すると、マイクロ可動部271がマイクロ共振体280に接触し、この距離からは、支点位置が元の弾性体274と2つのマイクロ可動部271とで支える形態に変わる(第2段階のバネの形態3)。そして、マイクロ可動部271がマイクロ共振体280に接触し、押し込む段階から、第2の電極273および該電極に連結した構造を支持する構造の弾性係数を大きくすることができる。これにより、マイクロ可動部271をマイクロ共振体280に接触させるまでの移動時には、第1段階のバネ形態3の小さな弾性定数により、低電圧で多くの距離が移動でき、マイクロ可動部271がマイクロ共振体280に接触してからは、第2段階のバネ形態3の高い弾性定数となるため、第2の電極273の移動距離を抑えられ、第2の電極273を支持する弾性体の力が第2の電極273と第1の電極270の間に働く静電力に対して持ちこたえられなくなり、第2の電極273が第1の電極270にくっついてしまうこと(プル・イン)が防止でき、マイクロ可動部271の押し込む力を強めることができるようになる。
さらに、マイクロ共振子の片側のみにマイクロ可動部を接触させる場合のマイクロ可動部駆動機構の好適な実施形態について、図25を参照して説明する。図24のごとき2組のマイクロ可動部が連結している連結体295を用い、片側のマイクロ可動部291を、マイクロ共振体293に接触させ、もう一方のマイクロ可動部292を、マイクロ共振体とは別に形成したダミー294に接触させる。このような構成によって、マイクロ共振体の片側のみでも共振周波数制御を行なうことができ、前述のように、マイクロ共振子の両端に異なるマイクロ可動部を使い分けてマイクロ共振体に接触させること、あるいは、粗調整用マイクロ可動部と微調整用マイクロ可動部を使い分けてマイクロ共振体に接触させることができる。
さらに、好適な実施形態では、前記所定の距離が第1の電極270からの距離が、第1の電極270および第2の電極273に電位差が与えられていない釣り合いの位置における該電極間の距離287の3分の2のところまで、第2の電極273が第1の電極270に近づくよりも先に、マイクロ可動部がマイクロ共振体に接することにより、第2の電極273が第1の電極270に近づきすぎてプル・インを引き起こす前にマイクロ可動部をマイクロ共振体に接触させることができる。
(第3の実施形態)
本発明の第3の実施形態として、基板に対して平行な方向に縦あるいはバルクの振動モードで振動する、図27に示すマイクロ共振子に本発明が容易に適用できることを、図26を参照しながら説明する。
基板310上に形成され、選択されたパラメーターの変動に応答して振動するマイクロ共振子311とその支持部312からなるマイクロ共振体313と、外部からの操作によってマイクロ共振体313に作用することによって、マイクロ共振子311の共振周波数、あるいは共振ピークにおける振幅増幅率、あるいは入力可能信号強度を変えることのできるマイクロ可動部316を備えている。
本実施例においては、基板310にシリコン基板を用い、マイクロ共振子311に窒化タングステン膜を用いている。そして、入力電極315から与えられる高周波電気信号のうち、マイクロ共振子311の共振周波数近傍の周波数信号における変動に選択的に応じてマイクロ共振子311が振動する。
本実施例において、マイクロ可動部316は、外部からの操作によってマイクロ共振体313に接触させ、または離すように、動かすことができ、所定の力でマイクロ可動部316をマイクロ共振体313に接触させ、あるいは接触させている所定の力の大きさ、接触させている位置を変えることができるマイクロ可動部駆動機構317を備えている。
図27および図28を用いてマイクロ可動部316をマイクロ共振体313に接触させることの効果を説明する。図27は、図26に示した第3の実施形態のマイクロ共振子311について、主たる共振周波数に関わる寸法、つまり共振子の長さの実効値を表す方向の断面図である。図27に示すように、マイクロ共振子311の支持端上面は自由度が高いために、マイクロ共振子311の振動領域は共振子下側寸法よりも広がり、マイクロ共振子の実効長さ325は、共振子上側の寸法327に近くなる。このような場合においても、図28に示すように、マイクロ可動部316をマイクロ共振子311の支持端付近における自由度の高いところに接触させることにより、接触後のマイクロ共振子311の実効長さ328は、殆どの場合、共振体上面の長さ329とマイクロ共振子下部の長さ326の間に位置するように変わり、共振周波数を変えることができるのである。このように、本実施形態によって、第1、第2の実施形態同様に、容易に共振周波数を変えることができる。
本実施形態では、第1の実施形態同様、図11に示したごときマイクロ可動部駆動機構が利用できる。ただし、共振子の平面形状が方形ではなく円形の場合は、図29に示すように、好ましくは、マイクロ可動部はマイクロ共振体と同心円状に環状に接するよう構成する。338は接触面を示す。円形のマイクロ共振子の場合は、主たる共振周波数に関わる寸法、すなわち半径方向の共振子の実効長さを示す線分方向330が半径方向となるので、図のように、支持端付近に環状に接触させることで、全ての半径方向に対して、効果的に実効長さを変え、共振周波数を変えることができる。また、図に示すように4つに分けたマイクロ可動部に、図14に示すごときマイクロ可動部駆動機構をそれぞれ接続すれば、マイクロ可動部の押し付け位置を半径方向に変えることができる。
さらに、好適な実施形態では、マイクロ可動部とマイクロ共振体の接触部の押し付けられる力の方向は、基板平面に対して、かつ、マイクロ共振体の主たる振動の方向(半径方向)に対してほぼ垂直な方向である。バルクの振動モードで振動する共振体では、主たる振動方向と主たる共振周波数に関わる寸法を示す線分方向330が一致しているので、基板平面に対して垂直方向に押し付けることで効果的に共振周波数を変えることができる。
次に、図35に従い、SOI基板を使用した場合を例に、マイクロ共振装置の製造方法について説明する。好適な実施形態では、図35Aに示すように、SOI基板400表面のシリコン層にフォトレジストを使用した通常のドライエッチング技術でマイクロ共振体402を形成し、ついで、厚さ200nmの不純物をドープしたポリシリコンからなる第1の電極を含む1層目の導電層403を形成する。このときマイクロ共振体402の下部にあるSOI基板の酸化シリコン層を第1の犠牲層401として利用できる。また、1層目の導電層403を形成する工程において、マイクロ共振体402は1層目の犠牲層401上に形成されており、その上にリソグラフィー法でレジストをパターニングし、その上に1層目の導電層を堆積し、レジストを除去する工程で、リフトオフ法により第1の電極を含む1層目の導電層403を形成している。この際、マイクロ共振体部分は、1層目の導電層に電気的に接続される部分以外はレジストマスクに覆われているので、マイクロ共振体402の振動領域の上には1層目の導電層は形成されず、既に形成されているマイクロ共振体に影響はない。ついで、図35Bに示すように、マイクロ共振体402および前記1層目の導電層403上に、2層目の犠牲層として酸化シリコン膜404を2.0μm堆積し、ドライエッチング法を用いて前記酸化シリコン膜の一部を加工し、マイクロ共振体の一部を露出させる。ついで、図35Cに示すように、マイクロ可動部と前記マイクロ共振体のギャップとなる3層目の犠牲層406として酸化シリコン膜100nmを堆積し、不要な部分を取り除いた後、図35Dに示すように、固着防止層409として窒化シリコン膜100nmを堆積し、不要な部分を取り除く。ついで、図35Eに示すように、マイクロ可動部412、第2の電極および該電極に連結した構造413を含む2層目の導電層410を厚さ2.0μmの不純物をドープしたポリシリコン膜で形成する。ついで、図35Fに示すように、前記1、2、3層目の犠牲層を除去してマイクロ共振体402、マイクロ可動部412、第2の電極および該電極に連結した構造413を露出させ、マイクロ共振装置を形成する。
本実施形態では、図1および図2に示すごとき基板を掘り込んで形成するマイクロ共振子に対して、マイクロ共振体形成後に、その上に積層してマイクロ可動部およびマイクロ可動部駆動機構を容易に形成することができるので、マイクロ共振子を形成する工程を変えずに、後から全く別の工程としてマイクロ可動部を形成できる効果がある。
さらに、本実施形態では、第1の電極と第2の電極のギャップと、マイクロ可動部と前記マイクロ共振体のギャップと、異なる幅のギャップを精度よく形成しなければならない。そのため、図35に示すように、2層目の犠牲層404を加工する際、マイクロ共振体が露出するまで加工するが、同時に1層目の導電層403あるいはそれに電気的に結合した層が露出するまで加工している。そして露出した導電層上に3層目の犠牲層406を堆積している。これにより、第1の電極と第2の電極のギャップ416については、2層目の犠牲層404と3層目の犠牲層406の合計膜厚で、マイクロ可動部とマイクロ共振体のギャップ415については3層目の犠牲層406の堆積膜厚のみでギャップ幅が制御できるため、ばらつきの少ない高精度のギャップが2種類形成できる。
また、後の工程で堆積する2層目の導電層410と例えば2層目の犠牲層404から露出した1層目の導電層408を電気的に接続するためには、露出部408の上に堆積した3層目の犠牲層を除去しなければならないが、好適な実施形態においては、3層目の犠牲層406を形成する工程において、1層目の導電層408上に形成された3層目の犠牲層406を除去して1層目の導電層408を露出させる工程と、2層目の導電層410の折れ曲がり部となる位置にくぼみ407を形成するため、3層目の犠牲層406を加工する工程を同時に行なう。これにより、2層目の導電層410に折れ曲がり部を形成するためのパターニングと、1層目の導電層を露出させるためのパターニングが同じマスクで行なえるため工程の簡略化ができる。
さらに、本実施形態では、マイクロ共振体402下部に空間を形成するために行なう1層目の犠牲膜の除去工程と、マイクロ可動部周りに空間を形成するための2層目、3層目の犠牲膜の除去工程が同時に行なえるため工程数の増加を抑えることができる。
さらに、本実施形態において、マイクロ可動部の構成はこれに限るものではない。マイクロ可動部が、図14に示すごとき、マイクロ共振体の片側のみに接触可能な構成であっても、層の構成は同じなので、本実施形態に従って、容易に製造可能となる。
次に、基板上にマイクロ共振子を形成する場合の好適な実施形態について、図36を例に説明する。図36Aに示すように、シリコン基板420上に第1の電極を含む1層目の導電層424として不純物をドープしたポリシリコン層を200nm堆積し、パターニングした後、その上に1層目の犠牲層422として酸化シリコン膜200nmを形成する。そして、1層目の犠牲層422を加工し前記1層目の導電層424を露出させた後、前記1層目の犠牲層の上に不純物をドープしたポリシリコン膜2.0μmを堆積し、異方性ドライエッチングによりパターニングを行ない、図36Bに示すように、マイクロ共振体423を形成する。ついで、図36Cに示すように、前記マイクロ共振体423上に2層目の犠牲層427として酸化シリコン膜2.0μmを堆積し、異方性ドライエッチングにより前記2層目の犠牲層427を加工し、前記マイクロ共振体423の一部を露出させる。以下については図示されていないが、図35C〜図35Fに示すごとき工程によりマイクロ共振装置を製造できる。
