JPWO2004009879A1 - Plating equipment - Google Patents

Plating equipment Download PDF

Info

Publication number
JPWO2004009879A1
JPWO2004009879A1 JP2004522759A JP2004522759A JPWO2004009879A1 JP WO2004009879 A1 JPWO2004009879 A1 JP WO2004009879A1 JP 2004522759 A JP2004522759 A JP 2004522759A JP 2004522759 A JP2004522759 A JP 2004522759A JP WO2004009879 A1 JPWO2004009879 A1 JP WO2004009879A1
Authority
JP
Japan
Prior art keywords
plating
plated
plating solution
substrate
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004522759A
Other languages
Japanese (ja)
Other versions
JP4434948B2 (en
Inventor
利一 矢島
利一 矢島
隆 竹村
隆 竹村
冷 黄海
冷 黄海
信利 齋藤
信利 齋藤
文夫 栗山
文夫 栗山
誠章 木村
誠章 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of JPWO2004009879A1 publication Critical patent/JPWO2004009879A1/en
Application granted granted Critical
Publication of JP4434948B2 publication Critical patent/JP4434948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/008Current shielding devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本発明のめっき装置は、めっき液(10)を保持するめっき槽(40)と、めっき槽(40)内のめっき液(10)に浸漬させて設置されるアノード(56)と、アノード(56)と該アノード(56)と対向するように配置される基板(W)との間に設置される調整板(60)と、アノード(56)と基板(W)との間に通電してめっきを行うめっき電源(24)とを有し、調整板(60)は、めっき槽(40)内に保持されるめっき液(10)をアノード側と被めっき体側に遮断するように設置され、内部に多数の通孔(66)からなる通孔群(68)が設けられている。The plating apparatus of the present invention includes a plating tank (40) for holding a plating solution (10), an anode (56) installed by being immersed in the plating solution (10) in the plating tank (40), and an anode (56). ) And the substrate (W) disposed so as to face the anode (56), and the plating is performed by energizing the adjustment plate (60) between the anode (56) and the substrate (W). The adjustment plate (60) is installed so as to shut off the plating solution (10) held in the plating tank (40) from the anode side to the object to be plated side. A through hole group (68) comprising a number of through holes (66) is provided.

Description

本発明は、例えば基板等の被めっき体の被めっき面にめっきを施すめっき装置、特に半導体ウェーハ等の表面に設けられた微細な配線用溝やホール、ビアホール、スルーホール、レジスト開口部にめっき膜を形成したり、半導体ウェーハの表面にパッケージの電極等と電気的に接続するバンプ(突起状電極)を形成したりするのに使用されるめっき装置に関する。  The present invention is a plating apparatus for plating on a surface to be plated such as a substrate, for example, plating on fine wiring grooves and holes, via holes, through holes, resist openings provided on the surface of a semiconductor wafer or the like. The present invention relates to a plating apparatus used for forming a film or forming bumps (protruding electrodes) electrically connected to electrodes of a package on the surface of a semiconductor wafer.

例えば、TAB(Tape Automated Bonding)やFC(Flip Chip)においては、配線が形成された半導体チップの表面の所定箇所(電極)に金、銅、はんだ、或いは鉛フリーはんだやニッケル、更にはこれらを多層に積層した突起状接続電極(バンプ)を形成し、このバンプを介してパッケージの電極やTAB電極と電気的に接続することが広く行われている。このバンプの形成方法としては、電気めっき法、蒸着法、印刷法、ボールバンプ法といった種々の手法があるが、半導体チップのI/O数の増加、細ピッチ化に伴い、微細化が可能で性能が比較的安定している電気めっき法が多く用いられるようになってきている。
電気めっき法によれば、高純度な金属膜(めっき膜)が容易に得られ、しかも金属膜の成膜速度が比較的速いばかりでなく、金属膜の膜厚の制御も比較的容易に行うことができる。
図37は、いわゆるフェースダウン方式を採用した従来のめっき装置の一例を示す。このめっき装置は、内部にめっき液10を保持する上方に開口しためっき槽12と、基板Wをその表面(被めっき面)を下向き(フェースダウン)にして着脱自在に保持する上下動自在な基板ホルダ14を有している。めっき槽12の底部には、アノード16が水平に配置され、上部の周囲には、オーバーフロー槽18が設けられ、更にめっき槽12の底部にめっき液供給ノズル20が連結されている。
これにより、基板ホルダ14で水平に保持した基板Wを、めっき槽12の上端開口部を塞ぐ位置に配置し、この状態で、めっき液供給ノズル20からめっき槽12の内部にめっき液10を供給し、このめっき液10をめっき槽12の上部からオーバーフローさせることで、基板ホルダ14で保持した基板Wの表面にめっき液10を接触させ、同時に、導線22aを介してアノード16をめっき電源24の陽極に、導線22bを介して基板Wをめっき電源24の陰極にそれぞれ接続する。すると、基板Wとアノード16との電位差により、めっき液10中の金属イオンが基板Wの表面より電子を受け取り、基板Wの表面に金属が析出して金属膜が形成される。
このめっき装置によれば、アノード16の大きさ、アノード16と基板Wとの極間距離および電位差、めっき液供給ノズル20から供給されるめっき液10の供給速度等を調整することにより、基板Wの表面に形成される金属膜の膜厚の均一性をある程度調節することができる。
図38は、いわゆるディップ方式を採用した従来のめっき装置の一例を示す。このめっき装置は、内部にめっき液を保持するめっき槽12aと、基板Wをその周縁部を水密的にシールし表面(被めっき面)を露出させて着脱自在に保持する上下動自在な基板ホルダ14aを有している。めっき槽12の内部には、アノード16aがアノードホルダ26に保持されて垂直に配置され、更に基板ホルダ14aで保持した基板Wがアノード16aと対向する位置に配置された時に、このアノード16aと基板Wとの間に位置するように、中央孔28aを有する誘電体からなる調整板(レギュレーションプレート)28が配置されている。
これにより、これらのアノード16、基板W及び調整板28をめっき槽12a内のめっき液中に浸漬し、同時に、導線22aを介してアノード16aをめっき電源24の陽極に、導線22bを介して基板Wをめっき電源24の陰極にそれぞれ接続することで、前述と同様にして、基板Wの表面に金属が析出して金属膜が形成される。
このめっき装置によれば、アノード16aと該アノード16aと対向する位置に配置される基板Wとの間に、中央孔28aを有する調整板28を配置し、この調整板28でめっき槽12a内の電位分布を調節することで、基板Wの表面に形成される金属膜の膜厚分布をある程度調節することができる。
図39は、いわゆるディップ方式を採用した従来のめっき装置の他の例を示す。このめっき装置の図38に示すものと異なる点は、調整板を備えることなく、リング状の擬似陰極(擬似電極)30を備え、基板Wの周囲に擬似陰極30を配置した状態で、基板Wを基板ホルダ14aに保持し、更に、めっき処理に際に、導線22cを介して、擬似陰極30をめっき電源24の陰極に接続するようにした点にある。
このめっき装置によれば、擬似陰極30の電位を調節することで、基板Wの表面に形成される金属膜の膜厚の均一性を改善することができる。
一方、例えば、半導体基板(ウェーハ)の表面に配線用やバンプなどの金属膜(めっき膜)を形成する際、基板の全面に亘って形成した金属膜の表面形状および膜厚の均一性が要求される。近年のSOC、WL−CSPなどの高密度実装技術においては、高精度の均一性が益々要求されるようになってきたが、これらの従来のめっき装置では、高精度の均一性に応えた金属膜を形成することは非常に困難であった。
つまり、図37に示すめっき装置で基板にめっきを行うと、めっき液の流れの影響を強く受けた金属膜が形成され、このめっき液の流れが速いと、図40Aに示すように、金属イオンの供給が十分な基板Wの中央部の方が周辺部よりも金属膜Pの膜厚が厚くなる傾向が生じ、これを防止するため、めっき液の流れを非常に弱くすると、図40Bに示すように、基板Wの周縁部の方が中央部よりも金属膜Pの膜厚が厚くなる傾向が生じる。また、図38に示すめっき装置で基板にめっきを行うと、中央に中央孔を有する調整板により電位分布を改善して、基板の全面に亘る金属膜の膜厚分布の均一性をある程度改善できるものの、図40Cに示すように、基板Wの中央部及び周辺部で金属膜Pの膜厚が厚くなる、波打ったような膜厚分布を有する金属膜Pが形成される傾向が生じる。更に、図39に示すめっき装置でめっきを行った場合には、擬似電極(擬似陰極)の電圧の調整が困難であるばかりでなく、擬似電極の表面に付着した金属膜を除去する必要が生じ、この操作がかなり煩雑となってしまう。
一般に従来のめっき装置では、基板表面上に形成される表面電位分布により、受電部である基板周辺部の膜厚が高くなり、基板表面の膜圧分布がU字形になる傾向があり(図40B参照)、膜厚均一性を損ねる大きな要因の一つとなっている。この現象を抑制するため、基板表面への金属イオン供給の調整、すなわちめっき液の流れを調整する方法や、基板表面の電位分布およびめっき槽内の電場を制御・調整する方法として調整板や擬似電極による方法が採用されている。
めっき液の流れの調整や調整板による調節は、金属イオンや電場を基板中央部に集めて基板中央部のめっき膜を盛上げ、これによって、基板の全面に亘るめっき膜の膜厚分布をW字形に調整し、平均膜厚からの膜厚変動を最小にする方法である(図40C参照)。したがって、めっき液の流れの調整や調整板の位置・中央孔の大きさの選定と微調整が膜厚均一性に非常に重要な影響を及ぼし、膜厚均一性は、調整(チューニング)具合に非常に左右されることになる。
一方、擬似電極による方法は、本来基板表面上だけの電位分布を、基板外周の擬似電極を含めた領域までに広げ、受電部の膜厚の盛り上がりを擬似電極に寄せて基板表面で極めて均一な膜厚を得るようにしている。また、この擬似電極による方法と等価なものとして、基板内の周縁部近傍のパターンを“捨てチップ”として擬似電極の役目を果たさせる方法もある。擬似電極による方法では、その電圧調整が膜厚均一性を左右し、また擬似電極に付着した金属膜(めっき膜)を定期的に除去する必要が生じて操作が煩雑となる。また、基板内の周縁部近傍のパターンを“捨てチップ”として擬似電極の役目を果たさせるようにすると、基板の1枚あたりの有効チップが減少するため生産性の低下を招く。
上記のいずれの方法も、結果論的に膜厚分布を調整して均一な膜厚分布を得るようにしたものである。したがって、アノードとカソードである被めっき体との間に形成されるめっき槽内の電場を積極的に制御・調整することで、被めっき体表面の電位分布を制御改善し、これによって、本質的にU字形となる傾向のあるめっき膜の膜厚分布を打ち消して改良するようにしたものではない。
For example, in TAB (Tape Automated Bonding) and FC (Flip Chip), gold, copper, solder, lead-free solder, nickel, and these are further applied to a predetermined portion (electrode) on the surface of the semiconductor chip on which the wiring is formed. It is widely practiced to form projecting connection electrodes (bumps) stacked in multiple layers and to be electrically connected to package electrodes and TAB electrodes via the bumps. There are various bump forming methods, such as electroplating, vapor deposition, printing, and ball bumping, but miniaturization is possible as the number of I / Os in semiconductor chips increases and the pitch decreases. An electroplating method having relatively stable performance has been increasingly used.
According to the electroplating method, a high-purity metal film (plating film) can be easily obtained, and not only the deposition rate of the metal film is relatively high, but also the thickness of the metal film can be controlled relatively easily. be able to.
FIG. 37 shows an example of a conventional plating apparatus that employs a so-called face-down method. This plating apparatus includes a plating tank 12 opened upward for holding a plating solution 10 therein, and a vertically movable substrate for holding the substrate W detachably with its surface (surface to be plated) facing downward (face down). A holder 14 is provided. An anode 16 is horizontally disposed at the bottom of the plating tank 12, an overflow tank 18 is provided around the top, and a plating solution supply nozzle 20 is connected to the bottom of the plating tank 12.
Thereby, the substrate W held horizontally by the substrate holder 14 is disposed at a position where the upper end opening of the plating tank 12 is closed, and in this state, the plating solution 10 is supplied from the plating solution supply nozzle 20 to the inside of the plating vessel 12. Then, by overflowing the plating solution 10 from the upper part of the plating tank 12, the plating solution 10 is brought into contact with the surface of the substrate W held by the substrate holder 14, and at the same time, the anode 16 is connected to the plating power source 24 through the conductor 22 a. The substrate W is connected to the anode of the plating power source 24 via the conductor 22b. Then, due to the potential difference between the substrate W and the anode 16, metal ions in the plating solution 10 receive electrons from the surface of the substrate W, and metal is deposited on the surface of the substrate W to form a metal film.
According to this plating apparatus, the substrate W is adjusted by adjusting the size of the anode 16, the distance and potential difference between the anode 16 and the substrate W, the supply speed of the plating solution 10 supplied from the plating solution supply nozzle 20, and the like. The uniformity of the film thickness of the metal film formed on the surface can be adjusted to some extent.
FIG. 38 shows an example of a conventional plating apparatus that employs a so-called dip method. This plating apparatus includes a plating tank 12a that holds a plating solution therein, and a vertically movable substrate holder that detachably holds the substrate W in a watertight seal at its peripheral edge and exposes the surface (surface to be plated). 14a. Inside the plating tank 12, the anode 16a is held vertically by the anode holder 26, and when the substrate W held by the substrate holder 14a is placed at a position facing the anode 16a, the anode 16a and the substrate are arranged. An adjustment plate (regulation plate) 28 made of a dielectric material having a central hole 28a is arranged so as to be positioned between W and W.
As a result, the anode 16, the substrate W and the adjusting plate 28 are immersed in the plating solution in the plating tank 12a. At the same time, the anode 16a is connected to the anode of the plating power source 24 via the conductor 22a, and the substrate is connected via the conductor 22b. By connecting W to the cathode of the plating power source 24, metal is deposited on the surface of the substrate W to form a metal film in the same manner as described above.
According to this plating apparatus, the adjustment plate 28 having the central hole 28a is arranged between the anode 16a and the substrate W arranged at a position facing the anode 16a, and the adjustment plate 28 is used to arrange the inside of the plating tank 12a. By adjusting the potential distribution, the film thickness distribution of the metal film formed on the surface of the substrate W can be adjusted to some extent.
FIG. 39 shows another example of a conventional plating apparatus employing a so-called dip method. The plating apparatus is different from that shown in FIG. 38 in that the substrate W is provided with a ring-like pseudo cathode (pseudo electrode) 30 without the adjustment plate, and the pseudo cathode 30 is disposed around the substrate W. Is held by the substrate holder 14a, and the pseudo cathode 30 is connected to the cathode of the plating power source 24 via the conductive wire 22c during the plating process.
According to this plating apparatus, the uniformity of the film thickness of the metal film formed on the surface of the substrate W can be improved by adjusting the potential of the pseudo cathode 30.
On the other hand, for example, when forming a metal film (plating film) for wiring or bumps on the surface of a semiconductor substrate (wafer), the surface shape and film thickness uniformity of the metal film formed over the entire surface of the substrate are required. Is done. In recent high-density mounting technologies such as SOC and WL-CSP, high precision uniformity has been increasingly required. However, these conventional plating apparatuses use metals that meet high precision uniformity. It was very difficult to form a film.
That is, when the substrate is plated by the plating apparatus shown in FIG. 37, a metal film that is strongly influenced by the flow of the plating solution is formed. When the flow of the plating solution is fast, as shown in FIG. If the flow of the plating solution is made very weak in order to prevent this, the central portion of the substrate W where the supply of the substrate W is sufficiently thick tends to be thicker than the peripheral portion. Thus, the peripheral part of the substrate W tends to be thicker than the central part. Further, when the substrate is plated by the plating apparatus shown in FIG. 38, the potential distribution can be improved by the adjusting plate having the central hole in the center, and the uniformity of the film thickness distribution of the metal film over the entire surface of the substrate can be improved to some extent. However, as shown in FIG. 40C, the metal film P tends to be formed in the central portion and the peripheral portion of the substrate W, and the metal film P having a wavy film thickness distribution is formed. Furthermore, when plating is performed using the plating apparatus shown in FIG. 39, it is difficult to adjust the voltage of the pseudo electrode (pseudo cathode), and it is necessary to remove the metal film adhering to the surface of the pseudo electrode. This operation becomes quite complicated.
In general, in a conventional plating apparatus, due to the surface potential distribution formed on the substrate surface, the film thickness at the periphery of the substrate, which is a power receiving portion, tends to increase, and the film pressure distribution on the substrate surface tends to be U-shaped (FIG. 40B). This is one of the major factors that impair the film thickness uniformity. In order to suppress this phenomenon, adjustment of the metal ion supply to the substrate surface, that is, a method of adjusting the flow of the plating solution, and a method of controlling and adjusting the electric potential distribution on the substrate surface and the electric field in the plating tank, An electrode method is employed.
The adjustment of the plating solution flow and the adjustment plate is achieved by gathering metal ions and electric field in the center of the substrate to build up the plating film in the center of the substrate, thereby making the thickness distribution of the plating film over the entire surface of the substrate W-shaped. This is a method of minimizing the film thickness variation from the average film thickness (see FIG. 40C). Therefore, the adjustment of the plating solution flow and the selection and fine adjustment of the position of the adjustment plate and the size of the center hole have a very important effect on the film thickness uniformity. It will be very influenced.
On the other hand, the method using the pseudo electrode spreads the potential distribution only on the substrate surface to the region including the pseudo electrode on the outer periphery of the substrate and brings the rise of the film thickness of the power receiving part to the pseudo electrode, so that the substrate surface is extremely uniform. The film thickness is obtained. Further, as an equivalent to the method using the pseudo electrode, there is a method in which the pattern near the peripheral portion in the substrate is used as a “discarded chip” to play the role of the pseudo electrode. In the method using the pseudo electrode, the voltage adjustment affects the uniformity of the film thickness, and the metal film (plating film) adhering to the pseudo electrode needs to be periodically removed, which makes the operation complicated. Further, if the pattern in the vicinity of the peripheral portion in the substrate is used as a “discarded chip” to serve as a pseudo electrode, the number of effective chips per substrate decreases, resulting in a decrease in productivity.
In any of the above methods, as a result, the film thickness distribution is adjusted to obtain a uniform film thickness distribution. Therefore, by actively controlling and adjusting the electric field in the plating tank formed between the anode and the cathode to be plated, the potential distribution on the surface of the plated body is controlled and improved. It is not intended to cancel and improve the film thickness distribution of the plating film which tends to be U-shaped.

本発明は、上記事情に鑑みて為されたもので、比較的簡単な装置構成で、しかも複雑な運転方法や設定を必要とすることなく、被めっき体の全体に亘ってより均一な膜厚の金属膜(めっき膜)を形成できるようにしためっき装置を提供することを目的とする。
上記目的を達成するため、本発明のめっき装置は、めっき液を保持するめっき槽と、前記めっき槽内のめっき液に浸漬させて設置されるアノードと、前記アノードと該アノードと対向するように配置される被めっき体との間に設置される調整板と、前記アノードと被めっき体との間に通電してめっきを行うめっき電源とを有し、前記調整板は、前記めっき槽内に保持されるめっき液を前記アノード側と被めっき体側に遮断するように設置され、内部に多数の通孔からなる通孔群が設けられていることを特徴とする。
これにより、めっき槽内に設置した調整板の内部に設けた多数の通孔内を電場が漏れ、漏れた電場が均一に拡がるようにすることで、被めっき体の全面に亘る電位分布をより均一にして、被めっき体に形成される金属膜の面内均一性をより高めることができる。また、めっき液がめっき槽内に設置した調整板の内部に設けた多数の通孔内を通過するのを抑制することで、このめっき液の流れによる影響を受けて、被めっき体に形成される金属膜の膜厚に不均一が生じることを防止することができる。
本発明の好ましい一態様によれば、前記通孔群は、スリット状に一方向に直線状または円弧状に延びる複数の長穴からなることを特徴とする。このように、通孔をスリット形状の長穴にすることで、この長穴内のめっき液の流通を抑制しつつ、電場の漏れを促進することができる。この長穴の幅は、例えば0.5〜20mm、好ましくは、1〜15mm程度であり、長さは、被めっき体の形状により定められる。
本発明の好ましい一態様によれば、前記通孔群は、縦及び横方向に十字状に延びる複数の十字穴からなることを特徴とする。
本発明の好ましい一態様によれば、前記通孔群は、複数の細孔、径の異なる複数の孔またはスリット状に延びる長穴の任意の組合せからなることを特徴とする。このように、複数の細孔または径の異なる複数の孔の組合せで通孔群を形成することで、生産性を向上させることができる。この場合、細孔、更には小孔(周辺孔)の直径は、例えば1〜20mm、好ましくは2〜10mm程度で、大孔(中央孔)の直径は、例えば50〜300mm、好ましくは30〜100mm程度である。
前記通孔群は、前記調整板の前記被めっき体と対面する領域のほぼ全域に亘り該被めっき体と略相似形の領域内に形成されていることが好ましい。このように通孔群を形成することで、被めっき体の全ての方向に対して良好な膜厚均一性を有する金属膜を形成することができる。
前記被めっき体と前記調整板との間に、前記めっき槽で保持しためっき液を攪拌する攪拌機構を有することが好ましい。これにより、被めっき体と調整板との間のめっき液を、めっき処理中に攪拌機構によって攪拌することで、十分なイオンを被めっき体により均一に供給して、より均一な膜厚の金属膜をより迅速に形成することができる。
前記攪拌機構は、好ましくは、前記被めっき体と平行に往復運動をするパドルを有するパドル型攪拌機構である。これにより、めっき処理中に、被めっき体と平行に往復運動をするパドルでめっき液を攪拌することで、めっき液の流れに方向性をなくしながら、十分なイオンを被めっき体に均一に供給することができる。
本発明の好ましい一態様によれば、前記アノード及び前記調整板は、鉛直方向に設置されていることを特徴とする。これにより、設置面積が小さく、保守性の優れためっき装置を提供することができる。
本発明の他のめっき装置は、めっき液を保持するめっき槽と、前記めっき槽内のめっき液に浸漬させて設置されるアノードと、前記アノードと該アノードと対向するように配置される被めっき体との間に設置される調整板と、前記アノードと被めっき体との間に通電してめっきを行うめっき電源とを有し、前記調整板は、前記めっき槽内に保持されるめっき液を前記アノード側と被めっき体側に遮断するように設置され、内部に電場を均一に通過させつつめっき液を流通させるめっき液流路が設けられていることを特徴とするめっき装置である。
このように、めっき槽内でアノードと被めっき体の間に形成される電場がめっき液流路に沿って外部に漏れることなく均一に通過するようにすることで、電場の歪みや偏りを調整かつ修正し、被めっき体の表面全面に亘る電位分布をより均一にして、被めっき体に形成される金属膜の面内均一性をより高めることができる。
めっき液流路の長さは、めっき槽の形状、アノードと被めっき体間の距離等により適当に設定されるが、一般には、10〜90mm、好ましくは、20〜75mm、更に好ましくは、30〜60mmに設定される。
前記めっき液流路は、好ましくは、筒状体または矩形ブロックの内周面に形成される。これにより、構造の簡素化を図ることができる。
前記筒状体の周壁には、電場の漏れを防止する大きさの多数の通孔が設けられていることが好ましい。これにより、電場の漏れを防止しつつ、筒状体の周壁に設けた通孔内をめっき液が流通するようにすることで、筒状体の内外でめっき液の濃度に偏りが生じてしまうことを防止することができる。この通孔の形状としては、例えば細孔やスリット形状の長穴、縦横に延びる十字穴、更にはこれらの組合せが挙げられる。
本発明の好ましい一態様によれば、前記被めっき体と前記調整板との間または前記カソードと前記調整板との間の少なくとも一方には、前記めっき槽で保持しためっき液を攪拌する攪拌機構を有することを特徴とする。これにより、めっき液をめっき処理中に攪拌することで、めっき槽内の諸金属イオンや諸添加剤を含むめっき液濃度をめっき槽内で均一にし、被めっき体に均一な濃度のめっき液を供給することで、より均一な膜厚の金属膜をより迅速に形成することができる。
前記攪拌機構は、好ましくは、前記被めっき体と平行に往復運動をするパドルを有するパドル型攪拌機構である。
前記攪拌機構は、前記被めっき体の方向に向けてめっき液を噴射する複数のめっき液噴射ノズルを有するめっき液噴射型攪拌機構であってもよい。このように、複数のめっき液噴射ノズルから被めっき体に向けてめっき液を噴射することで、めっき槽内のめっき液を攪拌してめっき液濃度を均一にすると同時に、被めっき体にめっき液の各成分を十分に供給して、より均一な膜厚の金属膜をより迅速に形成することができる
前記めっき液流路は、前記調整板の内部に該調整板と一体に設けられていてもよい。調整板として板厚の厚いものを使用し、この調整板の内部に通孔を設けることで、この通孔をめっき液流路となすようにしてもよい。
本発明の更に他のめっき装置は、めっき液を保持するめっき槽と、前記めっき槽内のめっき液に浸漬させて設置されるアノードと、前記アノードと該アノードと対向するように配置される被めっき体との間に、前記めっき槽内に保持されるめっき液を前記アノード側と被めっき体側に遮断するように設置され、内部に電場を均一に通過させつつめっき液を流通させるめっき液流路が設けられ調整板と、前記アノードと被めっき体との間に通電してめっきを行うめっき電源と、前記めっき液流路の前記被めっき体側端部に位置して該被めっき体の外周部の電場を調整する電場調整リングとを有することを特徴とするめっき装置である。
このように、被めっき体の外周部の電場を電場調整リングで調整することで、アノードと被めっき体の間に形成される電場を被めっき体の全面に亘ってより均一に、つまり受電部である被めっき体のエッジ部までより均一化して、被めっき体に形成される金属膜の面内均一性をより更に高めることができる。
電場調整リングの形状は、めっき槽や被めっき体の形状、アノードと被めっき体間の間隔等により適当に設定されるが、その幅は、一般的には、1〜20mm、好ましくは、3〜17mm、更に好ましくは、5〜15mmに設定される。
前記電場調整リングと前記被めっき体との隙間は、一般には、0.5〜30mm、好ましくは、1〜15mm、更に好ましくは、1.5〜6mmに設定される。
本発明の好ましい一態様によれば、前記めっき液流路は、筒状体の内周面に形成され、前記電場調整リングは、該筒状体の被めっき体側端部に連結されている。
前記めっき液流路は、筒状体の内周面に形成され、前記電場調整リングは、該筒状体の被めっき体側端部に該筒状体と分離して配置されるようにしてもよい。このように、めっき液流路を構成すると筒状体と電場調整リングとを分離させることで、選択の幅を拡げることができる。
前記めっき液流路は、筒状体の内周面に形成され、前記電場調整リングは、該筒状体の被めっき体側端面に形成されるようにしてもよい。これにより、部品点数を減少させることができる。
The present invention has been made in view of the above circumstances, and with a relatively simple apparatus configuration, and without requiring a complicated operation method or setting, a more uniform film thickness over the entire object to be plated. An object of the present invention is to provide a plating apparatus capable of forming a metal film (plating film).
In order to achieve the above object, a plating apparatus of the present invention includes a plating tank that holds a plating solution, an anode that is immersed in the plating solution in the plating tank, and an anode that faces the anode. An adjustment plate installed between the object to be plated and a plating power source for performing plating by energizing between the anode and the object to be plated, and the adjustment plate is disposed in the plating tank. The plating solution to be held is installed so as to be blocked on the anode side and the object to be plated side, and a through hole group including a large number of through holes is provided inside.
As a result, the electric field leaks through a large number of through holes provided in the adjustment plate installed in the plating tank, and the leaked electric field spreads uniformly, thereby further increasing the potential distribution over the entire surface of the object to be plated. It can be made uniform and the in-plane uniformity of the metal film formed on the object to be plated can be further enhanced. In addition, by suppressing the plating solution from passing through a large number of through holes provided in the adjustment plate installed in the plating tank, the plating solution is affected by the flow of the plating solution and formed on the object to be plated. It is possible to prevent non-uniformity in the thickness of the metal film.
According to a preferred aspect of the present invention, the through hole group is composed of a plurality of long holes extending linearly or arcuately in one direction in a slit shape. Thus, by making the through hole into a slit-shaped long hole, leakage of the electric field can be promoted while suppressing the distribution of the plating solution in the long hole. The width of the long hole is, for example, 0.5 to 20 mm, preferably about 1 to 15 mm, and the length is determined by the shape of the object to be plated.
According to a preferred aspect of the present invention, the through hole group includes a plurality of cross holes extending in a cross shape in the vertical and horizontal directions.
According to a preferred aspect of the present invention, the through hole group includes any combination of a plurality of pores, a plurality of holes having different diameters, or a long hole extending in a slit shape. Thus, productivity can be improved by forming a through-hole group with a combination of a plurality of pores or a plurality of holes having different diameters. In this case, the diameter of the pores and further the small holes (peripheral holes) is, for example, about 1 to 20 mm, preferably about 2 to 10 mm, and the diameter of the large holes (center hole) is, for example, 50 to 300 mm, preferably 30 to 30 mm. It is about 100 mm.
It is preferable that the through hole group is formed in an area substantially similar to the object to be plated over substantially the entire area of the adjustment plate facing the object to be plated. By forming the through hole group in this manner, a metal film having good film thickness uniformity in all directions of the object to be plated can be formed.
It is preferable to have a stirring mechanism for stirring the plating solution held in the plating tank between the object to be plated and the adjusting plate. As a result, the plating solution between the object to be plated and the adjusting plate is agitated by the agitating mechanism during the plating process, so that sufficient ions are uniformly supplied to the object to be plated, and a metal with a more uniform film thickness. The film can be formed more rapidly.
The stirring mechanism is preferably a paddle type stirring mechanism having a paddle that reciprocates in parallel with the object to be plated. As a result, the plating solution is agitated with a paddle that reciprocates in parallel with the object to be plated during the plating process, so that sufficient ions can be uniformly supplied to the object to be plated while maintaining the direction of the plating solution flow. can do.
According to a preferred aspect of the present invention, the anode and the adjustment plate are installed in a vertical direction. Thereby, a plating apparatus with a small installation area and excellent maintainability can be provided.
Another plating apparatus of the present invention includes a plating tank for holding a plating solution, an anode installed by being immersed in the plating solution in the plating tank, and a plating target disposed so as to face the anode and the anode. An adjusting plate installed between the body and a plating power source for performing plating by energizing between the anode and the object to be plated, and the adjusting plate is a plating solution held in the plating tank Is a plating apparatus characterized in that a plating solution flow path is provided for circulating the plating solution while allowing an electric field to uniformly pass therethrough.
In this way, the electric field formed between the anode and the object to be plated in the plating tank passes uniformly along the plating solution flow path without leaking outside, thereby adjusting the distortion and bias of the electric field. And it can correct and can make the electric potential distribution over the whole surface of a to-be-plated body more uniform, and can improve the in-plane uniformity of the metal film formed in to-be-plated body.
The length of the plating solution flow path is appropriately set depending on the shape of the plating tank, the distance between the anode and the object to be plated, etc., but is generally 10 to 90 mm, preferably 20 to 75 mm, more preferably 30. Set to ~ 60 mm.
The plating solution channel is preferably formed on the inner peripheral surface of a cylindrical body or a rectangular block. Thereby, simplification of a structure can be achieved.
It is preferable that a large number of through holes having a size to prevent leakage of an electric field are provided in the peripheral wall of the cylindrical body. Thus, by preventing the electric field from leaking and allowing the plating solution to flow through the through hole provided in the peripheral wall of the cylindrical body, the concentration of the plating solution is biased inside and outside the cylindrical body. This can be prevented. Examples of the shape of the through hole include a fine hole and a slit-shaped long hole, a cross hole extending vertically and horizontally, and a combination thereof.
According to a preferred aspect of the present invention, there is provided an agitation mechanism for agitating the plating solution held in the plating tank between at least one of the object to be plated and the adjustment plate or between the cathode and the adjustment plate. It is characterized by having. As a result, the plating solution is agitated during the plating process, so that the concentration of the plating solution containing various metal ions and various additives in the plating tank is made uniform in the plating tank, and a uniform concentration of plating solution is applied to the object to be plated. By supplying, a metal film having a more uniform film thickness can be formed more quickly.
The stirring mechanism is preferably a paddle type stirring mechanism having a paddle that reciprocates in parallel with the object to be plated.
The stirring mechanism may be a plating solution injection type stirring mechanism having a plurality of plating solution injection nozzles for injecting a plating solution toward the object to be plated. Thus, by injecting the plating solution from the plurality of plating solution injection nozzles toward the object to be plated, the plating solution in the plating tank is agitated to make the concentration of the plating solution uniform, and at the same time, the plating solution is applied to the object to be plated. A metal film having a more uniform film thickness can be formed more quickly by sufficiently supplying each component of the plating solution. The plating solution flow path is provided integrally with the adjustment plate inside the adjustment plate. Also good. A thick plate may be used as the adjustment plate, and a through hole may be provided inside the adjustment plate so that the through hole serves as a plating solution flow path.
Still another plating apparatus of the present invention includes a plating tank that holds a plating solution, an anode that is immersed in the plating solution in the plating tank, and a substrate that is disposed so as to face the anode and the anode. A plating solution flow is installed between the plating body so as to block the plating solution held in the plating tank on the anode side and the body to be plated, and allows the plating solution to flow while passing an electric field uniformly therethrough. An adjustment plate provided with a path, a plating power source for plating by energizing between the anode and the object to be plated, and an outer periphery of the object to be plated located at the end of the plating solution channel on the side of the object to be plated And an electric field adjusting ring for adjusting the electric field of the part.
Thus, by adjusting the electric field of the outer periphery of the object to be plated with the electric field adjustment ring, the electric field formed between the anode and the object to be plated is more uniformly over the entire surface of the object to be plated, that is, the power receiving unit. It is possible to further increase the in-plane uniformity of the metal film formed on the object to be plated by further uniforming the edge portion of the object to be plated.
The shape of the electric field adjusting ring is appropriately set according to the shape of the plating tank and the object to be plated, the distance between the anode and the object to be plated, and the width is generally 1 to 20 mm, preferably 3 It is set to ˜17 mm, more preferably 5 to 15 mm.
The gap between the electric field adjusting ring and the object to be plated is generally set to 0.5 to 30 mm, preferably 1 to 15 mm, and more preferably 1.5 to 6 mm.
According to a preferred aspect of the present invention, the plating solution flow path is formed on the inner peripheral surface of the cylindrical body, and the electric field adjusting ring is connected to the end of the cylindrical body on the side to be plated.
The plating solution flow path is formed on the inner peripheral surface of the cylindrical body, and the electric field adjusting ring is arranged separately from the cylindrical body at the end of the cylindrical body on the side to be plated. Good. Thus, if the plating solution flow path is configured, the selection range can be expanded by separating the cylindrical body and the electric field adjustment ring.
The plating solution flow path may be formed on an inner peripheral surface of a cylindrical body, and the electric field adjusting ring may be formed on an end surface of the cylindrical body on the side to be plated. Thereby, the number of parts can be reduced.

図1は、本発明の実施の形態のめっき装置を備えためっき処理設備の全体配置図である。
図2は、図1に示すめっき処理装置のめっき空間に備えられている搬送ロボットの概要図である。
図3は、図1に示すめっき処理装置に備えられているめっき装置の概略断面図である。
図4は、図3に示すめっき装置の要部の概略斜視図である。
図5は、図3に示すめっき装置に備えられている調整板の平面図である。
図6は、図3に示すめっき装置で金属膜(めっき膜)を形成した時の金属膜の状態を模式的に示す図である。
図7A乃至図7Eは、基板上にバンプ(突起状電極)を形成する過程を工程順に示す断面図である。
図8は、調整板の他の例を示す平面図である。
図9は、調整板の更に他の例を示す平面図である。
図10は、調整板の更に他の例を示す平面図である。
図11は、調整板の更に他の例を示す平面図である。
図12は、調整板の更に他の例を示す平面図である。
図13は、調整板の更に他の例を示す平面図である。
図14は、調整板の更に他の例を示す平面図である。
図15は、調整板の更に他の例を示す平面図である。
図16は、調整板の更に他の例を示す平面図である。
図17は、調整板の更に他の例を示す平面図である。
図18は、調整板の更に他の例を示す平面図である。
図19は、調整板の更に他の例を示す平面図である。
図20は、本発明の他の実施の形態のめっき装置を示す概略断面図である。
図21Aは、図20に示すめっき装置に備えられている調整板及び円筒体を示す斜視図である。
図21Bは、図21Aの正面図である。
図22は、図20に示すめっき装置で金属膜(めっき膜)を形成した時の金属膜の状態を模式的に示す図である。
図23は、本発明の更に他の実施の形態のめっき装置を示す概略断面図である。
図24Aは、調整板及び円筒体の更に他の例を示す斜視図である。
図24Bは、図24Aの正面図である。
図25Aは、調整板及び円筒体の他の例を示す斜視図である。
図25Bは、図25Aの正面図である。
図26Aは、調整板及び円筒体の更に他の例を示す斜視図である。
図26Bは、図26Aの正面図である。
図27Aは、調整板及び円筒体の更に他の例を示す斜視図である。
図27Bは、図27Aの正面図である。
図28は、本発明の更に他の実施の形態のめっき装置を示す概略断面図である。
図29Aは、図28に示すめっき装置に備えられている調整板、円筒体及び電場調整リングを示す斜視図である。
図29Bは、図29Aの正面図である。
図30は、図28に示すめっき装置で金属膜(めっき膜)を形成した時の金属膜の状態を模式的に示す図である。
図31は、本発明の更に他の実施の形態のめっき装置を示す概略断面図である。
図32Aは、調整板、円筒体及び電場調整リングの他の例を示す斜視図である。
図32Bは、図32Aの正面図である。
図33Aは、調整板、円筒体及び電場調整リングの更に他の例を示す斜視図である。
図33Bは、図33Aの正面図である。
図34Aは、調整板、円筒体及び電場調整リングの更に他の例を示す斜視図である。
図34Bは、図34Aの正面図である。
図35Aは、調整板、円筒体及び電場調整リングの更に他の例を示す斜視図である。
図35Bは、図35Aの正面図である。
図36は、本発明の更に他の実施の形態のめっき装置を示す概略断面図である。
図37は、従来のめっき装置の一例を示す概略断面図である。
図38は、従来のめっき装置の他の例を示す概略斜視図である。
図39は、従来のめっき装置の更に他の例を示す概略斜視図である。
図40A乃至図40Cは、従来のめっき装置によって形成された金属膜(めっき膜)のそれぞれ異なる状態を模式的に示す図である。
FIG. 1 is an overall layout diagram of a plating processing facility provided with a plating apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of the transfer robot provided in the plating space of the plating apparatus shown in FIG.
FIG. 3 is a schematic cross-sectional view of a plating apparatus provided in the plating apparatus shown in FIG.
4 is a schematic perspective view of a main part of the plating apparatus shown in FIG.
FIG. 5 is a plan view of an adjustment plate provided in the plating apparatus shown in FIG.
FIG. 6 is a diagram schematically showing the state of the metal film when the metal film (plating film) is formed by the plating apparatus shown in FIG.
7A to 7E are cross-sectional views showing a process of forming bumps (protruding electrodes) on a substrate in order of steps.
FIG. 8 is a plan view showing another example of the adjustment plate.
FIG. 9 is a plan view showing still another example of the adjustment plate.
FIG. 10 is a plan view showing still another example of the adjustment plate.
FIG. 11 is a plan view showing still another example of the adjustment plate.
FIG. 12 is a plan view showing still another example of the adjustment plate.
FIG. 13 is a plan view showing still another example of the adjustment plate.
FIG. 14 is a plan view showing still another example of the adjustment plate.
FIG. 15 is a plan view showing still another example of the adjustment plate.
FIG. 16 is a plan view showing still another example of the adjustment plate.
FIG. 17 is a plan view showing still another example of the adjustment plate.
FIG. 18 is a plan view showing still another example of the adjustment plate.
FIG. 19 is a plan view showing still another example of the adjustment plate.
FIG. 20 is a schematic sectional view showing a plating apparatus according to another embodiment of the present invention.
FIG. 21A is a perspective view showing an adjustment plate and a cylindrical body provided in the plating apparatus shown in FIG.
FIG. 21B is a front view of FIG. 21A.
FIG. 22 is a diagram schematically showing the state of the metal film when the metal film (plating film) is formed by the plating apparatus shown in FIG.
FIG. 23 is a schematic cross-sectional view showing a plating apparatus according to still another embodiment of the present invention.
FIG. 24A is a perspective view illustrating still another example of the adjustment plate and the cylindrical body.
FIG. 24B is a front view of FIG. 24A.
FIG. 25A is a perspective view illustrating another example of the adjustment plate and the cylindrical body.
FIG. 25B is a front view of FIG. 25A.
FIG. 26A is a perspective view showing still another example of the adjustment plate and the cylindrical body.
FIG. 26B is a front view of FIG. 26A.
FIG. 27A is a perspective view showing still another example of the adjustment plate and the cylindrical body.
FIG. 27B is a front view of FIG. 27A.
FIG. 28 is a schematic cross-sectional view showing a plating apparatus according to still another embodiment of the present invention.
FIG. 29A is a perspective view showing an adjustment plate, a cylindrical body, and an electric field adjustment ring provided in the plating apparatus shown in FIG.
FIG. 29B is a front view of FIG. 29A.
FIG. 30 is a diagram schematically showing the state of the metal film when the metal film (plating film) is formed by the plating apparatus shown in FIG.
FIG. 31 is a schematic sectional view showing a plating apparatus according to still another embodiment of the present invention.
FIG. 32A is a perspective view illustrating another example of the adjustment plate, the cylindrical body, and the electric field adjustment ring.
FIG. 32B is a front view of FIG. 32A.
FIG. 33A is a perspective view illustrating still another example of the adjustment plate, the cylindrical body, and the electric field adjustment ring.
FIG. 33B is a front view of FIG. 33A.
FIG. 34A is a perspective view illustrating still another example of the adjustment plate, the cylindrical body, and the electric field adjustment ring.
FIG. 34B is a front view of FIG. 34A.
FIG. 35A is a perspective view illustrating still another example of the adjustment plate, the cylindrical body, and the electric field adjustment ring.
FIG. 35B is a front view of FIG. 35A.
FIG. 36 is a schematic cross-sectional view showing a plating apparatus according to still another embodiment of the present invention.
FIG. 37 is a schematic cross-sectional view showing an example of a conventional plating apparatus.
FIG. 38 is a schematic perspective view showing another example of a conventional plating apparatus.
FIG. 39 is a schematic perspective view showing still another example of a conventional plating apparatus.
40A to 40C are diagrams schematically showing different states of metal films (plating films) formed by a conventional plating apparatus.

以下、本発明の実施の形態を図面を参照して説明する。なお、以下の実施の形態では、被めっき体として半導体ウェーハ等の基板を使用した例を示す。
図1は、本発明の実施の形態におけるめっき装置を備えためっき処理設備の全体配置図を示す。このめっき処理設備は、基板の前処理、めっき処理及びめっきの後処理のめっき全工程を連続して自動的に行うようにしたもので、外装パネルを取付けた装置フレーム110の内部は、仕切板112によって、基板のめっき処理及びめっき液が付着した基板の処理を行うめっき空間116と、それ以外の処理、すなわちめっき液に直接には関わらない処理を行う清浄空間114に区分されている。そして、めっき空間116と清浄空間114とを仕切る仕切板112で仕切られた仕切り部には、基板ホルダ160(図2参照)を2枚並列に配置して、この各基板ホルダ160との間で基板の脱着を行う、基板受渡し部としての基板脱着台162が備えられている。清浄空間114には、基板を収納した基板カセットを載置搭載するロード・アンロードポート120が接続され、更に、装置フレーム110には、操作パネル121が備えられている。
清浄空間114の内部には、基板のオリフラやノッチなどの位置を所定方向に合わせるアライナ122と、めっき処理後の基板を洗浄し高速回転させてスピン乾燥させる2台の洗浄・乾燥装置124と、基板の前処理、この例では、基板の表面(被めっき面)に向けて純水を吹きかけることで、基板表面を純水で洗浄するとともに、純水で濡らして親水性を良くする水洗前処理を行う前処理装置126が、その四隅に位置して配置されている。更に、これらの各処理装置、つまりアライナ122、洗浄・乾燥装置124及び前処理装置126のほぼ中心に位置して、これらの各処理装置122,124,126、前記基板脱着台162及び前記ロード・アンロードポート120に搭載した基板カセットとの間で基板の搬送と受渡しを行う第1搬送ロボット128が配置されている。
ここで、清浄空間114内に配置されたアライナ122、洗浄・乾燥装置124及び前処理装置126は、表面を上向きにした水平姿勢で基板を保持して処理するようになっており、搬送ロボット128は、表面を上向きにした水平姿勢で基板を保持して基板の搬送及び受渡しを行うようになっている。
めっき空間116内には、仕切板112側から順に、基板ホルダ160の保管及び一時仮置きを行うストッカ164、例えば基板の表面に形成したシード層表面の電気抵抗の大きい酸化膜を硫酸や塩酸などの薬液でエッチング除去する活性化処理装置166、基板の表面を純水で水洗する第1水洗装置168a、めっき処理を行うめっき装置170、第2水洗装置168b及びめっき処理後の基板の水切りを行うブロー装置172が順に配置されている。そして、これらの装置の側方に位置して、2台の第2搬送ロボット174a,174bがレール176に沿って走行自在に配置されている。この一方の第2搬送ロボット174aは、基板脱着台162とストッカ164との間で基板ホルダ160の搬送を行い、他方の第2搬送ロボット174bは、ストッカ164、活性化処理装置166、第1水洗装置168a、めっき装置170、第2水洗装置168b及びブロー装置172の間で基板ホルダ160の搬送を行う。
この第2搬送ロボット174a,174bは、図2に示すように、鉛直方向に延びるボディ178と、このボディ178に沿って上下動自在でかつ軸心を中心に回転自在なアーム180を備えており、このアーム180に、基板ホルダ160を自在に着脱保持する基板ホルダ保持部182が2個並列に備えられている。ここで、基板ホルダ160は、表面を露出させ周縁部をシールした状態で基板Wを保持し、基板Wを自在に着脱するように構成されている。
ストッカ164、活性化処理装置166、水洗装置168a,168b及びめっき装置170は、基板ホルダ160の両端部に設けた外方に突出する突出部160aを引っ掛けて、基板ホルダ160を鉛直方向に吊り下げた状態で支持するようになっている。そして、活性化処理装置166には、内部に薬液を保持する2個の活性化処理槽183が備えられ、図2に示すように、基板Wを装着した基板ホルダ160を鉛直状態で保持した第2搬送ロボット174bのアーム180を下降させ、必要に応じて、基板ホルダ160を活性化処理槽183の上端部に引っ掛けて吊下げ支持することで、基板ホルダ160を基板Wごと活性化処理槽183内の薬液に浸漬させて活性化処理を行うように構成されている。
同様に、水洗装置168a,168bには、内部に純水を保持した各2個の水洗槽184a,184bが、めっき装置170には、内部にめっき液を保持した複数のめっき槽186がそれぞれ備えられ、前述と同様に、基板ホルダ160を基板Wごとこれらの水洗槽184a,184b内の純水またはめっき槽186内のめっき液に浸漬させることで、水洗処理やめっき処理が行われるように構成されている。またブロー装置172は、基板Wを装着した基板ホルダ160を鉛直状態で保持した第2搬送ロボット174bのアーム180を下降させ、この基板ホルダ160に装着した基板Wにエアーや不活性ガスを吹きかけ基板ホルダ160および基板Wに付着している液を吹きとばして水切りを行うことで、基板のブロー処理を行うように構成されている。
めっき装置170の各めっき槽186は、図3及び図4に示すように、内部にめっき液10を保持するように構成され、このめっき液10中に、基板ホルダ160で周縁部を水密的にシールし表面(被めっき面)を露出させて保持した基板Wを浸漬させて配置するようになっている。
めっき槽186の両側方には、このめっき槽186の溢流堰44の上端をオーバーフローしためっき液10を流すオーバーフロー槽46が設けられ、このオーバーフロー槽46とめっき槽186とは循環配管48で結ばれている。そして、この循環配管48の内部に、循環ポンプ50、恒温ユニット52及びフィルタ54が介装されている。これによって、循環ポンプ50の駆動に伴ってめっき槽186内に供給されためっき液10は、めっき槽186の内部を満たし、しかる後、溢流堰44からオーバーフローしてオーバーフロー槽46内に流れ込み、循環ポンプ50に戻って循環するように構成されている。
めっき槽186の内部には、基板Wの形状に沿った円形のアノード56がアノードホルダ58に保持されて垂直に設置され、めっき槽186内にめっき液10を満たした時に、このめっき液10中にアノード56が浸漬されるようになっている。更に、アノード56と基板ホルダ160との間に位置して、めっき槽186の内部をアノード側室40aと基板側室40bに仕切り、めっき槽186内に保持されるめっき液10をアノード側と基板側に遮断する調整板60が設置されている。
基板ホルダ160と調整板60の間には、下方に垂下する複数のパドル62を備え、このパドル62が基板側室40b内のめっき液10の内部に位置して、基板ホルダ160で保持された基板Wと平行に往復動することで、基板側室40b内のめっき液を攪拌するパドル型攪拌機構64が配置されている。
調整板60は、例えば肉厚が0.5〜10mm程度で、PVC,PP,PEEK,PES,HT−PVC,PFA,PTFE,その他の樹脂系材料からなる誘電体から構成されている。そして、この調整板60の内部の所定の領域、すなわち基板Wを基板ホルダ160で保持してめっき槽186内の所定のめっき位置に配置した時に、この基板Wの表面と対面する領域のほぼ全域に亘り、かつ基板Wと相似形な円形領域内に、多数の通孔66からなる通孔群68が設けられている。
ここで、この例では、図5に詳細に示すように、スリット状に横方向に直線状に延びる長穴によって通孔66が構成され、この通孔(長穴)66を基板Wの外形に沿った円形の領域内に直線状かつ並列に配置することで、通孔群68が構成されている。この通孔(長穴)66の幅は、一般的には、0.5〜20mm程度で、1〜15mm程度が好ましく、この長さは、基板Wの大きさ(直径)に合わせて任意に設定される。
このように、調整板60の内部に多数の通孔66からなる通孔群68を設け、めっき処理の際に、この各通孔66内を電場が漏れ、漏れた電場が均一に拡がるようにすることで、基板Wの表面(被めっき面)の全面に亘る電位分布をより均一にして、基板Wの表面に形成される金属膜の面内均一性をより高めることができる。また、めっき液10がめっき槽186内に設置した調整板60の内部に設けた多数の通孔66内を通過するのを抑制することで、このめっき液10の流れ(めっき液の戻り)による影響を受けて、基板Wの表面に形成される金属膜の膜厚に不均一が生じることを防止することができる。
特に、通孔66として、スリット形状の長穴を使用することで、この通孔(長穴)66内のめっき液10の流通を抑制しつつ、電場の漏れを促進することができる。更に、調整板60の基板Wの表面と対面する領域のほぼ全域に亘り、かつ基板Wと相似形な円形領域内に、多数の通孔66からなる通孔群68を形成することで、基板Wの表面の全ての方向に対して良好な膜厚均一性を有する金属膜を形成することができる。
このめっき装置170によれば、先ず、前述のようにして、めっき槽186の内部にめっき液10を満たし、めっき液10を循環させておく。この状態で、基板Wを保持した基板ホルダ160を下降させて、基板Wをめっき槽186内のめっき液10に浸漬した所定の位置に配置する。この状態で、導線22aを介してアノード56をめっき電源24の陽極に、導線22bを介して基板Wをめっき電源24の陰極にそれぞれ接続し、同時にパドル型攪拌機構64を駆動させ、パドル62を基板Wの表面に沿って往復動させて基板側室40b内のめっき液10を攪拌し、これによって、基板Wの表面に金属を析出させて金属膜を形成する。
この時、前述のように、調整板60の内部に設けた多数の通孔66内を電場が漏れ、漏れた電場が均一に拡がるようにすることで、基板Wの表面(被めっき面)の全面に亘る電位分布をより均一にして、図6に示すように、基板Wの表面に面内均一性をより高めた金属膜Pを形成することができる。しかも、基板Wと調整板60との間のめっき液10を、めっき処理中にパドル62によって攪拌することで、めっき液の流れに方向性をなくしながら、十分なイオンを基板Wの表面により均一に供給して、より均一な膜厚の金属膜をより迅速に形成することができる。
そして、めっき終了後、めっき電源24を基板W及びアノード56から切り離し、基板ホルダ160を基板Wごと引き上げて、基板Wの水洗及びリンス等の必要な処理を行った後、めっき後の基板Wを次工程に搬送する。
このように構成しためっき処理設備による一連のバンプめっき処理を、図7を更に参照して説明する。先ず、図7Aに示すように、表面に給電層としてのシード層500を成膜し、このシード層500の表面に、例えば高さHが20〜120μmのレジスト502を全面に塗布した後、このレジスト502の所定の位置に、例えば直径Dが20〜200μm程度の開口部502aを設けた基板Wをその表面(被めっき面)を上にした状態で基板カセットに収容し、この基板カセットをロード・アンロードポート120に搭載する。
このロード・アンロードポート120に搭載した基板カセットから、第1搬送ロボット128で基板Wを1枚取出し、アライナ122に載せてオリフラやノッチなどの位置を所定の方向に合わせる。このアライナ122で方向を合わせた基板Wを第1搬送ロボット128で前処理装置126に搬送する。そして、この前処理装置126で、前処理液に純水を使用した前処理(水洗前処理)を施す。一方、ストッカ164内に鉛直姿勢で保管されていた基板ホルダ160を第2搬送ロボット174aで取出し、これを90°回転させた水平状態にして基板脱着台162に2個並列に載置する。
そして、前述の前処理(水洗前処理)を施した基板Wをこの基板脱着台162に載置された基板ホルダ160に周縁部をシールして装着する。そして、この基板Wを装着した基板ホルダ160を第2搬送ロボット174aで2基同時に把持し、上昇させた後、ストッカ164まで搬送し、90°回転させて基板ホルダ160を垂直な状態となし、しかる後、下降させ、これによって、2基の基板ホルダ160をストッカ164に吊下げ保持(仮置き)する。これを順次繰り返して、ストッカ164内に収容された基板ホルダ160に順次基板を装着し、ストッカ164の所定の位置に順次吊り下げ保持(仮置き)する。
一方、第2搬送ロボット174bにあっては、基板を装着しストッカ164に仮置きした基板ホルダ160を2基同時に把持し、上昇させた後、活性化処理装置166に搬送し、活性化処理槽183に入れた硫酸や塩酸などの薬液に基板を浸漬させてシード層表面の電気抵抗の大きい酸化膜をエッチングし、清浄な金属面を露出させる。更に、この基板を装着した基板ホルダ160を、前記と同様にして、第1水洗装置168aに搬送し、この水洗槽184aに入れた純水で基板の表面を水洗する。
水洗が終了した基板を装着した基板ホルダ160を、前記と同様にしてめっき装置170に搬送し、めっき槽186内のめっき液10に浸漬させた状態でめっき槽186に吊り下げ支持することで、基板Wの表面にめっき処理を施す。そして、所定時間経過後、基板を装着した基板ホルダ160を第2搬送ロボット174bで再度保持してめっき槽186から引き上げてめっき処理を終了する。
そして、前述と同様にして、基板ホルダ160を第2水洗装置168bまで搬送し、この水洗槽184bに入れた純水に浸漬させて基板の表面を純水洗浄する。しかる後、この基板を装着した基板ホルダ160を、前記と同様にして、ブロー装置172に搬送し、ここで、不活性ガスやエアーを基板に向けて吹き付けて、基板ホルダ160に付着しためっき液や水滴を除去する。しかる後、この基板を装着した基板ホルダ160を、前記と同様にして、ストッカ164の所定の位置に戻して吊下げ保持する。
第2搬送ロボット174bは、上記作業を順次繰り返し、めっきが終了した基板を装着した基板ホルダ160を順次ストッカ164の所定の位置に戻して吊下げ保持する。
一方、第2搬送ロボット174aにあっては、めっき処理後の基板を装着しストッカ164に戻した基板ホルダ160を2基同時に把持し、前記と同様にして、基板脱着台162上に載置する。
そして、清浄空間114内に配置された第1搬送ロボット128は、この基板脱着台162上に載置された基板ホルダ160から基板を取出し、いずれかの洗浄・乾燥装置124に搬送する。そして、この洗浄・乾燥装置124で、表面を上向きにして水平に保持した基板を、純水等で洗浄し、高速回転させてスピン乾燥させた後、この基板を第1搬送ロボット128でロード・アンロードポート120に搭載した基板カセットに戻して、一連のめっき処理を完了する。これにより、図7Bに示すように、レジスト502に設けた開口部502a内にめっき膜504を成長させた基板Wが得られる。
そして、前述のようにしてスピン乾燥させた基板Wを、例えば温度が50〜60℃のアセトン等の溶剤に浸漬させて、図7Cに示すように、基板W上のレジスト502を剥離除去し、更に図7Dに示すように、めっき後の外部に露出する不要となったシード層500を除去する。次に、この基板Wに形成しためっき膜504をリフローさせることで、図7Eに示すように、表面張力で丸くなったバンプ506を形成する。更に、この基板Wを、例えば、100℃以上の温度でアニールし、バンプ506内の残留応力を除去する。
この例によれば、めっき空間116内での基板の受渡しをめっき空間116内に配置した第2搬送ロボット174a,174bで、清浄空間114内での基板の受渡しを該清浄空間114内に配置した第1搬送ロボット128でそれぞれ行うことで、基板の前処理、めっき処理及びめっきの後処理の全めっき工程を連続して行うめっき処理装置の内部における基板周りの清浄度を向上させるとともに、めっき処理装置としてのスループットを向上させ、更にめっき処理装置の付帯設備の負荷を軽減して、めっき処理装置としてのより小型化を図ることができる。
この例にあっては、めっき処理を行うめっき装置170として、フットプリントの小さいめっき槽186を有するものを使用することで、多数のめっき槽186を有するめっき装置の更なる小型化を図るとともに、工場付帯設備負荷をより軽減することができる。なお、図1において2台設置されている洗浄・乾燥装置124の一方を、前処理装置に置き換えてもよい。
図8乃至図19は、調整板60における多数の通孔からなる通孔群のそれぞれ異なる例を示す。すなわち、図8は、スリット状に縦方向に直線状に延びる長穴によって通孔66aを構成し、この通孔(長穴)66aを基板Wの外形に沿った円形の領域内に直線状かつ並列に配置することで、通孔群68aを構成したものである。図9は、基板Wとして、矩形状のものを使用する場合に適するように、通孔(長穴)66bを基板Wの外形に沿った矩形状の領域内に直線状かつ並列に配置して通孔群68bを構成したものである。
図10は、調整板60の基板Wの表面に対面する領域のほぼ全幅に亘って、スリット状に直線状に延びる長孔からなる複数の通孔(長孔)66cで通孔群68cを構成したものである。この場合も、基板Wとして、矩形状のものを使用する場合には、図11に示すように、通孔(長穴)66dを基板Wの外形に沿った矩形状の領域内に並列に配置して通孔群68dを構成してもよい。また、図示しないが、これらの通孔66dが縦方向に直線状に延びるようにしてもよい。
図12は、縦及び横方向に十字状に延びる十字穴からなる複数の通孔(十字穴)66eを円形領域内に均等に配置して通孔群68eを構成したものである。この場合も、基板Wとして、矩形状のものを使用する場合には、図13に示すように、通孔(十字穴)66fを基板Wの外形に沿った矩形状の領域内に均等に配置して通孔群68fを構成してもよい。
図14は、細孔からなる複数の通孔(細孔)66gを円形領域内に均等に分布させて通孔群68gを構成したものである。この各通孔(細孔)66gの直径は、この例では2mmに設定され、図示の例では、合計633個設けられている。この通孔66g、更には下記の小孔(周辺孔)66h〜66hの直径は、例えば1〜20mmの範囲で任意に設定されるが、2〜10mm程度が好ましい。このように、通孔(細孔)66gで通孔群68gを構成することで、調整板60の生産性を向上させることができる。
図15は、径の異なる複数の孔、すなわち中央部に位置する大径の大孔(中央孔)66hと、この大孔66hの外方に円周方向に沿って配置され、直径方向に行くに従って径が小さくなる複数列(図示では4列)の小孔(周辺孔)66h〜66hからなる複数の通孔66hで通孔群68hを構成したものである。この大孔(中央孔)66hの直径は、この例では84mmに設定されているが、例えば50〜300mmの範囲で任意に設定され、30〜100mm程度が好ましい。また、小孔(周辺孔)66h〜66hの直径は、10mm,8mm,7mm及び6mmにそれぞれ設定されている。
図16は、中央に位置する中央孔66iと、この中央孔66iの外方に配置された、複数列(図示では5列)の円周方向に延びる長孔66i〜66iからなる複数の通孔66iで通孔群68iを構成したものである。この中央孔66iの直径は、この例では、34mmに設定され、長孔66i〜66iの幅は、27mm,18.5mm,7mm,7mm,7mmにそれぞれ設定されている。
図17は、中央部に位置する大径の大孔(中央孔)66jと、この中央孔66jの外方に円周方向に沿って配置された、円周方向に延びる長孔66jと、この長孔66jの外方に配置された、直径方向に行くに従って径が小さくなる複数列(図示では4列)の小孔(周辺孔)66j〜66jからなる複数の通孔66jで通孔群68jを構成したものである。この大孔(中央孔)66jの直径は、この例では67mmに、長孔66jの幅は17mmに、小孔(周辺孔)66j〜66jの直径は、9mm,8mm,7mm,6mmにそれぞれ設定されている。
図18は、中央部に位置する大径の大孔(中央孔)66kと、この中央孔66kの外方に円周方向に沿って配置された、円周方向に延びる複数列(図示では2列)の長孔66k,66k,この長孔66kの外方に配置された、直径方向に行くに従って径が小さくなる複数列(図示では2列)の小孔(周辺孔)66k,66kからなる複数の通孔66kで通孔群68kを構成したものである。この大孔(中央孔)66kの直径は、この例では80mmに、長孔66k,66kの幅は7mmに、小孔(周辺孔)66k,66kの直径は、6mmと4mmにそれぞれ設定されている。
図19は、中央に位置する大径の大孔(中央孔)66lと、この中央孔66lの外方に円周方向に沿った所定のピッチで配置された、半径方向に直線状に延びる複数のスリット状の長孔66lからなる複数の通孔66lで通孔群68lを構成したものである。この長孔66lの幅は、一般的には0.5〜20mm程度であり、1〜15mm程度であることが好ましい。また、長さは、被めっき体の形状により任意に設定される。
このように、複数の細孔、径の異なる複数の孔またはスリット状に延びる長穴等の任意の形状の複数の通孔を組合せて通孔群を構成することで、めっきする場所や条件等の任意の要求に合うようにすることができる。
なお、前述の図14〜図19に示す例では、通孔を円形領域の内部に配置して通孔群を形成した例を示しているが、前述と同様に、基板として、矩形状のものを使用する場合には、これらの通孔を基板の外形に沿った矩形状の領域内に配置して通孔群を構成してもよいことは勿論である。
以上説明したように、本発明によれば、めっき槽内に設置した調整板の内部に設けた多数の通孔内を電場が漏れ、漏れた電場が均一に拡がるようにすることで、被めっき体の全面に亘る電位分布をより均一にして、被めっき体に形成される金属膜の面内均一性をより高めることができる。また、めっき液がめっき槽内に設置した調整板の内部に設けた多数の通孔内を通過するのを抑制することで、このめっき液の流れにより影響を受けて、被めっき体に形成される金属膜の膜厚に不均一が生じることを防止することができる。
図20は、本発明の他の実施の形態におけるめっき装置170aを、図21は、このめっき装置170aに使用されている調整板及びめっき液流路を形成する円筒体をそれぞれ示す。このめっき装置170aの図3乃至図5に示す例と異なる点は、調整板60として、例えば肉厚が0.5〜10mm程度で、その中央に、基板ホルダ160で保持した基板Wに対向し該基板Wの外径に見合った内径Dの中央孔60aを有するものを使用し、更に、この調整板60の基板ホルダ160側表面に、内径が前述の中央孔60aの内径Dと等しい円筒体200を同心状に連続させて連結し、これによって、この円筒体200の内周面に、電場を均一に通過させつつめっき液10を流通させるめっき液流路200aを形成した点にある。この円筒体200は、調整板60と同様に、例えばPVC,PP,PEEK,PES,HT−PVC,PFA,PTFE,その他の樹脂系材料からなる誘電体から構成されている。その他の構成は、図3乃至図5に示すものと同様である。
ここで、調整板60の中央孔及び円筒体200の内径Dは、一般には、基板Wのめっきされる表面の外径(被めっき表面外径)と等しい径±10mm、好ましくは、被めっき表面外径と等しい径±5mm、より好ましくは、被めっき表面外径と等しい径±1mm程度に設定されている。また、円筒体200の長さLは、めっき槽186の形状、アノード56と基板Wの距離等により適当に定められるが、一般的には、10〜90mm、好ましくは、20〜75mm、更に好ましくは、30〜60mmである。
このように、めっき槽186内でアノード56と基板Wの間に形成される電場がめっき液流路200aに沿って、つまり、円筒体200の内部を該円筒体200の外部に漏れることなく均一に通過するようにすることで、電場の歪みや偏りを調整かつ修正し、基板Wの表面全面に亘る電位分布をより均一にして、図22に示すように、基板Wの表面に、基板Wのエッジ部でやや膜厚が厚くなるものの、面内均一性をより高めた金属膜Pを形成することができる。
つまり、内部に中央孔60aを設けた調整板60のみでは、この調整板60の肉厚は、一般に0.5〜10mm程度と一般に薄く、このため、めっき槽186内でアノード56と基板Wの間に形成される電場の調整板60のみによる規制が不十分となって、電場に歪みや偏りが生じ、特に受電部である基板のエッジ部の膜厚が厚くなる傾向があるが、この例のように、円筒体200の長さLに亘って、電場の通過を規制することで、このような弊害を防止して、金属膜の面内均一性を高めることができる。
なお、この例では、前述の図3乃至図5に示す例と同様に、円筒体200と基板ホルダ160で保持した基板Wとの間に、下方に垂下する複数のパドル62を備えたパドル型攪拌機構64を配置し、めっき中に、パドル型攪拌機構64を駆動させ、パドル62を基板Wの表面に沿って往復動させて基板側室40b内のめっき液10を攪拌することで、めっき液の流れに方向性をなくしながら、十分なイオンを基板Wの表面により均一に供給して、より均一な膜厚の金属膜をより迅速に形成することができるようにしている。
図23は、本発明の更に他の実施の形態におけるめっき装置170bを示す。このめっき装置170bの図21及び図22に示す例と異なる点は、円筒体200と基板ホルダ160で保持した基板Wとの間に、パドル型攪拌機構64の代わりに、めっき液噴射型攪拌機構202を配置した点にある。つまり、このめっき液噴射型攪拌機構202は、例えばリング状のパイプからなり、循環配管48と連通しめっき槽186のめっき液10内に浸漬させて配置されるめっき液供給管204と、このめっき液供給管204の円周方向に沿った所定位置に取付けられて、めっき液10を基板ホルダ160で保持した基板Wに向けて噴射する複数のめっき液噴射ノズル206とを有している。そして、ポンプ50の駆動に伴って送られるめっき液10は、めっき液供給管204に供給され、めっき液噴射ノズル206から基板に向けて噴射されてめっき槽186内に導入され、更に溢流堰44の上端をオーバーフローして循環するようになっている。
このように、複数のめっき液噴射ノズル206から基板Wに向けてめっき液10を噴射することで、めっき槽186内のめっき液10を攪拌してめっき液濃度を均一にすると同時に、基板Wにめっき液10の各成分を十分に供給して、より均一な膜厚の金属膜をより迅速に形成することができる
なお、前述の例では、調整板60の基板W側表面に円筒体200を連結するようにした例を示しているが、図24に示すように、調整板60に嵌着孔60bを設け、内径D、長さLで、内周面をめっき液流路200aとした円筒体200を該嵌着孔60b内に嵌着して、円筒体200の長さ方向に沿った所定に位置で円筒体200を保持するようにしてもよい。これにより、調整板60とパドル62(図20参照)やめっき液供給管204(図23参照)との距離が短い場合にあっても、円筒体200を調整板60の後方に突出させることで、円筒体200としての十分な長さLを確保するようにすることができる。
また、図25に示すように、円筒体200の周壁に、電場の漏れを防止する大きさの多数の通孔200bを設けるようにしてもよい。これにより、電場の漏れを防止しつつ、円筒体200の周壁に設けた通孔200b内をめっき液10が流通するようにすることで、円筒体200の内外でめっき液10の濃度に偏りが生じてしまうことを防止することができる。この通孔の形状としては、この例の細孔の他に。スリット形状の長穴、縦横に延びる十字穴、更にはこれらの組合せが挙げられる。
更に、図26に示すように、十分な肉厚を有する板体で調整板210を構成し、この調整板210の所定の位置に所定の内径の貫通孔を設け、この貫通孔で、所定の内径Dで所定の長さLを有するめっき液流路210aを形成するようにしてもよい。この例の場合、部材点数を減少させることができる。
また、図27に示すように、十分な肉厚を有する矩形ブロック212を用意し、この矩形ブロック212に設けた貫通孔によって、所定の内径Dで所定の長さLを有するめっき液流路210aを形成し、この矩形ブロック212を、中央孔60aを有する調整板60の基板W側表面に連結するようにしてもよい。
図28は、本発明の更に他の実施の形態におけるめっき装置170cを、図29は、図28に示すめっき装置170cに使用されている調整板、めっき液流路を形成する円筒体及び電場調整リングを示す。このめっき装置170cの図20及び図21に示す例と異なる点は、以下の通りである。すなわち、内周面にめっき液流路200aを形成した円筒体200の基板W側端面に、円筒体200の内径Dと等しい内径で、幅Aの電場調整リング220を同心状に取付けて、この電場調整リング220を、基板Wと隙間G1をもって基板Wに近接させて配置している。更に、下方に垂下し、基板ホルダ160で保持された基板Wと平行に往復動することでめっき液を攪拌する複数のパドル62を備えたパドル型攪拌機構64を、アノード側室40a側のアノード56と調整板60との間に配置し、このパドル型攪拌機構64でアノード側室40a内のめっき液10を攪拌するようにしている。その他の構成は、図20及び図21に示す例と同様である。
ここで、電場調整リング220は、調整板60や円筒体200と同様に、例えばPVC,PP,PEEK,PES,HT−PVC,PFA,PTFE,その他の樹脂系材料からなる誘電体から構成されている。電場調整リング220の形状は、めっき槽186や基板Wの形状、アノード56と基板W間の間隔等により適当に設定されるが、その幅Aは、一般的には、1〜20mm、好ましくは、3〜17mm、更に好ましくは、5〜15mmに設定される。また、電場調整リング220と基板Wとの隙間G1は、一般には、0.5〜30mm、好ましくは、1〜15mm、更に好ましくは、1.5〜6mmに設定される。
この電場調整リング220は、基板Wの外周部を近接した位置で所定の幅で覆って、この基板Wの外周部の電場を調整するためのものである。このように、基板Wの外周部の電場を電場調整リング220で調整することで、アノード56と基板Wの間に形成される電場を基板Wの全面に亘ってより均一に、つまり受電部である基板Wのエッジ部までより均一化して、図30に示すように、基板Wの表面に、基板Wのエッジ部を含め、面内均一性をより高めた金属膜Pを形成することができる。
図31は、本発明の更に他の実施の形態におけるめっき装置170dを示す。このめっき装置170dは、アノード側室40aのアノード56と調整板60との間に、図28及び図29に示すめっき装置におけるパドル型攪拌機構64の代わりに、図23に示すめっき液噴射型攪拌機構202を配置したものである。つまり、この例は、ポンプ50の駆動に伴って送られるめっき液10をめっき液供給管204に供給し、めっき液噴射ノズル206から円筒体200のめっき液流路200aに向けて噴射してめっき槽186内に導入し、更に溢流堰44の上端をオーバーフローさせて循環させるようになっている。その他の構成は、図28及び図29に示すものと同様である。
このように、めっき液噴射型攪拌機構202をアノード側室40aに配置し、めっき液をめっき液噴射ノズル206から円筒体200のめっき液流路200aに向けて噴射することで、電場調整リング220と基板ホルダ160で保持した基板Wとの隙間G1が狭い場合にあっても、このめっき液流路200aを通して、めっき液を基板ホルダ160で保持した基板Wに向けて供給することができる。
ここで、図32に示すように、前述の図24に示す場合とほぼ同様に、調整板60に嵌着孔60bを設け、内径D、長さLで、内周面をめっき液流路200aとして端部に電場調整リング220を取付けた円筒体200を該嵌着孔60b内に嵌着して、円筒体200の長さ方向に沿った所定に位置で円筒体200を保持するようにしてもよい。
また、図33に示すように、前述の図25に示す場合とほぼ同様に、端面に電場調整リング220を取付けた円筒体200の周壁に、電場の漏れを防止する大きさの多数の通孔200bを設けて、電場の漏れを防止しつつ、円筒体200の周壁に設けた通孔200b内をめっき液10が流通するようにしてもよい。
更に、図34に示すように、電場調整リング220を円筒体200の端面に固着することなく、サポート222で支持して、円筒体200の基板W側端面の前方に該基板Wと隙間G2をもって配置するようにしてもよい。この隙間G2は、前述の電場調整リング220と基板Wとの隙間G1と同様に、一般には、0.5〜30mm、好ましくは、1〜15mm、更に好ましくは、1.5〜6mmに設定される。このように、めっき液流路200aを構成すると円筒体200と電場調整リング220とを分離させることで、選択の幅を拡げることができる。
また、図35に示すように、十分な肉厚を有する厚肉リング224の内周面で、所定の内径D及び長さLを有するめっき液流路224aを構成し、この厚肉リング224の基板側端面で所定の幅Aを有する電場調整リング224bを構成するようにしてもよい。これにより、部品点数を削減することができる。
なお、前述の各例にあっては、いわゆるディップ方式を採用しためっき装置に適用した例を示しているが、フェースダウン方式やフェースアップ方式を採用しためっき装置にも適用することができる。
図36は、フェースダウン方式を採用しためっき装置に適用した例を示す。この例は、図37に示す従来のめっき装置に以下の構成を付加している。つまり、めっき槽12の上部に、内部に中央孔230aを有する調整板230を配置して、めっき槽12の内部をアノード側室12aと基板側室12bに遮断し、更に、調整板230の上面に、この中央孔230aと同じ内径でめっき液流路232aを形成する内周面を有する円筒体232を同心状に上方に突出させて取付けている。これによって、めっき槽12内でアノード16と基板Wの間に形成される電場がめっき液流路232aに沿って、つまり、円筒体232の内部を該円筒体232の外部に漏れることなく均一に通過するようにすることで、電場の歪みや偏りを調整かつ修正し、基板Wの表面全面に亘る電位分布をより均一にすることができる。
なお、円筒体の上端面に、円筒体の内径と等しい内径で、所定の幅を有する電場調整リングを同心状に取付け、この電場調整リングで、基板Wの外周部を近接した位置で所定の幅で覆って、この基板Wの外周部の電場を調整し、これによって、アノードと基板の間に形成される電場を受電部である基板のエッジ部までより均一化して、基板の表面に、基板のエッジ部を含め、面内均一性をより高めた金属膜を形成するようにしてもよいことは勿論である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiment, an example in which a substrate such as a semiconductor wafer is used as the object to be plated will be described.
FIG. 1 is an overall layout diagram of a plating processing facility provided with a plating apparatus according to an embodiment of the present invention. This plating processing equipment is configured to automatically and continuously perform all steps of substrate pre-treatment, plating treatment and post-plating treatment. The interior of the apparatus frame 110 to which the exterior panel is attached is a partition plate. 112 is divided into a plating space 116 for performing the plating process on the substrate and the substrate to which the plating solution adheres, and a clean space 114 for performing other processes, that is, a process not directly related to the plating solution. Then, two substrate holders 160 (see FIG. 2) are arranged in parallel in the partition portion partitioned by the partition plate 112 that partitions the plating space 116 and the clean space 114, and between the substrate holders 160. A substrate detachment table 162 is provided as a substrate delivery unit for detaching the substrate. The clean space 114 is connected to a load / unload port 120 on which a substrate cassette containing substrates is placed and mounted, and the apparatus frame 110 is provided with an operation panel 121.
Inside the clean space 114, an aligner 122 for aligning the orientation flat or notch of the substrate in a predetermined direction, two cleaning / drying devices 124 for cleaning the substrate after plating and rotating it at high speed for spin drying, Pre-treatment of the substrate, in this example, spraying pure water toward the surface of the substrate (surface to be plated) to clean the substrate surface with pure water and also wet with pure water to improve hydrophilicity The pre-processing device 126 that performs is arranged at the four corners. Further, these processing devices, that is, the aligner 122, the cleaning / drying device 124, and the pre-processing device 126 are positioned substantially at the center, and the processing devices 122, 124, 126, the substrate detachment table 162, and the load A first transfer robot 128 that transfers and transfers the substrate to and from the substrate cassette mounted on the unload port 120 is disposed.
Here, the aligner 122, the cleaning / drying device 124, and the pretreatment device 126 arranged in the clean space 114 are configured to hold and process the substrate in a horizontal posture with the surface facing upward, and the transfer robot 128. Is configured to carry and deliver a substrate while holding the substrate in a horizontal posture with the surface facing upward.
In the plating space 116, in order from the partition plate 112 side, a stocker 164 for storing and temporarily placing the substrate holder 160, for example, an oxide film having a high electrical resistance on the surface of the seed layer formed on the surface of the substrate is sulfuric acid, hydrochloric acid, or the like. Activation treatment apparatus 166 for etching away with the chemical solution, first water washing apparatus 168a for washing the surface of the substrate with pure water, plating apparatus 170 for performing plating treatment, second water washing apparatus 168b, and draining of the substrate after the plating treatment. Blow devices 172 are arranged in order. Two second transfer robots 174 a and 174 b are disposed along the rails 176 so as to be located on the side of these devices. The one second transport robot 174a transports the substrate holder 160 between the substrate detachment table 162 and the stocker 164, and the other second transport robot 174b includes the stocker 164, the activation processing device 166, and the first water washing. The substrate holder 160 is transported among the apparatus 168a, the plating apparatus 170, the second water washing apparatus 168b, and the blow apparatus 172.
As shown in FIG. 2, each of the second transfer robots 174a and 174b includes a body 178 extending in the vertical direction, and an arm 180 that can move up and down along the body 178 and that can rotate about an axis. The arm 180 is provided with two substrate holder holding parts 182 arranged in parallel to freely attach and detach the substrate holder 160. Here, the substrate holder 160 is configured to hold the substrate W in a state where the surface is exposed and the peripheral edge portion is sealed, and the substrate W can be freely attached and detached.
The stocker 164, the activation processing device 166, the water washing devices 168 a and 168 b, and the plating device 170 hang the substrate holder 160 in the vertical direction by hooking the outward projecting portions 160 a provided at both ends of the substrate holder 160. It comes to support in the state. The activation processing apparatus 166 includes two activation processing tanks 183 that hold a chemical solution therein, and as shown in FIG. 2, a substrate holder 160 on which a substrate W is mounted is held in a vertical state. 2 The arm 180 of the transfer robot 174b is lowered, and if necessary, the substrate holder 160 is hooked on the upper end of the activation treatment tank 183 and supported by being suspended, whereby the substrate holder 160 and the substrate W together with the substrate W are activated. It is comprised so that an activation process may be performed by immersing in the internal chemical solution.
Similarly, each of the water washing apparatuses 168a and 168b includes two washing tanks 184a and 184b each holding pure water therein, and the plating apparatus 170 includes a plurality of plating tanks 186 each holding a plating solution therein. In the same manner as described above, the substrate holder 160 and the substrate W are immersed in pure water in the water washing tanks 184a and 184b or in a plating solution in the plating tank 186 so that the water washing process and the plating process are performed. Has been. Also, the blower 172 lowers the arm 180 of the second transfer robot 174b that holds the substrate holder 160 on which the substrate W is mounted in a vertical state, and blows air or an inert gas onto the substrate W mounted on the substrate holder 160, thereby blowing the substrate. By blowing off the liquid adhering to the holder 160 and the substrate W to perform drainage, the substrate is blown.
As shown in FIGS. 3 and 4, each plating tank 186 of the plating apparatus 170 is configured to hold the plating solution 10 therein, and in the plating solution 10, the peripheral portion is water-tightened by the substrate holder 160. The substrate W that is sealed and held with its surface (surface to be plated) exposed is immersed and arranged.
On both sides of the plating tank 186, an overflow tank 46 is provided for flowing the plating solution 10 overflowing the upper end of the overflow weir 44 of the plating tank 186. The overflow tank 46 and the plating tank 186 are connected by a circulation pipe 48. It is. A circulation pump 50, a constant temperature unit 52 and a filter 54 are interposed in the circulation pipe 48. Thus, the plating solution 10 supplied into the plating tank 186 as the circulation pump 50 is driven fills the inside of the plating tank 186, and then overflows from the overflow weir 44 and flows into the overflow tank 46. It is configured to circulate back to the circulation pump 50.
Inside the plating tank 186, a circular anode 56 along the shape of the substrate W is held vertically by an anode holder 58, and when the plating tank 10 is filled with the plating solution 10, The anode 56 is soaked in. Furthermore, it is located between the anode 56 and the substrate holder 160, partitions the inside of the plating tank 186 into an anode side chamber 40a and a substrate side chamber 40b, and the plating solution 10 held in the plating tank 186 is arranged on the anode side and the substrate side. An adjusting plate 60 for blocking is installed.
A plurality of paddles 62 that hang downward are provided between the substrate holder 160 and the adjustment plate 60. The paddles 62 are located inside the plating solution 10 in the substrate side chamber 40 b and are held by the substrate holder 160. A paddle type stirring mechanism 64 that stirs the plating solution in the substrate side chamber 40b by reciprocating in parallel with W is disposed.
The adjusting plate 60 has a thickness of about 0.5 to 10 mm, for example, and is made of a dielectric material made of PVC, PP, PEEK, PES, HT-PVC, PFA, PTFE, or other resin materials. Then, when the substrate W is held by the substrate holder 160 and disposed at a predetermined plating position in the plating tank 186, almost the entire region facing the surface of the substrate W when the substrate W is held by the substrate holder 160. A through hole group 68 composed of a large number of through holes 66 is provided in a circular region similar to the substrate W.
Here, in this example, as shown in detail in FIG. 5, a through hole 66 is configured by a long hole extending in a straight line in the lateral direction in a slit shape, and this through hole (long hole) 66 is formed in the outer shape of the substrate W. The through-hole group 68 is comprised by arrange | positioning in linear and parallel within the circular area | region which followed. The width of the through hole (long hole) 66 is generally about 0.5 to 20 mm, preferably about 1 to 15 mm, and this length is arbitrarily set according to the size (diameter) of the substrate W. Is set.
In this way, a through hole group 68 including a large number of through holes 66 is provided inside the adjustment plate 60, and an electric field leaks through the through holes 66 during the plating process so that the leaked electric field spreads uniformly. By doing so, the potential distribution over the entire surface (surface to be plated) of the substrate W can be made more uniform, and the in-plane uniformity of the metal film formed on the surface of the substrate W can be further increased. Further, by suppressing the plating solution 10 from passing through a large number of through holes 66 provided in the adjustment plate 60 installed in the plating tank 186, the flow of the plating solution 10 (return of the plating solution) is caused. It is possible to prevent the film thickness of the metal film formed on the surface of the substrate W from being affected by the influence.
In particular, by using a slit-shaped long hole as the through hole 66, leakage of the electric field can be promoted while suppressing the flow of the plating solution 10 in the through hole (long hole) 66. Furthermore, by forming a through hole group 68 including a large number of through holes 66 in a circular region that is substantially the same as the substrate W over the entire region of the adjustment plate 60 that faces the surface of the substrate W, the substrate A metal film having good film thickness uniformity in all directions on the surface of W can be formed.
According to this plating apparatus 170, first, as described above, the plating solution 10 is filled in the plating tank 186, and the plating solution 10 is circulated. In this state, the substrate holder 160 holding the substrate W is lowered, and the substrate W is disposed at a predetermined position immersed in the plating solution 10 in the plating tank 186. In this state, the anode 56 is connected to the anode of the plating power source 24 via the conductive wire 22a, and the substrate W is connected to the cathode of the plating power source 24 via the conductive wire 22b. At the same time, the paddle type stirring mechanism 64 is driven to The plating solution 10 in the substrate side chamber 40b is agitated by reciprocating along the surface of the substrate W, thereby depositing metal on the surface of the substrate W to form a metal film.
At this time, as described above, the electric field leaks through the large number of through holes 66 provided in the adjustment plate 60, and the leaked electric field spreads uniformly, so that the surface (surface to be plated) of the substrate W is spread. By making the potential distribution over the entire surface more uniform, as shown in FIG. 6, a metal film P with higher in-plane uniformity can be formed on the surface of the substrate W. In addition, the plating solution 10 between the substrate W and the adjustment plate 60 is stirred by the paddle 62 during the plating process, so that sufficient ions can be made uniform on the surface of the substrate W while the direction of the plating solution is lost. And a metal film having a more uniform film thickness can be formed more quickly.
After the plating is finished, the plating power source 24 is disconnected from the substrate W and the anode 56, the substrate holder 160 is pulled up together with the substrate W, and necessary processing such as washing and rinsing of the substrate W is performed. Transport to the next process.
A series of bump plating processes performed by the plating processing equipment configured as described above will be described with further reference to FIG. First, as shown in FIG. 7A, a seed layer 500 as a power feeding layer is formed on the surface, and a resist 502 having a height H of 20 to 120 μm, for example, is applied to the entire surface of the seed layer 500. At a predetermined position of the resist 502, for example, the diameter D 1 Is accommodated in a substrate cassette with its surface (surface to be plated) facing up, and this substrate cassette is mounted on the load / unload port 120.
One substrate W is taken out from the substrate cassette mounted on the load / unload port 120 by the first transfer robot 128 and placed on the aligner 122 so that the orientation flat, notch, etc. are aligned in a predetermined direction. The substrate W whose direction is adjusted by the aligner 122 is transferred to the pretreatment apparatus 126 by the first transfer robot 128. Then, in this pretreatment device 126, pretreatment using pure water (pretreatment with water washing) is performed on the pretreatment liquid. On the other hand, the substrate holder 160 stored in the vertical position in the stocker 164 is taken out by the second transfer robot 174a, and the substrate holder 160 is rotated 90 degrees and placed in parallel on the substrate detachment table 162.
Then, the substrate W that has been subjected to the above-described pretreatment (pretreatment with water washing) is mounted on the substrate holder 160 placed on the substrate detachment table 162 with its peripheral edge sealed. Then, the two substrate holders 160 loaded with the substrate W are simultaneously gripped by the second transport robot 174a, lifted, transported to the stocker 164, and rotated 90 ° to bring the substrate holder 160 into a vertical state. Thereafter, it is lowered, and the two substrate holders 160 are suspended and held (temporarily placed) on the stocker 164. This is repeated in sequence, and the substrate is sequentially mounted on the substrate holder 160 accommodated in the stocker 164, and then suspended and held (temporarily placed) at a predetermined position of the stocker 164.
On the other hand, in the second transfer robot 174b, two substrate holders 160, which are mounted with substrates and temporarily placed on the stocker 164, are simultaneously gripped and raised, and then transferred to the activation processing device 166 to be activated. The substrate is immersed in a chemical solution such as sulfuric acid or hydrochloric acid placed in 183 to etch the oxide film having a large electrical resistance on the surface of the seed layer, thereby exposing a clean metal surface. Further, the substrate holder 160 mounted with the substrate is transported to the first water washing device 168a in the same manner as described above, and the surface of the substrate is washed with pure water placed in the water washing tank 184a.
In the same manner as described above, the substrate holder 160 mounted with the substrate that has been washed with water is transported to the plating apparatus 170 and is suspended and supported in the plating tank 186 while being immersed in the plating solution 10 in the plating tank 186. The surface of the substrate W is plated. Then, after a predetermined time has elapsed, the substrate holder 160 with the substrate mounted thereon is held again by the second transfer robot 174b and pulled up from the plating tank 186, and the plating process is completed.
Then, in the same manner as described above, the substrate holder 160 is transported to the second water washing device 168b and immersed in pure water placed in the water washing tank 184b to clean the surface of the substrate with pure water. Thereafter, the substrate holder 160 mounted with the substrate is transported to the blower 172 in the same manner as described above, and here, an inert gas or air is blown toward the substrate to adhere the plating solution attached to the substrate holder 160. Remove water drops. Thereafter, the substrate holder 160 with the substrate mounted thereon is returned to a predetermined position of the stocker 164 and held in the same manner as described above.
The second transfer robot 174b sequentially repeats the above operations, and returns the substrate holder 160, on which the plated substrate is mounted, to the predetermined position of the stocker 164 in a suspended manner.
On the other hand, in the second transfer robot 174a, the two substrate holders 160 to which the plated substrate is mounted and returned to the stocker 164 are simultaneously grasped and placed on the substrate detachment table 162 in the same manner as described above. .
Then, the first transfer robot 128 disposed in the clean space 114 takes out the substrate from the substrate holder 160 placed on the substrate attachment / detachment table 162 and transfers it to one of the cleaning / drying devices 124. Then, the substrate held horizontally with the cleaning / drying device 124 is cleaned with pure water or the like, spin-dried by high-speed rotation, and then loaded / removed by the first transfer robot 128. Returning to the substrate cassette mounted on the unload port 120, a series of plating processes is completed. As a result, as shown in FIG. 7B, a substrate W on which a plating film 504 is grown in the opening 502a provided in the resist 502 is obtained.
Then, the substrate W spin-dried as described above is immersed in a solvent such as acetone having a temperature of 50 to 60 ° C., for example, and the resist 502 on the substrate W is peeled and removed as shown in FIG. 7C. Further, as shown in FIG. 7D, the unnecessary seed layer 500 exposed to the outside after plating is removed. Next, by reflowing the plating film 504 formed on the substrate W, bumps 506 that are rounded by surface tension are formed as shown in FIG. 7E. Further, the substrate W is annealed at a temperature of 100 ° C. or more, for example, to remove the residual stress in the bumps 506.
According to this example, the second transfer robots 174a and 174b in which the delivery of the substrate in the plating space 116 is arranged in the plating space 116, the delivery of the substrate in the clean space 114 is arranged in the clean space 114. By performing each with the 1st conveyance robot 128, while improving the cleanliness around the board | substrate in the inside of the plating processing apparatus which performs all the plating processes of pre-processing of a board | substrate, a plating process, and the post-process of plating, and a plating process It is possible to improve the throughput as the apparatus and further reduce the load of the incidental equipment of the plating processing apparatus, thereby further downsizing the plating processing apparatus.
In this example, as the plating apparatus 170 for performing the plating process, by using the one having the plating tank 186 with a small footprint, the plating apparatus having a large number of plating tanks 186 is further miniaturized, It is possible to further reduce the load on factory facilities. One of the two cleaning / drying devices 124 installed in FIG. 1 may be replaced with a pretreatment device.
FIGS. 8 to 19 show different examples of through-hole groups composed of a large number of through-holes in the adjustment plate 60. That is, in FIG. 8, a through hole 66a is constituted by a long hole extending in a straight line in the vertical direction in the shape of a slit, and this through hole (long hole) 66a is formed linearly in a circular region along the outer shape of the substrate W. By arranging them in parallel, the through hole group 68a is configured. In FIG. 9, through holes (elongate holes) 66b are arranged linearly and in parallel in a rectangular region along the outer shape of the substrate W so as to be suitable when a rectangular substrate is used. The through hole group 68b is configured.
FIG. 10 shows that a through hole group 68c is constituted by a plurality of through holes (long holes) 66c formed of elongated holes extending linearly in a slit shape over almost the entire width of the region of the adjustment plate 60 facing the surface of the substrate W. It is a thing. Also in this case, when a rectangular substrate is used as the substrate W, the through holes (long holes) 66d are arranged in parallel in a rectangular region along the outer shape of the substrate W as shown in FIG. Thus, the through hole group 68d may be configured. Although not shown, these through holes 66d may extend linearly in the vertical direction.
In FIG. 12, a plurality of through-holes (cross-holes) 66e formed of cross holes extending in a cross shape in the vertical and horizontal directions are evenly arranged in a circular region to constitute a through-hole group 68e. Also in this case, when a rectangular substrate is used as the substrate W, the through holes (cross holes) 66f are evenly arranged in the rectangular region along the outer shape of the substrate W as shown in FIG. Thus, the through hole group 68f may be configured.
FIG. 14 shows a group of through-holes 68g in which a plurality of through-holes (pores) 66g composed of pores are evenly distributed in a circular region. The diameter of each through hole (pore) 66g is set to 2 mm in this example, and a total of 633 pieces are provided in the illustrated example. This through hole 66g, and further, the following small hole (peripheral hole) 66h 2 ~ 66h 5 The diameter is arbitrarily set in the range of 1 to 20 mm, for example, but is preferably about 2 to 10 mm. Thus, by forming the through hole group 68g with the through holes (pores) 66g, the productivity of the adjusting plate 60 can be improved.
FIG. 15 shows a plurality of holes having different diameters, that is, a large-diameter large hole (central hole) 66h located in the central portion. 1 And this large hole 66h 1 A plurality of rows (four rows in the figure) of small holes (peripheral holes) 66h that are arranged along the circumferential direction and decrease in diameter in the diameter direction. 2 ~ 66h 5 A plurality of through-holes 66h are used to form a through-hole group 68h. This large hole (center hole) 66h 1 The diameter is set to 84 mm in this example, but is arbitrarily set within a range of 50 to 300 mm, for example, and is preferably about 30 to 100 mm. Small holes (peripheral holes) 66h 2 ~ 66h 5 Are set to 10 mm, 8 mm, 7 mm and 6 mm, respectively.
FIG. 16 shows a central hole 66i located in the center. 1 And this central hole 66i 1 A plurality of rows (five rows in the figure) of elongated holes 66i arranged on the outer side of the holes 66i 2 ~ 66i 6 A plurality of through holes 66i are used to form a through hole group 68i. This central hole 66i 1 In this example, the diameter of the long hole 66i is set to 34 mm. 2 ~ 66i 6 Are set to 27 mm, 18.5 mm, 7 mm, 7 mm, and 7 mm, respectively.
FIG. 17 shows a large-diameter large hole (central hole) 66j located at the center. 1 And this central hole 66j 1 An elongated hole 66j that extends in the circumferential direction and extends in the circumferential direction. 2 And this long hole 66j 2 A plurality of rows (four rows in the figure) of small holes (peripheral holes) 66j that are arranged on the outside of the plate and have a diameter that decreases in the diameter direction. 3 ~ 66j 6 A plurality of through-holes 66j made up of a through-hole group 68j. This large hole (center hole) 66j 1 The diameter of the long hole 66j is 67 mm in this example. 2 Width is 17mm, small hole (peripheral hole) 66j 3 ~ 66j 6 Are set to 9 mm, 8 mm, 7 mm, and 6 mm, respectively.
FIG. 18 shows a large-diameter large hole (central hole) 66k located at the center. 1 And this central hole 66k 1 A plurality of rows (in the drawing, two rows) of elongated holes 66k extending in the circumferential direction and extending in the circumferential direction 2 , 66k 3 , This long hole 66k 3 A plurality of rows (two rows in the figure) of small holes (peripheral holes) 66k that are arranged on the outer side of the diameter and decrease in the diameter direction. 4 , 66k 5 A plurality of through-holes 66k are configured to form a through-hole group 68k. This large hole (center hole) 66k 1 In this example, the diameter is 80 mm and the long hole 66 k 2 , 66k 3 Width is 7mm, small hole (peripheral hole) 66k 4 , 66k 5 Are set to 6 mm and 4 mm, respectively.
FIG. 19 shows a large-diameter large hole (central hole) 66l located in the center. 1 And this central hole 66l 1 A plurality of slit-like long holes 66l extending linearly in the radial direction and arranged at a predetermined pitch along the circumferential direction outside 2 A plurality of through-holes 66l are made up of a through-hole group 68l. This long hole 66l 2 Is generally about 0.5 to 20 mm, preferably about 1 to 15 mm. The length is arbitrarily set depending on the shape of the object to be plated.
In this way, by forming a group of through holes by combining a plurality of through holes of arbitrary shapes such as a plurality of fine holes, a plurality of holes having different diameters, or a long hole extending in a slit shape, the place and conditions for plating, etc. Can be adapted to any request.
In the examples shown in FIGS. 14 to 19, the through holes are arranged inside the circular region to form the through hole group. However, like the above, the substrate has a rectangular shape. Of course, these through holes may be arranged in a rectangular region along the outline of the substrate to form a through hole group.
As described above, according to the present invention, the electric field leaks through a large number of through holes provided in the adjustment plate installed in the plating tank, and the leaked electric field spreads uniformly, so The potential distribution over the entire surface of the body can be made more uniform, and the in-plane uniformity of the metal film formed on the object to be plated can be further increased. In addition, by suppressing the plating solution from passing through a large number of through holes provided in the adjustment plate installed in the plating tank, the plating solution is affected by the flow of the plating solution and formed on the object to be plated. It is possible to prevent non-uniformity in the thickness of the metal film.
FIG. 20 shows a plating apparatus 170a according to another embodiment of the present invention, and FIG. 21 shows an adjustment plate used in the plating apparatus 170a and a cylindrical body forming a plating solution flow path. 3 to 5 of the plating apparatus 170a is different from the example shown in FIGS. 3 to 5 in that the adjustment plate 60 has a thickness of, for example, about 0.5 to 10 mm and faces the substrate W held by the substrate holder 160 in the center. A cylinder having a central hole 60a having an inner diameter D corresponding to the outer diameter of the substrate W is used, and a cylindrical body having an inner diameter equal to the inner diameter D of the central hole 60a is formed on the surface of the adjustment plate 60 on the substrate holder 160 side. 200 is connected concentrically, thereby forming a plating solution flow path 200a through which the plating solution 10 is circulated on the inner peripheral surface of the cylindrical body 200 while allowing the electric field to pass uniformly. Similar to the adjustment plate 60, the cylindrical body 200 is made of a dielectric material made of, for example, PVC, PP, PEEK, PES, HT-PVC, PFA, PTFE, or other resin materials. Other configurations are the same as those shown in FIGS.
Here, the central hole of the adjusting plate 60 and the inner diameter D of the cylindrical body 200 are generally a diameter of ± 10 mm equal to the outer diameter of the surface of the substrate W to be plated (the outer diameter of the surface to be plated), preferably the surface to be plated. The diameter is set to be equal to the outer diameter ± 5 mm, more preferably about ± 1 mm equal to the outer diameter of the surface to be plated. The length L of the cylindrical body 200 is appropriately determined depending on the shape of the plating tank 186, the distance between the anode 56 and the substrate W, etc., but is generally 10 to 90 mm, preferably 20 to 75 mm, and more preferably. Is 30-60 mm.
Thus, the electric field formed between the anode 56 and the substrate W in the plating tank 186 is uniform along the plating solution flow path 200a, that is, without leaking the inside of the cylindrical body 200 to the outside of the cylindrical body 200. 22, the electric field distortion and bias are adjusted and corrected, the potential distribution over the entire surface of the substrate W is made more uniform, and the substrate W is placed on the surface of the substrate W as shown in FIG. Although the film thickness is slightly increased at the edge portion, the metal film P with higher in-plane uniformity can be formed.
That is, with only the adjustment plate 60 provided with the central hole 60a therein, the thickness of the adjustment plate 60 is generally as thin as about 0.5 to 10 mm, and therefore, the anode 56 and the substrate W are within the plating tank 186. In this example, there is a tendency that the electric field formed between them is insufficiently regulated by only the adjustment plate 60 and the electric field is distorted or biased. As described above, by restricting the passage of the electric field over the length L of the cylindrical body 200, such adverse effects can be prevented and the in-plane uniformity of the metal film can be enhanced.
In this example, similarly to the example shown in FIGS. 3 to 5 described above, a paddle type having a plurality of paddles 62 hanging downward between the cylindrical body 200 and the substrate W held by the substrate holder 160. An agitating mechanism 64 is disposed, and during the plating, the paddle type agitating mechanism 64 is driven, and the paddle 62 is reciprocated along the surface of the substrate W to agitate the plating solution 10 in the substrate side chamber 40b, thereby providing a plating solution. While the direction of the flow is lost, sufficient ions are supplied uniformly to the surface of the substrate W so that a metal film having a more uniform film thickness can be formed more quickly.
FIG. 23 shows a plating apparatus 170b according to still another embodiment of the present invention. The plating apparatus 170b is different from the example shown in FIGS. 21 and 22 in that a plating solution injection type stirring mechanism is used instead of the paddle type stirring mechanism 64 between the cylindrical body 200 and the substrate W held by the substrate holder 160. 202 is located. That is, the plating solution injection type stirring mechanism 202 includes, for example, a ring-shaped pipe, communicates with the circulation pipe 48, and is immersed in the plating solution 10 of the plating tank 186 and is disposed in the plating solution supply pipe 204. A plurality of plating solution injection nozzles 206 that are attached at predetermined positions along the circumferential direction of the solution supply pipe 204 and inject the plating solution 10 toward the substrate W held by the substrate holder 160 are provided. Then, the plating solution 10 sent along with the driving of the pump 50 is supplied to the plating solution supply pipe 204, is injected toward the substrate from the plating solution injection nozzle 206, is introduced into the plating tank 186, and is further overflowed. The upper end of 44 overflows and circulates.
In this way, by injecting the plating solution 10 from the plurality of plating solution injection nozzles 206 toward the substrate W, the plating solution 10 in the plating tank 186 is stirred to make the concentration of the plating solution uniform, and at the same time, By sufficiently supplying each component of the plating solution 10, a metal film having a more uniform thickness can be formed more quickly.
In the above-described example, the cylindrical body 200 is connected to the substrate W side surface of the adjustment plate 60. However, as shown in FIG. 24, the adjustment plate 60 is provided with a fitting hole 60b. A cylindrical body 200 having an inner diameter D and a length L and having an inner peripheral surface as a plating solution flow path 200a is fitted into the fitting hole 60b, and is cylindrical at a predetermined position along the length direction of the cylindrical body 200. The body 200 may be held. As a result, even when the distance between the adjustment plate 60 and the paddle 62 (see FIG. 20) or the plating solution supply pipe 204 (see FIG. 23) is short, the cylindrical body 200 is projected rearward of the adjustment plate 60. A sufficient length L as the cylindrical body 200 can be ensured.
Further, as shown in FIG. 25, a large number of through holes 200b having a size that prevents leakage of an electric field may be provided on the peripheral wall of the cylindrical body 200. Thus, the concentration of the plating solution 10 is biased inside and outside the cylindrical body 200 by allowing the plating solution 10 to flow through the through hole 200b provided in the peripheral wall of the cylindrical body 200 while preventing leakage of the electric field. It can be prevented from occurring. In addition to the pores in this example, the shape of this through hole is not limited. A slit-shaped long hole, a cross hole extending vertically and horizontally, and a combination thereof can be mentioned.
Further, as shown in FIG. 26, the adjustment plate 210 is configured by a plate having a sufficient thickness, and a through hole having a predetermined inner diameter is provided at a predetermined position of the adjustment plate 210. A plating solution flow path 210a having an inner diameter D and a predetermined length L may be formed. In this example, the number of members can be reduced.
In addition, as shown in FIG. 27, a rectangular block 212 having a sufficient thickness is prepared, and a plating solution flow path 210a having a predetermined inner diameter D and a predetermined length L by a through hole provided in the rectangular block 212. The rectangular block 212 may be connected to the substrate W side surface of the adjustment plate 60 having the central hole 60a.
FIG. 28 shows a plating apparatus 170c according to still another embodiment of the present invention. FIG. 29 shows an adjustment plate used in the plating apparatus 170c shown in FIG. 28, a cylindrical body forming a plating solution flow path, and electric field adjustment. Show the ring. Differences from the example of the plating apparatus 170c shown in FIGS. 20 and 21 are as follows. That is, an electric field adjustment ring 220 having an inner diameter equal to the inner diameter D of the cylindrical body 200 and a width A is concentrically attached to the end surface of the cylindrical body 200 having the plating solution flow path 200a formed on the inner peripheral surface. The electric field adjustment ring 220 is arranged close to the substrate W with a gap G1 from the substrate W. Further, a paddle type stirring mechanism 64 having a plurality of paddles 62 that hang downward and reciprocate in parallel with the substrate W held by the substrate holder 160 to stir the plating solution is added to the anode 56 on the anode side chamber 40a side. The paddle type stirring mechanism 64 agitates the plating solution 10 in the anode side chamber 40a. Other configurations are the same as those shown in FIGS.
Here, like the adjusting plate 60 and the cylindrical body 200, the electric field adjusting ring 220 is made of a dielectric material made of, for example, PVC, PP, PEEK, PES, HT-PVC, PFA, PTFE, or other resin materials. Yes. The shape of the electric field adjusting ring 220 is appropriately set depending on the shape of the plating tank 186 and the substrate W, the distance between the anode 56 and the substrate W, and the width A is generally 1 to 20 mm, preferably 3 to 17 mm, more preferably 5 to 15 mm. The gap G1 between the electric field adjustment ring 220 and the substrate W is generally set to 0.5 to 30 mm, preferably 1 to 15 mm, and more preferably 1.5 to 6 mm.
The electric field adjusting ring 220 is for adjusting the electric field of the outer peripheral portion of the substrate W by covering the outer peripheral portion of the substrate W with a predetermined width at a close position. In this way, by adjusting the electric field at the outer peripheral portion of the substrate W with the electric field adjusting ring 220, the electric field formed between the anode 56 and the substrate W is more uniform over the entire surface of the substrate W, that is, at the power receiving unit. As shown in FIG. 30, the metal film P including the edge portion of the substrate W and having higher in-plane uniformity can be formed on the surface of the substrate W by making the edge portion of the substrate W more uniform. .
FIG. 31 shows a plating apparatus 170d according to still another embodiment of the present invention. This plating apparatus 170d is provided with a plating solution injection type stirring mechanism shown in FIG. 23 between the anode 56 of the anode side chamber 40a and the adjusting plate 60, instead of the paddle type stirring mechanism 64 in the plating apparatus shown in FIGS. 202 is arranged. That is, in this example, the plating solution 10 sent along with the driving of the pump 50 is supplied to the plating solution supply pipe 204 and is injected from the plating solution injection nozzle 206 toward the plating solution flow path 200a of the cylindrical body 200 for plating. It introduce | transduces in the tank 186, Furthermore, the upper end of the overflow dam 44 is made to overflow and circulate. Other configurations are the same as those shown in FIGS.
In this way, the plating solution injection type stirring mechanism 202 is disposed in the anode side chamber 40a, and the plating solution is injected from the plating solution injection nozzle 206 toward the plating solution flow path 200a of the cylindrical body 200, whereby the electric field adjustment ring 220 and Even when the gap G1 with the substrate W held by the substrate holder 160 is narrow, the plating solution can be supplied toward the substrate W held by the substrate holder 160 through the plating solution channel 200a.
Here, as shown in FIG. 32, substantially the same as the case shown in FIG. 24 described above, the adjustment plate 60 is provided with a fitting hole 60b, the inner diameter surface is the plating solution flow path 200a with the inner diameter D and the length L. The cylindrical body 200 having the electric field adjustment ring 220 attached to the end thereof is fitted into the fitting hole 60b so that the cylindrical body 200 is held at a predetermined position along the length direction of the cylindrical body 200. Also good.
Further, as shown in FIG. 33, in the same manner as in the case of FIG. 25 described above, a large number of through holes of a size that prevents leakage of the electric field are formed in the peripheral wall of the cylindrical body 200 having the electric field adjusting ring 220 attached to the end face. The plating solution 10 may be circulated in the through hole 200b provided in the peripheral wall of the cylindrical body 200 while providing the electric field 200b to prevent leakage of the electric field.
Further, as shown in FIG. 34, the electric field adjusting ring 220 is supported by the support 222 without being fixed to the end surface of the cylindrical body 200, and has a gap G2 with the substrate W in front of the end surface on the substrate W side of the cylindrical body 200. It may be arranged. The gap G2 is generally set to 0.5 to 30 mm, preferably 1 to 15 mm, and more preferably 1.5 to 6 mm, like the gap G1 between the electric field adjusting ring 220 and the substrate W described above. The Thus, when the plating solution flow path 200a is configured, the selection range can be expanded by separating the cylindrical body 200 and the electric field adjustment ring 220 from each other.
Further, as shown in FIG. 35, a plating solution flow path 224a having a predetermined inner diameter D and length L is formed on the inner peripheral surface of the thick ring 224 having a sufficient thickness. You may make it comprise the electric field adjustment ring 224b which has the predetermined width A by the board | substrate side end surface. Thereby, the number of parts can be reduced.
In each of the above examples, an example is shown in which the plating apparatus adopts a so-called dip method, but the present invention can also be applied to a plating apparatus adopting a face-down method or a face-up method.
FIG. 36 shows an example applied to a plating apparatus employing a face-down method. In this example, the following configuration is added to the conventional plating apparatus shown in FIG. That is, an adjustment plate 230 having a central hole 230a is disposed in the upper part of the plating tank 12, and the inside of the plating tank 12 is blocked by the anode side chamber 12a and the substrate side chamber 12b, and further, on the upper surface of the adjustment plate 230, A cylindrical body 232 having the same inner diameter as that of the central hole 230a and having an inner peripheral surface for forming the plating solution flow path 232a is concentrically protruded and attached. Thereby, the electric field formed between the anode 16 and the substrate W in the plating tank 12 is made uniform along the plating solution flow path 232a, that is, without leaking the inside of the cylindrical body 232 to the outside of the cylindrical body 232. By passing through, the distortion and bias of the electric field can be adjusted and corrected, and the potential distribution over the entire surface of the substrate W can be made more uniform.
An electric field adjustment ring having an inner diameter equal to the inner diameter of the cylindrical body and having a predetermined width is concentrically attached to the upper end surface of the cylindrical body, and the electric field adjustment ring has a predetermined position at a position close to the outer peripheral portion of the substrate W. Covering with the width and adjusting the electric field of the outer periphery of the substrate W, thereby making the electric field formed between the anode and the substrate more uniform to the edge portion of the substrate as the power receiving unit, on the surface of the substrate, It goes without saying that a metal film having a higher in-plane uniformity including the edge portion of the substrate may be formed.

Claims (26)

めっき液を保持するめっき槽と、
前記めっき槽内のめっき液に浸漬させて設置されるアノードと、
前記アノードと該アノードと対向するように配置される被めっき体との間に設置される調整板と、
前記アノードと被めっき体との間に通電してめっきを行うめっき電源とを有し、
前記調整板は、前記めっき槽内に保持されるめっき液を前記アノード側と被めっき体側に遮断するように設置され、内部に多数の通孔からなる通孔群が設けられていることを特徴とするめっき装置。
A plating tank for holding a plating solution;
An anode installed by being immersed in a plating solution in the plating tank;
An adjustment plate installed between the anode and the object to be plated arranged to face the anode;
A plating power source for plating by energizing between the anode and the object to be plated;
The adjusting plate is installed so as to block the plating solution held in the plating tank on the anode side and the object to be plated side, and a through hole group including a plurality of through holes is provided therein. And plating equipment.
前記通孔群は、スリット状に一方向に直線状または円弧状に延びる複数の長穴からなることを特徴とする請求項1記載のめっき装置。The plating apparatus according to claim 1, wherein the through hole group includes a plurality of elongated holes extending in a straight line or arc shape in one direction in a slit shape. 前記通孔群は、縦及び横方向に十字状に延びる複数の十字穴からなることを特徴とする請求項1記載のめっき装置。The plating apparatus according to claim 1, wherein the through hole group includes a plurality of cross holes extending in a cross shape in the vertical and horizontal directions. 前記通孔群は、複数の細孔、径の異なる複数の孔またはスリット状に延びる長穴の任意の組合せからなることを特徴とする請求項1記載のめっき装置。2. The plating apparatus according to claim 1, wherein the through hole group is composed of an arbitrary combination of a plurality of pores, a plurality of holes having different diameters, or a long hole extending in a slit shape. 前記通孔群は、前記調整板の前記被めっき体と対面する領域のほぼ全域に亘り該被めっき体と略相似形の領域内に形成されていることを特徴とする請求項1記載のめっき装置。2. The plating according to claim 1, wherein the through hole group is formed in an area substantially similar to the object to be plated over substantially the entire area of the adjustment plate facing the object to be plated. apparatus. 前記被めっき体と前記調整板との間に、前記めっき槽で保持しためっき液を攪拌する攪拌機構を有することを特徴とする請求項1記載のめっき装置。The plating apparatus according to claim 1, further comprising a stirring mechanism that stirs the plating solution held in the plating tank between the object to be plated and the adjustment plate. 前記攪拌機構は、前記被めっき体と平行に往復運動をするパドルを有するパドル型攪拌機構であることを特徴とする請求項6記載のめっき装置。The plating apparatus according to claim 6, wherein the stirring mechanism is a paddle type stirring mechanism having a paddle that reciprocates in parallel with the object to be plated. 前記アノード及び前記調整板は、鉛直方向に設置されていることを特徴とする請求項1記載のめっき装置。The plating apparatus according to claim 1, wherein the anode and the adjustment plate are installed in a vertical direction. めっき液を保持するめっき槽と、
前記めっき槽内のめっき液に浸漬させて設置されるアノードと、
前記アノードと該アノードと対向するように配置される被めっき体との間に設置される調整板と、
前記アノードと被めっき体との間に通電してめっきを行うめっき電源とを有し、
前記調整板は、前記めっき槽内に保持されるめっき液を前記アノード側と被めっき体側に遮断するように設置され、内部に電場を均一に通過させつつめっき液を流通させるめっき液流路が設けられていることを特徴とするめっき装置。
A plating tank for holding a plating solution;
An anode installed by being immersed in a plating solution in the plating tank;
An adjustment plate installed between the anode and the object to be plated arranged to face the anode;
A plating power source for plating by energizing between the anode and the object to be plated;
The adjusting plate is installed so as to block the plating solution held in the plating tank on the anode side and the object to be plated side, and a plating solution flow path for circulating the plating solution while allowing the electric field to pass uniformly therethrough. A plating apparatus characterized by being provided.
前記めっき液流路の長さは、10〜90mmに設定されていることを特徴とする請求項9記載のめっき装置。The plating apparatus according to claim 9, wherein a length of the plating solution channel is set to 10 to 90 mm. 前記めっき液流路は、筒状体または矩形ブロックの内周面に形成されていることを特徴とする請求項9記載のめっき装置。The plating apparatus according to claim 9, wherein the plating solution flow path is formed on an inner peripheral surface of a cylindrical body or a rectangular block. 前記筒状体の周壁には、電場の漏れを防止する大きさの多数の通孔が設けられていることを特徴とする請求項11記載のめっき装置。The plating apparatus according to claim 11, wherein a plurality of through holes having a size that prevents leakage of an electric field are provided in a peripheral wall of the cylindrical body. 前記被めっき体と前記調整板との間または前記カソードと前記調整板との間の少なくとも一方には、前記めっき槽で保持しためっき液を攪拌する攪拌機構を有することを特徴とする請求項9記載のめっき装置。The stirring mechanism for stirring the plating solution held in the plating tank is provided between at least one of the object to be plated and the adjusting plate or between the cathode and the adjusting plate. The plating apparatus as described. 前記攪拌機構は、前記被めっき体と平行に往復運動をするパドルを有するパドル型攪拌機構であることを特徴とする請求項13記載のめっき装置。The plating apparatus according to claim 13, wherein the stirring mechanism is a paddle type stirring mechanism having a paddle that reciprocates in parallel with the object to be plated. 前記攪拌機構は、前記被めっき体の方向に向けてめっき液を噴射する複数のめっき液噴射ノズルを有するめっき液噴射型攪拌機構であることを特徴とする請求項13記載のめっき装置。The plating apparatus according to claim 13, wherein the stirring mechanism is a plating solution injection type stirring mechanism having a plurality of plating solution injection nozzles for injecting a plating solution toward the object to be plated. 前記めっき液流路は、前記調整板の内部に該調整板と一体に設けられていることを特徴とする請求項13記載のめっき装置。The plating apparatus according to claim 13, wherein the plating solution flow path is provided integrally with the adjustment plate inside the adjustment plate. めっき液を保持するめっき槽と、
前記めっき槽内のめっき液に浸漬させて設置されるアノードと、
前記アノードと該アノードと対向するように配置される被めっき体との間に、前記めっき槽内に保持されるめっき液を前記アノード側と被めっき体側に遮断するように設置され、内部に電場を均一に通過させつつめっき液を流通させるめっき液流路が設けられ調整板と、
前記アノードと被めっき体との間に通電してめっきを行うめっき電源と、
前記めっき液流路の前記被めっき体側端部に位置して該被めっき体の外周部の電場を調整する電場調整リングとを有することを特徴とするめっき装置。
A plating tank for holding a plating solution;
An anode installed by being immersed in a plating solution in the plating tank;
Between the anode and the object to be plated disposed so as to face the anode, the plating solution held in the plating tank is installed so as to be cut off from the anode side and the object to be plated, and an electric field is formed inside. An adjustment plate provided with a plating solution flow path for allowing the plating solution to flow while uniformly passing,
A plating power source for energizing and plating between the anode and the object to be plated;
A plating apparatus comprising: an electric field adjusting ring that is positioned at an end portion of the plating solution flow path on the side of the object to be plated and adjusts an electric field of an outer peripheral part of the object to be plated.
前記電場調整リングの幅は、1〜20mmに設定されていることを特徴とする請求項17記載のめっき装置。The plating apparatus according to claim 17, wherein a width of the electric field adjusting ring is set to 1 to 20 mm. 前記電場調整リングと前記被めっき体との隙間は、0.5〜30mmに設定されていることを特徴とする請求項17記載のめっき装置。The plating apparatus according to claim 17, wherein a gap between the electric field adjusting ring and the object to be plated is set to 0.5 to 30 mm. 前記めっき液流路は、筒状体の内周面に形成され、前記電場調整リングは、該筒状体の被めっき体側端部に連結されていることを特徴とする請求項17記載のめっき装置。18. The plating according to claim 17, wherein the plating solution flow path is formed on an inner peripheral surface of a cylindrical body, and the electric field adjusting ring is connected to an end of the cylindrical body on the side of the object to be plated. apparatus. 前記筒状体の周壁には、電場の漏れを防止する大きさの多数の通孔が設けられていることを特徴とする請求項20記載のめっき装置。21. The plating apparatus according to claim 20, wherein a plurality of through holes having a size to prevent leakage of an electric field are provided in a peripheral wall of the cylindrical body. 前記めっき液流路は、筒状体の内周面に形成され、前記電場調整リングは、該筒状体の被めっき体側端部に該筒状体と分離して配置されていることを特徴とする請求項17記載のめっき装置。The plating solution flow path is formed on an inner peripheral surface of a cylindrical body, and the electric field adjusting ring is disposed separately from the cylindrical body at an end of the cylindrical body on the side of the object to be plated. The plating apparatus according to claim 17. 前記めっき液流路は、筒状体の内周面に形成され、前記電場調整リングは、該筒状体の被めっき体側端面に形成されていることを特徴とする請求項17記載のめっき装置。The plating apparatus according to claim 17, wherein the plating solution flow path is formed on an inner peripheral surface of a cylindrical body, and the electric field adjusting ring is formed on an end surface of the cylindrical body on the side to be plated. . 前記被めっき体と前記調整板との間または前記カソードと前記調整板との間の少なくとも一方には、前記めっき槽で保持しためっき液を攪拌する攪拌機構を有することを特徴とする請求項17記載のめっき装置。18. A stirring mechanism for stirring the plating solution held in the plating tank is provided between at least one of the object to be plated and the adjusting plate or between the cathode and the adjusting plate. The plating apparatus as described. 前記攪拌機構は、前記被めっき体と平行に往復運動をするパドルを有するパドル型攪拌機構であることを特徴とする請求項24記載のめっき装置。The plating apparatus according to claim 24, wherein the stirring mechanism is a paddle type stirring mechanism having a paddle that reciprocates in parallel with the object to be plated. 前記攪拌機構は、前記被めっき体の方向に向けてめっき液を噴射する複数のめっき液噴射ノズルを有するめっき液噴射型攪拌機構であることを特徴とする請求項24記載のめっき装置。25. The plating apparatus according to claim 24, wherein the stirring mechanism is a plating solution injection type stirring mechanism having a plurality of plating solution injection nozzles for injecting a plating solution toward the object to be plated.
JP2004522759A 2002-07-18 2003-07-18 Plating apparatus and plating method Expired - Fee Related JP4434948B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002210097 2002-07-18
JP2002210097 2002-07-18
PCT/JP2003/009144 WO2004009879A1 (en) 2002-07-18 2003-07-18 Plating device

Publications (2)

Publication Number Publication Date
JPWO2004009879A1 true JPWO2004009879A1 (en) 2005-11-17
JP4434948B2 JP4434948B2 (en) 2010-03-17

Family

ID=30767712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004522759A Expired - Fee Related JP4434948B2 (en) 2002-07-18 2003-07-18 Plating apparatus and plating method

Country Status (6)

Country Link
US (2) US20040262150A1 (en)
EP (1) EP1524338A4 (en)
JP (1) JP4434948B2 (en)
KR (2) KR101027489B1 (en)
CN (2) CN100439571C (en)
WO (1) WO2004009879A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040115340A1 (en) * 2001-05-31 2004-06-17 Surfect Technologies, Inc. Coated and magnetic particles and applications thereof
US20050230260A1 (en) * 2004-02-04 2005-10-20 Surfect Technologies, Inc. Plating apparatus and method
US20060081478A1 (en) * 2004-10-19 2006-04-20 Tsuyoshi Sahoda Plating apparatus and plating method
JP4878866B2 (en) * 2006-02-22 2012-02-15 イビデン株式会社 Plating apparatus and plating method
KR20090049957A (en) * 2007-11-14 2009-05-19 삼성전기주식회사 Plating apparatus
US8012319B2 (en) * 2007-11-21 2011-09-06 Texas Instruments Incorporated Multi-chambered metal electrodeposition system for semiconductor substrates
JP5184308B2 (en) * 2007-12-04 2013-04-17 株式会社荏原製作所 Plating apparatus and plating method
US8177944B2 (en) * 2007-12-04 2012-05-15 Ebara Corporation Plating apparatus and plating method
JP2009299128A (en) * 2008-06-13 2009-12-24 Panasonic Corp Electroplating apparatus
US8858774B2 (en) 2008-11-07 2014-10-14 Novellus Systems, Inc. Electroplating apparatus for tailored uniformity profile
KR20120129125A (en) * 2011-05-19 2012-11-28 삼성전자주식회사 Electroplating apparatus for semiconductor substrate and method the same
JP5795965B2 (en) * 2011-05-30 2015-10-14 株式会社荏原製作所 Plating equipment
JP5731917B2 (en) * 2011-06-30 2015-06-10 上村工業株式会社 Surface treatment equipment and plating tank
AU2013284698B2 (en) 2012-07-02 2016-07-21 Nippon Steel Corporation Electro plating device
JP2014088600A (en) * 2012-10-31 2014-05-15 C Uyemura & Co Ltd Surface treating device
US9909228B2 (en) * 2012-11-27 2018-03-06 Lam Research Corporation Method and apparatus for dynamic current distribution control during electroplating
JP5651737B2 (en) * 2013-06-03 2015-01-14 株式会社ムラタ Plating equipment for nickel plating
CN105917033B (en) * 2014-05-12 2018-01-19 株式会社山本镀金试验器 Electroplanting device and accepting groove
CN104005077B (en) * 2014-05-14 2016-11-09 上海交通大学 The electroplanting device of optimized temperature field distribution and electro-plating method thereof
EP3016486B1 (en) * 2014-10-29 2017-08-16 ATOTECH Deutschland GmbH Desmear module of a horizontal process line and a method for separation and removal of desmear particles from such a desmear module
KR101851884B1 (en) * 2014-11-13 2018-04-24 신덴겐코교 가부시키가이샤 Manufacturing method of semiconductor device and glass coating film forming apparatus
JP6335777B2 (en) * 2014-12-26 2018-05-30 株式会社荏原製作所 Substrate holder, method for holding substrate with substrate holder, and plating apparatus
KR20180091948A (en) * 2016-01-06 2018-08-16 어플라이드 머티어리얼스, 인코포레이티드 Systems and methods for shielding features of a workpiece during electrochemical deposition
CN105648507A (en) * 2016-03-24 2016-06-08 河南理工大学 Device for electro-depositing planar parts
GB201701166D0 (en) * 2017-01-24 2017-03-08 Picofluidics Ltd An apparatus for electrochemically processing semiconductor substrates
JP6847691B2 (en) * 2017-02-08 2021-03-24 株式会社荏原製作所 Substrate holder used with plating equipment and plating equipment
GB2564893B (en) * 2017-07-27 2020-12-16 Semsysco Gmbh Distribution system for chemical and/or electrolytic surface treatment
CN107447249A (en) * 2017-08-17 2017-12-08 苏州市金翔钛设备有限公司 A kind of electroplating bath
JP6986921B2 (en) 2017-10-12 2021-12-22 株式会社荏原製作所 Plating equipment and plating method
JP6329681B1 (en) 2017-10-31 2018-05-23 株式会社荏原製作所 Plating apparatus and plating method
JP6790016B2 (en) * 2018-04-10 2020-11-25 上村工業株式会社 Surface treatment equipment, surface treatment method and paddle
JP6971915B2 (en) 2018-06-05 2021-11-24 株式会社荏原製作所 Plating method, plating equipment, and method for estimating critical current density
JP7227875B2 (en) * 2019-08-22 2023-02-22 株式会社荏原製作所 Substrate holder and plating equipment
JP7383441B2 (en) * 2019-10-07 2023-11-20 上村工業株式会社 Surface treatment equipment, surface treatment method and paddle
TWI721760B (en) * 2020-01-17 2021-03-11 海技股份有限公司 Electroplating device and method
JP7354020B2 (en) * 2020-03-04 2023-10-02 株式会社荏原製作所 Plating equipment and resistors
JP7356401B2 (en) 2020-05-12 2023-10-04 株式会社荏原製作所 Plate, plating equipment, and plate manufacturing method
WO2022102119A1 (en) * 2020-11-16 2022-05-19 株式会社荏原製作所 Plate, plating device, and method for manufacturing plate
CN112708922B (en) * 2020-12-31 2024-02-02 郑州琦升精密制造有限公司 Electroplating stirring filter device
US20240183059A1 (en) * 2021-03-05 2024-06-06 Ebara Corporation Method of adjusting plating module
JP7027622B1 (en) * 2021-06-17 2022-03-01 株式会社荏原製作所 Resistors and plating equipment
WO2022264402A1 (en) * 2021-06-18 2022-12-22 株式会社荏原製作所 Plating apparatus and plating method
US11859302B2 (en) * 2021-10-14 2024-01-02 Unimicron Technology Corp. Electroplating apparatus and electroplating method
CN115135813B (en) * 2021-10-28 2023-06-02 株式会社荏原制作所 Plating device
KR20240004056A (en) 2022-07-04 2024-01-11 김강민 Electric coation method acquiring euqalized coating layer surface
CN117587487B (en) * 2024-01-18 2024-04-02 南京海创表面处理技术有限公司 High-precision magnesium alloy workpiece surface electroplating equipment and control method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824137A (en) * 1973-04-18 1974-07-16 In Line Technology Inc Solution agitation process
US4304641A (en) * 1980-11-24 1981-12-08 International Business Machines Corporation Rotary electroplating cell with controlled current distribution
US4469566A (en) * 1983-08-29 1984-09-04 Dynamic Disk, Inc. Method and apparatus for producing electroplated magnetic memory disk, and the like
JPS63176500A (en) * 1987-01-16 1988-07-20 Shinko Electric Ind Co Ltd Shielding plate for electroplating
US5514258A (en) * 1994-08-18 1996-05-07 Brinket; Oscar J. Substrate plating device having laminar flow
US5516412A (en) * 1995-05-16 1996-05-14 International Business Machines Corporation Vertical paddle plating cell
US6179983B1 (en) * 1997-11-13 2001-01-30 Novellus Systems, Inc. Method and apparatus for treating surface including virtual anode
US6413388B1 (en) * 2000-02-23 2002-07-02 Nutool Inc. Pad designs and structures for a versatile materials processing apparatus
US6261426B1 (en) * 1999-01-22 2001-07-17 International Business Machines Corporation Method and apparatus for enhancing the uniformity of electrodeposition or electroetching
JP2000313990A (en) * 1999-04-27 2000-11-14 Dainippon Screen Mfg Co Ltd Substrate plating device
US6254742B1 (en) * 1999-07-12 2001-07-03 Semitool, Inc. Diffuser with spiral opening pattern for an electroplating reactor vessel
US6231743B1 (en) * 2000-01-03 2001-05-15 Motorola, Inc. Method for forming a semiconductor device
WO2001068952A1 (en) * 2000-03-17 2001-09-20 Ebara Corporation Method and apparatus for electroplating
JP2001329400A (en) * 2000-05-17 2001-11-27 Hitachi Kyowa Engineering Co Ltd Plating device and plating method
JP2002054000A (en) * 2000-08-02 2002-02-19 Nitto Denko Corp Electroplating method for substrate
US6802946B2 (en) * 2000-12-21 2004-10-12 Nutool Inc. Apparatus for controlling thickness uniformity of electroplated and electroetched layers
CN1153852C (en) * 2001-02-28 2004-06-16 研能科技股份有限公司 Device and method for controlling electric power line distribution
CN1153851C (en) * 2001-02-28 2004-06-16 研能科技股份有限公司 Device and method for controlling electric power line distribution
CN2504282Y (en) * 2001-10-25 2002-08-07 王敬伦 Palte plating appts.
TWM240034U (en) * 2002-02-19 2004-08-01 Advanced Semiconductor Eng Electric field adjustment device of electroplating tank

Also Published As

Publication number Publication date
US20090218231A1 (en) 2009-09-03
EP1524338A1 (en) 2005-04-20
US20040262150A1 (en) 2004-12-30
CN100439571C (en) 2008-12-03
KR101027489B1 (en) 2011-04-06
KR20050025114A (en) 2005-03-11
JP4434948B2 (en) 2010-03-17
EP1524338A4 (en) 2008-02-27
KR20100052577A (en) 2010-05-19
CN101387004A (en) 2009-03-18
CN101387004B (en) 2010-12-15
WO2004009879A1 (en) 2004-01-29
CN1610769A (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP4434948B2 (en) Plating apparatus and plating method
JP5175871B2 (en) Plating equipment
US10513795B2 (en) Plating apparatus, plating method, and substrate holder
JP3308333B2 (en) Electroplating apparatus and electrolytic plating method
US6699380B1 (en) Modular electrochemical processing system
US20060081478A1 (en) Plating apparatus and plating method
JP4624738B2 (en) Plating equipment
US20120255864A1 (en) Electroplating method
US20120145552A1 (en) Electroplating method
TW202129088A (en) Differential contrast plating for advanced packaging applications
JP2004083932A (en) Electrolytic treatment apparatus
CN100436643C (en) Plating apparatus
JP5232844B2 (en) Plating equipment
KR101170765B1 (en) Apparatus and method for plating substrate
JP2006152415A (en) Plating apparatus and plating method
JP2006225715A (en) Plating apparatus and plating method
JP2004269923A (en) Plating apparatus
WO2023157105A1 (en) Plating apparatus and plating method
JP2004162129A (en) Plating apparatus and plating method
JP2013168679A (en) Conductive material structure formation method
JP2005281720A (en) Wet treatment method and apparatus therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4434948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees