JPWO2003054611A1 - 光走査装置及びカラー画像形成装置 - Google Patents

光走査装置及びカラー画像形成装置 Download PDF

Info

Publication number
JPWO2003054611A1
JPWO2003054611A1 JP2003555262A JP2003555262A JPWO2003054611A1 JP WO2003054611 A1 JPWO2003054611 A1 JP WO2003054611A1 JP 2003555262 A JP2003555262 A JP 2003555262A JP 2003555262 A JP2003555262 A JP 2003555262A JP WO2003054611 A1 JPWO2003054611 A1 JP WO2003054611A1
Authority
JP
Japan
Prior art keywords
scanning direction
optical
curved mirrors
optical deflector
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003555262A
Other languages
English (en)
Inventor
吉川 智延
智延 吉川
山本 義春
義春 山本
大三郎 松木
大三郎 松木
山本 肇
肇 山本
正紀 吉川
正紀 吉川
晃庸 奥田
晃庸 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2003054611A1 publication Critical patent/JPWO2003054611A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K2215/00Arrangements for producing a permanent visual presentation of the output data
    • G06K2215/0082Architecture adapted for a particular function
    • G06K2215/0094Colour printing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)

Abstract

光偏向器(4)と、結像光学系(3)と、曲面ミラー(7a〜7d)とを備え、結像光学系(3)からの各光束は、光偏向器(4)の偏向面(4a)に斜めに入射し、光偏向器(4)からの各光束は、曲面ミラー(7a〜7d)に斜めに入射し、偏向面(4a)中心における法線を含み主走査方向に平行な面(6)を境界とすると、曲面ミラー(7a〜7d)は、前記境界によって分割された空間のうち、同じ空間に配置されており、被走査面(8a〜8d)を走査する複数の光束の走査速度がほぼ等しい。このことにより、光源(1a〜1d)の駆動周波数を同一とでき、回路の簡素化が可能となる。

Description

技術分野
本発明は、レーザビームプリンタ、レーザファクシミリ、又はデジタル複写機等のカラー画像形成装置に用いられる光走査装置に関する。
背景技術
従来のカラー画像形成装置としては、例えば水平方向に延びるように配置された用紙搬送路に対して複数の光走査装置を配設し、用紙搬送路に沿って移動する用紙に各光走査装置から順次トナー像を転写させ、用紙上にカラー画像を形成する構成のタンデム型と称されるものが知られている。
タンデム型カラー画像形成装置に用いられる光走査装置としては、単一の光束を走査する従来の光走査装置を単に4つ用いるもの(特開2000−141759号公報)、単一の光偏向器と4組のレンズ系を用いたもの(特開2001−133717号公報)、及び単一の光偏向器と、4組の曲面ミラーとレンズを用いたもの(特開平10−148777号公報)が知られている。
しかしながら、前記のような従来の光走査装置は、いずれも部品点数が多く小型化が困難でありコストも高くなるという問題があった。また、複数のレンズ系を用いるので、各走査線の性能の均一化が困難であるという問題もあった。
発明の開示
本発明は、前記のような従来の問題を解決するものであり、小型化が可能で、良好な光学性能が得られる光走査装置及びこれを用いたカラー画像形成装置を提供することを目的とする。
前記目的を達成するために、本発明の第1の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しいことを特徴とする。
本発明の第2の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いがほぼ等しいことを特徴とする。
本発明の第3の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、
前記複数の曲面ミラーのうち、最も上の曲面ミラーの頂点と、最も下の曲面ミラーの頂点との間の距離をLm、前記複数の被走査面のうち、最も上の被走査面の中心と、最も下の被走査面の中心との間の距離をLi、前記偏向面と前記最も上の曲面ミラーの頂点との距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
Figure 2003054611
の関係を満足することを特徴とする。
本発明の第4の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面へ向かう各光束の中心軸のうち、最も上と最も下の中心軸のなす角をβr、前記複数の被走査面のうち、最も上の被走査面の中心と、最も下の被走査面の中心との間の距離をLi、前記偏向面と前記最も上の曲面ミラーの頂点との間の距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
Figure 2003054611
の関係を満足することを特徴とする。
本発明の第5の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーのうち最も上の曲面ミラーの頂点と最も下の曲面ミラーの頂点とを結ぶ線と、前記複数の被走査面のうち最も上の被走査面の中心と最も下の被走査面の中心を結ぶ線とのなす角をΔβ、前記最も上の曲面ミラーの頂点における法線と前記偏向面からの光束とのなす角度をβ2、前記偏向面と前記最も上の曲面ミラーの頂点との間の距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
Figure 2003054611
の関係を満足することを特徴とする。
本発明の第6の走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面へ向かう各光束の中心軸のうち、最も上と最も下の中心軸のなす角をβr、
前記XZ面と直交し前記複数の曲面ミラーの各頂点における法線を含む面を各曲面ミラーにおけるYZ面とし、
前記複数の曲面ミラーのうち、最も上の曲面ミラーの頂点におけるXZ断面曲率半径をRxH、YZ断面曲率半径をRyH、最も下の曲面ミラーの頂点におけるXZ断面曲率半径をRxL、YZ断面曲率半径をRyLとすると、
Figure 2003054611
の関係を満足することを特徴とする。
本発明の第7の走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、
前記複数の被走査面へ向かう各光束の中心軸のうち、最も前記光源から遠い位置にある中心軸と、前記複数の被走査面のうち、最も前記光源から遠い位置に配置された被走査面の中心と最も前記光源から近い位置に配置された被走査面の中心とを結ぶ線とのなす角をβidとすると、
Figure 2003054611
の関係を満足することを特徴とする。
次に、本発明の第1のカラー画像形成装置は、前記本発明のいずれかの光走査装置を備えたカラー画像形成装置であって、
異なる色のトナーを現像する複数の現像器と、前記複数の現像器によって現像されたトナー像を転写材に転写する転写手段と、前記転写材に転写されたトナー像を定着する定着器とが、前記複数の被走査面に配置した複数の感光体のそれぞれに対応するように配置されていることを特徴とする。
本発明の第2のカラー画像形成装置は、55<βid≦50の関係を満足する前記光走査装置を備えたカラー画像形成装置であって、
異なる色のトナーを現像する複数の現像器と、前記複数の現像器によって現像されたトナー像を転写材に転写する転写手段と、前記転写材に転写されたトナー像を定着する定着器とが、前記複数の被走査面に配置した複数の感光体のそれぞれに対応するように配置されており、
前記光源が配置されている側を上側とすると、前記複数の被走査面は、下側方向に順次配置されており、前記複数の被走査面のうち、前記光源からも最も遠い位置にある被走査面が最も下側の走査面であることを特徴とする。
発明を実施するための最良の形態
本発明の第1の光走査装置は、複数の被走査面を走査する複数の光束の走査速度がほぼ等しいので、複数の光源の駆動周波数を同一にでき、回路の簡素化が可能となる。
本発明の第2の光走査装置は、結像光学系から光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いがほぼ等しいので、各光源と第一結像光学系の位置調整手段を同一とできるので、調整コスト低減を実現できる。
本発明の第3の光走査装置は、
Figure 2003054611
の関係を満足するので、各反射面の間隔が小さくなり、光束の反射する有効領域が重なることを防止でき、主走査方向像面湾曲を2.5mmより小さくし、解像度400D.P.I.を実現する1/e強度のビーム径60〜80μm以下を満足するのが容易になる。
本発明の第4の光走査装置は、
Figure 2003054611
の関係を満足するので、主走査方向像面湾曲を2.5mmより小さくし、解像度400D.P.I.を実現する1/e強度のビーム径60〜80μm以下を満足するのが容易になり、各反射面の間隔が小さくなり、光束の反射する有効領域が重なることを防止できる。
本発明の第5の光走査装置は、
Figure 2003054611
の関係を満足するので、主走査方向像面湾曲を2.5mmより小さくし、解像度400D.P.Iを実現する1/e強度のビーム径60〜80μm以下を満足するのが容易となる。
本発明の第6の光走査装置は、
Figure 2003054611
の関係を満足するので、主走査方向像面湾曲を2.5mmより小さくし、解像度400D.P.I.を実現する1/e強度のビーム径60〜80μm以下を満足するのが容易になる。
本発明の第7の光走査装置は、
Figure 2003054611
の関係を満足するので、光源から最も遠い曲面ミラーの反射領域が隣接する曲面ミラから被走査面に向かう光束を遮ること、及び光源から最も近い曲面ミラーの反射領域が隣接する曲面ミラーに向かう光束を遮ることを防止できる。このため、良好な光学性能を確保できるとともに、各走査線の相対性能誤差が小さくできるので、高解像度を実現することができる
前記本発明の第1、第2の光走査装置においては、前記複数の曲面ミラーで反射された各光束は、それぞれ対応する前記被走査面まで直進することが好ましい。前記のような光走査装置によれば、部品点数を減らすことができるので、部品コスト、組立調整コストの削減ができると同時に、各走査線の性能を均一化することができる。
また、前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面の中心は、ほぼ直線上に配置されていることが好ましい。前記のような光走査装置によれば、カラー画像形成装置に用いる場合に、複数の感光体、現像器、転写材搬送路の配置構成が容易となる。
また、前記光偏向器上に形成される前記各光束の線像は、ほぼ同じ位置に形成されることが好ましい。前記のような光走査装置によれば、光偏向器の薄型化が可能となり、また装置全体の小型化も実現できる。
また、前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーから前記複数の被走査面へ向かう各光束の中心軸は、いずれの2つも平行でなく、略扇状に広がっていることが好ましい。前記のような光走査装置によれば、光偏向器の小型化を図ることができる。
前記第3の光走査装置においては、前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いががほぼ等しいことが好ましい。前記のような光走査装置によれば、複数の光源の駆動周波数を同一にでき、回路の簡素化が可能となり、かつ各光源と第一結像光学系の位置調整手段を同一とできるので、調整コスト低減を実現できる。
前記第4の光走査装置においては、
Figure 2003054611
の関係を満足することが好ましい。前記関係式において、下限を下回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e強度のビーム径40〜60μm以下を満足するのが困難となる。上限を上回ると、結果的に各反射面の間隔が小さくなり、光束の反射する有効領域が重なり分離することが困難になる。
前記第5の光走査装置においては、
Figure 2003054611
の関係を満足することが好ましい。前記関係式において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e強度のビーム径40〜60μm以下を満足するのが困難となる。
Figure 2003054611
の関係を満足することが好ましい。前記関係式において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が0.5mm以上発生し、解像度1200D.P.I.を実現する1/e強度のビーム径25〜40μm以下を満足するのが困難となる。
また、前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いががほぼ等しいことが好ましい。前記のような光走査装置によれば、複数の光源の駆動周波数を同一にでき、回路の簡素化が可能となり、かつ各光源と第一結像光学系の位置調整手段を同一とできるので、調整コスト低減を実現できる。
前記第6の光走査装置においては、
Figure 2003054611
の関係を満足することが好ましい。前記関係式において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e強度のビーム径40〜60μm以下を満足するのが困難となる。
前記第7の光走査装置においては、前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いがほぼ等しく、
前記記βidは、
Figure 2003054611
の関係を満足することが好ましい。この構成によれば、主走査方向像面湾曲が2.5mmより小さくでき、解像度400D.P.Iを実現する1/e強度のビーム径60〜80μm以下を満足するのが容易になる。また、被走査面の各被走査面を走査する光束の走査速度を等しくすれば、光源の駆動周波数を同一にでき、回路の簡素化が可能となる。また、光偏向器へ向かう各光束の主走査方向の収束度合いが異なることを許容すれば、各被走査面は比較的自由に配置することができるので、例えば各曲面ミラの間隔がある幅以上必要な場合や、複数の被走査面の配列方向を垂直方向から傾けて装置の高さを低くする場合に有効である。
また、前記各光走査装置においては、前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーのうち最も上の曲面ミラーの頂点と、最も下の曲面ミラーの頂点とを結ぶ線に対して、他の曲面ミラーの頂点が前記複数の被走査面と反対側に配置されていることが好ましい。前記のような光走査装置によれば、良好な性能を達成しながら、各走査線の性能、走査速度、第一結像光学系からの光束の収束度を均一化できる。
また、前記複数の曲面ミラーは、副走査方向断面形状が円弧であることが好ましい。前記のような光走査装置によれば、複数の曲面ミラーを比較的加工、計測が容易な形状とすることができる。
また、前記複数の曲面ミラーは、斜め入射に起因して生じる走査線曲がりを補正する形状であることが好ましい。
また、前記複数の曲面ミラーは、各頂点における法線を含み主走査方向に平行なYZ面に対して、非対称であることが好ましい。前記のような光走査装置によれば、斜め入射に起因して生じる走査線曲がりを補正することができる。
また、前記複数の曲面ミラーは、前記YZ面と曲面が交わる曲線である母線上にある頂点以外の各点の法線が、前記YZ面に含まれない、ねじれ形状であることが好ましい。前記のような、光走査装置によれば、各光学系を単純な構成にでき光束の斜め入射に起因して生じる光線収差を補正しつつ、しかも走査線曲がりを補正することができる。
また、前記曲面ミラーがねじれ形状である光走査装置においては、前記母線上の各点の法線と前記YZ面とのなす角度は、周辺ほど大きいことが好ましい。前記のような光走査装置によれば、斜め入射に起因して生じる走査線曲がりを補正することができる。
また、前記母線上の各点の法線が前記YZ面となす角度の方向は、前記曲面ミラーで反射される光束が前記偏向面からの入射光束に対してなす角度を正の方向とした場合、正の方向であることが好ましい。前記のような光走査装置によれば、斜め入射に起因して生じる走査線曲がりを補正することができる。
また、前記各光走査装置においては、前記複数の曲面ミラーは、頂点における主走査方向の曲率半径と副走査方向の曲率半径とが異なるアナモフィックミラーであることが好ましい。前記のような光走査装置によれば、主走査方向結像位置と、副走査方向結像位置を各々被走査面近傍とすることができる。
また、前記複数の曲面ミラーは、主走査方向、副走査方向ともに凹のミラー面であることが好ましい。前記のような光走査装置によれば、主走査方向結像位置と、副走査方向結像位置を各々被走査面近傍とすることができる。
また、前記複数の曲面ミラーは、副走査方向の屈折力が主走査方向における中心部と周辺部で変化しているミラー面であることが好ましい。前記のような光走査装置によれば、副走査方向像面湾曲を補正することができる。
また、前記複数の曲面ミラーは、副走査方向断面の曲率半径が主走査方向断面形状に依らないことが好ましい。前記のような光走査装置によれば、副走査方向像面湾曲を補正することができる。
また、前記結像光学系は、前記複数の光源部からの光束を主走査方向について収束光束とすることが好ましい。前記のような光走査装置によれば、主走査方向、副走査方向の各像面湾曲、fθ特性を良好な性能とすることができる。
また、前記複数の光源部の少なくとも一つは、波長可変光源と波長制御部とを具備することが好ましい。前記のような光走査装置によれば、スポットの大きさはほぼ波長に比例にするので、波長を制御すると感光ドラム上に結像するスポットの大きさを任意に制御することができ、しかも、第2結像光学系が反射ミラーのみで構成されるので色収差が全く発生しないため、fθ特性など他の性能を劣化することなく解像度を任意に変えることができる。
また、本発明のカラー画像形成装置においては、前記βidは、
90<βid≦150
の関係を満足することが好ましい。この構成によれば、角度βidが鈍角であるので、感光ドラム30a〜30dの配列方向を垂直方向から傾けることができ、装置の高さを低くすることができ、装置の小形化に有利である。また、図33に示したように、中間転写ベルト33から用紙への転写位置を最上部にすることができるので、転写が容易になる。
以下、本発明の一実施形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の一実施形態に係る光走査装置の基本構成図を示している。本図は、本実施形態に係る光走査装置を、ポリゴンミラー4の回転軸5と複数の曲面ミラー7a〜7dの頂点を含む面(以下、「XZ面」という。)で切断した断面図である。
図1において、光源である半導体レーザ1a〜1dからの各光束は、各半導体レーザ1a〜1dに対応する第1結像光学系を構成する軸対称レンズ2a〜2dを通過して、それぞれ緩い収束光となり、同じく第1結像光学系を構成するシリンドリカルレンズ3に入射する。軸対称レンズ2a〜2dは、主走査方向、副走査方向の双方に屈折力を持つレンズであるが、シリンドリカルレンズ3は、副走査方向にのみ屈折力を持つレンズであり、シリンドリカルレンズ3に入射した光束は、副走査方向に関してのみ収束される。
この収束光は、各焦線が重なるように、光偏向器であるポリゴンミラー4に斜めに入射し、偏向面4a上に線像を形成する。すなわち、偏向面4a上の線像は、ほぼ同じ位置に形成されることになり、ポリゴンミラー4の薄型化が可能となり、装置全体の小型化も実現できる。
ここで、水平面6はポリゴンミラー4の偏向面4aの中心における法線を含む面であり、かつ主走査方向(図1の紙面に直交する方向)に延びた面に平行な面である。前記の斜めに入射するとは、この水平面6に対して斜めに入射するという意味である。なお、水平面6は、図1では直線の図示であるが、この直線を含み、紙面に直交する方向に延びた面である。
次に、ポリゴンミラー4で偏向された各光束は、第2結像光学系である曲面ミラー7a〜7dに斜めに入射する。斜めに入射するとは、ポリゴンミラー4からの各光束が、曲面ミラー7a〜7dの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するという意味である。曲面ミラー7a〜7dによる反射光束は、被走査面8a〜8dに結像される。このような斜め入射により、複数の曲面ミラー7a〜7dは、副走査方向について異なる位置に配置されている。さらに、曲面ミラー7a〜7dは、水平面6を境界とすると、同じ側(半導体レーザ1a〜1dと反対側)に配置されている。
このことにより、ポリゴンミラー4からの反射光束がシリンドリカルレンズ3に戻らないことになる。さらに、主走査方向に関して斜め入射する必要がなくなるので、曲面ミラー7a〜7dの形状を、偏向面4aの法線を含み副走査方向に平行な面に関し面対称形状とすることができる。
ここで、本実施形態では、XZ面内において、曲面ミラー7a〜7dから複数の被走査面8a〜8dへ向かう各光束の中心軸はいずれの二つも平行でなく、略扇状に広がる方向である。すなわち、任意の2つの光束の中心軸についてみると、被走査面8a〜8d側に向かって広がっている。このことにより、本実施形態では、ポリゴンミラー4の小型化を図っている。すなわち、各中心軸を平行にした構成では、いずれの光学系も良好な性能を達成するためには、偏向面4aの焦線位置が大きく異なることになり、ポリゴンミラー4が大型化しコスト高となる。
また、本実施形態では、XZ面内において、各被走査面8a〜8dの中心は、等間隔に一直線上に配置されている。この構成により、カラー画像形成装置に用いる場合に、複数の感光体、現像器、及び転写材搬送路の配置構成が容易となる。
また、本実施形態では、曲面ミラーが光束折り曲げ手段の機能を果たすので、曲面ミラー7a〜7dと、被走査面との間に、光束折り曲げ手段を配置していない。すなわち、曲面ミラー7a〜7dで反射された各光束は、それぞれ対応する被走査面8a〜8dまで直進することになる。このことにより、部品点数を減らすことができるので、部品コスト、組立調整コストの削減ができるとともに、各走査線の性能を均一化することができる。
さらに、被走査面8a〜8d上を光束が走査される各走査速度が等しくなるように設計されている。これは、ポリゴンミラー4、曲面ミラー7a〜7d、及び被走査面8a〜8dの各配置に加え、曲面ミラー7a〜7dの最適化により実現できる。この構成により、光源の駆動周波数を同一とでき、回路の簡素化が可能となる。
本図の例では、曲面ミラー7a〜7dは、XZ面において、最も上の曲面ミラー7dの頂点と、最も下の曲面ミラー7aの頂点とを結ぶ線に対して、他の曲面ミラー7b、7cの頂点が被走査面8a〜8dと反対側に配置されている。この構成により、偏向面4aと各曲面ミラー7a〜7dの頂点までの間の距離の違いを小さくできるので、良好な性能を達成しながら、各走査線の性能、走査速度を均一化できる。また、後に説明する実施形態2、3では、良好な性能を達成しながら、各走査線の性能、第1結像光学系からの光束の収束度を均一化できる。
各曲面ミラー7a〜7dの形状は、主像面湾曲、副像面湾曲、及びfθ誤差を補正するように、走査方向断面の非円弧形状、各像高に対応した副走査方向の曲率半径が決められている。また、副走査方向断面形状は円弧としたので、加工、計測が容易となる。
さらに、斜め入射に起因して生じる走査線曲がりを補正する形状とし、走査線湾曲を補正するために各像高に対応した位置での面のねじり量が決められている。より具体的には、曲面ミラー7a〜7dは、▲1▼各頂点における法線を含み主走査方向に平行なYZ面に対して、非対称である。▲2▼前記YZ面と曲面が交わる曲線である母線上にある頂点以外の各点の法線が、前記YZ面に含まれない、ねじれ形状である。▲3▼前記母線上の各点の法線と前記YZ面とのなす角度は、周辺ほど大きい。▲4▼前記母線上の各点の法線が前記YZ面となす角度の方向は、曲面ミラー7a〜7dで反射される光束が偏向面4aからの入射光束に対してなす角度を正の方向とした場合、正の方向であるという構成▲1▼〜▲4▼を備えている。
また、曲面ミラー7a〜7dは、▲5▼頂点における主走査方向の曲率半径と副走査方向の曲率半径とが異なるアナモフィックミラーである。▲6▼主走査方向、副走査方向ともに凹のミラー面であるという構成▲5▼〜▲6▼を備えている。このことにより、主走査方向結像位置と、副走査方向結像位置を各々被走査面近傍とすることができる。
また、曲面ミラー7a〜7dは、▲7▼副走査方向の屈折力が主走査方向における中心部と周辺部で変化しているミラー面である。▲8▼副走査方向断面の曲率半径が主走査方向断面形状に依らないという構成▲7▼〜▲8▼を備えている。このことにより、副走査方向像面湾曲を補正することができる。
各曲面ミラーの面形状は、面の頂点を原点、副走査方向x軸、主走査方向y軸、頂点における法線をz軸とする直交座標系において、副走査方向座標がx(mm)、主走査方向座標がy(mm)の位置における頂点からのサグ量を入射光束の向かう方向を正とするz(mm)として以下の式(1)で示される。
Figure 2003054611
式(1)において、f(y)は母線上の形状である非円弧を示す式であり、以下の式(2)で表される。
Figure 2003054611
また、g(y)はy位置における副走査方向(x方向)の曲率半径、θ(y)はy位置におけるねじり量であり、それぞれ以下の式(3)、(4)で表される。
Figure 2003054611
ここで、前記式(2)〜(4)において、RDy(mm)は頂点における主走査方向曲率半径、RDx(mm)は副走査方向曲率半径、kは母線形状を示す円錐定数である。また、AD、AE、AF、AGは母線形状を示す高次定数であり、BC、BD、BE、BF、BGは、y位置における副走査方向曲率半径を決める定数であり、EC、ED、EEはy位置におけるねじり量を決めるねじり定数である。
なお、曲面ミラー形状は、式(1)で表されるものに限るものではなく、同様の形状を表すことができれば他の式を用いてもよい。
また、前記の曲面ミラー形状に関する説明は、以下の実施形態2、3についても同様である。
(実施例1)
以下、本実施形態の実施例1を以下の表1に示す。
Figure 2003054611
表1において、a〜dは被走査面8a〜8dに対応している。また、β1(度)は各半導体レーザ1a〜1dからの光束の中心軸と水平面6とのなす角、β2(度)は各曲面ミラー7a〜7dの頂点における法線(図1の破線)と各光束の中心軸とのなす角、D1(mm)は偏向反射点と各曲面ミラー7a〜7dの頂点との間の距離、D2(mm)は各曲面ミラー7a〜7dの頂点と各被走査面8a〜8dの中心までの距離、rp(mm)はポリゴンミラー4の内接半径、Ymax(mm)は最大像高、α(度)は最大像高に対応したポリゴン回転角である。本実施例1では、被走査面間隔G(図1)は25mmである。
また、ポリゴンミラー4に向かう各光束の主走査方向の収束度を示すための値として、S(mm)を用いた。S(mm)は、後方に光学系が全く無い場合の主走査方向の結像位置と、偏向反射点との間の距離である。S(mm)は、光源へ向かう方向を正とした。このため、負の値であれば集束光であることになる。これら、表1の各記号に関する説明は、以下の表2〜10、12〜15についても同様である。
本実施例では、被走査面8a〜8d上を光束が走査される各走査速度が等しくなるように設計されているので、a〜dにおいて、ポリゴン回転角αは、いずれも10.754(度)で同じ値である。
図2、3に実施例1の測定結果を示しており、図2Aは主走査方向像面湾曲(CM)、図2Bは副走査方向像面湾曲(CS)、図3Aは誤差(fθ)、図4Bは走査線湾曲(BOW)を示す。各図の、縦軸Yは像高であり、線種a〜dは、被走査面8a〜8dに対応している。
fθ誤差(ΔY)は、走査中心近傍におけるポリゴンの単位回転角当たりの走査速度(感光ドラム面上で光束が走査される速度)をV(mm/度)、ポリゴン回転角をα(度)、像高をY(mm)としたときに、以下の式(5)で表される量である。
Figure 2003054611
以上の図2に関する説明は、以下の図4、6、8、10、12、14、16、18、20、24、26、28、及び30についても同様であり、図3に関する説明は、以下の図5、7、9、11、13、15、17、19、25、27、29、及び31についても同様である。
図2、3から分かるように、実施例1は良好な光学性能であり、かつ各走査線の相対性能誤差が小さく、高解像度が実現できている。
また、走査速度が等しいので光源の駆動周波数を同一とでき、回路の簡素化が可能となる。また、表1に示したように、実施例1においては、Sの値はa〜dにおいてそれぞれ異なっており、光偏向器へ向かう各光束の主走査方向の収束度合いが異なることを許容したので、曲面ミラーは比較的自由に配置することができ、例えば各曲面ミラーの間隔をある幅以上必要な場合などに有効である。
(実施の形態2)
実施形態2に係る光走査装置の基本構成は、図1に示した実施の形態1と同様である。実施形態2は、軸対称レンズ2a〜2dによる各光束の収束度合いが等しくなるように設計配置されている点が、実施形態1と異なっている。
(実施例2)
以下、本実施形態の実施例2を以下の表2に示す。なお、本実施例の被走査面間隔G(図1)は25mmである。
Figure 2003054611
本実施例では、軸対称レンズ2a〜2dによる各光束の収束度合いが等しくなるように設計配置されているので、a〜dにおいて、距離sはいずれも−831.75で同じ値である。一方、各被走査面を走査する各光束の走査速度が異なることを許容しており、a〜dにおいて、ポリゴン回転角αはそれぞれ異なる値である。
図4、5に実施例2の測定結果を示している。図4、5から分かるように、実施例2は良好な光学性能であり、かつ各走査線の相対性能誤差が小さく、高解像度が実現できている。
また、光偏向器へ向かう各光束の主走査方向の収束度合いが等しいので、各光源と第一結像光学系の位置調整手段を同一とでき、調整コスト低減を実現できる。また、各被走査面を走査する各光束の走査速度が異なることを許容したので、曲面ミラーは比較的自由に配置することができ、例えば各曲面ミラーの間隔をある幅以上必要な場合などに有効である。
(実施の形態3)
実施形態3に係る光走査装置の基本構成は、図1に示した実施の形態1と同様である。本実施形態では、実施形態1と同様に、被走査面8a〜8d上を光束が走査される各走査速度が等しくなるように設計されている。このことに加えて、軸対称レンズ2a〜2dによる各光束の収束度合いが等しくなるように設計配置されている。
ここで、XZ面において、曲面ミラー7a〜7dのうち、最も上の曲面ミラー7dの頂点と、最も下の曲面ミラー7aの頂点との距離をLm、被走査面8a〜8dのうち最も上の被走査面8dの中心と、最も下の被走査面8aの中心との距離をLi、偏向面4aと最も上の曲面ミラー7dの頂点との距離をD1、最も上の曲面ミラー7dの頂点と最も上の被走査面8dの中心との距離をD2とすると、本実施形態は以下の式(6)を満足している。
Figure 2003054611
式(6)において下限を下回ると、各反射面の間隔が小さくなり、光束の反射する有効領域が重なり分離することが困難になる。上限を上回ると、主走査方向像面湾曲が2.5mm以上発生し、解像度400D.P.Iを実現する1/e強度のビーム径60〜80μm以下を満足するのが困難となる。
また、XZ面において、複数の被走査面8a〜8dへ向かう各光束の中心軸のうち、最も上の中心軸と最も下の中心軸とのなす角をβrとすると、本実施形態は以下の式(7)を満足している。
Figure 2003054611
式(7)において、下限を下回ると、主走査方向像面湾曲が2.5mm以上発生し、解像度400D.P.I.を実現する1/e強度のビーム径60〜80μm以下を満足するのが困難となる。上限を上回ると、結果的に各反射面の間隔が小さくなり、光束の反射する有効領域が重なり分離することが困難になる。
より高解像度化を達成するためには、以下の式(8)を満足し、主走査方向像面湾曲をより補正することが好ましい。
Figure 2003054611
式(8)において、下限を下回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e強度のビーム径40〜60μm以下を満足するのが困難となる。上限を上回ると、結果的に各反射面の間隔が小さくなり、光束の反射する有効領域が重なり分離することが困難になる。
また、XZ面において、曲面ミラー7a〜7dのうち、最も上の曲面ミラー7dの頂点と、最も下の曲面ミラー7aの頂点を結ぶ線と、被走査面8a〜8dのうち,最も上の被走査面8dの中心と、最も下の被走査面8aの中心を結ぶ線とのなす角をΔβ、最も上の曲面ミラー7dの頂点における法線が偏向面4aからの光束となす角度をβ2とすると、本実施形態は以下の式(9)を満足している。
Figure 2003054611
式(9)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が2.5mm以上発生し、解像度400D.P.I.を実現する1/e強度のビーム径60〜80μm以下を満足するのが困難となる。
より高解像度を達成するには、以下の式(10)を満足することが好ましい。
Figure 2003054611
式(10)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e強度のビーム径40〜60μm以下を満足するのが困難となる。
さらに高解像度を達成するには以下の式(11)を満足することが好ましい。
Figure 2003054611
式(11)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が0.5mm以上発生し、解像度1200D.P.I.を実現する1/e強度のビーム径25〜40μm以下を満足するのが困難となる。
また、XZ面と直交し複数の曲面ミラー7a〜7dの各頂点における法線を含む面を各曲面ミラーにおけるYZ面とし、複数の曲面ミラーのうち、最も上の曲面ミラーの頂点におけるXZ断面曲率半径をRxH、YZ断面曲率半径をRyH、最も下の曲面ミラーの頂点におけるXZ断面曲率半径をRxL、YZ断面曲率半径をRyLとすると、本実施形態は、以下の式(12)を満足している。
Figure 2003054611
式(12)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が2.5mm以上発生し、解像度400D.P.I.を実現する1/e強度のビーム径60〜80μm以下を満足するのが困難となる。
さらに高解像度を達成するには以下の式(13)を満足することが好ましい。
Figure 2003054611
式(13)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e強度のビーム径40〜60μm以下を満足するのが困難となる。
以下、本実施形態の実施例3〜10を以下の表3〜10に示す。なお、実施例8、9の被走査面間隔G(図1)は30mmであり、その他の実施例の被走査面間隔は25mmである。
る。
(実施例3)
Figure 2003054611
(実施例4)
Figure 2003054611
(実施例5)
Figure 2003054611
(実施例6)
Figure 2003054611
(実施例7)
Figure 2003054611
(実施例8)
Figure 2003054611
(実施例9)
Figure 2003054611
(実施例10)
Figure 2003054611
実施例3〜10は、いずれも前記式(6)、(7)、(9)、及び(12)を満足しており、実施例3〜8は、前記式(8)、(11)、及び(13)も満足している。各実施例の各式に相当する数値を以下の表11に示す。
Figure 2003054611
表11中、曲率半径条件式とあるのは、式(12)又は式(13)の式のことである。
図6、7に実施例3、図8、9に実施例4、図10、11に実施例5、図12、13に実施例6、図14、15に実施例7、図16、17に実施例8、図18、19に実施例9、図20、21に実施例10の測定結果を示している。
図6〜図21から分かるように、実施例3〜10のすべてについて、副走査方向像面湾曲、fθ誤差、及び走査線湾曲の特性は良好である。
また、実施例3〜8は、前記式(7)、式(9)、及び式(12)を満足しており、主走査方向像面湾曲も±1mm以内の良好な性能が得られた。
実施例9、10は、曲面ミラーの配置に制限がある場合の実施例であり、前記式(6)、式(7)、及び式(9)を満足している。実施例9、10の数値はこれら各式の上限又は下限に近いため、主走査方向像面湾曲が数値例3〜8と比較すると大きくなっている。
また、本実施の形態は、実施の形態1、2と比較して配置自由度は小さくなるが、走査速度が等しい(ポリゴン回転角αが等しい)ので光源の駆動周波数を同一とでき、回路の簡素化が可能となるとともに、光偏向器へ向かう各光束の主走査方向の収束度合いが等しい(距離Sが等しい)ので、各光源と第1結像光学系の位置調整手段を同一とでき、調整コスト低減を実現できる。
なお、本実施形態は、前記式(6)、(7)、(9)、及び(12)をすべて満足している実施例で説明したが、これら各式の少なくとも一つを満足する構成でもよい。
(実施の形態4)
実施形態4に係る光走査装置の基本構成は、図1に示した実施の形態1と同様である。実施形態4に係る光走査装置を副走査方向に平行な面で切った断面図を図22、23に示している。光走査装置の構成部品は、図1に示した実施の形態1と同様であるが、本実施形態は、各構成部品の配置位置に特徴がある。
具体的には、XZ面において、複数の被走査面8a〜8dへ向かう各光束の中心軸のうち最も半導体レーザ1a〜1dから遠い位置にある中心軸と、被走査面8a〜8dのうち光源1a〜1dから最も遠い位置にある被走査面8dの中心と最も半導体レーザ1a〜1dに近い位置にある被走査面8aの中心とを結ぶ線とのなす角をβid(度)とすると、以下の式(14)の関係を満足している。
Figure 2003054611
この関係を満足することにより、半導体レーザ1a〜1dから最も遠い曲面ミラー7dの反射領域が隣接する曲面ミラー7cから被走査面8cに向かう光束を遮ること、及び半導体レーザ1a〜1dから最も近い曲面ミラー7aの反射領域が隣接する曲面ミラー7bに向かう光束を遮ることを防止できる。このため、良好な光学性能を確保できるとともに、各走査線の相対性能誤差が小さくできるので、高解像度を実現することができる。
ここで、図22は、式(14)のβidが下限に近い構成を示している。本図の構成では、曲面ミラー7dの反射領域と曲面ミラー7cからの光束との間隔が狭くなっている。このため、βidが下限を下回ると、半導体レーザ1a〜1dから最も遠い曲面ミラー7dの反射領域が隣接する曲面ミラー7cから被走査面8cに向かう光束を遮ることになる。
一方、図23は、βidが上限に近い構成を示している。本図の構成では、曲面ミラー7aの反射領域と曲面ミラー7bへ向かう光束との間隔が狭くなっている。このため、βidが上限を上回ると、半導体レーザ1a〜1dから最も近い曲面ミラー7aの反射領域が隣接する曲面ミラー7bに向かう光束を遮ることになる。
また、被走査面8a〜8dの各被走査面を走査する光束の走査速度を等しくすれば、光源の駆動周波数を同一にでき、回路の簡素化が可能となる。
また、被走査面8a〜8dを走査する複数の光束の走査速度をほぼ等しくし、かつポリゴンミラー4へ向かう各光束の主走査方向の収束度合い又は発散度合いをほぼ等しくして、以下の式(15)を満足するようにしてもよい。
Figure 2003054611
この構成によれば、主走査方向像面湾曲が2.5mmより小さくでき、解像度400D.P.Iを実現する1/e強度のビーム径60〜80μm以下を満足するのが容易になる。
また、ポリゴンミラー4へ向かう各光束の主走査方向の収束度合いが異なることを許容すれば、各被走査面8a〜8dは比較的自由に配置することができるので、例えば各曲面ミラー7a〜7dの間隔がある幅以上必要な場合や、複数の被走査面(感光ドラム)の配列方向を垂直方向から傾けて装置の高さを低くする場合に有効である。
また、前記実施形態3のように、前記式(6)、(7)、(9)、及び(12)の各式の少なくとも一つを満足する構成としてもよい。
以下、本実施形態に係る実施例11〜14を、以下の表12〜15に示す。以下の各実施例においては、被走査面間隔Gは30mmである。
(実施例11)
Figure 2003054611
(実施例12)
Figure 2003054611
(実施例13)
Figure 2003054611
(実施例14)
Figure 2003054611
実施例11〜14のβidは式(14)の関係を満足している。図24、25に実施例11の測定結果、図26、27に実施例12の測定結果、図28、29に実施例13の測定結果、図30、31に実施例14の測定結果をそれぞれ示している。
なお、前記実施例1〜10に係る表1〜10についても、βidの値を示しており、実施例1〜10は、式(14)の関係を満足している。
また、実施例3〜10は、各被走査面に対応するs、αの値が等しく、βidは式(15)の関係を満足している。
(実施の形態5)
図32は、本発明の一実施形態に係るタンデム型のカラー画像形成装置であり、光走査装置16に、前記実施形態1から4のいずれかに記載の光走査装置を適用したものである。感光ドラム9a〜9dには、光が照射されると電荷が変化する感光体が表面を覆っている。この感光体の表面には、帯電ロール10a〜10dによって、静電気イオンが付着され、感光体は帯電する。現像ユニット11a〜11dの印字部には帯電トナーが付着する。転写ロール12a〜12dには、感光ドラム9a〜9d上に形成されたトナー像が転写される。
感光ドラム9a〜9d、帯電ロール10a〜10d、現像ユニット11a〜11d、転写ロール12a〜12dは、4つの画像形成ユニット13a〜13dとして構成されている。また、定着器14により転写されたトナーが用紙に定着される。15は給紙カセットである。
光走査装置16には、半導体レーザ、軸対称レンズ、シリンドリカルレンズで構成される光源ブロック17、ポリゴンミラー18、平面の折り返しミラー19、曲面ミラー20a〜20dを備えている。
4色(イエロ、マゼンタ、シアン、ブラック)の画像形成ユニット13a〜13dは、縦方向に配置されており、光走査装置16によって感光ドラム9a〜9d上に各色の画像が形成される。これら画像は、現像ユニット11a〜11dによって現像され、転写ロール12a〜12dによって給紙カセット15から搬送された用紙に各色ごと順に転写され、定着器14によって定着される。
本実施形態に係るカラー画像形成装置は、実施形態1から3のいずれかに記載の光走査装置を用いているので、小型、低コスト、高速、高解像度のカラー画像形成装置を実現することができる。
(実施の形態6)
図33は実施の形態6に係るカラー画像形成装置の基本構成図を示している。図33において、30a〜30dは光が照射されると電荷が変化する感光体が表面を覆っている感光ドラム、31a〜31dは感光体の表面に静電気イオンを付着し帯電する帯電ロール、32a〜32dは印字部に帯電トナーを付着させる現像ユニット、33は各色に対応した感光ドラム30a〜30d上に形成されたトナー像を一時的に転写する中間転写ベルト、34は中間転写ベルト33に形成されたトナー像を用紙へ転写する転写ロール、そして、35a〜35dは、感光ドラム30a〜30d、帯電ロール31a〜31d、現像ユニット32a〜32dからなる画像形成ユニット、36は、転写されたトナーを用紙に定着する定着器、37は給紙カセットである。また、38は実施形態1から4のいずれかに示した光走査装置、39は光源である半導体レーザ、軸対称レンズ、シリンドリカルレンズで構成される光源ブロック、40はポリゴンミラー、41は平面の折り返しミラー、42a〜42dは曲面ミラーである。
4色(イエロ、マゼンタ、シアン、ブラック)の画像形成ユニット35a〜35dを縦方向に配置し、光走査装置38によって感光ドラム30a〜30d上に各色の画像を形成し、現像ユニット32a〜32dによって現像され、中間転写ベルト33へ各色ごと順に転写され、転写ロール34によって給紙カセット37から搬送された用紙に転写され、定着器36によって定着される。
本図に示したカラー画像形成装置は、光源ブロック39が配置されている側を上側とすると、感光ドラム30a〜30dは、下側方向に順次配置されている。このため、感光ドラム30a〜30dは、下側に行くにつれて、光源ブロック39から遠ざかることになり、最も下側の感光ドラム30dの位置が、光源ブロック39から最も遠い位置になっている。
この構成によれば、光源ブロック39、ポリゴンミラー40を、曲面ミラー42a〜42dの上部の空間に配置できることになるので、装置全体の小型化を実現できる。すなわち、曲面ミラー42a〜42dの上部の空スペースを有効に利用できる。曲面ミラー42a〜42dの下側には、給紙カセット37が配置されるので、光源ブロック39、ポリゴンミラー40を配置するには、専用の空間を別途設ける必要がある。
また、感光ドラム30a〜30dへ向かう各光束の中心軸のうち、最も光源ブロック39から遠い位置にある中心軸と、感光ドラム30a〜30dのうち、最も光源ブロック39から遠い位置に配置された感光ドラム30dの走査面の中心と最も光源ブロック39に近い位置に配置された感光ドラム30aの被走査面の中心とを結ぶ線とのなす角をβidとすると、以下の式(16)の関係を満足することが好ましい。
Figure 2003054611
この構成によれば、角度βidが鈍角であるので、感光ドラム30a〜30dの配列方向を垂直方向から傾けることができ、装置の高さを低くすることができ、装置の小形化に有利である。また、図33に示したように、中間転写ベルト33から用紙への転写位置を最上部にすることができるので、転写が容易になる。
産業上の利用可能性
以上のように、本発明の光走査装置によれば、第2結像光学系と感光ドラムの間に折り返しミラーを必要とせずに、部品点数を減らし、低コストで小型化が可能で、良好な光学性能でかつ、各走査線の相対性能誤差が小さいので高解像度を実現している。
また、走査速度が等しいので光源の駆動周波数を同一とでき、回路の簡素化が可能となるとともに、光偏向器へ向かう各光束の主走査方向の収束度合いががほぼ等しいので、各光源と第一結像光学系の位置調整手段を同一にでき、調整コスト低減を実現できる。このため、本発明は、レーザビームプリンタ、レーザファクシミリ、又はデジタル複写機等のカラー画像形成装置に有用である。
【図面の簡単な説明】
図1は、本発明の一実施形態に係る光走査装置を副走査方向に平行な面で切った断面図。
図2Aは、実施例1の主走査方向像面湾曲。
図2Bは、実施例1の副走査方向像面湾曲。
図3Aは、実施例1のfθ誤差。
図3Bは、実施例1の走査線湾曲。
図4Aは、実施例2の主走査方向像面湾曲。
図4Bは、実施例2の副走査方向像面湾曲。
図5Aは、実施例2のfθ誤差。
図5Bは、実施例2の走査線湾曲。
図6Aは、実施例3の主走査方向像面湾曲。
図6Bは、実施例3の副走査方向像面湾曲。
図7Aは、実施例3のfθ誤差。
図7Bは、実施例3の走査線湾曲。
図8Aは、実施例4の主走査方向像面湾曲。
図8Bは、実施例4の副走査方向像面湾曲。
図9Aは、実施例4のfθ誤差。
図9Bは、実施例4の走査線湾曲。
図10Aは、実施例5の主走査方向像面湾曲。
図10Bは、実施例5の副走査方向像面湾曲。
図11Aは、実施例5のfθ誤差。
図11Bは、実施例5の走査線湾曲。
図12Aは、実施例6の主走査方向像面湾曲。
図12Bは、実施例6の副走査方向像面湾曲。
図13Aは、実施例6のfθ誤差。
図13Bは、実施例6の走査線湾曲。
図14Aは、実施例7の主走査方向像面湾曲。
図14Bは、実施例7の副走査方向像面湾曲。
図15Aは、実施例7のfθ誤差。
図15Bは、実施例7の走査線湾曲。
図16Aは、実施例8の主走査方向像面湾曲。
図16Bは、実施例8の副走査方向像面湾曲。
図17Aは、実施例8のfθ誤差。
図17Bは、実施例8の走査線湾曲。
図18Aは、実施例9の主走査方向像面湾曲。
図18Bは、実施例9の副走査方向像面湾曲。
図19Aは、実施例9のfθ誤差。
図19Bは、実施例9の走査線湾曲。
図20Aは、実施例10の主走査方向像面湾曲。
図20Bは、実施例10の副走査方向像面湾曲。
図21Aは、実施例10のfθ誤差。
図21Bは、実施例10の走査線湾曲。
図22は、実施形態4に係る光走査装置を副走査方向に平行な面で切った断面図。
図23は、実施形態4の別の例に係る光走査装置を副走査方向に平行な面で切った断面図。
図24Aは、実施例11の主走査方向像面湾曲。
図24Bは、実施例11の副走査方向像面湾曲。
図25Aは、実施例11のfθ誤差。
図25Bは、実施例11の走査線湾曲。
図26Aは、実施例12の主走査方向像面湾曲。
図26Bは、実施例12の副走査方向像面湾曲。
図27Aは、実施例12のfθ誤差。
図27Bは、実施例12の走査線湾曲。
図28Aは、実施例13の主走査方向像面湾曲。
図28Bは、実施例13の副走査方向像面湾曲。
図29Aは、実施例13のfθ誤差。
図29Bは、実施例13の走査線湾曲。
図30Aは、実施例14の主走査方向像面湾曲。
図30Bは、実施例14の副走査方向像面湾曲。
図31Aは、実施例14のfθ誤差。
図31Bは、実施例14の走査線湾曲。
図32は、本発明の実施形態5に係るカラー画像形成装置の概略断面図。
図33は、本発明の実施形態6に係るカラー画像形成装置の概略断面図。
本発明は、レーザビームプリンタ、レーザファクシミリ、又はデジタル複写機等のカラー画像形成装置に用いられる光走査装置に関する。
従来のカラー画像形成装置としては、例えば水平方向に延びるように配置された用紙搬送路に対して複数の光走査装置を配設し、用紙搬送路に沿って移動する用紙に各光走査装置から順次トナー像を転写させ、用紙上にカラー画像を形成する構成のタンデム型と称されるものが知られている。
タンデム型カラー画像形成装置に用いられる光走査装置としては、単一の光束を走査する従来の光走査装置を単に4つ用いるもの(特開2000−141759号公報)、単一の光偏向器と4組のレンズ系を用いたもの(特開2001−133717号公報)、及び単一の光偏向器と、4組の曲面ミラーとレンズを用いたもの(特開平10−148777号公報)が知られている。
しかしながら、前記のような従来の光走査装置は、いずれも部品点数が多く小型化が困難でありコストも高くなるという問題があった。また、複数のレンズ系を用いるので、各走査線の性能の均一化が困難であるという問題もあった。
本発明は、前記のような従来の問題を解決するものであり、小型化が可能で、良好な光学性能が得られる光走査装置及びこれを用いたカラー画像形成装置を提供することを目的とする。
前記目的を達成するために、本発明の第1の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しいことを特徴とする。
本発明の第2の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いがほぼ等しいことを特徴とする。
本発明の第3の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、
前記複数の曲面ミラーのうち、最も上の曲面ミラーの頂点と、最も下の曲面ミラーの頂点との間の距離をLm、前記複数の被走査面のうち、最も上の被走査面の中心と、最も下の被走査面の中心との間の距離をLi、前記偏向面と前記最も上の曲面ミラーの頂点との距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
0.25<(Lm/Li)/(D1/D2)<0.45
の関係を満足することを特徴とする。
本発明の第4の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面へ向かう各光束の中心軸のうち、最も上と最も下の中心軸のなす角をβr、前記複数の被走査面のうち、最も上の被走査面の中心と、最も下の被走査面の中心との間の距離をLi、前記偏向面と前記最も上の曲面ミラーの頂点との間の距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
1.0<(D1+D2)・tanβr/Li<1.6
の関係を満足することを特徴とする。
本発明の第5の光走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーのうち最も上の曲面ミラーの頂点と最も下の曲面ミラーの頂点とを結ぶ線と、前記複数の被走査面のうち最も上の被走査面の中心と最も下の被走査面の中心を結ぶ線とのなす角をΔβ、前記最も上の曲面ミラーの頂点における法線と前記偏向面からの光束とのなす角度をβ2、前記偏向面と前記最も上の曲面ミラーの頂点との間の距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
−1.8<Δβ/β2−0.2(D1/D2)<0.4
の関係を満足することを特徴とする。
本発明の第6の走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面へ向かう各光束の中心軸のうち、最も上と最も下の中心軸のなす角をβr、
前記XZ面と直交し前記複数の曲面ミラーの各頂点における法線を含む面を各曲面ミラーにおけるYZ面とし、
前記複数の曲面ミラーのうち、最も上の曲面ミラーの頂点におけるXZ断面曲率半径をRxH、YZ断面曲率半径をRyH、最も下の曲面ミラーの頂点におけるXZ断面曲率半径をRxL、YZ断面曲率半径をRyLとすると、
0.001<[1−RyH・RxL/RxH・RyL]/tanβr<0.012
の関係を満足することを特徴とする。
本発明の第7の走査装置は、複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、
前記複数の被走査面へ向かう各光束の中心軸のうち、最も前記光源から遠い位置にある中心軸と、前記複数の被走査面のうち、最も前記光源から遠い位置に配置された被走査面の中心と最も前記光源から近い位置に配置された被走査面の中心とを結ぶ線とのなす角をβidとすると、
55<βid≦150
の関係を満足することを特徴とする。
次に、本発明の第1のカラー画像形成装置は、前記本発明のいずれかの光走査装置を備えたカラー画像形成装置であって、
異なる色のトナーを現像する複数の現像器と、前記複数の現像器によって現像されたトナー像を転写材に転写する転写手段と、前記転写材に転写されたトナー像を定着する定着器とが、前記複数の被走査面に配置した複数の感光体のそれぞれに対応するように配置されていることを特徴とする。
本発明の第2のカラー画像形成装置は、55<βid≦50の関係を満足する前記光走査装置を備えたカラー画像形成装置であって、
異なる色のトナーを現像する複数の現像器と、前記複数の現像器によって現像されたトナー像を転写材に転写する転写手段と、前記転写材に転写されたトナー像を定着する定着器とが、前記複数の被走査面に配置した複数の感光体のそれぞれに対応するように配置されており、
前記光源が配置されている側を上側とすると、前記複数の被走査面は、下側方向に順次配置されており、前記複数の被走査面のうち、前記光源からも最も遠い位置にある被走査面が最も下側の走査面であることを特徴とする。
本発明の第1の光走査装置は、複数の被走査面を走査する複数の光束の走査速度がほぼ等しいので、複数の光源の駆動周波数を同一にでき、回路の簡素化が可能となる。
本発明の第2の光走査装置は、結像光学系から光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いがほぼ等しいので、各光源と第一結像光学系の位置調整手段を同一とできるので、調整コスト低減を実現できる。
本発明の第3の光走査装置は、
0.25<(Lm/Li)/(D1/D2)<0.45
の関係を満足するので、各反射面の間隔が小さくなり、光束の反射する有効領域が重なることを防止でき、主走査方向像面湾曲を2.5mmより小さくし、解像度400D.P.I.を実現する1/e2強度のビーム径60〜80μm以下を満足するのが容易になる。
本発明の第4の光走査装置は、
1.0<(D1+D2)・tanβr/Li<1.6
の関係を満足するので、主走査方向像面湾曲を2.5mmより小さくし、解像度400D.P.I.を実現する1/e2強度のビーム径60〜80μm以下を満足するのが容易になり、各反射面の間隔が小さくなり、光束の反射する有効領域が重なることを防止できる。
本発明の第5の光走査装置は、
−1.8<Δβ/β2−0.2(D1/D2)<0.4
の関係を満足するので、主走査方向像面湾曲を2.5mmより小さくし、解像度400D.P.I.を実現する1/e2強度のビーム径60〜80μm以下を満足するのが容易となる。
本発明の第6の光走査装置は、
0.001<[1−RyH・RxL/RxH・RyL]/tanβr<0.012
の関係を満足するので、主走査方向像面湾曲を2.5mmより小さくし、解像度400D.P.I.を実現する1/e2強度のビーム径60〜80μm以下を満足するのが容易になる。
本発明の第7の光走査装置は、
55<βid≦150
の関係を満足するので、光源から最も遠い曲面ミラーの反射領域が隣接する曲面ミラから被走査面に向かう光束を遮ること、及び光源から最も近い曲面ミラーの反射領域が隣接する曲面ミラーに向かう光束を遮ることを防止できる。このため、良好な光学性能を確保できるとともに、各走査線の相対性能誤差が小さくできるので、高解像度を実現することができる
前記本発明の第1、第2の光走査装置においては、前記複数の曲面ミラーで反射された各光束は、それぞれ対応する前記被走査面まで直進することが好ましい。前記のような光走査装置によれば、部品点数を減らすことができるので、部品コスト、組立調整コストの削減ができると同時に、各走査線の性能を均一化することができる。
また、前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面の中心は、ほぼ直線上に配置されていることが好ましい。前記のような光走査装置によれば、カラー画像形成装置に用いる場合に、複数の感光体、現像器、転写材搬送路の配置構成が容易となる。
また、前記光偏向器上に形成される前記各光束の線像は、ほぼ同じ位置に形成されることが好ましい。前記のような光走査装置によれば、光偏向器の薄型化が可能となり、また装置全体の小型化も実現できる。
また、前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーから前記複数の被走査面へ向かう各光束の中心軸は、いずれの2つも平行でなく、略扇状に広がっていることが好ましい。前記のような光走査装置によれば、光偏向器の小型化を図ることができる。
前記第3の光走査装置においては、前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いががほぼ等しいことが好ましい。前記のような光走査装置によれば、複数の光源の駆動周波数を同一にでき、回路の簡素化が可能となり、かつ各光源と第一結像光学系の位置調整手段を同一とできるので、調整コスト低減を実現できる。
前記第4の光走査装置においては、
1.2<(D1+D2)・tanβr/Li<1.6
の関係を満足することが好ましい。前記関係式において、下限を下回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e2強度のビーム径40〜60μm以下を満足するのが困難となる。上限を上回ると、結果的に各反射面の間隔が小さくなり、光束の反射する有効領域が重なり分離することが困難になる。
前記第5の光走査装置においては、
−1.4<Δβ/β2−0.2(D1/D2)<0
の関係を満足することが好ましい。前記関係式において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e2強度のビーム径40〜60μm以下を満足するのが困難となる。
また、−0.9<Δβ/β2−0.2(D1/D2)<−0.5
の関係を満足することが好ましい。前記関係式において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が0.5mm以上発生し、解像度1200D.P.I.を実現する1/e2強度のビーム径25〜40μm以下を満足するのが困難となる。
また、前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いががほぼ等しいことが好ましい。前記のような光走査装置によれば、複数の光源の駆動周波数を同一にでき、回路の簡素化が可能となり、かつ各光源と第一結像光学系の位置調整手段を同一とできるので、調整コスト低減を実現できる。
前記第6の光走査装置においては、
0.003<[1−RyH・RxL/RxH・RyL]/tanβr<0.07
の関係を満足することが好ましい。前記関係式において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e2強度のビーム径40〜60μm以下を満足するのが困難となる。
前記第7の光走査装置においては、前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いがほぼ等しく、
前記記βidは、
55<βid<100
の関係を満足することが好ましい。この構成によれば、主走査方向像面湾曲が2.5mmより小さくでき、解像度400D.P.Iを実現する1/e2強度のビーム径60〜80μm以下を満足するのが容易になる。また、被走査面の各被走査面を走査する光束の走査速度を等しくすれば、光源の駆動周波数を同一にでき、回路の簡素化が可能となる。また、光偏向器へ向かう各光束の主走査方向の収束度合いが異なることを許容すれば、各被走査面は比較的自由に配置することができるので、例えば各曲面ミラの間隔がある幅以上必要な場合や、複数の被走査面の配列方向を垂直方向から傾けて装置の高さを低くする場合に有効である。
また、前記各光走査装置においては、前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーのうち最も上の曲面ミラーの頂点と、最も下の曲面ミラーの頂点とを結ぶ線に対して、他の曲面ミラーの頂点が前記複数の被走査面と反対側に配置されていることが好ましい。前記のような光走査装置によれば、良好な性能を達成しながら、各走査線の性能、走査速度、第一結像光学系からの光束の収束度を均一化できる。
また、前記複数の曲面ミラーは、副走査方向断面形状が円弧であることが好ましい。前記のような光走査装置によれば、複数の曲面ミラーを比較的加工、計測が容易な形状とすることができる。
また、前記複数の曲面ミラーは、斜め入射に起因して生じる走査線曲がりを補正する形状であることが好ましい。
また、前記複数の曲面ミラーは、各頂点における法線を含み主走査方向に平行なYZ面に対して、非対称であることが好ましい。前記のような光走査装置によれば、斜め入射に起因して生じる走査線曲がりを補正することができる。
また、前記複数の曲面ミラーは、前記YZ面と曲面が交わる曲線である母線上にある頂点以外の各点の法線が、前記YZ面に含まれない、ねじれ形状であることが好ましい。前記のような、光走査装置によれば、各光学系を単純な構成にでき光束の斜め入射に起因して生じる光線収差を補正しつつ、しかも走査線曲がりを補正することができる。
また、前記曲面ミラーがねじれ形状である光走査装置においては、前記母線上の各点の法線と前記YZ面とのなす角度は、周辺ほど大きいことが好ましい。前記のような光走査装置によれば、斜め入射に起因して生じる走査線曲がりを補正することができる。
また、前記母線上の各点の法線が前記YZ面となす角度の方向は、前記曲面ミラーで反射される光束が前記偏向面からの入射光束に対してなす角度を正の方向とした場合、正の方向であることが好ましい。前記のような光走査装置によれば、斜め入射に起因して生じる走査線曲がりを補正することができる。
また、前記各光走査装置においては、前記複数の曲面ミラーは、頂点における主走査方向の曲率半径と副走査方向の曲率半径とが異なるアナモフィックミラーであることが好ましい。前記のような光走査装置によれば、主走査方向結像位置と、副走査方向結像位置を各々被走査面近傍とすることができる。
また、前記複数の曲面ミラーは、主走査方向、副走査方向ともに凹のミラー面であることが好ましい。前記のような光走査装置によれば、主走査方向結像位置と、副走査方向結像位置を各々被走査面近傍とすることができる。
また、前記複数の曲面ミラーは、副走査方向の屈折力が主走査方向における中心部と周辺部で変化しているミラー面であることが好ましい。前記のような光走査装置によれば、副走査方向像面湾曲を補正することができる。
また、前記複数の曲面ミラーは、副走査方向断面の曲率半径が主走査方向断面形状に依らないことが好ましい。前記のような光走査装置によれば、副走査方向像面湾曲を補正することができる。
また、前記結像光学系は、前記複数の光源部からの光束を主走査方向について収束光束とすることが好ましい。前記のような光走査装置によれば、主走査方向、副走査方向の各像面湾曲、fθ特性を良好な性能とすることができる。
また、前記複数の光源部の少なくとも一つは、波長可変光源と波長制御部とを具備することが好ましい。前記のような光走査装置によれば、スポットの大きさはほぼ波長に比例にするので、波長を制御すると感光ドラム上に結像するスポットの大きさを任意に制御することができ、しかも、第2結像光学系が反射ミラーのみで構成されるので色収差が全く発生しないため、fθ特性など他の性能を劣化することなく解像度を任意に変えることができる。
また、本発明のカラー画像形成装置においては、前記βidは、
90<βid≦150
の関係を満足することが好ましい。この構成によれば、角度βidが鈍角であるので、感光ドラム30a〜30dの配列方向を垂直方向から傾けることができ、装置の高さを低くすることができ、装置の小形化に有利である。また、図33に示したように、中間転写ベルト33から用紙への転写位置を最上部にすることができるので、転写が容易になる。
以下、本発明の一実施形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の一実施形態に係る光走査装置の基本構成図を示している。本図は、本実施形態に係る光走査装置を、ポリゴンミラー4の回転軸5と複数の曲面ミラー7a〜7dの頂点を含む面(以下、「XZ面」という。)で切断した断面図である。
図1において、光源である半導体レーザ1a〜1dからの各光束は、各半導体レーザ1a〜1dに対応する第1結像光学系を構成する軸対称レンズ2a〜2dを通過して、それぞれ緩い収束光となり、同じく第1結像光学系を構成するシリンドリカルレンズ3に入射する。軸対称レンズ2a〜2dは、主走査方向、副走査方向の双方に屈折力を持つレンズであるが、シリンドリカルレンズ3は、副走査方向にのみ屈折力を持つレンズであり、シリンドリカルレンズ3に入射した光束は、副走査方向に関してのみ収束される。
この収束光は、各焦線が重なるように、光偏向器であるポリゴンミラー4に斜めに入射し、偏向面4a上に線像を形成する。すなわち、偏向面4a上の線像は、ほぼ同じ位置に形成されることになり、ポリゴンミラー4の薄型化が可能となり、装置全体の小型化も実現できる。
ここで、水平面6はポリゴンミラー4の偏向面4aの中心における法線を含む面であり、かつ主走査方向(図1の紙面に直交する方向)に延びた面に平行な面である。前記の斜めに入射するとは、この水平面6に対して斜めに入射するという意味である。なお、水平面6は、図1では直線の図示であるが、この直線を含み、紙面に直交する方向に延びた面である。
次に、ポリゴンミラー4で偏向された各光束は、第2結像光学系である曲面ミラー7a〜7dに斜めに入射する。斜めに入射するとは、ポリゴンミラー4からの各光束が、曲面ミラー7a〜7dの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するという意味である。曲面ミラー7a〜7dによる反射光束は、被走査面8a〜8dに結像される。このような斜め入射により、複数の曲面ミラー7a〜7dは、副走査方向について異なる位置に配置されている。さらに、曲面ミラー7a〜7dは、水平面6を境界とすると、同じ側(半導体レーザ1a〜1dと反対側)に配置されている。
このことにより、ポリゴンミラー4からの反射光束がシリンドリカルレンズ3に戻らないことになる。さらに、主走査方向に関して斜め入射する必要がなくなるので、曲面ミラー7a〜7dの形状を、偏向面4aの法線を含み副走査方向に平行な面に関し面対称形状とすることができる。
ここで、本実施形態では、XZ面内において、曲面ミラー7a〜7dから複数の被走査面8a〜8dへ向かう各光束の中心軸はいずれの二つも平行でなく、略扇状に広がる方向である。すなわち、任意の2つの光束の中心軸についてみると、被走査面8a〜8d側に向かって広がっている。このことにより、本実施形態では、ポリゴンミラー4の小型化を図っている。すなわち、各中心軸を平行にした構成では、いずれの光学系も良好な性能を達成するためには、偏向面4aの焦線位置が大きく異なることになり、ポリゴンミラー4が大型化しコスト高となる。
また、本実施形態では、XZ面内において、各被走査面8a〜8dの中心は、等間隔に一直線上に配置されている。この構成により、カラー画像形成装置に用いる場合に、複数の感光体、現像器、及び転写材搬送路の配置構成が容易となる。
また、本実施形態では、曲面ミラーが光束折り曲げ手段の機能を果たすので、曲面ミラー7a〜7dと、被走査面との間に、光束折り曲げ手段を配置していない。すなわち、曲面ミラー7a〜7dで反射された各光束は、それぞれ対応する被走査面8a〜8dまで直進することになる。このことにより、部品点数を減らすことができるので、部品コスト、組立調整コストの削減ができるとともに、各走査線の性能を均一化することができる。
さらに、被走査面8a〜8d上を光束が走査される各走査速度が等しくなるように設計されている。これは、ポリゴンミラー4、曲面ミラー7a〜7d、及び被走査面8a〜8dの各配置に加え、曲面ミラー7a〜7dの最適化により実現できる。この構成により、光源の駆動周波数を同一とでき、回路の簡素化が可能となる。
本図の例では、曲面ミラー7a〜7dは、XZ面において、最も上の曲面ミラー7dの頂点と、最も下の曲面ミラー7aの頂点とを結ぶ線に対して、他の曲面ミラー7b、7cの頂点が被走査面8a〜8dと反対側に配置されている。この構成により、偏向面4aと各曲面ミラー7a〜7dの頂点までの間の距離の違いを小さくできるので、良好な性能を達成しながら、各走査線の性能、走査速度を均一化できる。また、後に説明する実施形態2、3では、良好な性能を達成しながら、各走査線の性能、第1結像光学系からの光束の収束度を均一化できる。
各曲面ミラー7a〜7dの形状は、主像面湾曲、副像面湾曲、及びfθ誤差を補正するように、走査方向断面の非円弧形状、各像高に対応した副走査方向の曲率半径が決められている。また、副走査方向断面形状は円弧としたので、加工、計測が容易となる。
さらに、斜め入射に起因して生じる走査線曲がりを補正する形状とし、走査線湾曲を補正するために各像高に対応した位置での面のねじり量が決められている。より具体的には、曲面ミラー7a〜7dは、(1)各頂点における法線を含み主走査方向に平行なYZ面に対して、非対称である。(2)前記YZ面と曲面が交わる曲線である母線上にある頂点以外の各点の法線が、前記YZ面に含まれない、ねじれ形状である。(3)前記母線上の各点の法線と前記YZ面とのなす角度は、周辺ほど大きい。(4)前記母線上の各点の法線が前記YZ面となす角度の方向は、曲面ミラー7a〜7dで反射される光束が偏向面4aからの入射光束に対してなす角度を正の方向とした場合、正の方向であるという構成(1)〜(4)を備えている。
また、曲面ミラー7a〜7dは、(5)頂点における主走査方向の曲率半径と副走査方向の曲率半径とが異なるアナモフィックミラーである。(6)主走査方向、副走査方向ともに凹のミラー面であるという構成(5)〜(6)を備えている。このことにより、主走査方向結像位置と、副走査方向結像位置を各々被走査面近傍とすることができる。
また、曲面ミラー7a〜7dは、(7)副走査方向の屈折力が主走査方向における中心部と周辺部で変化しているミラー面である。(8)副走査方向断面の曲率半径が主走査方向断面形状に依らないという構成(7)〜(8)を備えている。このことにより、副走査方向像面湾曲を補正することができる。
各曲面ミラーの面形状は、面の頂点を原点、副走査方向x軸、主走査方向y軸、頂点における法線をz軸とする直交座標系において、副走査方向座標がx(mm)、主走査方向座標がy(mm)の位置における頂点からのサグ量を入射光束の向かう方向を正とするz(mm)として以下の式(1)で示される。
Figure 2003054611
式(1)において、f(y)は母線上の形状である非円弧を示す式であり、以下の式(2)で表される。
Figure 2003054611
また、g(y)はy位置における副走査方向(x方向)の曲率半径、θ(y)はy位置におけるねじり量であり、それぞれ以下の式(3)、(4)で表される。
式(3) g(y)=RDx(1+BCy2+BDy4+BEy6
+BFy8+BGy10
式(4) θ(y)=ECy2+EDy4+EEy6
ここで、前記式(2)〜(4)において、RDy(mm)は頂点における主走査方向曲率半径、RDx(mm)は副走査方向曲率半径、kは母線形状を示す円錐定数である。また、AD、AE、AF、AGは母線形状を示す高次定数であり、BC、BD、BE、BF、BGは、y位置における副走査方向曲率半径を決める定数であり、EC、ED、EEはy位置におけるねじり量を決めるねじり定数である。
なお、曲面ミラー形状は、式(1)で表されるものに限るものではなく、同様の形状を表すことができれば他の式を用いてもよい。
また、前記の曲面ミラー形状に関する説明は、以下の実施形態2、3についても同様である。
(実施例1)
以下、本実施形態の実施例1を以下の表1に示す。
Figure 2003054611
表1において、a〜dは被走査面8a〜8dに対応している。また、β1(度)は各半導体レーザ1a〜1dからの光束の中心軸と水平面6とのなす角、β2(度)は各曲面ミラー7a〜7dの頂点における法線(図1の破線)と各光束の中心軸とのなす角、D1(mm)は偏向反射点と各曲面ミラー7a〜7dの頂点との間の距離、D2(mm)は各曲面ミラー7a〜7dの頂点と各被走査面8a〜8dの中心までの距離、rp(mm)はポリゴンミラー4の内接半径、Ymax(mm)は最大像高、α(度)は最大像高に対応したポリゴン回転角である。本実施例1では、被走査面間隔G(図1)は25mmである。
また、ポリゴンミラー4に向かう各光束の主走査方向の収束度を示すための値として、S(mm)を用いた。S(mm)は、後方に光学系が全く無い場合の主走査方向の結像位置と、偏向反射点との間の距離である。S(mm)は、光源へ向かう方向を正とした。このため、負の値であれば集束光であることになる。これら、表1の各記号に関する説明は、以下の表2〜10、12〜15についても同様である。
本実施例では、被走査面8a〜8d上を光束が走査される各走査速度が等しくなるように設計されているので、a〜dにおいて、ポリゴン回転角αは、いずれも10.754(度)で同じ値である。
図2、3に実施例1の測定結果を示しており、図2Aは主走査方向像面湾曲(CM)、図2Bは副走査方向像面湾曲(CS)、図3Aは誤差(fθ)、図4Bは走査線湾曲(BOW)を示す。各図の、縦軸Yは像高であり、線種a〜dは、被走査面8a〜8dに対応している。
fθ誤差(ΔY)は、走査中心近傍におけるポリゴンの単位回転角当たりの走査速度(感光ドラム面上で光束が走査される速度)をV(mm/度)、ポリゴン回転角をα(度)、像高をY(mm)としたときに、以下の式(5)で表される量である。
式(5)ΔY=Y−V×α
以上の図2に関する説明は、以下の図4、6、8、10、12、14、16、18、20、24、26、28、及び30についても同様であり、図3に関する説明は、以下の図5、7、9、11、13、15、17、19、25、27、29、及び31についても同様である。
図2、3から分かるように、実施例1は良好な光学性能であり、かつ各走査線の相対性能誤差が小さく、高解像度が実現できている。
また、走査速度が等しいので光源の駆動周波数を同一とでき、回路の簡素化が可能となる。また、表1に示したように、実施例1においては、Sの値はa〜dにおいてそれぞれ異なっており、光偏向器へ向かう各光束の主走査方向の収束度合いが異なることを許容したので、曲面ミラーは比較的自由に配置することができ、例えば各曲面ミラーの間隔をある幅以上必要な場合などに有効である。
(実施の形態2)
実施形態2に係る光走査装置の基本構成は、図1に示した実施の形態1と同様である。実施形態2は、軸対称レンズ2a〜2dによる各光束の収束度合いが等しくなるように設計配置されている点が、実施形態1と異なっている。
(実施例2)
以下、本実施形態の実施例2を以下の表2に示す。なお、本実施例の被走査面間隔G(図1)は25mmである。
Figure 2003054611
本実施例では、軸対称レンズ2a〜2dによる各光束の収束度合いが等しくなるように設計配置されているので、a〜dにおいて、距離sはいずれも−831.75で同じ値である。一方、各被走査面を走査する各光束の走査速度が異なることを許容しており、a〜dにおいて、ポリゴン回転角αはそれぞれ異なる値である。
図4、5に実施例2の測定結果を示している。図4、5から分かるように、実施例2は良好な光学性能であり、かつ各走査線の相対性能誤差が小さく、高解像度が実現できている。
また、光偏向器へ向かう各光束の主走査方向の収束度合いが等しいので、各光源と第一結像光学系の位置調整手段を同一とでき、調整コスト低減を実現できる。また、各被走査面を走査する各光束の走査速度が異なることを許容したので、曲面ミラーは比較的自由に配置することができ、例えば各曲面ミラーの間隔をある幅以上必要な場合などに有効である。
(実施の形態3)
実施形態3に係る光走査装置の基本構成は、図1に示した実施の形態1と同様である。本実施形態では、実施形態1と同様に、被走査面8a〜8d上を光束が走査される各走査速度が等しくなるように設計されている。このことに加えて、軸対称レンズ2a〜2dによる各光束の収束度合いが等しくなるように設計配置されている。
ここで、XZ面において、曲面ミラー7a〜7dのうち、最も上の曲面ミラー7dの頂点と、最も下の曲面ミラー7aの頂点との距離をLm、被走査面8a〜8dのうち最も上の被走査面8dの中心と、最も下の被走査面8aの中心との距離をLi、偏向面4aと最も上の曲面ミラー7dの頂点との距離をD1、最も上の曲面ミラー7dの頂点と最も上の被走査面8dの中心との距離をD2とすると、本実施形態は以下の式(6)を満足している。
式(6) 0.25<(Lm/Li)/(D1/D2)<0.45
式(6)において下限を下回ると、各反射面の間隔が小さくなり、光束の反射する有効領域が重なり分離することが困難になる。上限を上回ると、主走査方向像面湾曲が2.5mm以上発生し、解像度400D.P.Iを実現する1/e2強度のビーム径60〜80μm以下を満足するのが困難となる。
また、XZ面において、複数の被走査面8a〜8dへ向かう各光束の中心軸のうち、最も上の中心軸と最も下の中心軸とのなす角をβrとすると、本実施形態は以下の式(7)を満足している。
式(7)1.0<(D1+D2)・tanβr/Li<1.6
式(7)において、下限を下回ると、主走査方向像面湾曲が2.5mm以上発生し、解像度400D.P.I.を実現する1/e2強度のビーム径60〜80μm以下を満足するのが困難となる。上限を上回ると、結果的に各反射面の間隔が小さくなり、光束の反射する有効領域が重なり分離することが困難になる。
より高解像度化を達成するためには、以下の式(8)を満足し、主走査方向像面湾曲をより補正することが好ましい。
式(8)1.2<(D1+D2)・tanβr/Li<1.6
式(8)において、下限を下回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e2強度のビーム径40〜60μm以下を満足するのが困難となる。上限を上回ると、結果的に各反射面の間隔が小さくなり、光束の反射する有効領域が重なり分離することが困難になる。
また、XZ面において、曲面ミラー7a〜7dのうち、最も上の曲面ミラー7dの頂点と、最も下の曲面ミラー7aの頂点を結ぶ線と、被走査面8a〜8dのうち,最も上の被走査面8dの中心と、最も下の被走査面8aの中心を結ぶ線とのなす角をΔβ、最も上の曲面ミラー7dの頂点における法線が偏向面4aからの光束となす角度をβ2とすると、本実施形態は以下の式(9)を満足している。
式(9) −1.8<Δβ/β2−0.2(D1/D2)<0.4
式(9)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が2.5mm以上発生し、解像度400D.P.I.を実現する1/e2強度のビーム径60〜80μm以下を満足するのが困難となる。
より高解像度を達成するには、以下の式(10)を満足することが好ましい。
式(10)
−1.4<Δβ/β2−0.2(D1/D2)<0
式(10)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e2強度のビーム径40〜60μm以下を満足するのが困難となる。
さらに高解像度を達成するには以下の式(11)を満足することが好ましい。
式(11)
−0.9<Δβ/β2−0.2(D1/D2)<−0.5
式(11)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が0.5mm以上発生し、解像度1200D.P.I.を実現する1/e2強度のビーム径25〜40μm以下を満足するのが困難となる。
また、XZ面と直交し複数の曲面ミラー7a〜7dの各頂点における法線を含む面を各曲面ミラーにおけるYZ面とし、複数の曲面ミラーのうち、最も上の曲面ミラーの頂点におけるXZ断面曲率半径をRxH、YZ断面曲率半径をRyH、最も下の曲面ミラーの頂点におけるXZ断面曲率半径をRxL、YZ断面曲率半径をRyLとすると、本実施形態は、以下の式(12)を満足している。
式(12)
0.001<[1−RyH・RxL/RxH・RyL]/tanβr<0.012
式(12)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が2.5mm以上発生し、解像度400D.P.I.を実現する1/e2強度のビーム径60〜80μm以下を満足するのが困難となる。
さらに高解像度を達成するには以下の式(13)を満足することが好ましい。
式(13)
0.003<[1−RyH・RxL/RxH・RyL]/tanβr<0.007
式(13)において、下限を下回る、又は上限を上回ると、主走査方向像面湾曲が1.0mm以上発生し、解像度600D.P.I.を実現する1/e2強度のビーム径40〜60μm以下を満足するのが困難となる。
以下、本実施形態の実施例3〜10を以下の表3〜10に示す。なお、実施例8、9の被走査面間隔G(図1)は30mmであり、その他の実施例の被走査面間隔は25mmである。
る。
(実施例3)
Figure 2003054611
(実施例4)
Figure 2003054611
(実施例5)
Figure 2003054611
(実施例6)
Figure 2003054611
(実施例7)
Figure 2003054611
(実施例8)
Figure 2003054611
(実施例9)
Figure 2003054611
(実施例10)
Figure 2003054611
実施例3〜10は、いずれも前記式(6)、(7)、(9)、及び(12)を満足しており、実施例3〜8は、前記式(8)、(11)、及び(13)も満足している。各実施例の各式に相当する数値を以下の表11に示す。
Figure 2003054611
表11中、曲率半径条件式とあるのは、式(12)又は式(13)の式のことである。
図6、7に実施例3、図8、9に実施例4、図10、11に実施例5、図12、13に実施例6、図14、15に実施例7、図16、17に実施例8、図18、19に実施例9、図20、21に実施例10の測定結果を示している。
図6〜図21から分かるように、実施例3〜10のすべてについて、副走査方向像面湾曲、fθ誤差、及び走査線湾曲の特性は良好である。
また、実施例3〜8は、前記式(7)、式(9)、及び式(12)を満足しており、主走査方向像面湾曲も±1mm以内の良好な性能が得られた。
実施例9、10は、曲面ミラーの配置に制限がある場合の実施例であり、前記式(6)、式(7)、及び式(9)を満足している。実施例9、10の数値はこれら各式の上限又は下限に近いため、主走査方向像面湾曲が数値例3〜8と比較すると大きくなっている。
また、本実施の形態は、実施の形態1、2と比較して配置自由度は小さくなるが、走査速度が等しい(ポリゴン回転角αが等しい)ので光源の駆動周波数を同一とでき、回路の簡素化が可能となるとともに、光偏向器へ向かう各光束の主走査方向の収束度合いが等しい(距離Sが等しい)ので、各光源と第1結像光学系の位置調整手段を同一とでき、調整コスト低減を実現できる。
なお、本実施形態は、前記式(6)、(7)、(9)、及び(12)をすべて満足している実施例で説明したが、これら各式の少なくとも一つを満足する構成でもよい。
(実施の形態4)
実施形態4に係る光走査装置の基本構成は、図1に示した実施の形態1と同様である。実施形態4に係る光走査装置を副走査方向に平行な面で切った断面図を図22、23に示している。光走査装置の構成部品は、図1に示した実施の形態1と同様であるが、本実施形態は、各構成部品の配置位置に特徴がある。
具体的には、XZ面において、複数の被走査面8a〜8dへ向かう各光束の中心軸のうち最も半導体レーザ1a〜1dから遠い位置にある中心軸と、被走査面8a〜8dのうち光源1a〜1dから最も遠い位置にある被走査面8dの中心と最も半導体レーザ1a〜1dに近い位置にある被走査面8aの中心とを結ぶ線とのなす角をβid(度)とすると、以下の式(14)の関係を満足している。
式(14) 55<βid≦150
この関係を満足することにより、半導体レーザ1a〜1dから最も遠い曲面ミラー7dの反射領域が隣接する曲面ミラー7cから被走査面8cに向かう光束を遮ること、及び半導体レーザ1a〜1dから最も近い曲面ミラー7aの反射領域が隣接する曲面ミラー7bに向かう光束を遮ることを防止できる。このため、良好な光学性能を確保できるとともに、各走査線の相対性能誤差が小さくできるので、高解像度を実現することができる。
ここで、図22は、式(14)のβidが下限に近い構成を示している。本図の構成では、曲面ミラー7dの反射領域と曲面ミラー7cからの光束との間隔が狭くなっている。このため、βidが下限を下回ると、半導体レーザ1a〜1dから最も遠い曲面ミラー7dの反射領域が隣接する曲面ミラー7cから被走査面8cに向かう光束を遮ることになる。
一方、図23は、βidが上限に近い構成を示している。本図の構成では、曲面ミラー7aの反射領域と曲面ミラー7bへ向かう光束との間隔が狭くなっている。このため、βidが上限を上回ると、半導体レーザ1a〜1dから最も近い曲面ミラー7aの反射領域が隣接する曲面ミラー7bに向かう光束を遮ることになる。
また、被走査面8a〜8dの各被走査面を走査する光束の走査速度を等しくすれば、光源の駆動周波数を同一にでき、回路の簡素化が可能となる。
また、被走査面8a〜8dを走査する複数の光束の走査速度をほぼ等しくし、かつポリゴンミラー4へ向かう各光束の主走査方向の収束度合い又は発散度合いをほぼ等しくして、以下の式(15)を満足するようにしてもよい。
式(15) 55<βid<100
この構成によれば、主走査方向像面湾曲が2.5mmより小さくでき、解像度400D.P.Iを実現する1/e2強度のビーム径60〜80μm以下を満足するのが容易になる。
また、ポリゴンミラー4へ向かう各光束の主走査方向の収束度合いが異なることを許容すれば、各被走査面8a〜8dは比較的自由に配置することができるので、例えば各曲面ミラー7a〜7dの間隔がある幅以上必要な場合や、複数の被走査面(感光ドラム)の配列方向を垂直方向から傾けて装置の高さを低くする場合に有効である。
また、前記実施形態3のように、前記式(6)、(7)、(9)、及び(12)の各式の少なくとも一つを満足する構成としてもよい。
以下、本実施形態に係る実施例11〜14を、以下の表12〜15に示す。以下の各実施例においては、被走査面間隔Gは30mmである。
(実施例11)
Figure 2003054611
(実施例12)
Figure 2003054611
(実施例13)
Figure 2003054611
(実施例14)
Figure 2003054611
実施例11〜14のβidは式(14)の関係を満足している。図24、25に実施例11の測定結果、図26、27に実施例12の測定結果、図28、29に実施例13の測定結果、図30、31に実施例14の測定結果をそれぞれ示している。
なお、前記実施例1〜10に係る表1〜10についても、βidの値を示しており、実施例1〜10は、式(14)の関係を満足している。
また、実施例3〜10は、各被走査面に対応するs、αの値が等しく、βidは式(15)の関係を満足している。
(実施の形態5)
図32は、本発明の一実施形態に係るタンデム型のカラー画像形成装置であり、光走査装置16に、前記実施形態1から4のいずれかに記載の光走査装置を適用したものである。感光ドラム9a〜9dには、光が照射されると電荷が変化する感光体が表面を覆っている。この感光体の表面には、帯電ロール10a〜10dによって、静電気イオンが付着され、感光体は帯電する。現像ユニット11a〜11dの印字部には帯電トナーが付着する。転写ロール12a〜12dには、感光ドラム9a〜9d上に形成されたトナー像が転写される。
感光ドラム9a〜9d、帯電ロール10a〜10d、現像ユニット11a〜11d、転写ロール12a〜12dは、4つの画像形成ユニット13a〜13dとして構成されている。また、定着器14により転写されたトナーが用紙に定着される。15は給紙カセットである。
光走査装置16には、半導体レーザ、軸対称レンズ、シリンドリカルレンズで構成される光源ブロック17、ポリゴンミラー18、平面の折り返しミラー19、曲面ミラー20a〜20dを備えている。
4色(イエロ、マゼンタ、シアン、ブラック)の画像形成ユニット13a〜13dは、縦方向に配置されており、光走査装置16によって感光ドラム9a〜9d上に各色の画像が形成される。これら画像は、現像ユニット11a〜11dによって現像され、転写ロール12a〜12dによって給紙カセット15から搬送された用紙に各色ごと順に転写され、定着器14によって定着される。
本実施形態に係るカラー画像形成装置は、実施形態1から3のいずれかに記載の光走査装置を用いているので、小型、低コスト、高速、高解像度のカラー画像形成装置を実現することができる。
(実施の形態6)
図33は実施の形態6に係るカラー画像形成装置の基本構成図を示している。図33において、30a〜30dは光が照射されると電荷が変化する感光体が表面を覆っている感光ドラム、31a〜31dは感光体の表面に静電気イオンを付着し帯電する帯電ロール、32a〜32dは印字部に帯電トナーを付着させる現像ユニット、33は各色に対応した感光ドラム30a〜30d上に形成されたトナー像を一時的に転写する中間転写ベルト、34は中間転写ベルト33に形成されたトナー像を用紙へ転写する転写ロール、そして、35a〜35dは、感光ドラム30a〜30d、帯電ロール31a〜31d、現像ユニット32a〜32dからなる画像形成ユニット、36は、転写されたトナーを用紙に定着する定着器、37は給紙カセットである。また、38は実施形態1から4のいずれかに示した光走査装置、39は光源である半導体レーザ、軸対称レンズ、シリンドリカルレンズで構成される光源ブロック、40はポリゴンミラー、41は平面の折り返しミラー、42a〜42dは曲面ミラーである。
4色(イエロ、マゼンタ、シアン、ブラック)の画像形成ユニット35a〜35dを縦方向に配置し、光走査装置38によって感光ドラム30a〜30d上に各色の画像を形成し、現像ユニット32a〜32dによって現像され、中間転写ベルト33へ各色ごと順に転写され、転写ロール34によって給紙カセット37から搬送された用紙に転写され、定着器36によって定着される。
本図に示したカラー画像形成装置は、光源ブロック39が配置されている側を上側とすると、感光ドラム30a〜30dは、下側方向に順次配置されている。このため、感光ドラム30a〜30dは、下側に行くにつれて、光源ブロック39から遠ざかることになり、最も下側の感光ドラム30dの位置が、光源ブロック39から最も遠い位置になっている。
この構成によれば、光源ブロック39、ポリゴンミラー40を、曲面ミラー42a〜42dの上部の空間に配置できることになるので、装置全体の小型化を実現できる。すなわち、曲面ミラー42a〜42dの上部の空スペースを有効に利用できる。曲面ミラー42a〜42dの下側には、給紙カセット37が配置されるので、光源ブロック39、ポリゴンミラー40を配置するには、専用の空間を別途設ける必要がある。
また、感光ドラム30a〜30dへ向かう各光束の中心軸のうち、最も光源ブロック39から遠い位置にある中心軸と、感光ドラム30a〜30dのうち、最も光源ブロック39から遠い位置に配置された感光ドラム30dの走査面の中心と最も光源ブロック39に近い位置に配置された
感光ドラム30aの被走査面の中心とを結ぶ線とのなす角をβidとすると、以下の式(16)の関係を満足することが好ましい。
式(16) 90<βid≦150
この構成によれば、角度βidが鈍角であるので、感光ドラム30a〜30dの配列方向を垂直方向から傾けることができ、装置の高さを低くすることができ、装置の小形化に有利である。また、図33に示したように、中間転写ベルト33から用紙への転写位置を最上部にすることができるので、転写が容易になる。
以上のように、本発明の光走査装置によれば、第2結像光学系と感光ドラムの間に折り返しミラーを必要とせずに、部品点数を減らし、低コストで小型化が可能で、良好な光学性能でかつ、各走査線の相対性能誤差が小さいので高解像度を実現している。
また、走査速度が等しいので光源の駆動周波数を同一とでき、回路の簡素化が可能となるとともに、光偏向器へ向かう各光束の主走査方向の収束度合いががほぼ等しいので、各光源と第一結像光学系の位置調整手段を同一にでき、調整コスト低減を実現できる。このため、本発明は、レーザビームプリンタ、レーザファクシミリ、又はデジタル複写機等のカラー画像形成装置に有用である。
本発明の一実施形態に係る光走査装置を副走査方向に平行な面で切った断面図。 実施例1の主走査方向像面湾曲。 実施例1の副走査方向像面湾曲。 実施例1のfθ誤差。 実施例1の走査線湾曲。 実施例2の主走査方向像面湾曲。 実施例2の副走査方向像面湾曲。 実施例2のfθ誤差。 実施例2の走査線湾曲。 実施例3の主走査方向像面湾曲。 実施例3の副走査方向像面湾曲。 実施例3のfθ誤差。 実施例3の走査線湾曲。 実施例4の主走査方向像面湾曲。 実施例4の副走査方向像面湾曲。 実施例4のfθ誤差。 実施例4の走査線湾曲。 実施例5の主走査方向像面湾曲。 実施例5の副走査方向像面湾曲。 実施例5のfθ誤差。 実施例5の走査線湾曲。 実施例6の主走査方向像面湾曲。 実施例6の副走査方向像面湾曲。 実施例6のfθ誤差。 実施例6の走査線湾曲。 実施例7の主走査方向像面湾曲。 実施例7の副走査方向像面湾曲。 実施例7のfθ誤差。 実施例7の走査線湾曲。 実施例8の主走査方向像面湾曲。 実施例8の副走査方向像面湾曲。 実施例8のfθ誤差。 実施例8の走査線湾曲。 実施例9の主走査方向像面湾曲。 実施例9の副走査方向像面湾曲。 実施例9のfθ誤差。 実施例9の走査線湾曲。 実施例10の主走査方向像面湾曲。 実施例10の副走査方向像面湾曲。 実施例10のfθ誤差。 実施例10の走査線湾曲。 実施形態4に係る光走査装置を副走査方向に平行な面で切った断面図。 実施形態4の別の例に係る光走査装置を副走査方向に平行な面で切った断面図。 実施例11の主走査方向像面湾曲。 実施例11の副走査方向像面湾曲。 実施例11のfθ誤差。 実施例11の走査線湾曲。 実施例12の主走査方向像面湾曲。 実施例12の副走査方向像面湾曲。 実施例12のfθ誤差。 実施例12の走査線湾曲。 実施例13の主走査方向像面湾曲。 実施例13の副走査方向像面湾曲。 実施例13のfθ誤差。 実施例13の走査線湾曲。 実施例14の主走査方向像面湾曲。 実施例14の副走査方向像面湾曲。 実施例14のfθ誤差。 実施例14の走査線湾曲。 本発明の実施形態5に係るカラー画像形成装置の概略断面図。 本発明の実施形態6に係るカラー画像形成装置の概略断面図。

Claims (39)

  1. 複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
    前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
    前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
    前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
    前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しいことを特徴とする光走査装置。
  2. 前記複数の曲面ミラーで反射された各光束は、それぞれ対応する前記被走査面まで直進する請求項1に記載の光走査装置。
  3. 前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面の中心は、ほぼ直線上に配置されている請求項1に記載の光走査装置。
  4. 前記光偏向器上に形成される前記各光束の線像は、ほぼ同じ位置に形成される請求項1に記載の光走査装置。
  5. 前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーから前記複数の被走査面へ向かう各光束の中心軸は、いずれの2つも平行でなく、略扇状に広がっている請求項4に記載の光走査装置。
  6. 複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
    前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
    前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
    前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
    前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いがほぼ等しいことを特徴とする光走査装置。
  7. 前記複数の曲面ミラーで反射された各光束は、それぞれ対応する前記被走査面まで直進する請求項6に記載の光走査装置。
  8. 前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面の中心は、ほぼ直線上に配置されている請求項6に記載の光走査装置。
  9. 前記光偏向器上に形成される前記各光束の線像は、ほぼ同じ位置に形成される請求項6に記載の光走査装置。
  10. 前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーから前記複数の被走査面へ向かう各光束の中心軸は、いずれの2つも平行でなく、略扇状に広がっている請求項9に記載の光走査装置。
  11. 複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
    前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
    前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
    前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
    前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、
    前記複数の曲面ミラーのうち、最も上の曲面ミラーの頂点と、最も下の曲面ミラーの頂点との間の距離をLm、前記複数の被走査面のうち、最も上の被走査面の中心と、最も下の被走査面の中心との間の距離をLi、前記偏向面と前記最も上の曲面ミラーの頂点との距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
    Figure 2003054611
    の関係を満足することを特徴とする光走査装置。
  12. 前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いががほぼ等しい請求項11に記載の光走査装置。
  13. 複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
    前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
    前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
    前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
    前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面へ向かう各光束の中心軸のうち、最も上と最も下の中心軸のなす角をβr、前記複数の被走査面のうち、最も上の被走査面の中心と、最も下の被走査面の中心との間の距離をLi、前記偏向面と前記最も上の曲面ミラーの頂点との間の距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
    Figure 2003054611
    の関係を満足することを特徴とする光走査装置。
  14. 前記D1、D2、βr、及びLiが、
    Figure 2003054611
    の関係を満足する請求項13に記載の光走査装置。
  15. 前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いががほぼ等しい請求項13に記載の光走査装置。
  16. 複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
    前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
    前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
    前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
    前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーのうち最も上の曲面ミラーの頂点と最も下の曲面ミラーの頂点とを結ぶ線と、前記複数の被走査面のうち最も上の被走査面の中心と最も下の被走査面の中心を結ぶ線とのなす角をΔβ、前記最も上の曲面ミラーの頂点における法線と前記偏向面からの光束とのなす角度をβ2、前記偏向面と前記最も上の曲面ミラーの頂点との間の距離をD1、前記最も上の曲面ミラーの頂点と前記最も上の被走査面の中心との間の距離をD2とすると、
    Figure 2003054611
    の関係を満足することを特徴とする光走査装置。
  17. 前記Δβ、β2、D1、D2が、
    Figure 2003054611
    の関係を満足する請求項16に記載の光走査装置。
  18. 前記Δβ、β2、D1、D2が、
    Figure 2003054611
    の関係を満足する請求項16に記載の光走査装置。
  19. 前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いががほぼ等しい請求項16に記載の光走査装置。
  20. 複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
    前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
    前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
    前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
    前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の被走査面へ向かう各光束の中心軸のうち、最も上と最も下の中心軸のなす角をβr、
    前記XZ面と直交し前記複数の曲面ミラーの各頂点における法線を含む面を各曲面ミラーにおけるYZ面とし、
    前記複数の曲面ミラーのうち、最も上の曲面ミラーの頂点におけるXZ断面曲率半径をRxH、YZ断面曲率半径をRyH、最も下の曲面ミラーの頂点におけるXZ断面曲率半径をRxL、YZ断面曲率半径をRyLとすると、
    Figure 2003054611
    の関係を満足することを特徴とする光走査装置。
  21. 前記βr、RxH、RyH、RxL、及びRyLが、
    Figure 2003054611
    の関係を満足する請求項20に記載の光走査装置。
  22. 複数の光源と、前記複数の光源から発せられた各光束を走査する単一の光偏向器と、前記複数の光源と前記光偏向器との間に配置され、前記光偏向器の同一偏向面上に前記各光束の線像を形成する結像光学系と、前記複数の光源に対応する複数の被走査面と前記光偏向器との間に配置され、前記複数の被走査面にそれぞれ対応する複数の曲面ミラーとを備え、
    前記結像光学系からの各光束は、前記光偏向器の前記偏向面中心における法線を含み主走査方向に平行な面に対して斜めに入射し、
    前記光偏向器からの各光束は、前記複数の曲面ミラーの各頂点における法線を含み主走査方向に平行な面に対して斜めに入射するように、前記複数の曲面ミラーは、副走査方向について異なる位置に配置され、
    前記偏向面中心における法線を含み主走査方向に平行な面を境界とすると、前記複数の曲面ミラーは、前記境界によって分割された空間のうち、同じ空間に配置されており、
    前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、
    前記複数の被走査面へ向かう各光束の中心軸のうち、最も前記光源から遠い位置にある中心軸と、前記複数の被走査面のうち、最も前記光源から遠い位置に配置された被走査面の中心と最も前記光源から近い位置に配置された被走査面の中心とを結ぶ線とのなす角をβidとすると、
    Figure 2003054611
    の関係を満足することを特徴とする光走査装置。
  23. 前記複数の被走査面を走査する複数の光束の走査速度がほぼ等しく、かつ前記結像光学系から前記光偏向器へ向かう各光束の主走査方向の収束度合い又は発散度合いがほぼ等しく、
    前記記βidは、
    Figure 2003054611
    の関係を満足する請求項22に記載の光走査装置。
  24. 前記光偏向器の回転軸と前記複数の曲面ミラーの頂点を含むXZ面において、前記複数の曲面ミラーのうち最も上の曲面ミラーの頂点と、最も下の曲面ミラーの頂点とを結ぶ線に対して、他の曲面ミラーの頂点が前記複数の被走査面と反対側に配置されている請求項1から23のいずれかに記載の光走査装置。
  25. 前記複数の曲面ミラーは、副走査方向断面形状が円弧である請求項1から23のいずれかに記載の光走査装置。
  26. 前記複数の曲面ミラーは、斜め入射に起因して生じる走査線曲がりを補正する形状である請求項1から23のいずれかに記載の光走査装置。
  27. 前記複数の曲面ミラーは、各頂点における法線を含み主走査方向に平行なYZ面に対して、非対称である請求項1から23のいずれかに記載の光走査装置。
  28. 前記複数の曲面ミラーは、前記YZ面と曲面が交わる曲線である母線上にある頂点以外の各点の法線が、前記YZ面に含まれない、ねじれ形状である請求項1から23のいずれかに記載の光走査装置。
  29. 前記母線上の各点の法線と前記YZ面とのなす角度は、周辺ほど大きい請求項28に記載の光走査装置。
  30. 前記母線上の各点の法線が前記YZ面となす角度の方向は、前記曲面ミラーで反射される光束が前記偏向面からの入射光束に対してなす角度を正の方向とした場合、正の方向である請求項28に記載の光走査装置。
  31. 前記複数の曲面ミラーは、頂点における主走査方向の曲率半径と副走査方向の曲率半径とが異なるアナモフィックミラーである請求項1から23のいずれかに記載の光走査装置。
  32. 前記複数の曲面ミラーは、主走査方向、副走査方向ともに凹のミラー面である請求項1から23のいずれかに記載の光走査装置。
  33. 前記複数の曲面ミラーは、副走査方向の屈折力が主走査方向における中心部と周辺部で変化しているミラー面である請求項1から23のいずれかに記載の光走査装置。
  34. 前記複数の曲面ミラーは、副走査方向断面の曲率半径が主走査方向断面形状に依らない請求項1から23のいずれかに記載の光走査装置。
  35. 前記結像光学系は、前記複数の光源部からの光束を主走査方向について収束光束とする請求項1から23のいずれかに記載の光走査装置。
  36. 前記複数の光源部の少なくとも一つは、波長可変光源と波長制御部とを具備する請求項1から23のいずれかに記載の光走査装置。
  37. 請求項1から23のいずれかに記載の光走査装置を備えたカラー画像形成装置であって、
    異なる色のトナーを現像する複数の現像器と、前記複数の現像器によって現像されたトナー像を転写材に転写する転写手段と、前記転写材に転写されたトナー像を定着する定着器とが、前記複数の被走査面に配置した複数の感光体のそれぞれに対応するように配置されていることを特徴とするカラー画像形成装置。
  38. 請求項22に記載の光走査装置を備えたカラー画像形成装置であって、
    異なる色のトナーを現像する複数の現像器と、前記複数の現像器によって現像されたトナー像を転写材に転写する転写手段と、前記転写材に転写されたトナー像を定着する定着器とが、前記複数の被走査面に配置した複数の感光体のそれぞれに対応するように配置されており、
    前記光源が配置されている側を上側とすると、前記複数の被走査面は、下側方向に順次配置されており、前記複数の被走査面のうち、前記光源からも最も遠い位置にある被走査面が最も下側の走査面であることを特徴とするカラー画像形成装置。
  39. 前記記βidは、
    Figure 2003054611
    の関係を満足する請求項38に記載のカラー画像形成装置。
JP2003555262A 2001-12-21 2002-12-19 光走査装置及びカラー画像形成装置 Pending JPWO2003054611A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001390290 2001-12-21
JP2001390290 2001-12-21
PCT/JP2002/013278 WO2003054611A1 (fr) 2001-12-21 2002-12-19 Dispositif de balayage optique et dispositif de formation d'images couleur

Publications (1)

Publication Number Publication Date
JPWO2003054611A1 true JPWO2003054611A1 (ja) 2005-04-28

Family

ID=19188364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003555262A Pending JPWO2003054611A1 (ja) 2001-12-21 2002-12-19 光走査装置及びカラー画像形成装置

Country Status (7)

Country Link
US (1) US7173645B2 (ja)
EP (1) EP1457805A4 (ja)
JP (1) JPWO2003054611A1 (ja)
KR (1) KR100585427B1 (ja)
CN (1) CN1571937A (ja)
TW (1) TWI252329B (ja)
WO (1) WO2003054611A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063790A1 (ja) * 2003-01-16 2004-07-29 Matsushita Electric Industrial Co., Ltd. 光走査装置およびカラー画像形成装置
WO2005083493A1 (ja) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. 照明光源及びそれを用いた2次元画像表示装置
JP2006184750A (ja) * 2004-12-28 2006-07-13 Kyocera Mita Corp 画像形成装置
US7715063B2 (en) * 2005-03-31 2010-05-11 Xerox Corporation CVT integrated illuminator
KR100683189B1 (ko) * 2005-06-28 2007-02-15 삼성전자주식회사 레이저 스캐닝 장치
US7327507B2 (en) * 2005-08-02 2008-02-05 Kabushiki Kaisha Toshiba Optical beam scanning device having two sets of fθ mirrors where the mirror base and mirror face have differing coefficients of linear expansion
JP2008224965A (ja) * 2007-03-12 2008-09-25 Ricoh Co Ltd 光走査装置、および画像形成装置
US8081363B2 (en) * 2007-08-23 2011-12-20 Kabushiki Kaisha Toshiba Optical beam scanning apparatus and image forming apparatus
US8220933B1 (en) 2008-11-03 2012-07-17 National Semiconductor Corporation Method and apparatus for data transfer using an optical link in a projector system
JP6528308B2 (ja) * 2015-02-05 2019-06-12 国立大学法人神戸大学 形状評価方法および形状評価装置
JP2018207140A (ja) * 2017-05-30 2018-12-27 セイコーエプソン株式会社 スキャナーおよびスキャンデータの生産方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561717A (en) * 1980-05-16 1985-12-31 Hitachi, Ltd. Optical system for information processing
US5457550A (en) * 1991-02-27 1995-10-10 Ricoh Company, Ltd. Optical scanner unit having recursive optical system
JP3235733B2 (ja) * 1991-11-18 2001-12-04 ミノルタ株式会社 レーザビーム走査光学系
JP3124741B2 (ja) 1996-07-22 2001-01-15 株式会社リコー 多色画像形成装置の光走査装置
JP3604852B2 (ja) * 1996-12-28 2004-12-22 キヤノン株式会社 走査光学装置及びレーザービームプリンタ
JP3646960B2 (ja) * 1997-11-18 2005-05-11 松下電器産業株式会社 光走査装置
JPH11237568A (ja) 1998-02-23 1999-08-31 Toshiba Corp 露光装置
JP2000141759A (ja) 1998-11-12 2000-05-23 Canon Inc カラー画像形成装置
JP3831560B2 (ja) * 1999-11-01 2006-10-11 ペンタックス株式会社 走査光学装置
EP1217415A3 (en) 2000-12-21 2003-10-22 Xerox Corporation Multiple beam raster output scanning system

Also Published As

Publication number Publication date
CN1571937A (zh) 2005-01-26
KR100585427B1 (ko) 2006-06-07
US7173645B2 (en) 2007-02-06
WO2003054611A1 (fr) 2003-07-03
EP1457805A1 (en) 2004-09-15
TW200301365A (en) 2003-07-01
EP1457805A4 (en) 2007-03-28
TWI252329B (en) 2006-04-01
KR20040044961A (ko) 2004-05-31
US20040252178A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US7126737B2 (en) Optical scanning apparatus and image forming apparatus
JP4717285B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP4970864B2 (ja) 光走査装置、及びその光走査装置を備える光書込装置、並びにその光走査装置またはその光書込装置を備える画像形成装置
EP1267196A2 (en) Light scanning device and image forming apparatus using single-lens imaging system
JPWO2003054611A1 (ja) 光走査装置及びカラー画像形成装置
US7791632B2 (en) Optical scanning device and image forming apparatus using the same
JP2004070109A (ja) 光走査装置及びそれを用いた画像形成装置
JP2004070108A (ja) 光走査装置及びそれを用いた画像形成装置
US20080273896A1 (en) Image forming apparatus and image forming method
JP3349122B2 (ja) 光走査装置
JP4593886B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP5943610B2 (ja) 光走査装置及びそれを備える画像形成装置
JP3646960B2 (ja) 光走査装置
JP2007316115A (ja) 走査光学装置及びそれを用いた画像形成装置
JP2005173221A (ja) 光走査装置及び画像形成装置
JP2008170487A (ja) 光走査装置及びそれを用いた画像形成装置
JP4715418B2 (ja) 光走査装置及び画像形成装置
US7012723B2 (en) Optical scanning device and color image forming apparatus
JP6355329B2 (ja) 光走査装置の製造方法
JP2012145702A (ja) 光走査装置および画像形成装置
JP4378416B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP2018151502A (ja) 光走査装置及び画像形成装置
JP2004117390A (ja) 光走査装置および画像形成装置
JP2004198894A (ja) 走査光学装置及びそれを用いた画像形成装置
JP2003228013A (ja) マルチビーム光走査光学系及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090813