ここでは、基板上にマイクロ共振体423を形成する必要があるが、本実施形態では、図36に示すように、マイクロ共振体423に対して容量的に結合する入力421およびマイクロ共振体に電気的に結合した電極426を形成する際に、第1の電極を含む1層目の導電層424を同じ層で(同じ工程で)形成し、また、1層目の導電層424の上に前記マイクロ共振体下部に空間を形成するための1層目の犠牲層422を形成している。これにより、マイクロ共振体とマイクロ可動部の製造工程の簡略化とともに、1層目の犠牲層422が除去されても基板上に第1の電極が固定されており、しかも第1の電極の平坦性が確保できるために第2の電極を含む2層目の導電層を形成したとき第1の電極と第2の電極を等しい距離に、平行に形成することができる。さらに2層目の導電層を形成したときの段差を緩和することができるため、以後の工程を図35に示す工程と同様に進めることができる。2層目の犠牲層を形成後CMP装置(化学的機械研磨装置)を用いてより平坦にすることもできるが、工程数が増加し、コストが増大してしまう問題がある。
さらに、本実施形態において、マイクロ可動部の構成はこれに限るものではない。マイクロ可動部が、図14に示すごとき、マイクロ共振体の片側のみに接触可能な構成であっても、層の構成は同じなので、本実施形態に従って、容易に製造可能となる。
また、マイクロ共振体についてもこれに限るものではない。図37に示すように、図26から28に記載のマイクロ共振体であっても同様に形成可能である。図37Aに示すように、基板430上に第1の電極を含む1層目の導電層436を、不純物をドープしたポリシリコン膜200nmで形成し、その上に1層目の犠牲層432として酸化シリコン膜200nmを堆積する。そして、1層目の犠牲層432を加工し前記1層目の導電層436を露出させ、前記1層目の犠牲層の上に不純物をドープしたポリシリコン層2.0μmを堆積し、ドライエッチング法によりパターニングを施し、図37Bに示すように、マイクロ共振体433を形成する。そして、図37Cに示すように、前記マイクロ共振体433上に2層目の犠牲層438として酸化シリコン膜2.0μmを堆積し、異方性エッチングにより、前記2層目の犠牲層438を加工し、前記マイクロ共振体433の一部を露出させる。以下については図示されていないが、図35C〜図35Fに示すごとき工程によりマイクロ共振装置を製造できる。
ここでは、図37に示すように、基板上にマイクロ共振体433並びにマイクロ共振体433に対して容量的に結合する入力電極434を形成する必要があるが、本実施形態では、1層目の犠牲層432を加工してマイクロ共振体433とともに入力電極434を形成することができる。さらに、本実施形態では、マイクロ共振体433に電気的に結合する電極431を形成する際に、第1の電極ならびに入力電極434に電気的に結合する電極を含む1層目の導電層436を同じ層で(同じ工程で)形成し、また、1層目の導電層436の上に前記マイクロ共振体下部に空間を形成するための1層目の犠牲層432を形成している。これにより、1層目の犠牲層432が除去されても基板上に第1の電極が固定されており、しかも第1の電極の平坦性が確保できるために第2の電極を含む2層目の導電層を形成したとき第1の電極と第2の電極を等しい距離に、平行に形成することができる。さらに2層目の導電層を形成したときの段差を緩和することができるため、以後の工程を図35に示す工程と同様に進めることができる。2層目の犠牲層を形成後CMP装置(化学的機械研磨装置)を用いてより平坦にすることもできるが、工程数が増加し、コストが増大してしまう問題がある。
次に、基板上に基板に平行な方向に振動するマイクロ共振子に対する好適な実施形態について、図38を例に説明する。これまでと同様に導電層に不純物をドープしたポリシリコン膜を用いることができるが、本発明の導電性材料はこれに限定するものではなく、他にアモルファスシリコン、SiGe膜、SiC膜、さらにはNi、タングステンなど金属材料を導電層に適用することができる。ここでは、さらに好適な実施形態として、タングステンなどの高融点金属に窒素を含有させた材料を適用した場合を例に説明する。図38Aに示すように、基板440上に窒素を含有するタングステンを反応性スパッタ法で200nm堆積し、マイクロ共振体と電気的に接続する電極441、固定電極の第1の電極に接続する電極442、第2の電極およびそれに連結した構造に接続する電極443などを含む1層目の導電層を形成する。堆積条件はスパッタ圧力2Pa、RFパワー300W,Ar流量33.6sccm、N2流量8.4sccm、基板温度室温である。ついで、図38Bに示すように、前記1層目の導電層上に酸化シリコン膜2.0μmを堆積して1層目の犠牲層447を形成し、前記1層目の犠牲膜447を加工し、前記1層目の導電層を露出させる。そして、図38Cに示すように、2層目の導電層として、窒素を含有するタングステン層をまず、スパッタ圧力2Pa、RFパワー300W,Ar流量33.6sccm、N2流量8.4sccm、基板温度室温で0.5μm堆積し、ついでスパッタ圧力を2.4Paに変えて、窒素を含有するタングステンをさらに1.2μm堆積し、またスパッタ圧力を2Paにもどし、窒素を含有するタングステンを0.3μm堆積する。この複数層で形成した窒素を含有するタングステン膜を異方性ドライエッチングによりパターニングし、マイクロ共振体448およびマイクロ可動部449を含む2層目の導電層を形成する。ここで、窒素を含むタングステン膜のドライエッチングには通常のタングステン膜の異方性エッチングに用いるプラズマエッチング装置および加工条件が用いられる。そして、図38Dに示すように、前記2層目の導電層上に、厚さ5μm程度のレジスト層455を塗布した後、フォトリソグラフィ法を実施してレジスト層を開口し、スパッタ法により固着防止層457を堆積する。ついで、図38Eに示すように、リフトオフ法を実施して前記レジスト層455とともに不要な部分に堆積した前記固着防止層456を除去する。これにより、マイクロ共振体448やマイクロ可動部449の先端のみに固着防止層457を形成し、他の領域に固着防止層が付着して、マイクロ可動部が応力によりひずんだり、弾性体の弾性定数や電極間のギャップに誤差が生じたりすることを防止できる。
さらに好適な実施形態では、リフトオフ後に前記2層目の導電層側壁に残る前記固着防止層457を異方性ドライエッチングによるエッチバックをおこなうことにより、前記2層目の導電層側壁の固着防止層表面を平坦で滑らかにすることができ、マイクロ共振体との接触面の密着度を高めることができる。
つぎに、1層目の犠牲膜461を除去して、図38Fに示すように、前記マイクロ共振体448および前記マイクロ可動部449を露出させる。犠牲層除去には、フッ化水素ガスをもちいたドライエッチング法が適用できる。これにより、マイクロ可動部が、マイクロ共振体と同時に2層の導電層のみで形成でき、導電層の層数を増加させることなしにマイクロ可動部を形成できる。図38では、電極やマイクロ可動部の構造の詳細は省略して示しているが、本実施形態は、マイクロ可動部駆動機構の第1、第2、第3の電極の形状を櫛型に限定するものではなく、平面的な構造は、平行平板型あるいは音叉型などによっても可能である。また、第2の電極を支持する弾性体の形態についても戻りバネ形態に限定を加えるものではなく、他の板バネなどの形態によっても可能である。
米国特許第6210988号公報にはLPCVD法により製膜したSiGe膜を用いることで、ポリシリコン膜に比べて低温の550℃程度で残留応力を制御したマイクロ構造の形成が可能であることが開示されているが、ここで用いた窒素を含有するタングステンの場合、スパッタ法を用いているので室温程度まで低温化することが可能となり、Si基板上にCMOSプロセスで作製したLSI上のみならず、ガラス基板や樹脂基板など、Cu配線や低誘電率の有機絶縁膜など耐熱性の低いプロセスを経た基板上にも適応が可能となる。また、他の金属材料と比較しても、たとえばタングステン材料のみ場合、成長方向に膜質あるいは内部応力を制御することが困難であるため、制御堆積時に内部応力が蓄積し、堆積中あるいは堆積後に膜はがれ等の破壊が起きたり、また、応力等負荷がかかった際にクラッキングなど欠陥が発生し、変形や破壊が起きたり、マイクロ構造の信頼性確保が困難であったが、窒素を含有させた場合、N2分圧やスパッタ圧力などによって室温程度の低温で容易に堆積する膜組成や膜質を変えることができる。例えば、スパッタ圧力1.5Paから3Pa程度まで変えることにより膜中の残留応力を引張応力から圧縮応力まで変化させることができた。このため、膜の堆積過程で、内部応力や組成の異なる層を、連続的、あるいは断続的に成長させることが可能になり、堆積中の内部応力ならびに堆積後の残留応力を殆どなくすことができた。また、成長方向に異なる組成や粒状態の膜を積層可能なため、堆積時の応力による破壊をなくし、製造後に外部から応力等が加えられ欠陥発生しても、欠陥が容易に膜を貫きにくくなり、クラッキングなどによる変形や破壊に対する耐性を高めることができた。ここでは窒素を含有させたが、この効果はこれに限るものではなく、炭素や酸素を含有させることは含有させるによっても達成可能である。また、タングステンのみでなくタンタルやモリブデン、チタン、ニッケル、アルミニウムなど他の金属を適用しても同様の効果が期待できるが、高ヤング率が得られるタングステン、タンタル、モリブデン、チタンなどの高融点金属が好ましい。窒素含有タングステンの場合、押し込み式の薄膜試験装置で計測したところ、窒素の含有率を0%から60%程度まで増やすことによりヤング率は360GPaから250GPa程度まで変化するが、ポリシリコンやSiGe膜よりも高いヤング率が得られる。
(第4の実施形態)
次に、第4の実施形態としてマイクロフィルタ装置について説明する。好適な実施形態では、図39に示すように、第1、第2、第3の実施形態にて示した本発明のマイクロ共振装置550を含み、マイクロ共振子に容量結合した入力電極551と、マイクロ共振子で選択された周波数信号を取り出すため出力電極552と、第1のマイクロ可動部を動かすための第1の駆動機構への入力電極553と、第2のマイクロ可動部を動かすための第2の駆動機構への入力電極554を有している。ここでは、マイクロ可動部を2つ備えているが、これに限るものではなく、1つのマイクロ可動部でもよい。本実施形態の構成により、製造後にマイクロ可動部駆動機構の入力電極に制御電圧を与えることでマイクロ共振装置550の共振周波数(マイクロフィルタ装置の中心周波数)を広範囲に調整可能となるため、従来法ではできなかった、製造時の加工ばらつきや封入圧力のばらつきによるマイクロ共振装置の共振周波数(マイクロフィルタ装置の中心周波数)の不確かさに対して、所望の(設計)値に補正・調整して使用することが可能になる。従来法にくらべ製造後の調整範囲が大幅に改善されるため、従来法では歩留まりがとれない範囲の加工精度の製造装置および製造工程を用いても、歩留まりが取れるようになる。また、封入後にマイクロ可動部の制御によってマイクロフィルタ装置の中心周波数のズレをその場で補正することができるため、使用時の外部環境(温度)の変化やマイクロ共振装置そのものの経時劣化(封止圧力の劣化ならびにマイクロ共振子材料の機械特性の劣化など)に対してもフィルタ出力を補正・最適調整することができ、フィルタとしての使用可能な環境条件範囲を拡大し、製品寿命を延ばすことができる。
さらに好適なマイクロフィルタ装置の実施形態では、マイクロ可動部の動作を制御するマイクロ可動部制御回路555を備えている。マイクロ可動部制御回路555は、出力がマイクロ可動部駆動機構への入力電極553および554に接続され、また、マイクロ共振装置550からの出力が入力されるようマイクロ共振装置の出力電極552に接続される。これにより、マイクロフィルタ装置で選択すべき所望の中心周波数と、マイクロ共振装置550からの出力552に出力される信号の周波数にズレが存在するときに、マイクロ可動部制御回路555に、例えば、調整用つまみあるいはスイッチを設けて、マイクロ可動部駆動機構への出力電圧を制御し、マイクロ共振装置550から所望の周波数信号が出力されるよう、周波数のズレを調整することが可能になる。例えば静電アクチュエータで駆動する駆動機構の場合、マイクロ可動部駆動機構は、第1の電極と第2の電極の電位差で駆動されるので、調整の際入力には、第1の電極と第2の電極の2つか、あるいはいずれか一方のみが選ばれる。好ましくは、第2の電極は固定電位にして、第1の電極の電圧を調整する。これによって、実際の使用環境の変化および使用時のマイクロ共振装置の状態に応じて、その場でマイクロフィルタ装置の周波数出力の調整が可能となる。また、マイクロ可動部が固着した場合には、第3の電極への入力電圧で調整される。これにより、マイクロフィルタ装置を解体することなく、外部からの入力で、マイクロ共振装置の機能復帰ができる。
さらに好適な実施形態では、マイクロ可動部およびマイクロ可動部の駆動機構は、マイクロ共振体とともに、基板上に形成できるため、いろいろな周波数特性をもつマイクロ共振装置を並べて作製することが可能となり、いろいろ周波数特性のマイクロ共振装置とマイクロ可動部を複数備えることで、マイクロフィルタ装置全体としての周波数特性の制御可能範囲が拡大し、使用目的や使用環境に応じて使い分けることができる。また、複数のマイクロ共振装置を組み合わせることで、ミキシングした出力を得ることも可能となる。
さらに好適な実施形態では、マイクロフィルタ装置は、記憶素子557を備えており、出荷時あるいは前回の調整時に、選択すべき所望の(設計した)周波数とのズレを補正するよう調整した前記マイクロ可動部制御回路の制御値(出力電圧、あるいは電圧出力のための設定値)を前記記憶素子557に記憶し、マイクロフィルタ装置の起動動作時に前記記憶素子に記憶された前記マイクロ可動部制御回路の制御値をもとに前記マイクロ可動部が制御され、前記選択すべき所望の中心周波数に調整される。
すでに述べたように、製造時の加工ばらつきや封止圧力のばらつきから共振周波数の不確かさを避けられず、所望のあるいは設計した周波数に一致したマイクロ共振装置を製造することは難しい。したがって、使用時には、マイクロ可動部の制御により周波数出力を調整しなければならないが、マイクロ可動部の制御電圧と出力周波数の関係、並びに制御電圧と共振ピークにおける振幅増幅率(あるいはQ値)の関係は、以下に示すように、単純な線形関係ではなく、調整幅を予測した調整が難しい。例えば、図17に曲線bで示したように、マイクロ可動部の制御電圧と、マイクロ可動部がマイクロ共振体を押し付ける力、すなわち固定力との関係は、通常、線形関係は得られない。本発明の実施形態では、図17の曲線aで示すように押し付け段階の実用領域で固定力の非線形性を改善しているが、完全に線形関係が得られるわけではない。さらに、固定力の大きさとマイクロ共振体の共振周波数の関係、あるいは固定力の大きさと共振ピークにおける振幅増幅率(あるいはQ値)との関係も線形関係ではなく、しかも、それぞれのマイクロ共振体の構造、マイクロ可動部の構造、ならびにマイクロ可動部の接触位置などに依存するため、それぞれの固有の相関関係に対応した固有の制御パターンがそれぞれに対して必要となるからである。したがって、図39に示すように、記憶素子557に接続し、出荷時またはユーザーの通常の使用環境で行なった調整時のマイクロ可動部制御回路の制御値、あるいは、前回使用時に調整したマイクロ可動部制御回路の制御値を記憶素子に記録し、その値を基に、起動時にその選択されたマイクロ可動部を調整することで、まったくの初期値から調整するよりも大幅に時間短縮ができる。
さらに好適な実施形態によれば、記憶素子と接続され、前記選択出力される周波数に存在するズレを所望の周波数に調整する際、前記記憶素子にあらかじめ記憶されたマイクロ可動部に対する制御電圧の最適制御ステップを用いて段階的に調整する。これによって、いろいろなマイクロ共振装置あるいはマイクロフィルタ装置に対しても、簡便に周波数のズレを調整することができる。さらに好適な実施形態の詳細を図40に従って説明する。既に述べたように、マイクロ可動部に対する制御電圧と、マイクロ可動部がマイクロ共振体を押し付ける力、すなわち固定力との大きさとの関係、さらに、固定力の大きさとマイクロ共振体の共振周波数の関係、あるいは固定力の大きさと共振ピークにおける振幅増幅率(あるいはQ値)との関係は全て単純な線形関係にはなく、また、それぞれの関係は、マイクロ共振体の構造、マイクロ可動部の構造、さらにはマイクロ可動部の接触位置にも依存するため、共振周波数および共振ピークにおける振幅増幅率(Q値あるいはフィルタの通過帯域)の変動を補正あるいは最適化するための制御パターンは、それぞれに異なる特性をもつ固有のパターンとなる。そこで、選択されたあるマイクロ共振体およびマイクロ可動部に対して、あらかじめマイクロ可動部の制御値とマイクロ共振装置あるいはマイクロフィルタ装置の出力の周波数特性との関係を測定し、例えば、図40に示すような実線560が得られたとすると、好ましくは、所望の選択すべき周波数f0が得られるポイントAでの制御電圧V0を記憶し、次に、周波数を所定の刻み幅で変化させるのに必要な、マイクロ可動部の制御値の制御ステップを決め、そのステップを前記記憶素子に記録する。つまり、図40のように、f0を中心に所定の間隔xで周波数が・・・f0−2x、f0−x、f0、f0+x、f0+2x・・・と変わるポイントに対応する制御電圧の値、・・・V0−d-2、V0−d-1、V0、V0+d1、V0+d2・・・を記憶させておく。周波数の刻み幅xは、マイクロフィルタ装置に望まれる周波数精度に依存するが、望まれる周波数精度あるいは周波数マージンに対して少なくとも2分の1以下であることが望ましい。ここでは、10分の1程度に設定している。これにより、記憶素子に記録された制御ステップ・・・V0−d-2、V0−d-1、V0、V0+d1、V0+d2・・・にしたがってマイクロフィルタ装置の周波数出力の調整すると、周波数を所定の刻み幅xで段階的に、あたかも線形関係が得られているかのごとく変化させることができ、調整幅を予測した最適な調整アルゴリズムを組むことが可能になり、効率よく短時間での調整が可能となる。このように、記憶素子に全てのマイクロ共振装置、マイクロ可動部に対して、制御パターンを記憶させておくことで、どのマイクロ可動部を選択しても同様に効果的に短時間で調整が可能となる。また、あらかじめ選択されたマイクロ可動部の制御値と共振ピークの振幅増幅率(Q値あるいはフィルタの通過帯域)との関係を測定し、その結果を記憶しておくことで、周波数のみならず、共振ピークの振幅増幅率(Q値あるいはフィルタの通過帯域)についても効果的な調整が可能となる。
また、本実施形態において、図41の制御動作のタイミングチャートに示すように、制御ステップを段階的に行なう。これは、マイクロ可動部の制御電圧の設定から、マイクロ可動部が移動し、マイクロ共振体の振動が定常状態に達して、マイクロ共振装置あるいはマイクロフィルタ装置から安定した周波数出力が得られるまでに僅かな時間の遅れが生じるためである。図41に示すように、前記遅れ時間に対してマージンをもたせ、最適なシーケンスを組み、段階的に電圧を制御することで、制御時間を短縮できる。制御電圧を少しずつ連続的に変化をさせることによっても制御可能であるが、マイクロ共振体の振動が定常状態に入るまえにマイクロ可動部を移動させると、出力が不安定なまま調整を進め、正確に定常状態の周波数出力を確認しないままに制御することになるため、周波数を精度よく調整し最終結果を得るのにかえって時間がかかってしまうことになる。
さらに、本実施形態により、マイクロフィルタ装置を使用する温度など外部環境の変化やマイクロ共振装置そのものの経時劣化(マイクロ共振子の機械的特性の劣化や封止圧力の変動)によってマイクロ共振装置の共振周波数、あるいは、マイクロフィルタ装置の中心周波数にズレが生じた場合においても、効果的に調整が可能となる。図40に示すように、例えば、当初、実線560で示すような関係であった、マイクロ可動部の制御電圧と周波数の相関が、外部環境の変化あるいはマイクロ共振装置そのもの経時劣化によって点線561で示すように変化したことで、マイクロフィルタ装置から選択出力される周波数にズレが生じたとする。ズレの原因は、当初(前回)と同じ制御電圧をV0に設定しても出力される周波数図のA点ではなくB点の周波数となることによる。しかし、元の実線560によって決定した制御電圧の制御ステップあるいは調整アルゴリズムにしたがってV0−d-1、V0−d-2、V0−d-3と調整すれば、周波数の調整幅562はxとは完全には一致しないが、マイクロ共振装置のマイクロ共振子やマイクロ可動部に大きな構造変化がおきない限り、実線560と点線561の変化の割合に大差はないので、変化後の相関561に従っても、ほぼ等しい間隔でマイクロフィルタ装置から出力される周波数を変えることができる。そして、これにより、調整幅を予測した最適調整アルゴリズムを組むことができる。また、ズレ発生後の周波数の調整幅562がもともとも調整幅xからわずかに変化している場合、最適調整後の周波数と所望の周波数は完全に一致せず、ズレ563が生じることがある。しかし、調整幅xは、所望の周波数精度の2分の1以下で、十分小さく設定しておけば、周波数のマージン内に必ず調整することができる。このように、本実施形態によって、マイクロフィルタ装置を使用する外部環境の変化やマイクロ共振装置そのものの経時劣化によってマイクロ共振装置の共振周波数(マイクロフィルタ装置の中心周波数)にズレが生じた場合においても、記憶素子にあらかじめ記憶されたマイクロ可動部の制御電圧の最適制御ステップを用いて段階的に調整することで、簡便に効果的にズレを調整することができる。
好適な制御動作について、図41のタイミングチャートに従って説明する。V1は第1の電極の制御電圧、V2は第2の電極の制御電圧、fはマイクロフィルタ装置からの出力される信号の周波数を示す。時間t1で記憶素子に記憶された初期値に基づいてV0が与えられマイクロ可動部を所定の力で押し込み最初の出力を得る。出力された周波数が所望の中心周波数f0とズレている場合には、記憶素子に記憶されている制御ステップに従い、出力周波数を検知してf0と比較ながら所定の時間間隔をおいてV0−d-1、V0−d-2、V0−d-3、・・とV1を制御して調整される。
さらに、好適な実施形態では、記憶素子と接続され、前記選択出力される周波数に存在するズレを所望の周波数に調整する際、図41に示すように、マイクロ可動部の制御電圧V1に初期値(あるいは前回の制御値)V0を印加する前に、すなわち所定の力でマイクロ可動部をマイクロ共振体に接触させる前に、ちょうどマイクロ可動部が釣り合いの位置からマイクロ共振体のところまで移動させる、すなわちマイクロ可動部をマイクロ共振体に接触させるだけで、殆どマイクロ共振体を押し付けない程度の、マイクロ可動部の移動ステップが行なわれる。これによって、マイクロ可動部を接触させるべき位置に滑らかにマイクロ共振体に接触させることができ、再現性の高いマイクロ可動部の調整ができる。いきなりV0を印加すると、マイクロ可動部がある程度の速度をもってマイクロ共振体に接触するため、跳ねや接触位置のズレなどが起こり、再現性の高いマイクロ可動部の制御ができないことがあるからである。
さらに、好適な実施形態では、図41に示すように、マイクロ可動部の制御シーケンスを組み、マイクロ可動部の制御電圧をマイクロ共振体への押し込み段階で変化させる際には、マイクロ共振装置あるいはマイクロフィルタ装置への入力信号強度が小さく下げされる。詳しく説明すると、例えば、図1に示すごときマイクロ共振体を備えたマイクロフィルタ装置に次のような高周波信号が入力されるとすると、
[式2]
Figure 2004032320
ここで、Viは振幅、ωは周波数、tは時間である。マイクロフィルタ装置のマイクロ共振体がωの周波数で受ける力Fは、ほぼViに依存し、Viが大きいほどFは大きくなる。また、マイクロ共振体の振幅Arは、マイクロ共振体が受ける力Fに依存し、これもFが大きいほど大きくなる。したがって、マイクロフィルタへの入力信号の変数のうち、例えば、Viを小さくすれば、マイクロ共振体の共振の振幅を小さくすることができる。つまり、図41に示すように、マイクロ可動部の制御電圧を変えて、マイクロ可動部を押し付ける際に、制御電圧を変えてから、押し付ける力が変化して安定するまでの時間dtの間において、例えば、マイクロフィルタへの入力信号のViを小さくし、信号強度を小さくすれば、マイクロ共振体の振幅Arは小さくなるので、マイクロ可動部を押し込む際の位置のズレや跳ねを防ぎ、滑らかに押し込む力を変えることができる。Viをゼロにして振動をなくすこともできるが、振幅のみを小さくし振動を継続させた方が、調整中に周波数が急変する跳びを防止し、周波数の微調整が行なうことができる。
さらに好適な実施形態では、図41に示すように、マイクロ可動部が釣り合いの位置からマイクロ共振体のところまで移動させる、すなわちマイクロ可動部をマイクロ共振体に接触させるだけで、殆どマイクロ共振体を押し付けない程度の、移動ステップが行なわれる際には、マイクロフィルタ装置への入力は、オフあるいは信号強度をゼロにされる。これにより、マイクロ可動部を接触させるべき位置に滑らかにマイクロ共振体に接触させることができ、再現性の高いマイクロ可動部の調整ができる。
(第5の実施形態)
次に、第5の実施形態としてマイクロ発振器について説明する。好適な実施形態では、図39に示すように、第1、第2、第3の実施形態にて示した本発明のマイクロ共振装置550を含み、マイクロ共振子に容量結合した入力電極551と、マイクロ共振子で選択された周波数信号を取り出すため出力電極552と、マイクロ可動部を動かすための駆動機構への入力電極553および554を有している。ここでは、マイクロ可動部を2つ備えているが、これに限るものではなく、1つのマイクロ可動部でもよい。本実施形態の構成により、製造後にマイクロ可動部駆動機構の入力電極に制御電圧を与えることでマイクロ共振装置550の共振周波数を広範囲に調整可能となるため、従来法ではできなかった、製造時の加工ばらつきや封入圧力のばらつきによるマイクロ共振装置の共振周波数の不確かさに対して、所望の(設計)値に補正・調整して使用することが可能になる。従来法にくらべ製造後の調整範囲が大幅に改善されるため、従来法では歩留まりがとれない範囲の加工精度の製造装置および製造工程を用いても、歩留まりが取れるようになる。また、封入後にマイクロ可動部の制御によってマイクロ発振器の出力周波数のズレをその場で補正することができるため、使用時の外部環境(温度)の変化やマイクロ共振装置そのものの経時劣化(封止圧力の劣化ならびにマイクロ共振子材料の機械特性の劣化など)に対しても出力を補正・最適調整することができ、発振器としての使用可能な環境条件範囲を拡大し、製品寿命を延ばすことができる。
本実施形態に示すマイクロ発振器は、基本部分のマイクロ共振装置の構成が第4の実施形態に示したマイクロフィルタ装置と同じであり、本実施形態においても、第4の実施形態のごとく、マイクロ可動部制御回路および記憶素子と接続することで、同様の効果が得られることは明らかである。
(第6の実施形態)
次に、第6の実施形態として、第4の実施形態に示したごとき本発明のマイクロフィルタ装置と、第5の実施形態に示したごとき本発明のマイクロ発振器とを、用いた無線通信機器について説明する。
図42に示すように、この無線通信機器は、送信部650と、受信部651と、前記送信部650からの送信信号と前記受信部651への受信信号とを分離するデュプレクサ652と、前記送信信号を電波として送信すると共に前記受信信号を電波として受信するアンテナ653と、前記送信部650および前記受信部651に接続された前記マイクロフィルタ装置600および前記マイクロ発振器601とを備える。
前記送信部650は、送信信号が流れる上流側から下流側へ、順次、ミキサ602、アンプ603およびPA(Power Amplifier;電力増幅回路)604を備え、このアンプ603とこのPA604との間に、前記マイクロフィルタ装置600が接続される。
前記受信部651は、受信信号が流れる上流側から下流側へ、順次、LNA(Low Noise Amplifier;低雑音増幅回路)605、ミキサ606およびアンプ607を備え、このLNA605とこのミキサ606との間に、前記マイクロフィルタ装置600が接続される。
また、前記マイクロ発振器601は、前記送信部650の前記ミキサ602と前記受信部651の前記ミキサ606との両方に接続される。なお、前記マイクロ発振器601には、例えば、VCO(Voltage Controlled Oscillator;発振回路)が接続される。
このように、高いQ値を持つ前記マイクロフィルタ装置600を無線通信機器の送受信部650,651の帯域通過フィルタとして使用することにより、ノイズとなる非線形成分を除去や、所望の周波数信号のみを通過させ他の周波数信号を全て除去するチャンネル選択などが可能となる。また、高いQ値を持つ前記マイクロ発振器601を無線通信機器の送受信部650,651の局所(局部)発振器などに使用することにより、位相ノイズ低減などの効果が得られる。
したがって、本発明において、製造後に調整可能な超小型のマイクロフィルタ装置600およびマイクロ発振器601を無線通信機器に搭載することが可能になり、外部環境の変動やマイクロ共振装置そのものの内部変動により、マイクロフィルタ装置600およびマイクロ発振器601の周波数特性に変動が生じても、通信状態と対比しながらマイクロ可動部の制御によりマイクロフィルタの周波数特性を調整し、通信状態を最適に保つことができるようになる。
要するに、従来の技術では、加工精度や封入圧力精度のばらつきのため、中心周波数を設計値に高精度に合わせたマイクロフィルタ装置およびマイクロ発振器を製造することができず、歩留まりが取れないばかりか、無線機器に搭載しても製造後の調整範囲が狭いために、外部環境変化やマイクロフィルタ装置およびマイクロ発振器そのものの経時劣化に対応できない問題がある。
(第7の実施形態)
さらに第7の実施形態として、本発明の他の無線通信機器について説明する。
図43に示すように、この無線通信機器は、前記デュプレクサ652と前記アンテナ653との間に接続されるチャンネル選択部660を備える。このチャンネル選択部660は、並列された複数のマイクロフィルタ装置600を備え、所望の周波数信号のみを通過させる。なお、その他の構造は、第6の実施形態と同じであるので、その説明を省略する。
なお、図示しないが、この発明の無線通信機器としては、前記マイクロフィルタ装置600と前記マイクロ発振器601との何れか一方を用いてもよい。
なお、この発明は、上述した実施形態に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更および追加が可能であることは、言うまでもない。
図1は、本発明の第1の実施形態のマイクロ共振装置を示す構成図である。 図2は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ共振体の模式断面図である。 図3は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ共振体の模式断面図である。 図4は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ共振体の模式断面図である。 図5は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ共振体の模式断面図である。 図6は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ共振子の周波数と振幅の関係図である。 図7は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部の接触面の構成図である。 図8は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部の接触面の平面図である。 図9は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部の模式断面図である。 図10は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ可動部の模式断面図である。 図11は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部駆動機構を示す構成図である。 図12は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部駆動機構(釣り合いの位置)を示す図11のA1−A2模式断面図である。 図13は、本発明の第1の実施形態のマイクロ共振装置におけるマイクロ可動部駆動機構(押し付けの位置)を示す図11のA1−A2模式断面図である。 図14は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ可動部駆動機構を示す構成図である。 図15は、本発明の第1の実施形態のマイクロ共振装置における他のマイクロ可動部駆動機構(釣り合いの位置)を示す図14のB1−B2模式断面図である。 図16は、本発明の第1の実施形態のマイクロ共振装置における電極への印加電圧と移動距離の関係図である。 図17は、本発明の第1の実施形態のマイクロ共振装置における電極への印加電圧と固定力(作用する力の大きさ)の関係図である。 図18は、本発明の第1の実施形態のマイクロ共振装置における固着防止機構の模式断面図である。 図19は、本発明の第1の実施形態のマイクロ共振装置における他の固着防止機構の模式断面図である。 図20は、本発明の第2の実施形態のマイクロ共振装置を示す構成図である。 図21は、本発明の第2の実施形態のマイクロ共振装置におけるマイクロ共振体の平面図である。 図22は、本発明の第2の実施形態のマイクロ共振装置におけるマイクロ共振体の平面図である。 図23は、本発明の第2の実施形態のマイクロ共振装置におけるマイクロ可動部駆動機構を示す構成図である。 図24は、本発明の第2の実施形態のマイクロ共振装置におけるマイクロ可動部構造を示す構成図である。 図25は、本発明の第2の実施形態のマイクロ共振装置における他のマイクロ可動部構造を示す構成図である。 図26は、本発明の第3の実施形態のマイクロ共振装置を示す構成図である。 図27は、本発明の第3の実施形態のマイクロ共振装置におけるマイクロ共振体の模式断面図である。 図28は、本発明の第3の実施形態のマイクロ共振装置におけるマイクロ共振体の模式断面図である。 図29は、共振子形状が円形の場合のマイクロ可動部接触面の平面図である。 図30は、従来のマイクロ共振装置を示す構成図である。 図31は、本発明の第1の実施形態のマイクロ共振装置における別のマイクロ可動部駆動機構を示す構成図である。 図32A乃至図32Bは、本発明の第1の実施形態のマイクロ共振装置における別のマイクロ可動部駆動機構を示す構成図である。 図33は、本発明の第2の実施形態のマイクロ共振装置における他のマイクロ共振体の平面図である。 図34は、本発明の第2の実施形態のマイクロ共振装置における他のマイクロ可動部駆動機構を示す構成図である。 図35A乃至図35Fは、本発明の第1の実施形態のマイクロ共振装置における製造方法を示す工程図である。 図36A乃至図36Cは、本発明の第1の実施形態のマイクロ共振装置における他の製造方法を示す工程図である。 図37A乃至図37Cは、本発明の第3の実施形態のマイクロ共振装置における製造方法を示す工程図である。 図38A乃至図38Fは、本発明の第2の実施形態のマイクロ共振装置における製造方法を示す工程図である。 図39は、本発明の第4の実施形態のマイクロフィルタ装置または第5の実施形態のマイクロ発振器を示す構成図である。 図40は、本発明の第4の実施形態のマイクロフィルタ装置または第5の実施形態のマイクロ発振器における制御値を説明するための制御電圧と周波数の関係図である。 図41は、本発明の第4の実施形態のマイクロフィルタ装置または第5の実施形態のマイクロ発振器における制御動作を説明するためのタイミングチャートである。 図42は、本発明の第6の実施形態の無線通信機器を示す簡略構成図である。 図43は、本発明の第7の実施形態の無線通信機器を示す簡略構成図である。

Claims (47)

  1. 基板(10,210,310)と、
    この基板(10,210,310)に設けられたマイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)と、
    このマイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に機械的に作用する少なくとも一つのマイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と、
    このマイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を駆動して、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に対する前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の機械的な作用状態を変化させるマイクロ可動部駆動機構(17,217,317)と
    を備えていることを特徴とするマイクロ共振装置。
  2. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の共振周波数を変えることを特徴とするマイクロ共振装置。
  3. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の振動領域あるいは振幅の分布形状を変えることを特徴とするマイクロ共振装置。
  4. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の支持端付近における振動の吸収を制御することを特徴とするマイクロ共振装置。
  5. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部駆動機構(17,217,317)は、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触させ、または、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)から離すことを特徴とするマイクロ共振装置。
  6. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部駆動機構(17,217,317)は、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に所定の大きさの力で接触させ、または、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触させている力の大きさを変えることを特徴とするマイクロ共振装置。
  7. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部駆動機構(17,217,317)は、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)が前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触する位置あるいは接触する方向を変えることを特徴とするマイクロ共振装置。
  8. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)が前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触する位置は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の支持端付近あるいは振動の節位置付近であることを特徴とするマイクロ共振装置。
  9. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)が前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触する位置は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の振動の振幅ピーク位置よりも振幅の小さい領域であることを特徴とするマイクロ共振装置
  10. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)との接触によって形成される交線のうち、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動が起こる側に形成される交線(40,43)が、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる共振周波数に関わる寸法の実効値を示す線分方向(41)に対して、ほぼ垂直に位置するように構成されることを特徴とするマイクロ共振装置。
  11. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)が、マイクロ共振子(11,24,211,241,280,311)とマイクロ共振子支持部(12,34,212,242,312)を備え、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)との接触によって形成される交線のうち、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動がおこる側に形成される交線(40,43)が、前記マイクロ共振子(11,24,211,241,280,311)と前記マイクロ共振子支持部(12,34,212,242,312)が形成する交線のうち前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動が起こる側か、あるいは最も離れたところに形成された交線(32,42)にほぼ平行に位置するように構成されることを特徴とするマイクロ共振装置。
  12. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)が、マイクロ共振子(11,24,211,241,280,311)とマイクロ共振子支持部(12,34,212,242,312)を備え、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)との接触によって形成される交線のうち、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動が起こる側に形成される交線(40,43)が、前記マイクロ共振子(11,24,211,241,280,311)と前記マイクロ共振子支持部(12,34,212,242,312)が形成する交線のうち最も前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動がおこる側に形成された交線位置(42)から、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる共振周波数に関わる寸法の実効値を示す線分(44)の端位置(45)までの距離を2倍に延長した位置(46)より、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動がおこる側に位置するように構成されることを特徴とするマイクロ共振装置。
  13. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)が、マイクロ共振子(11,24,211,241,280,311)とマイクロ共振子支持部(12,34,212,242,312)を備え、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)との接触によって形成される交線のうち、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動の起こる側とは反対側に形成される交線(47)が、前記マイクロ共振子(11,24,211,241,280,311)と前記マイクロ共振子支持部(12,34,212,242,312)が形成する交線のうち最も前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動がおこる側に形成された交線位置(42)より、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動が起こる側とは反対側に位置するように構成されることを特徴とするマイクロ共振装置。
  14. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、大きさ、あるいは形状、あるいは材質の異なる複数存在し、この異なるマイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に機械的に作用させることを特徴とするマイクロ共振装置。
  15. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    少なくとも前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触する前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)先端部(51)の共振周波数は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の共振周波数よりも大きいことを特徴とするマイクロ共振装置。
  16. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)とは、それぞれ、相互に接触する接触部を有し、この接触部において、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)側あるいは前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)側の表面の少なくともいずれか一方に固着防止層(61,409,457)が形成されていることを特徴とするマイクロ共振装置。
  17. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)との接触部における前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の実効寸法を示す方向の長さ(65)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の厚みより長くなっていることを特徴とするマイクロ共振装置。
  18. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)とが相対的に押し付けられる力の方向は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる共振周波数に関わる寸法の実効値を示す線分方向(41)に対してほぼ垂直であることを特徴とするマイクロ共振装置。
  19. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)の前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)への機械的作用により、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に接触し、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)とが相対的に押し付けられる力の方向は、前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)の主たる振動の振幅方向に対してほぼ平行か、あるいはほぼ垂直であることを特徴とするマイクロ共振装置。
  20. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部駆動機構(17,217,317)は、可撓性を有する板状の圧電部材(120)を備えていることを特徴とするマイクロ共振装置。
  21. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部駆動機構(17,217,317)は、厚み変形型の圧電部材(131)を備えていることを特徴とするマイクロ共振装置。
  22. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部駆動機構(17,217,317)は、すべり変形型の圧電部材(141)を備えていることを特徴とするマイクロ共振装置。
  23. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ可動部駆動機構(17,217,317)は、静電駆動型のアクチュエータを備えていることを特徴とするマイクロ共振装置。
  24. 請求項23に記載のマイクロ共振装置において、
    前記静電駆動型のアクチュエータは、
    前記基板(10,210,310)に固定された第1の電極(70,90,110,115,260,270)と、
    前記第1の電極(70,90,110,115,260,270)から一定の距離に形成され、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と連結し、外部から与えられる電圧により生じる前記第1の電極(70,90,110,115,260,270)との電位差によって、前記第1の電極(70,90,110,115,260,270)に接近または離れるように移動して前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を動かす第2の電極(73,93,111,116,263,273)と、
    前記第2の電極(73,93,111,116,263,273)に電気的に接続し、前記第2の電極(73,93,111,116,263,273)および前記第2の電極(73,93,111,116,263,273)に連結した構造(413)を支持する弾性体(74,94,264,274)と
    を備えることを特徴とするマイクロ共振装置。
  25. 請求項24に記載のマイクロ共振装置において、
    前記弾性体(74,94,264,274)は、前記第2の電極(73,93,111,116,263,273)が前記第1の電極(70,90,110,115,260,270)から所定の距離のところまで前記第1の電極(70,90,110,115,260,270)に接近すると、支点位置が変わって、前記弾性体(74,94,264,274)の弾性係数が大きくなることを特徴とするマイクロ共振装置。
  26. 請求項24に記載のマイクロ共振装置において、
    前記静電駆動型のアクチュエータは、前記第2の電極(73,93,111,116,263,273)が前記第1の電極(70,90,110,115,260,270)から所定の距離のところまで前記第1の電極(70,90,110,115,260,270)に接近するときに、前記第2の電極(73,93,111,116,263,273)および前記第2の電極(73,93,111,116,263,273)に連結した構造(413)を支持する第2の弾性体を備えることを特徴とするマイクロ共振装置。
  27. 請求項25または26に記載のマイクロ共振装置において、
    前記所定の距離は、前記第1の電極(70,90,110,115,260,270)および前記第2の電極(73,93,111,116,263,273)に電位差が与えられていない釣り合い状態における、前記第1の電極(70,90,110,115,260,270)と前記第2の電極(73,93,111,116,263,273)との間の距離の3分の2よりも大きく設定されていることを特徴とするマイクロ共振装置。
  28. 請求項25または26に記載のマイクロ共振装置において、
    前記所定の距離は、前記第1の電極(70,90,110,115,260,270)および前記第2の電極(73,93,111,116,263,273)に電位差が与えられていない釣り合い状態における、前記第1の電極(70,90,110,115,260,270)と前記第2の電極(73,93,111,116,263,273)との間の距離から前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)との間の距離を引いた距離近傍に設定されていることを特徴とするマイクロ共振装置。
  29. 請求項24に記載のマイクロ共振装置において、
    前記弾性体(74,94,264,274)および前記第2の電極(73,93,111,116,263,273)に連結した構造(413)は、前記第2の電極(73,93,111,116,263,273)が前記第1の電極(70,90,110,115,260,270)に接近するときに、前記第1の電極(70,90,110,115,260,270)と前記第2の電極(73,93,111,116,263,273)との位置がほぼ平行に保たれるような折れ曲がり部(77,78)を備えていることを特徴とするマイクロ共振装置。
  30. 請求項24に記載のマイクロ共振装置において、
    前記静電駆動型のアクチュエータは、前記第2の電極(73,93,111,116,263,273)から一定の距離に、前記第1の電極(70,90,110,115,260,270)とは反対側に形成され、外部から与えられる電圧により生じる前記第2の電極(73,93,111,116,263,273)との電位差によって、前記第2の電極(73,93,111,116,263,273)および前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)に駆動力を与える第3の電極(112,290)を備えることを特徴とするマイクロ共振装置。
  31. 請求項24に記載のマイクロ共振装置において、
    前記静電駆動型のアクチュエータは、
    前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)と連動する構造部から前記第1の電極(70,90,110,115,260,270)と前記第2の電極(73,93,111,116,263,273)とが対向する方向と直交する方向に一定の距離に形成されると共に、外部から与えられる電圧により生じる前記構造部との電位差によって、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)に対し、前記第1の電極(70,90,110,115,260,270)と前記第2の電極(73,93,111,116,263,273)とが対向する方向とは直交する方向の駆動力を与える第4の電極(117)を備えることを特徴とするマイクロ共振装置。
  32. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)および前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、その組成に少なくとも2つの元素が含まれる材料からなり、この元素のうち1つの元素は、高融点金属元素であることを特徴とするマイクロ共振装置。
  33. 請求項32に記載のマイクロ共振装置において、
    前記高融点金属元素は、タングステン、タンタル、モリブデンのいずれかであることを特徴とするマイクロ共振装置。
  34. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)および前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、その組成に少なくとも2つの元素が含まれる材料からなり、この材料は、高融点金属元素と、少なくとも窒素、酸素、炭素のいずれかの元素を含むことを特徴とするマイクロ共振装置。
  35. 請求項1に記載のマイクロ共振装置において、
    前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)および前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)は、その組成に少なくとも2つの元素が含まれる材料からなり、この材料は、組成あるいは内部残留応力の異なる少なくとも2つの層で構成されることを特徴とするマイクロ共振装置。
  36. 請求項1に記載のマイクロ共振装置(550)と、
    前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に容量結合した入力電極(551)と、
    前記マイクロ共振装置(550)により選択された周波数信号を取り出すための出力電極(552)と、
    前記マイクロ可動部駆動機構(17,217,317)を駆動する入力電極(553,554)と
    を有していることを特徴とするマイクロフィルタ装置。
  37. 請求項36に記載のマイクロフィルタ装置において、
    前記マイクロ共振装置(550)の出力(552)と前記マイクロ可動部駆動機構(17,217,317)を駆動する入力(553,554)とに接続されたマイクロ可動部制御回路(555)を備え、
    このマイクロ可動部制御回路(555)は、選択すべき所望の周波数と前記マイクロ共振装置(550)により選択出力される信号の周波数にズレが存在するとき、前記マイクロ共振装置(550)から所望の周波数信号が出力されるように、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を調整することを特徴とするマイクロフィルタ装置。
  38. 請求項37に記載のマイクロフィルタ装置において、
    前記マイクロ可動部制御回路(555)に接続された記憶素子(557)を備え、
    この記憶素子(557)は、前記選択すべき所望の周波数との差を補正するよう調整した前記マイクロ可動部駆動機構(17,217,317)の制御値を記憶し、
    前記マイクロ可動部制御回路(555)は、起動動作時に、前記記憶素子(557)に記憶された前記マイクロ可動部駆動機構(17,217,317)の制御値をもとに、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を制御して、出力される周波数信号を調整することを特徴とするマイクロフィルタ装置。
  39. 請求項38に記載のマイクロフィルタ装置において、
    前記記憶素子(557)に記憶される前記マイクロ可動部駆動機構(17,217,317)の制御値は、前記マイクロ可動部駆動機構(17,217,317)の電極に印加する電圧、あるいは電極間に印加される電圧差のいずれかを与える設定値を含んでいることを特徴とするマイクロフィルタ装置。
  40. 請求項39に記載のマイクロフィルタ装置において、
    前記マイクロ可動部制御回路(555)は、前記選択出力される信号の周波数に存在するズレを所望の周波数に調整する際、前記記憶素子(557)にあらかじめ記憶された前記マイクロ可動部駆動機構(17,217,317)の制御電圧の最適制御ステップを用いて段階的に調整することを特徴とするマイクロフィルタ装置。
  41. 請求項1に記載のマイクロ共振装置(550)と、
    前記マイクロ共振体(13,80,100,213,243,293,313,402,423,433,448)に容量結合した入力電極(551)と、
    前記マイクロ共振装置(550)により出力された周波数信号を取り出すための出力電極(552)と、
    前記マイクロ可動部駆動機構(17,217,317)を駆動する入力電極(553,554)と
    を有していることを特徴とするマイクロ発振器。
  42. 請求項41に記載のマイクロ発振器において、
    前記マイクロ共振装置(550)の出力(552)と前記マイクロ可動部駆動機構(17,217,317)を駆動する入力(553,554)とに接続されたマイクロ可動部制御回路(555)を備え、
    このマイクロ可動部制御回路(555)は、前記マイクロ共振装置(550)により出力された周波数の変動を補正あるいは最適化するように、出力を検知しながら前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を調整することを特徴とするマイクロ発振器。
  43. 請求項42に記載のマイクロ発振器において、
    前記マイクロ可動部制御回路(555)に接続された記憶素子(557)を備え、
    この記憶素子(557)は、出力されるべき所望の周波数と実際の周波数との差を補正あるいは最適化するよう調整した前記マイクロ可動部駆動機構(17,217,317)の制御値を記憶し、
    前記マイクロ可動部制御回路(555)は、起動動作時に、前記記憶素子(557)に記憶された前記マイクロ可動部駆動機構(17,217,317)の制御値をもとに、前記マイクロ可動部(16,30,50,60,71,91,128,216,246,271,291,292,316,412,449)を制御することを特徴とするマイクロ発振器。
  44. 請求項43に記載のマイクロ発振器において、
    前記記憶素子(557)に記憶される前記マイクロ可動部駆動機構(17,217,317)の制御値は、前記マイクロ可動部駆動機構(17,217,317)の電極に印加する電圧、あるいは電極間に印加される電圧差のいずれかを与える設定値を含んでいることを特徴とするマイクロ発振器。
  45. 請求項44に記載のマイクロ発振器において、
    前記マイクロ可動部制御回路(555)は、前記出力された周波数における変動を補正あるいは最適化する際、前記記憶素子(557)にあらかじめ記憶された前記マイクロ可動部駆動機構(17,217,317)の制御電圧の最適制御ステップを用いて段階的に調整することを特徴とするマイクロ発振器。
  46. 送信部(650)と、
    受信部(651)と、
    前記送信部(650)からの送信信号と前記受信部(651)への受信信号とを分離するデュプレクサ(652)と、
    前記送信信号を電波として送信すると共に前記受信信号を電波として受信するアンテナ(653)と、
    少なくとも前記送信部(650)および前記受信部(651)に接続された請求項36に記載のマイクロフィルタ装置(600)と
    を備えることを特徴とする無線通信機器。
  47. 送信部(650)と、
    受信部(651)と、
    前記送信部(650)からの送信信号と前記受信部(651)への受信信号とを分離するデュプレクサ(652)と、
    前記送信信号を電波として送信すると共に前記受信信号を電波として受信するアンテナ(653)と、
    少なくとも前記送信部(650)および前記受信部(651)に接続された請求項41に記載のマイクロ発振器(601)と
    を備えることを特徴とする無線通信機器。
JP2004541277A 2002-10-03 2003-10-02 マイクロ共振装置、マイクロフィルタ装置、マイクロ発振器および無線通信機器 Expired - Fee Related JP4121502B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002290779 2002-10-03
JP2002290779 2002-10-03
PCT/JP2003/012665 WO2004032320A1 (ja) 2002-10-03 2003-10-02 マイクロ共振装置、マイクロフィルタ装置、マイクロ発振器および無線通信機器

Publications (2)

Publication Number Publication Date
JPWO2004032320A1 true JPWO2004032320A1 (ja) 2006-02-02
JP4121502B2 JP4121502B2 (ja) 2008-07-23

Family

ID=32063821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004541277A Expired - Fee Related JP4121502B2 (ja) 2002-10-03 2003-10-02 マイクロ共振装置、マイクロフィルタ装置、マイクロ発振器および無線通信機器

Country Status (3)

Country Link
JP (1) JP4121502B2 (ja)
AU (1) AU2003271082A1 (ja)
WO (1) WO2004032320A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104154B1 (en) * 2004-04-27 2015-06-03 NGK Insulators, Ltd. Piezoelectric/electrostrictive actuator inspection method and amount of displacement prediction program
CN100568720C (zh) * 2005-01-13 2009-12-09 松下电器产业株式会社 扭转谐振器和采用其的滤波器
JP4645227B2 (ja) * 2005-02-28 2011-03-09 セイコーエプソン株式会社 振動子構造体及びその製造方法
JP4728866B2 (ja) * 2006-04-13 2011-07-20 株式会社東芝 共振回路、フィルタ回路および発振回路
US7649671B2 (en) * 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
JP4977431B2 (ja) * 2006-10-12 2012-07-18 三洋電機株式会社 マイクロメカニカル共振器
JP4965962B2 (ja) * 2006-10-13 2012-07-04 学校法人立命館 マイクロメカニカル共振器
JP2009088854A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd マイクロメカニカル共振器およびその製造方法
JP5112819B2 (ja) * 2007-10-31 2013-01-09 セイコーインスツル株式会社 静電振動子および発振器
JP5128296B2 (ja) * 2008-01-21 2013-01-23 セイコーインスツル株式会社 静電振動子および発振器
JP2010162629A (ja) * 2009-01-14 2010-07-29 Seiko Epson Corp Memsデバイスの製造方法
US8430255B2 (en) 2009-03-19 2013-04-30 Robert Bosch Gmbh Method of accurately spacing Z-axis electrode
WO2010143363A1 (ja) 2009-06-09 2010-12-16 パナソニック株式会社 共振器およびこれを用いた発振器
JP5290911B2 (ja) * 2009-08-18 2013-09-18 日本電信電話株式会社 微小共振子およびその製造方法
WO2016063863A1 (ja) 2014-10-22 2016-04-28 株式会社村田製作所 共振子及び共振装置
JP6491170B2 (ja) 2016-11-29 2019-03-27 Necプラットフォームズ株式会社 制動装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194325A (ja) * 1985-02-25 1986-08-28 Shinko Denshi Kk 力変換機構
JPH05251977A (ja) * 1992-03-03 1993-09-28 Fujitsu Ltd 圧電デバイス
JPH10512046A (ja) * 1994-12-16 1998-11-17 ハネウエル・インコーポレーテッド 一体化共振マイクロビームセンサ及びトランジスタ発振器
JPH11508418A (ja) * 1995-06-23 1999-07-21 コーネル・リサーチ・ファンデーション・インコーポレイテッド キャパシタンスに基づくチューニング可能な超小型機械共振器
JP2000030595A (ja) * 1998-06-02 2000-01-28 Nokia Mobile Phones Ltd 共振器の構造
WO2001082479A2 (en) * 2000-04-20 2001-11-01 The Regents Of The University Of Michigan Method and apparatus for filtering signals in a subsystem including a power amplifier utilizing a bank of vibrating micromechanical apparatus
JP2002094351A (ja) * 2000-09-19 2002-03-29 Tdk Corp 圧電共振部品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194325A (ja) * 1985-02-25 1986-08-28 Shinko Denshi Kk 力変換機構
JPH05251977A (ja) * 1992-03-03 1993-09-28 Fujitsu Ltd 圧電デバイス
JPH10512046A (ja) * 1994-12-16 1998-11-17 ハネウエル・インコーポレーテッド 一体化共振マイクロビームセンサ及びトランジスタ発振器
JPH11508418A (ja) * 1995-06-23 1999-07-21 コーネル・リサーチ・ファンデーション・インコーポレイテッド キャパシタンスに基づくチューニング可能な超小型機械共振器
JP2000030595A (ja) * 1998-06-02 2000-01-28 Nokia Mobile Phones Ltd 共振器の構造
WO2001082479A2 (en) * 2000-04-20 2001-11-01 The Regents Of The University Of Michigan Method and apparatus for filtering signals in a subsystem including a power amplifier utilizing a bank of vibrating micromechanical apparatus
JP2002094351A (ja) * 2000-09-19 2002-03-29 Tdk Corp 圧電共振部品

Also Published As

Publication number Publication date
WO2004032320A1 (ja) 2004-04-15
JP4121502B2 (ja) 2008-07-23
AU2003271082A1 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
JP4121502B2 (ja) マイクロ共振装置、マイクロフィルタ装置、マイクロ発振器および無線通信機器
US7023065B2 (en) Capacitive resonators and methods of fabrication
Piazza et al. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators
US6909221B2 (en) Piezoelectric on semiconductor-on-insulator microelectromechanical resonators
Pourkamali et al. Low-impedance VHF and UHF capacitive silicon bulk acoustic wave resonators—Part I: Concept and fabrication
US7639105B2 (en) Lithographically-defined multi-standard multi-frequency high-Q tunable micromechanical resonators
JP5848131B2 (ja) 機械共振構造体を備える機器
US6943648B2 (en) Methods for forming a frequency bulk acoustic resonator with uniform frequency utilizing multiple trimming layers and structures formed thereby
US20060125576A1 (en) Highly tunable low-impedance capacitive micromechanical resonators, oscillators, and processes relating thereto
JP4451736B2 (ja) マイクロ共振装置、マイクロフィルタ装置、マイクロ発振器および無線通信機器
WO2006130777A2 (en) Contour-mode piezoelectric micromechanical resonators
JP2009526420A (ja) 圧電薄膜共振器(fbar)の周波数のチューニング
US8704316B2 (en) Etchant-free methods of producing a gap between two layers, and devices produced thereby
JP4342370B2 (ja) 高周波集積回路装置
Lin et al. Quality factor enhancement in Lamb wave resonators utilizing AlN plates with convex edges
WO2016151317A1 (en) Tuneable resonator
JP2004243462A (ja) Mems素子
JP4442158B2 (ja) マイクロ電気機械システムの共振器およびその駆動方法
Schneider et al. Gap reduction based frequency tuning for AlN capacitive-piezoelectric resonators
JP2005059128A (ja) マイクロ電気機械システムの共振器およびその動作方法
Kwon et al. Frequency tuning of nanowire resonator using electrostatic spring effect
Dusatko Silicon carbide RF-MEM resonators.
Kazmi Capacitively transduced polycrystalline GeSi MEM resonators
Nabki et al. Frequency tunable silicon carbide resonators for MEMS above IC
Zaman Hybrid RF Acoustic Resonators and Arrays with Integrated Capacitive and Piezoelectric Transducers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees