JPWO2003081008A1 - 燃料噴射制御装置及び制御方法 - Google Patents

燃料噴射制御装置及び制御方法 Download PDF

Info

Publication number
JPWO2003081008A1
JPWO2003081008A1 JP2003578716A JP2003578716A JPWO2003081008A1 JP WO2003081008 A1 JPWO2003081008 A1 JP WO2003081008A1 JP 2003578716 A JP2003578716 A JP 2003578716A JP 2003578716 A JP2003578716 A JP 2003578716A JP WO2003081008 A1 JPWO2003081008 A1 JP WO2003081008A1
Authority
JP
Japan
Prior art keywords
fuel injection
solenoid
signal
cycle signal
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003578716A
Other languages
English (en)
Inventor
山崎 茂
茂 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Publication of JPWO2003081008A1 publication Critical patent/JPWO2003081008A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

刻々変化する要求燃料噴射量に迅速に対応させて適切な燃料を噴射させると共にエネルギ効率を改善させ、電磁式燃料噴射装置に対応可能な燃料噴射制御装置及び燃料噴射方法を提供する。燃料を加圧しつつ噴射する電磁式燃料噴射装置を制御するための装置であって、燃料噴射用ソレノイドを駆動する駆動手段と、燃料噴射期間を規定する噴射サイクル信号とPWMサイクル信号とに基づいてソレノイド駆動信号を生成し前記駆動手段に供給する駆動信号生成手段と、要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号を生成し、当該PWMサイクル信号と前記噴射サイクル信号を前記駆動信号生成手段に供給する制御手段との各手段を有する。

Description

技術分野
本発明は、内燃機関に燃料を供給するための電子制御式の燃料噴射制御方法及びその制御装置に関し、特に、内燃機関側からの刻々変化する要求燃料噴射量に対して迅速に対応し、要求された燃料噴射量を正確に噴射するための燃料噴射制御方法及び制御装置に関する。
背景技術
2輪車を含む自動車用エンジン等の内燃機関に対し、刻々変化する要求燃料噴射量に対応して適切な量の燃料を適切なタイミングで供給することは、内燃機関の性能を最大限に引き出す最も重要なファクターである。
気化器(キャブレター)を使用せずに、燃料ポンプやプレッシャレギュレータによって所定の圧力に制御された燃料を、燃料噴射ノズルから噴射する電子制御式の燃料噴射装置は、燃料噴射ノズルの作動時間(ノズル開放時間)を適正に制御することにより要求燃料噴射量に対応した正確な燃料噴射制御を可能とする。このため、近年、特に4輪自動車においては、従来のキャブレター方式に代わって、電子式燃料噴射システムが広く採用されるに至っている。
燃料噴射ノズルの開閉制御は、当該ノズルに結合されたソレノイドに電圧を印加してノズルを開くことにより燃料を噴射し、印加電圧を遮断しノズルを閉じることにより燃料噴射を停止させる。
第15図は、このような燃料噴射装置における燃料噴射用ソレノイド(以下、適宜「ソレノイド」という)11を駆動する従来技術に係る駆動制御回路の例を示す。ここに示された駆動制御回路においては、外部の制御回路(図示せず)から駆動信号が加えられ、この駆動信号がローレベルになると、ソレノイド11に接続されたFET(電界効果トランジスタ)12がオン状態となり、燃料噴射が開始されることとなる。
第15図に示す例では、外部の制御回路から与えられる駆動信号は、所定周期の連続するパルス信号であって、このパルス信号はオンとオフを一定のデューティ比(1周期におけるオン時間比率)をもって繰り返すものである。FET12がオフ状態からオン状態に切り替わると、ソレノイド11に電源電圧(例えばDC12V)が印加され、ソレノイド11に電流が流れ始める。ソレノイド11は誘導負荷なので、このソレノイドの流れる電流(ソレノイド電流)は、FET12のオン時点はゼロであるが、FET12のオン期間中徐々に増加していく。そして、FET12がオンからオフに切り替わると、このソレノイド電流はフライホイールダイオード13に還流し、そこで電力が消費されて徐々に減少していく。そして、ソレノイド電流が一定の値以下に低下した時点で、噴射ノズル(図示せず)からの燃料噴射が停止することとなる。
しかし、エンジン側からの刻々変化する要求燃料噴射量に迅速に対応させるためには、FET12オフ時以降のソレノイド電流の減少時間を早めることにより噴射時間の精緻な制御を可能にすることが必要となる場合がある。このため、FET12オフ時以降の噴射ノズルからの燃料噴射継続時間をなるべく短縮するべく、ソレノイド11に第16図に例示したような種々のスナバ回路14(a)乃至(d)を設けることが行われてきた。
しかし、第15図に示す駆動回路に16に例示するようなスナバ回路を設けて、一定のデューティ比を有する連続する所定周期のパルス信号を駆動信号として使用したとしても、ソレノイド11に流れる電流は大きな電流(数アンペア単位)であることからソレノイド電流の減少時間を早めることには無理があり、急速に変化する要求燃料噴射量に迅速に対応した適切な燃料噴射は困難であった。
また、ソレノイド電流をスナバ回路において、単に熱として放散させることとなれば、その分エンジンシステム全体のエネルギ効率を低下させると共に、より大きな容量のバッテリを必要としていたのである。
ところで、近時、本発明者らは、燃料ポンプやレギュレータにより加圧されて送られてきた燃料を噴射する従来タイプの燃料噴射システムとは異なり、それ自体で燃料を加圧し噴射する電磁式燃料噴射ポンプを用いた燃料噴射装置(以下、「電磁式燃料噴射装置」という)を開発している。
この電磁式燃料噴射装置においては、従来の燃料噴射装置と異なり、燃料噴射量が、ソレノイドの駆動時間幅のみならずソレノイドの電流値によっても大きく影響されるという特性を有している。また、駆動信号のパルス幅が広くなると、過大な電流がソレノイドに流れることになり、所定の燃料噴射に必要な値を超える分の電流は無駄に消費されることとなる。また、エンジン高回転時等の噴射ノズル全開における燃料噴射量を確保するためにアイドル回転時のパルス幅を著しく短くする必要があったが、ソレノイドへの電圧印加後における燃料噴射が開始されるまでの無効時間等の問題からパルス幅を所定時間以下にすることは限界があった。
本発明は、上記課題に鑑みてなされたものであって、エンジン側からの刻々変化する要求燃料噴射量に迅速に対応させて適切な燃料を噴射させると共にエネルギ効率を改善させ、特に電磁式燃料噴射装置に対応可能な燃料噴射制御装置及び燃料噴射方法を提供することを目的とする。
発明の開示
本願は、上記目的を達成するため、燃料を加圧しつつ噴射する電磁式燃料噴射装置を制御するための装置であって、燃料噴射用ソレノイドを駆動する駆動手段と、燃料噴射期間を規定する噴射サイクル信号とPWMサイクル信号(パルス幅変調サイクル信号)とに基づいてソレノイド駆動信号を生成し前記駆動手段に供給する駆動信号生成手段と、要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号を生成し、当該PWMサイクル信号と前記噴射サイクル信号を前記駆動信号生成手段に供給する制御手段との各手段を有することを特徴とする燃料噴射制御装置を提供するものである。
このように、本発明においては、燃料噴射期間を規定する噴射サイクル信号と要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号の二つの信号を用いることにより、燃料噴射量を精緻に制御可能であって且つ要求燃料噴射量の変動に対して迅速に対応可能な燃料噴射制御を可能にしているのである。
ここで、前記PWMサイクル信号のデューティ比は、エンジンの安定したアイドリング回転時や一定回転時等においては、一燃料噴射サイクル期間中一定に維持し、要求燃料噴射量の急激な変動に対応して一燃料噴射サイクル期間中における前記PWMサイクル信号のデューティ比を変化させることも可能である。
さらに、燃料噴射制御装置においては、前記燃料噴射用ソレノイドに流れるコイル電流を測定するコイル電流検出手段を有し、前記コイル電流測定値に応じて、前記PWMサイクル信号のデューティ比を調整する。これにより、ソレノイド電流値によってその燃料噴射量が影響される電磁式燃料噴射装置の特性を改善したのである。
さらに、燃料噴射制御装置は、前記燃料噴射用ソレノイドの駆動停止によって放出されるエネルギをチャージするように接続されたコンデンサと、当該コンデンサにチャージされたエネルギを前記ソレノイドの駆動エネルギとして再利用するための放電制御回路と、を備えることを特徴とする。そして、前記放電制御回路は、前記コンデンサに電源電圧を越える電圧がチャージされており且つ前記噴射サイクル信号がオンの場合に、前記コンデンサにチャージされたエネルギを前記ソレノイドに供給するためのスイッチ手段を有する。
これによって、ソレノイドから放出されるエネルギを再利用して、エンジンシステムのエネルギ効率を高めると共に、車両に搭載するバッテリ容量の低減化を可能にしたのである。さらに、この放電制御は、ソレノイドへの電圧印加後における燃料噴射が開始されるまでの無効時間を大幅に短縮することをも可能にしたのである。
そして、前記制御手段は、前記燃料噴射期間を規定する噴射サイクル信号を出力する前に、燃料噴射を生じさせない範囲のソレノイド駆動信号を前記駆動手段に供給することを特徴とする。これによって、更なる無効時間の短縮化を可能にしたのである。
本願は、さらに、燃料を加圧しつつ噴射する電磁式燃料噴射装置を制御するための方法であって、要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号を生成する行程と、燃料噴射期間を規定する噴射サイクル信号と共に前記PWMサイクル信号を出力する行程と、前記噴射サイクル信号と前記PWMサイクル信号とに基づいてソレノイド駆動信号を生成する行程と、前記ソレノイド駆動信号によって燃料噴射用ソレノイドを駆動する行程との各行程を有することを特徴とする燃料噴射制御方法を提供するものである。
ここで、前記ソレノイド駆動信号によって燃料噴射用ソレノイドを駆動する行程と、前記燃料噴射用ソレノイドに流れるコイル電流を測定する行程と、前記コイル電流測定値に応じて、前記PWMサイクル信号のデューティ比を調整する行程を設けることによって、ソレノイド電流値によってその燃料噴射量が影響される電磁式燃料噴射装置の特性を改善可能としたのである。
発明を実施するための最良の形態
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。
第12図は、本発明に係る燃料噴射制御装置を電磁式燃料噴射装置に適用した燃料噴射システム(電磁式燃料噴射システム)の例を示す。第12図に示すように、この電磁式燃料噴射システムは、燃料タンク201内の燃料を圧送する電磁駆動ポンプであるプランジャポンプ202と、プランジャポンプ202により所定の圧力に加圧されて圧送された燃料を通過させるオリフィス部を有する入口オリフィスノズル203と、入口オリフィスノズル203を通過した燃料が所定の圧力以上のとき(エンジンの)吸気通路内に向けて噴射する噴射ノズル204と、エンジンの運転情報に基づいてプランジャポンプ202等に制御信号を出力するように構成されたコントロールユニット(ECU)206をその基本構成として備えている。ここで、本発明に係る燃料噴射制御装置における制御手段は、駆動ドライバ205及び前記コントロールユニット206に該当する。コントロールユニット206は、マイクロプロセッサ(又はワンチップマイクロプロセッサ)及びこれに接続されるインタフェース及び外部メモリ等(図示せず)により構成される。
第1図は、本発明に係る燃料噴射制御装置の構成を説明するものである。第1図において、燃料噴射用ソレノイド(以下、「ソレノイド」又は「DCP」という)2は、プランジャポンプ202(第12図)を構成する。本制御装置は、ソレノイド2を駆動するための駆動回路3と駆動回路3にPWM駆動信号を供給するための駆動信号生成回路4を含む。
また、本燃料噴射制御装置には、ソレノイド2の駆動停止の際にソレノイド2に流れえていた電流を受け入れるとともソレノイド2から放出されるエネルギを蓄えるためのコンデンサ5と、コンデンサ5に蓄えられたエネルギを再びソレノイドを駆動するためのエネルギとして再利用するための放電制御回路6と、コンデンサ5に蓄えられたエネルギが駆動回路3や電源側に逆流するのを防ぐためのダイオード7,8と、ソレノイド2の駆動時にソレノイド2からグランド側へ流れる駆動電流を検出する電流検出回路9が設けられている。駆動回路3、駆動信号生成回路4、コンデンサ5、放電制御回路6、ダイオード7,8及び電流検出回路9は、第12図に示した駆動ドライバ205に含まれる。
第2図は、本発明に係る燃料噴射制御装置の構成例を示す回路図である。第2図に示すように、ソレノイド(DCP)2の一端は、第1のダイオード7のカソード端子に接続されている。第1のダイオード7のアノード端子は、例えば12Vのバッテリ電源端子に接続されている。これによって、第1のダイオード7は、負荷側から電源側に電流が逆流する逆流防止回路を形成している。
一方、ソレノイド2の他端は、第1のNチャンネルFET31のドレイン端子及び第2のダイオード8のアノード端子に接続されている。第1のNチャンネルFET31のソース端子は、第1の抵抗91を介して接地されている。第1のNチャンネルFET31は、ソレノイドに駆動電流を供給するためのスイッチ(本発明の「駆動手段」)を構成する。そして、抵抗91は後述するように、ソレノイド2に流れる電流を測定するためのものであって低抵抗値の抵抗を用いる。
第2のダイオード8のカソード端子は、第1のコンデンサ5の正極側端子に接続されている。この第1のコンデンサ5は、ソレノイド2の駆動停止の際に放出されるエネルギをチャージするためのものである。第1のコンデンサ5の負極側端子は接地されている。また、第1のコンデンサ5の正極側端子は第2のNチャンネルFET61のドレイン端子に接続されている。第2のNチャンネルFET61のソース端子はソレノイド2の、第1のダイオード7を介して電源端子に接続されている側の一端に接続されている。この第2のNチャンネルFET61は、第1のコンデンサ5にチャージされたエネルギをソレノイド2を駆動するエネルギとして再利用するべく、第1のコンデンサの正極側端子をソレノイド2の一端に接続する。
第1のNチャンネルFET31のオン、オフを制御するため、コントロールユニット206内のマイクロコンピュータからDCP駆動信号とPWM信号が供給される。ここで、DCP駆動信号は、燃料噴射期間を規定する信号である。そして、PWM信号は、エンジン側からの要求燃料噴射量に応じてコントロールユニット206内で生成された所定のデューティ比を有するパルス信号である。
DCP駆動信号入力端子131には、第1のインバータ101の入力端子が接続されている。第1のインバータ101の出力端子は、第2の抵抗102を介して例えばDC5V(制御電圧)にプルアップされており、第3の抵抗106を介して第1のnpnトランジスタ108のベース端子に接続されている。第1のnpnトランジスタ108のエミッタ端子は接地されているとともに、第4の抵抗107を介してベース端子に接続されている。
一方、PWM信号入力端子132には、第2のインバータ111の入力端子が接続されている。第2のインバータ111の出力端子は、第5の抵抗112を介して例えば5Vにプルアップされており、第6の抵抗43を介して第2のnpnトランジスタ41のベース端子に接続されている。第2のnpnトランジスタ41のエミッタ端子は接地されているとともに、第7の抵抗42を介してベース端子に接続されている。
第1のnpnトランジスタ108のコレクタ端子及び第2のnpnトランジスタ41のコレクタ端子は、共に第8の抵抗32を介して例えば12Vにプルアップされているとともに、第9の抵抗33を介して第1のNチャンネルFET31のゲート端子に接続されている。ここで、第2のnpnトランジスタ41、第6の抵抗43及び第7の抵抗42は駆動禁止回路4を構成する。この第2のnpnトランジスタ41がオンのときは、第1のNチャンネルFET31のゲート電圧をLowにして、第1のNチャンネルFET31をオフにする。上記した第1のインバータ101と第1のnpnトランジスタ108、及びこの駆動禁止回路4が、駆動信号生成手段を構成している。そして、第1のNチャンネルFET31、第8の抵抗32及び第9の抵抗33は、駆動回路3を構成する。
第1のインバータ101の出力端子は、第10の抵抗103を介して第3のnpnトランジスタ105のベース端子に接続されている。第3のnpnトランジスタ105のエミッタ端子は接地されているとともに、第11の抵抗104を介してベース端子に接続されている。第3のnpnトランジスタ105のコレクタ端子は第12の抵抗66を介して第2のNチャンネルFET61のゲート端子に接続されている。これによって、DCP駆動信号がオンの時のみ、放電制御回路6を構成する第2のNチャンネルFET61がオンするようになっている。
第1のダイオード7のカソード端子とソレノイド2との接続ノードには、ツェナーダイオード62のアノード端子、第3のダイオード67のアノード端子及び第2のコンデンサ64の一方の端子が接続されている。ツェナーダイオード62のカソード端子は、第4のダイオード63のアノード端子に接続されているとともに、第16の抵抗68を介して第2のNチャンネルFET61のドレイン端子に接続されている。
第3のダイオード67のカソード端子は第2のNチャンネルFET61のゲート端子に接続されている。第4のダイオード63のカソード端子は、第2のコンデンサ64のもう一方の端子に接続されているとともに、第13の抵抗65を介して第3のnpnトランジスタ105のコレクタ端子に接続されている。第2のNチャンネルFET61、ツェナーダイオード62、第3のダイオード67、第4のダイオード63、第12の抵抗66、第13の抵抗65、第16の抵抗68及び第2のコンデンサ64は放電制御回路6を構成している。
抵抗91の第1のNチャンネルFET31のソース端子に接続された端子は、オペアンプ92の非反転入力端子に接続されている。そして、オペアンプ92の反転入力端子は、第14の抵抗93を介して抵抗91の他端に接続されて接地されている。オペアンプ92の出力端子は、DCP電流信号出力端子133に接続されている。オペアンプ92の反転入力端子と出力端子との間には、第15の抵抗94及び第3のコンデンサ95が並列接続されている。オペアンプ92の正電源端子には第4のコンデンサ96が接続されている。オペアンプ92の負電源端子は接地されている。
第1の抵抗91、オペアンプ92、第14の抵抗93、第15の抵抗94、第3のコンデンサ95及び第4のコンデンサ96は、電流検出回路9を構成している。ソレノイド2に流れた電流は、抵抗91の両端に電圧を生じさせ、当該電圧は、この電流検出回路9において増幅されて、コントロールユニット206側に入力されることとなる。オペアンプ92の出力端子は、グランド側と、例えば5Vの電圧が印加された端子との間で逆方向に直列接続された第5のダイオード121及び第6のダイオード122の接続ノードに接続されている。またDCP電流信号出力端子133には第5のコンデンサ123が接続されている。
次に、第2図に示す回路の動作を、第3図を参照しつつ説明する。
第3図は、DCP駆動信号、PWM信号、PWM駆動信号及びPWM駆動電流の各波形を模式的に示す波形図である。ここで、DCP駆動信号は、上記したように燃料噴射期間を規定するパルス信号である。PWM信号は、エンジン側からの要求燃料噴射量に対応して0〜100%の範囲で任意にデューティが変更される信号である。PWM駆動信号は、DCP駆動信号とPWM信号に基づいて生成され、第1のNチャンネルFET31のゲート端子に供給される信号である。また、PWM駆動電流とはソレノイド2を流れる電流(ソレノイド電流)である。
第2図及び第3図において、DCP駆動信号がローレベルのとき、第1のnpnトランジスタ108はオン状態であるため、第1のNチャンネルFET31のゲート電圧がローレベルとなり、第1のNチャンネルFET31はオフ状態である。この状態では、ソレノイド2に電流が流れないので、燃料噴射は起こらない。このとき、第3のnpnトランジスタ105もオン状態であるため、第2のNチャンネルFET61も同様にオフ状態である。
DCP駆動信号がハイレベルのときには、第1のnpnトランジスタ108はオフ状態である。このとき、PWM信号がハイレベルであれば第2のnpnトランジスタ41はオフ状態であるので、第1のNチャンネルFET31のゲート電圧はハイレベルである。従って、電源からソレノイド2に電流が流れこみ、PWM駆動電流が徐々に増大する。このとき、第3のnpnトランジスタ105はオフ状態であるため、第2のNチャンネルFET61はオン状態となる。
一方、第1のnpnトランジスタ108がオフ状態であっても、PWM信号がローレベルであれば第2のnpnトランジスタ41はオン状態であるので、第1のNチャンネルFET31のゲート電圧がローレベルとなり、第1のNチャンネルFET31はオフ状態である。従って、ソレノイド2には電源側からは電流が流れ込まない。しかし、第2のNチャンネルFET61がオン状態であるため、PWM信号がローレベルのときにソレノイド2に流れるフライホイール電流は、第2のダイオード8を通って第2のNチャンネルFET61に流れ消費される。従って、PWM駆動電流は徐々に減少する。第2のNチャンネルFET61のオン抵抗は低いので、損失が少なく、発熱等も抑制される。
DCP駆動信号がハイレベルからローレベルに切り替わると、第1のNチャンネルFET31及び第2のNチャンネルFET61がともにオン状態からオフ状態に切り替わる。そのため、ソレノイド2に流れていた電流は第2のダイオード8を通って第1のコンデンサ5へ流れ、蓄えられる。それによって、第1のコンデンサ5の電圧が急上昇し、ソレノイド2に流れる電流がゼロとなる。従って、急速に燃料噴射が停止する。そして、上述したDCP駆動信号がローレベルのときの状態となる。
DCP駆動信号がローレベルからハイレベルに切り替わると、第1のNチャンネルFET31及び第2のNチャンネルFET61がともにオフ状態からオン状態に切り替わる。そのため、第1のコンデンサ5の放電が起こり、第1のコンデンサ5からソレノイド2に大きな電流が流れ、PWM駆動電流の立ち上がりが急峻となる。従って、燃料噴射の応答性が向上する。そして、上述したDCP駆動信号がハイレベルのときの状態となる。
以上の動作がおこなわれている間、ソレノイド2から第1のNチャンネルFET31を通ってグランド側へ流れる駆動電流は、電流検出回路9の第1の抵抗91において電圧信号として検出される。検出された電圧信号は、オペアンプ92で増幅され、DCP電流信号としてコントロールユニット206内のマイクロコンピュータに送られ、ディジタル信号に変換されて、駆動電流の目標値と比較される。そして、電流検出回路9で検出された電流値が目標値に一致するように、マイクロコンピュータによりPWM信号のデューティが調整される。つまり、駆動電流のフィードバック制御がおこなわれている。
第4図は、PWM信号(PWM駆動信号)のデューティに対するPWM駆動電流値の関係を示す特性図である。PWM信号のデューティは0〜100%の範囲で可変であり、マイクロコンピュータにより適宜選択される。第4図に示すように、PWM信号のデューティが0〜100%の範囲で変化すると、PWM駆動信号のデューティも0〜100%の範囲で変化し、それに応じてPWM駆動電流が0Aから最大電流(例えば10A)まで変化する。つまり、本実施の形態によれば、PWM信号のデューティの調整によって、PWM駆動電流を調整することができる。これを利用して、本実施の形態では、以下のような種々の電流制御を必要に応じて適宜組み合わせて行う。
第1の電流制御形態として、第5図に示すように、第1のコンデンサ5の放電によりPWM駆動電流が急峻に立ち上がり、ソレノイド2の駆動に必要な最小限の電流値に達する電流増加期間Taのあとに、定電流期間Tbを設ける。定電流期間Tbでは、ソレノイド2の駆動に必要な最小限の定電流がソレノイド2に流れるような制御を行う。このような定電流制御を行わない場合には、第9図に示すように電流増加期間Taのあとにソレノイド2のインダクタンス値と抵抗値による時定数で電流が増加していくので、ソレノイド2の駆動に必要な最小限の電流値を超える分、すなわち、燃料噴射の始まる電流値を超える分の電流が無駄になってしまう。従って、本実施の形態によれば、駆動電流の無駄をなくすことができる。
第2の電流制御形態として、第6図に示すように、エンジンの低負荷時にソレノイド2に流れる駆動電流を低く抑える制御を行う。これによって、エンジンの低負荷時には、単位時間当たりの燃料噴射量が低くなるため、DCP駆動信号のパルス幅を広くすることができる。このような電流制御をおこなわない場合には、第10図に示すように駆動パルス幅が狭くなり、燃料噴射量の精度が低くなってしまう。従って、本実施の形態によれば、低負荷時の流量精度を高めることができ、燃料噴射量のダイナミックレンジを広げることができる。
第3の電流制御形態として、エンジンの1行程中に定電流制御の電流値を適宜変化させる制御を行う。これによって、エンジンの1行程中において、単位時間当たりの燃料噴射量を適宜変化させることができる。従って、本実施の形態によれば、例えば従来のキャブレターのように吸入空気に応じて燃料を噴射を行ったり、排ガス対策として燃料の霧化を促進するために、吸入行程以外のときに高温のエンジン吸気弁に燃料を噴射する等の最適な燃料噴射パターンが得られる。
第4の電流制御形態として、エンジン運転中に加速判定がなされ、加速増量が必要になったときに、ソレノイド2に流れる駆動電流を例えば最大にする制御を行う。これによって、加速時に短時間でより多くの燃料を噴射することができるので、加速増量の遅延を防止可能となる。従って、本実施の形態によれば、加速時の燃料制御特性が向上する。また、加速の大きさに応じてソレノイド2に流れる駆動電流の大きさを制御することにより、加速の大きさに応じた量の燃料を噴射させることもできる。
第5の電流制御形態として、第7図に示すように、駆動電流の立ち上がり時に一定時間ソレノイド2に大きな駆動電流を流す過励磁の制御を行う。これは、マイクロコンピュータの内部データとしてROMなどに記憶されている駆動電流の目標値(目標DCP駆動電流)に従って、駆動電流の立ち上がり時に、例えばPWM信号のデューティを100%とし、一定時間経過後にデューティを50%とすることにより実現される。これによって、電流制御の高速化が可能となる。尚、第7図に示す過励磁信号は、駆動電流を一定時間高くするタイミングを示す信号である。
第6の電流制御形態として、第8図に示すように、実際に燃料が噴射される前に、燃料噴射が起こらない程度の電流をソレノイド2に流す制御を行う。これは、燃料噴射時にDCP駆動信号として、まずソレノイド2に燃料を噴射しない程度の電流を流すためのパルス信号(これを前駆動パルスとする)を供給し、その後に燃料を噴射させるためのパルス信号(駆動パルス)を供給することによって実現される。
前駆動パルス供給時には、PWM信号のデューティが小さいので、ソレノイド2に燃料噴射が起こらない程度の電流が流れ、ソレノイド2が燃料を噴射しない範囲で駆動される。それによって、燃料噴射前に電磁式燃料噴射装置のパージ行程及び昇圧行程がほとんど終了する。そして、パージ行程及び昇圧行程がほとんど終了した時点で、燃料を噴射させるためのパルス信号(駆動パルス)の供給により、燃料噴射が起こる程度の電流がソレノイド2に流れ、燃料が噴射される。
これによって、燃料を噴射するための駆動パルスが供給されてから実際に燃料の噴射が起こるまでの無効時間が大幅に短縮される。このような前駆動の電流制御を行わない場合には、第11図に示すように無効時間が長くなり、特にアイドル回転時などの流量が小さいときに燃料制御精度の悪化を招いてしまう。従って、本実施の形態によれば、燃料制御精度の悪化を防ぐことができる。特に、アイドル回転時などにおける燃料制御精度の悪化の防止に有効である。
次に、本発明に係る燃料噴射制御方法のプロセスの流れをフローチャートに基づいて説明する。
第13図は、本燃料噴射制御方法の基本的プロセスを説明するものである。本燃料噴射制御装置への電源の投入等によって、制御プログラムがスタートする。
コントロールユニット206(第12図)を構成するマイクロプロセッサ(本制御装置)は、外部(例えばエンジン側)から内燃機関の負荷状態等に応じて最適の駆動出力を生じさせるための要求燃料噴射量を示すデータを受信する(ステップ11)。次に、受信した要求燃料噴射量(データ)に対応したデューティ比のPWMサイクル信号を生成する(ステップ12)。要求燃料噴射量(データ)とこれに対応するデューティ比の対応関係は、予め本制御装置を構成するメモリ内に記憶されている。
本制御装置は、燃料噴射期間を規定する噴射サイクル信号と上記において生成されたPWMサイクル信号を駆動信号生成手段(第1図における符号4)に出力する(ステップ13及びステップ14)。駆動信号生成手段は、噴射サイクル信号とPWMサイクル信号のアンドを取って、ソレノイド駆動信号を生成する(ステップ15)。このソレノイド駆動信号は、駆動回路(第1図に示す符号3)に出力され、DCP(ソレノイド)2が駆動される(ステップ16)。そして駆動停止時にDCP(ソレノイド)2か発生するエネルギは、コンデンサ5にチャージされ(ステップ17)、以降のDCP(ソレノイド)の駆動エネルギとして再利用されることとなる。そして、本制御回路の電源遮断等により、燃料噴射停止信号の入力により(ステップ18)本制御フローは停止する。
第14図は、本燃料噴射制御方法の第13図において説明した基本的プロセスにおいて、ソレノイド電流を常時測定し、その測定値に基づいてソレノイドの駆動時間等を調整する場合の制御フローを説明するものである。
第13図に示したプロセスと同様、本燃料噴射制御装置への電源の投入等により制御プログラムがスタートする。本制御装置は、外部から内燃機関の負荷状態等に応じて最適の駆動出力を生じさせるための要求燃料噴射量を示すデータを受信し(ステップ21)、受信した要求燃料噴射量(データ)に対応したデューティ比のPWMサイクル信号を生成するのである(ステップ22)。
ここで、本制御装置は、燃料噴射期間を規定する噴射サイクル信号を駆動信号生成手段に対して出力し(ステップ23)、同時に上記において生成されたPWMサイクル信号を出力する(ステップ24)。駆動信号生成手段は、噴射サイクル信号とPWMサイクル信号のアンドを取ってソレノイド駆動信号を作成し(ステップ25)、駆動回路は、このソレノイド駆動信号によってDCP(ソレノイド)2を駆動する(ステップ26)。
ここで、本制御装置は、ソレノイド電流を測定する(ステップ27)。第13図と同様、DCP(ソレノイド)の駆動停止時に生じる発生するエネルギは、その都度コンデンサ5にチャージされる(ステップ28)。ここで、ステップ27において測定されたソレノイド電流値が、ステップ22において生成されたPWMサイクル信号のデューティ比を修正する必要があるか否かの判断がなされる(ステップ29)。この判断は、例えば、ソレノイド電流値が、要求燃料噴射量に対応した予め想定されている範囲内にあるか否かによる。ここで、修正の必要があると判断された場合には、PWMサイクル信号のデューティ比を補正し(ステップ30)、この補正されたデューティ比のPWMサイクル信号によってDCP(ソレノイド)は、駆動制御されることとなるのである。そして、本制御回路の電源遮断等により、燃料噴射停止信号の入力により(ステップ31)、本制御フローは停止されるのである。
以上において本発明は、上述した実施の形態に限らず、種々変更可能である。例えば、PWM信号をマイクロコンピュータで発生させる代わりに、PWM信号を発生する回路を設け、そこでPWM信号を発生させるようにしてもよい。また、DCP電流信号と駆動電流の目標値とをマイクロコンピュータで比較する代わりに、それらを比較する比較回路を設け、そこで比較するようにしてもよい。
以上詳しく説明したように、本発明に係る燃料噴射制御装置においては、燃料噴射期間を規定する噴射サイクル信号とPWMサイクル信号とに基づいてソレノイド駆動信号を生成し前記駆動手段に対して供給する駆動信号生成手段と、要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号を生成し、当該PWMサイクル信号と前記噴射サイクル信号を前記駆動信号生成手段に供給する制御手段との各手段を有する。このように、本発明においては、燃料噴射期間を規定する噴射サイクル信号と要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号の二つの信号を用いることにより、燃料噴射量を精緻に制御することを実現し、さらに、要求燃料噴射量の変動に対して迅速に対応可能な燃料噴射制御を実現したのである。
また、本発明に係る燃料噴射制御装置は、前記燃料噴射用ソレノイドの駆動停止によって放出されるエネルギをチャージする放電制御回路を備えることにより、ソレノイドから放出されるエネルギを再利用して、エンジンシステムのエネルギ効率を高めると共にバッテリ容量の低減化をも実現したのである。
産業上の利用可能性
本発明は、内燃機関に燃料を供給するための電子制御式の燃料噴射制御方法及びその制御装置に関し、特に、内燃機関側からの刻々変化する要求燃料噴射量に対して迅速に対応し、要求された燃料噴射量を正確に噴射するための燃料噴射制御方法及び制御装置に関するものであり、産業上の利用可能性を有する。
【図面の簡単な説明】
第1図は、本発明に係る燃料噴射制御装置の構成を説明する図である。
第2図は、本発明に係る燃料噴射制御装置を構成する回路の例を示す。
第3図は、第2図に示す回路におけるDCP駆動信号、PWM信号、PWM駆動信号及びPWM駆動電流の各波形を模式的に示す波形図である。
第4図は、PWM信号のデューティに対するPWM駆動電流値の関係を示す特性図である。
第5図は、本燃料噴射制御装置において定電流制御を行う場合の駆動時間に対する駆動電流の変化の様子を模式的に示す図である。
第6図は、本燃料噴射制御装置において低負荷時に駆動電流を低くする制御を行う場合の駆動パルスと駆動電流の波形を模式的に示す図である。
第7図は、本燃料噴射制御装置において過励磁を行う場合のDCP駆動信号、PWM信号、PWM駆動信号及び駆動電流等の波形を模式的に示す図である。
第8図は、本燃料噴射制御装置において前駆動を行う場合の前駆動パルス、駆動パルス、駆動電流及び燃料噴射の波形を模式的に示す図である。
第9図は、第5図との比較のため、本燃料噴射制御装置において定電流制御を行わない場合の駆動時間に対する駆動電流の変化を模式的に示す図である。
第10図は、第6図との比較のため、本燃料噴射制御装置において低負荷時に駆動電流を低くする制御を行わない場合の駆動パルスと駆動電流の波形を模式的に示す図である。
第11図は、第8図との比較のため、本年燃料噴射制御装置において前駆動をおこなわない場合の駆動パルス、駆動電流及び燃料噴射の波形を模式的に示す図である。
第12図は、本燃料噴射制御装置を、電磁式燃料噴射装置に適用した燃料噴射システム(電磁式燃料噴射システム)の例を示す。
第13図は、本燃料噴射制御方法の基本的プロセスを説明するフローチャートの例を示す。
第14図は、本燃料噴射制御方法の基本的プロセスにおいて、ソレノイド電流測定値においてPWMサイクル信号のデューティ比を補正する場合のフローチャートの例を示す。
第15図は、従来タイプの燃料噴射装置におけるPWM駆動方法を説明するための回路図である。
第16図は、燃料噴射用ソレノイドの駆動停止により発生するエネルギを消費するためのスナバ回路の例を示す。

Claims (13)

  1. 燃料を加圧しつつ噴射する電磁式燃料噴射装置を制御するための装置であって、
    燃料噴射用ソレノイドを駆動する駆動手段と、
    燃料噴射期間を規定する噴射サイクル信号とPWMサイクル信号とに基づいてソレノイド駆動信号を生成し前記駆動手段に供給する駆動信号生成手段と、
    要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号を生成し、当該PWMサイクル信号と前記噴射サイクル信号を前記駆動信号生成手段に供給する制御手段と、
    の各手段を有することを特徴とする燃料噴射制御装置。
  2. 前記PWMサイクル信号のデューティ比は、一燃料噴射サイクル期間中一定であることを特徴とする請求の範囲第1項に記載の燃料噴射制御装置。
  3. 前記制御手段は、一燃料噴射サイクル期間中における前記PWMサイクル信号のデューティ比を変化させることを特徴とする請求の範囲第1項に記載の燃料噴射制御装置。
  4. 前記燃料噴射用ソレノイドに流れるコイル電流を測定するコイル電流検出手段を有し、
    前記制御手段は、前記コイル電流測定値に応じて、前記PWMサイクル信号のデューティ比を調整することを特徴とする請求の範囲第2項又は第3項に記載の燃料噴射制御装置。
  5. 前記燃料噴射用ソレノイドの駆動停止によって放出されるエネルギをチャージするように接続されたコンデンサと、
    当該コンデンサにチャージされたエネルギを前記ソレノイドの駆動エネルギとして再利用するための放電制御回路と、
    を備えることを特徴とする請求の範囲第1項に記載の燃料噴射制御装置。
  6. 前記放電制御回路は、前記コンデンサに電源電圧を越える電圧がチャージされており且つ前記噴射サイクル信号がオンの場合に、前記コンデンサにチャージされたエネルギを前記ソレノイドに供給するためのスイッチ手段を有する請求の範囲第5項に記載の燃料噴射制御装置。
  7. 前記制御手段は、前記燃料噴射期間を規定する噴射サイクル信号を出力する前に、燃料噴射を生じさせない範囲のソレノイド駆動信号を前記駆動手段に供給することを特徴とする請求の範囲第1項に記載の燃料噴射制御装置。
  8. 燃料を加圧しつつ噴射する電磁式燃料噴射装置を制御するための方法であって、
    要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号を生成する行程と、
    燃料噴射期間を規定する噴射サイクル信号と共に前記PWMサイクル信号を出力する行程と、
    前記噴射サイクル信号と前記PWMサイクル信号とに基づいてソレノイド駆動信号を生成する行程と、
    前記ソレノイド駆動信号によって燃料噴射用ソレノイドを駆動する行程と、
    の各行程を有することを特徴とする燃料噴射制御方法。
  9. 燃料を加圧しつつ噴射する電磁式燃料噴射装置を制御するための方法であって、
    要求燃料噴射量に対応したデューティ比の前記PWMサイクル信号を生成する行程と、
    燃料噴射期間を規定する噴射サイクル信号と共に前記PWMサイクル信号を出力する行程と、
    前記噴射サイクル信号と前記PWMサイクル信号とに基づいてソレノイド駆動信号を生成する行程と、
    前記ソレノイド駆動信号によって燃料噴射用ソレノイドを駆動する行程と、
    前記燃料噴射用ソレノイドに流れるコイル電流を測定する行程と、
    前記コイル電流測定値に応じて、前記PWMサイクル信号のデューティ比を調整する行程と、
    の各行程を有することを特徴とする燃料噴射制御方法。
  10. 前記PWMサイクル信号のデューティ比は、一燃料噴射サイクル期間中一定であることを特徴とする請求の範囲第8項又は第9項に記載の燃料噴射制御方法。
  11. 前記PWMサイクル信号のデューティ比は、一燃料噴射サイクル期間中において変化させることを特徴とする請求の範囲第8項又は第9項に記載の燃料噴射制御方法。
  12. 前記燃料噴射用ソレノイドの駆動停止によって放出されるエネルギをチャージする行程と、
    前記チャージされたエネルギを燃料噴射期間中に前記燃料噴射用ソレノイドに供給する行程と、を有し、
    前記エネルギを前記ソレノイドの駆動エネルギとして再利用することを特徴とする請求の範囲第8項又は第9項に記載の燃料噴射制御方法。
  13. 最初に、燃料噴射を生じさせない範囲のソレノイド駆動信号により前記燃料噴射用ソレノイドを駆動する行程を有することを特徴とする請求の範囲第8項又は第9項に記載の燃料噴射制御方法。
JP2003578716A 2002-03-26 2003-03-24 燃料噴射制御装置及び制御方法 Pending JPWO2003081008A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002086304 2002-03-26
JP2002086304 2002-03-26
PCT/JP2003/003509 WO2003081008A1 (fr) 2002-03-26 2003-03-24 Controleur d'injection de carburant et procede de commande

Publications (1)

Publication Number Publication Date
JPWO2003081008A1 true JPWO2003081008A1 (ja) 2005-07-28

Family

ID=28449299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003578716A Pending JPWO2003081008A1 (ja) 2002-03-26 2003-03-24 燃料噴射制御装置及び制御方法

Country Status (8)

Country Link
US (1) US6923163B2 (ja)
EP (1) EP1489290B1 (ja)
JP (1) JPWO2003081008A1 (ja)
KR (1) KR20040095146A (ja)
CN (1) CN100451318C (ja)
DE (1) DE60321454D1 (ja)
TW (1) TWI259235B (ja)
WO (1) WO2003081008A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000599B2 (en) 2004-07-26 2006-02-21 Techlusion Corporation Supplemental fuel injector trigger circuit
JP4682007B2 (ja) * 2004-11-10 2011-05-11 三菱電機株式会社 電力用半導体装置
US7527040B2 (en) * 2005-12-21 2009-05-05 Boondocker Llc Fuel injection performance enhancing controller
JP2009197603A (ja) * 2008-02-19 2009-09-03 Isuzu Motors Ltd 燃料噴射制御装置
TWI381618B (zh) * 2008-12-22 2013-01-01 Asustek Comp Inc 交換式電源電路及電腦系統
US8478509B1 (en) 2009-08-07 2013-07-02 William E. Kirkpatrick Method and apparatus for varying the duration of a fuel injector cycle pulse length
KR20120063117A (ko) * 2010-12-07 2012-06-15 현대자동차주식회사 Gdi 엔진용 고압 연료 펌프 및 고압 유체 펌프용 솔레노이드 밸브의 제어방법
GB201207289D0 (en) * 2011-06-14 2012-06-06 Sentec Ltd Flux switch actuator
EP2912300B1 (en) 2012-10-25 2018-05-30 Picospray, Inc. Fuel injection system
US9638135B2 (en) * 2013-07-31 2017-05-02 Walbro Llc Fuel shut-off solenoid system
EP2918816B1 (en) * 2014-03-14 2017-09-06 Continental Automotive GmbH Fuel injector
KR101724928B1 (ko) * 2015-10-16 2017-04-07 현대자동차주식회사 차량의 요소 수 분사 제어 장치 및 그 방법
CN109312735A (zh) 2016-05-12 2019-02-05 布里格斯斯特拉顿公司 燃料输送喷射器
WO2018022754A1 (en) 2016-07-27 2018-02-01 Picospray, Llc Reciprocating pump injector
US10947940B2 (en) 2017-03-28 2021-03-16 Briggs & Stratton, Llc Fuel delivery system
WO2020077181A1 (en) 2018-10-12 2020-04-16 Briggs & Stratton Corporation Electronic fuel injection module
CN114483398A (zh) * 2022-01-26 2022-05-13 武汉理工大学 用于废气燃料重整器的喷嘴驱动电路及其控制方法、装置
CN115628145B (zh) * 2022-10-24 2023-04-14 南京工业大学 一种气助雾化喷嘴的电流型驱动电路及驱动控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945362A (en) * 1973-09-17 1976-03-23 General Motors Corporation Internal combustion engine ignition system
JPS5851233A (ja) * 1981-09-21 1983-03-25 Hitachi Ltd 燃料噴射弁駆動回路
JPS63223350A (ja) * 1987-03-11 1988-09-16 Nec Home Electronics Ltd 電子式燃料噴射装置
JPH04153541A (ja) 1990-10-15 1992-05-27 Yamaha Motor Co Ltd 2サイクルエンジンの燃料噴射制御装置
IT1251259B (it) * 1991-12-23 1995-05-05 Elasis Sistema Ricerca Fiat Circuito di comando di carichi prevalentemente induttivi, in particolare elettroiniettori.
DE69304234T3 (de) 1992-03-26 1999-07-15 Zexel Corp Kraftstoff-Einspritzvorrichtung
JP3245719B2 (ja) 1992-03-26 2002-01-15 株式会社ボッシュオートモーティブシステム 燃料噴射装置
JP3165930B2 (ja) 1992-03-26 2001-05-14 株式会社ボッシュオートモーティブシステム 燃料噴射装置
JP3245718B2 (ja) 1992-03-26 2002-01-15 株式会社ボッシュオートモーティブシステム 燃料噴射装置
JPH05272377A (ja) 1992-03-26 1993-10-19 Zexel Corp 燃料噴射装置
JPH1077925A (ja) * 1996-09-04 1998-03-24 Hitachi Ltd 燃料噴射装置及び方法
US6031707A (en) * 1998-02-23 2000-02-29 Cummins Engine Company, Inc. Method and apparatus for control of current rise time during multiple fuel injection events
DE19808780A1 (de) * 1998-03-03 1999-09-09 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines Verbrauchers
JP4119116B2 (ja) * 2001-08-02 2008-07-16 株式会社ミクニ 燃料噴射方法

Also Published As

Publication number Publication date
WO2003081008A1 (fr) 2003-10-02
US6923163B2 (en) 2005-08-02
US20040134468A1 (en) 2004-07-15
TWI259235B (en) 2006-08-01
CN1516782A (zh) 2004-07-28
TW200305683A (en) 2003-11-01
EP1489290A1 (en) 2004-12-22
CN100451318C (zh) 2009-01-14
DE60321454D1 (de) 2008-07-17
EP1489290A4 (en) 2005-06-08
KR20040095146A (ko) 2004-11-12
EP1489290B1 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JPWO2003081008A1 (ja) 燃料噴射制御装置及び制御方法
US8081498B2 (en) Internal combustion engine controller
EP1903202B1 (en) Apparatus for driving electromagnetic valves
US8599530B2 (en) Electromagnetic valve driving circuit
US8649151B2 (en) Injector drive circuit
US8061333B2 (en) Circuit arrangement and method for operating an inductive load
US20110273812A1 (en) Controlling current flow by a coil drive of a valve using a current integral
JP2002371895A (ja) インジェクタ駆動制御装置
US6760212B2 (en) Piezoelectric injector drive circuit
CN101087940A (zh) 控制电容性负载的方法和设备
US8108126B2 (en) Method of controlling fuel injection apparatus
KR20050097519A (ko) 연료분사제어방법 및 제어장치
JP2017137771A (ja) 燃料噴射制御装置
JP3222012B2 (ja) 電磁弁駆動回路
JP4111848B2 (ja) 燃料噴射制御方法及び制御装置
JP4062822B2 (ja) 電磁負荷の駆動装置
JP2005163625A (ja) 燃料噴射弁制御装置
JP2023087358A (ja) 誘導性負荷駆動装置
JP2018178729A (ja) 噴射制御装置
JP2003020984A (ja) インジェクタ駆動制御装置
JPH11200931A (ja) 電磁弁駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226