JPWO2003032541A1 - Ofdm受信方法及びofdm受信装置 - Google Patents

Ofdm受信方法及びofdm受信装置 Download PDF

Info

Publication number
JPWO2003032541A1
JPWO2003032541A1 JP2003535380A JP2003535380A JPWO2003032541A1 JP WO2003032541 A1 JPWO2003032541 A1 JP WO2003032541A1 JP 2003535380 A JP2003535380 A JP 2003535380A JP 2003535380 A JP2003535380 A JP 2003535380A JP WO2003032541 A1 JPWO2003032541 A1 JP WO2003032541A1
Authority
JP
Japan
Prior art keywords
fft
fft calculation
start position
ofdm
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003535380A
Other languages
English (en)
Other versions
JP4640754B2 (ja
Inventor
長谷川 剛
剛 長谷川
隆 伊達木
隆 伊達木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2003032541A1 publication Critical patent/JPWO2003032541A1/ja
Application granted granted Critical
Publication of JP4640754B2 publication Critical patent/JP4640754B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • H04L5/026Multiplexing of multicarrier modulation signals using code division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

直交周波数分割多重(OFDM)された信号を受信し、該受信信号にFFT演算を施して送信データを復調するOFDM受信装置において、受信信号から一定数のサンプルデータよりなるOFDMシンボルを取り出し、該OFDMシンボルのFFT演算開始位置をマルチパスの状況に基づいてシフトし、該シフトされた位置からFFT演算を行う。たとえば、受信信号に含まれる既知データのFFT演算結果よりチャネル推定値を求め、該チャネル推定値にIFFT演算を施してマルチパスの遅延プロファイルを求め、該遅延プロファイルのうち電力が最大となるパスの位置に基づいてFFT演算開始位置を決定する。

Description

技術分野
本発明はOFDM受信方法及びOFDM受信装置に係わり、特に、直交周波数分割多重(OFDM)された信号を受信し、該受信信号にFFT演算を施して送信データを復調するOFDM受信装置及びOFDM受信方法に関する。
背景技術
次世代の移動通信方式として、マルチキャリア変調方式が注目されている。マルチキャリア変調方式を用いることにより、広帯域の高速データ伝送を実現することができるだけでなく、各サブキャリアを狭帯域にすることにより、周波数選択性フェージングの影響を低減することができる。また、直交周波数分割多重(Orthogonal Frequency Division Multiplexing)方式を用いることにより、周波数利用効率を高めることができるだけでなく、OFDMシンボル毎にガードインターバルを設けることにより、符号間干渉の影響をなくすことができる。
図12(a)はマルチキャリア伝送方式の説明図であり、シリアルパラレル変換部1は直列データを並列データに変換し、各ローパスフィルタ2a〜2dを介して直交変調部3a〜3dに入力する。図では4シンボルよりなる並列データに変換する。各シンボルは同相成分(In−Phase成分)及び直交成分(Quadrature成分)を含んでいる。直交変調部3a〜3dは各シンボルを図12(b)に示す周波数f〜fを有するサブキャリアで直交変調し、合成部4は各直交変調信号を合成し、図示しない送信部は合成信号を高周波数信号にアップコンバージョンして送信する。マルチキャリア伝送方式では、サブキャリア間の直交性を満足するために、スペクトルが重ならないように(b)に示すように周波数が配置される。
直交周波数分割多重方式では、マルチキャリア伝送のn番目のサブキャリアによって伝送される変調波帯域信号と(n+1)番目のサブキャリアによって伝送される変調波帯域信号の相関が零となるように周波数間隔が配置される。図13(a)は直交周波数分割多重方式による送信装置の構成図であり、シリアルパラレル変換部5は直列データを複数のシンボル(I+jQ,複素数)よりなる並列データに変換する。IDFT(Inverse Discrete Fourier Transform)6は各シンボルを図13(b)に示す間隔の周波数を有するサブキャリアで伝送するものとして周波数データに逆離散フーリエ変換を施して時間データに変換し、実数部、虚数部をローパスフィルタ7a,7bを通して直交変調部8に入力する。直交変調部8は入力データに直交変調を施し、図示しない送信部で変調信号を高周波数信号にアップコンバージョンして送信する。直交周波数分割多重方式によれば、図13(b)に示す周波数配置が可能となり周波数利用効率を向上することができる。
また、近年ではマルチキャリアCDMA方式(MC−CDMA)の研究が盛んに行われており、次世代の広帯域移動通信方式への適用が検討されている。MC−CDMAでは、送信データのシリアルパラレル変換および周波数領域の直交コード拡散を行うことにより、複数のサブキャリアに分割する。周波数選択性フェージングにより、周波数間隔が離れたサブキャリアは、それぞれ独立したフェージングを受ける。したがって,コード拡散したサブキャリア信号を、周波数インタリーブにより周波数軸上に分散させることにより、逆拡散した信号は周波数ダイバーシチ利得を得ることができる。
さらに,OFDMとMC−CDMAを組み合わせた,直交周波数・符号分割多元接続(OFDM/CDMA)方式の検討も行われている。これは,MC−CDMAによりサブキャリアに分割された信号を,直交周波数多重することにより周波数利用効率を高めた方式である。
CDMA(Code Division Multiple Access)方式は、図14に示すようにビット周期Tの送信データにチップ周期Tcの拡散コードC〜C、を乗算器9で乗算し、乗算結果を変調して送信する。上記の乗算により、図15に示すように2/Tの狭帯域信号NMを2/Tcの広帯域信号DSに拡散変調して伝送することができる。T/Tcは拡散率であり、図の例では拡散コードの符号長Nである。このCDMA伝送方式によれば、干渉信号を1/Nに減少できる利点がある。
マルチキャリアCDMA方式の原理は、図16に示すように1つの送信データDよりN個のコピーデータを作成し、拡散コード(直交コード)を構成する各コードC〜Cを個別に前記各コピーデータに乗算器9〜9で乗算し、各乗算結果DC〜DCを図17(a)に示す周波数f〜fのN個のサブキャリアでマルチキャリア伝送する。以上は1シンボルデータをマルチキャリア伝送する場合であるが、実際には後述するように、送信データをMシンボルの並列データに変換し、M個の各シンボルに図16に示す処理を施し、M×N個の全乗算結果を周波数f〜fNMのM×N個のサブキャリアを用いてマルチキャリア伝送する。又、図17(b)に示す周波数配置のサブキャリアを用いることにより直交周波数・符号分割多元接続方式が実現できる。
図18はMC−CDMAの送信側(基地局)の構成図である。データ変調部11はユーザの送信データを変調し,同相成分と直交成分を有する複素ベースバンド信号(シンボル)に変換する。時間多重部12は複数シンボルのパイロットを送信データの前に時間多重する。シリアルパラレル変換部13は入力データをMシンボルの並列データに変換し、各シンボルはそれぞれN分岐して拡散部14に入力する。拡散部14はM個の乗算部14〜14を備えており、各乗算部14〜14はそれぞれ直交コードを構成するコード(符号)C,C,..Cを個別に分岐シンボルに乗算して出力する。この結果、N×M個のサブキャリアでマルチキャリア伝送するためのサブキャリア信号S〜SMNが拡散部14より出力する。すなわち、拡散部14は直交コードを各パラレル系列毎のシンボルに乗算することにより周波数方向に拡散する。拡散において使用する直交コードとしてユーザ毎に異なるコード(ウォルシュコード)C,C,..Cが示されているが、実際には局識別コード(ゴールドコード)G〜GMNが更にサブキャリア信号S〜SMNに乗算される。
コード多重部15は以上のようにして生成されたサブキャリア信号を、同様な方法で生成された他ユーザのサブキャリア信号とコード多重する。すなわち、コード多重部15は、サブキャリア毎に該サブキャリア応じた複数ユーザのサブキャリア信号を合成して出力する。周波数インタリーブ部16は、周波数ダイバーシチ利得を得るために、コード多重されたサブキャリア信号を周波数インタリーブにより並び替えて周波数軸上に分散する。IFFT(Inverse Fast Fourier Transform)部17は並列入力するサブキャリア信号にIFFT(逆フーリエ変換)処理を施して時間軸上のOFDM信号(実数部信号、虚数部信号)に変換する。ガードインターバル挿入部18は、OFDM信号にガードインターバルを挿入し、直交変調部はガードインターバルが挿入されたOFDM信号に直交変調を施し、無線送信部20は無線周波数にアップコンバージョンすると共に高周波増幅してアンテナより送信する。
サブキャリアの総数は、(拡散率N)×(パラレル系列数M)である。又、伝搬路ではサブキャリア毎に異なるフェージングを受けるため、パイロットを全てのサブキャリアに時間多重し、受信側ではサブキャリア毎にフェージングの補償を行えるようにする。ここで時間多重されるパイロットは、全てのユーザがチャネル推定に使用する共通パイロットである。
図19はシリアルパラレル変換説明図であり、1フレームの送信データの前方に共通パイロットPが時間多重されている。尚、後述するように共通パイロットPはフレーム内で分散することもできる。1フレーム当たり共通パイロットがたとえば4×Mシンボル、送信データが28×Mシンボルであるとすると、シリアルパラレル変換部13より並列データとして最初の4回までパイロットのMシンボルが出力し、以後、並列データとして28回送信データのMシンボルが出力する。この結果、1フレーム期間においてパイロットを全てのサブキャリアに時間多重して4回伝送でき、受信側で該パイロットを用いてはサブキャリア毎にチャネルを推定してチャネル補償(フェージング補償)が可能となる。
図20はガードインターバル挿入説明図である。ガードインターバル挿入とは、M×N個のサブキャリアサンプル(=1OFDMシンボル)に応じたIFFT出力信号を1単位とするとき、その先頭部に末尾部分をコピーすることである。ガードインターバルGIを挿入することによりマルチパスによる符号間干渉の影響を無くすことが可能になる。
図21はMC−CDMAの受信側の構成図である。無線受信部21は受信したマルチキャリア信号に周波数変換処理を施し、直交復調部は受信信号に直交復調処理を施す。タイミング同期・ガードインターバル除去部23は、受信信号のタイミング同期を取った後、該受信信号よりガードインターバルGIを除去して FFT(Fast Fourier Transform)部24に入力する。FFT部24はFFTウインドウタイミングでFFT演算処理を行って時間領域の信号をN×M個のサブキャリア信号(サブキャリアサンプル)に変換し、周波数デインタリーブ部25は送信側と逆の並び替えを行い、サブキャリアの周波数順に並べて出力する。
チャネル補償部26はデインタリーブ後、送信側で時間多重されたパイロットを用いてサブキャリア毎にチャネル推定を行い、フェージングの補償を行う。図では1つのサブキャリアについてのみチャネル推定部26aが示されているが、サブキャリア毎にこのチャネル推定部が設けられている。すなわち、チャネル推定部26aは、パイロット信号を用いてフェージングによる位相の影響exp(jφ)を推定し、乗算器26bは送信シンボルのサブキャリア信号にexp(−jφ)を乗算してフェージングを補償する。
逆拡散部27はM個の乗算部27〜27を備えており、乗算部27はユーザに割り当てられた直交コード(ウォルシュコード)を構成する各コードC,C,...Cを個別にN個のサブキャリアに乗算して出力し、他の乗算部も同様の演算処理を行う。この結果、フェージング補償された信号は、各ユーザに割り当てられた拡散コードにより逆拡散され、この逆拡散によりコード多重された信号の中から所望ユーザの信号が抽出される。尚、実際には、ウォルシュコードが乗算される前に局識別コード(ゴールドコード)が乗算される。
合成部28〜28はそれぞれ乗算部27〜27から出力するN個の乗算結果を加算してM個のシンボルよりなる並列データを作成し、パラレルシリアル変換部29は該並列データを直列データに変換し、データ復調部30は送信データを復調する。
図22はチャネル推定部の動作説明図であり、32OFDMシンボルで構成された1フレーム中に4つのパイロットシンボル(4OFDMパイロットシンボル)が分散して多重されている。1つのパイロットシンボルはサブキャリア数(M×N個、例えば1024個)のサブキャリアサンプルで構成されているから、受信側でパイロット受信タイミングにおいてFFT出力を監視することによりサブキャリア毎のチャネル(振幅特性、位相特性)の推定が可能になる。すなわち、チャネル推定は、図22のPG1で示するように周波数方向における8個のサブキャリアサンプルを時間方向に4つ集めてトータル32サブキャリアサンプルで1グループを構成し、該グループにおけるFFT出力の平均値を中央のサブキャリアのチャネル値(受信パイロット信号の振幅、位相)とし、このチャネル値と既知のチャネル値(既知パイロット信号の振幅、位相)とを比較して該サブキャリアのチャネルを推定する。又、次のサブキャリアのチャネル推定値は、PG2で示すように周波数方向に1サブキャリア分ずらした8個のサブキャリアサンプルを時間方向に4つ集めてトータル32サブキャリアサンプルで1グループを構成し、該グループPG2における平均値を用いて同様に算出する。以上のようにチャネル値を平均して求める理由は、それぞれのシンボルにノイズが乗っているため、平均することで該ノイズの影響を無くしてS/N比を向上するためである。周波数が近いサブキャリアではあれば、殆どチャネル値は同じであるから、平均しても何ら問題はない。
図23は2パス(2波)の場合のFFTウインドウタイミング説明図であり、Aは直接波、Bは遅延波(反射波)である。FFTウインドウを直接波のOFDMシンボルD1の先頭より1OFDM期間幅Waに決定すれば、このFFTウインドウ幅Waにおいて直接波のOFDMシンボルD1は、遅延波のガードインターバルGI1とD1シンボル部分とに重なるだけであるため、マルチパス遅延波によるシンボル間干渉(Inter−Symbol Interference,ISI)を受けない。しかし、FFTウインドウを遅延波のOFDMシンボルD1の先頭より1OFDM期間幅Wbに決定すれば、遅延波のD1シンボル部分と直接波のD2シンボルのガードインターバルGI2が重なりシンボル間干渉ISIを受ける。FFTウインドウはシンボル間干渉ISIを受けないように決定すべきであり、最大遅延波がガードインターバル期間以上遅延しなければFFTウインドウを図23のWaとなるように決定すればシンボル間干渉ISIを受けない。
ところで、関数f(t)のフーリエ変換をF[f(t)]と表現すれば、時間遅れ関数f(t−t0)のフーリエ変換はexp(−2πjft0)F[f(t)]となる。exp(−2πjft0)=cos2πft0−jsin2πft0を考慮すると、時間遅れ関数f(t−t0)のフーリエ変換は、周波数の変化に応じて回転する。例えば、図24(a)に示すように時刻t=0におけるインパルスδ(t)のフーリエ変換は任意の周波数で1(=一定)となるが、δ(t−t0)のフーリエ変換は図24(b)に示すようにI−jQ複素平面への投影が単位円になるように周波数に応じて回転する。
以上より、図25に示すように直接波の受信電力が大きく、遅延波の受信電力が小さい場合、直接波のOFDMシンボルを基準にしてFFTウインドウを決定してFFT演算すると、FFT変換の平均値が大きく、回転振幅が小さくなる。このように変動部分が小さいため、32個のサブキャリアサンプルを平均することにより正しいチャネル値を得ることができ、正しくチャネルを推定することができる。又、シンボル間干渉ISIを受けない。
しかし、図26に示すように直接波の受信電力が小さく、遅延波の受信電力が大きい場合、直接波のOFDMシンボルを基準にしてFFTウインドウを決定してFFT演算すると、FFT変換の平均値が小さく、回転振幅が大きくなる。このように変動部分が大きくなると、32個のサブキャリアサンプルを平均することにより得られるチャネル値に誤差が含まれ、正しくチャネルを推定することができなくなる。
本発明の目的は、遅延波の受信電力が直接波の受信電力より大きい場合であっても、チャネル推定を正しく行えるようにすることである。
本発明の別の目的は、遅延波の受信電力が直接波の受信電力より大きい場合であっても、シンボル間干渉ISIを受けないようにし、かつ、チャネル推定を正しく行えるようにすることである。
発明の開示
直交周波数分割多重(OFDM)された信号を受信し、該受信信号にFFT演算を施して送信データを復調するOFDM受信装置において、受信信号から一定数のサンプルデータよりなるOFDMシンボルを取り出し、該OFDMシンボルのFFT演算開始位置をマルチパスの状況に基づいてシフトし、該シフトされた位置からFFT演算を行う。このマルチパスの状況は遅延プロファイルから取得することができる。すなわち、受信信号に含まれる既知データ(参照信号)のFFT演算結果よりチャネル推定値を求め、該チャネル推定値にIFFT演算を施してマルチパスの遅延プロファイルを求め、該遅延プロファイルに基づいてマルチパス状況を取得する。たとえば、前記マルチパスにおける遅延プロファイルのうち電力が最大となるパスを求め、該パスの位置に基づいて前記FFT演算開始位置を決定する。
以上により、遅延波の受信電力が直接波の受信電力より大きい場合であっても、シンボル間干渉ISIを受けないようにでき、しかも、チャネル推定を正しく行うことができる。
また、前記マルチパスにおける各パスの遅延プロファイルと設定レベルを比較し、設定レベル以下の場合には遅延プロファイルを0として前記FFT演算開始位置を決定する。このようにすれば、ノイズ成分を除去して精度の高いチャネル推定ができる。
また、前記マルチパスにおける各パスの遅延プロファイルを所定時間遅延させ、該所定時間遅延した遅延プロファイルに基づいて仮のFFT演算開始位置を求め、該仮のFFT演算開始位置を前記所定時間進めることにより本来のFFT演算開始位置を算出する。このようにすれば、FFTウインドウタイミング前に到来するパスがあっても正確にFFT演算開始位置を決定することができる。
発明を実施するための最良の形態
(A)本発明の原理
図1(a)に示すように、直接波Aの受信電力が小さく、遅延波Bの受信電力が大きい場合、直接波のOFDMシンボルD0を基準にしてFFTウインドウWaを決定するとシンボル間干渉ISIはないが、図1(b)に示すようにFFT変換の平均値が小さく、回転振幅が大きくなり、チャネル推定を正しく行えなくなる。一方、遅延波のOFDMシンボルD0を基準にしてFFTウインドウWbを決定すると図1(c)に示すようにFFT変換の平均値が大きく、回転振幅が小さくなるが、シンボル間干渉ISIが発生する。
そこで、本発明では、直接波のOFDMシンボルD0の先頭(時刻Ta)を基準にして入力データ列より1OFDMシンボルを取り込み、遅延波のOFDMシンボルD0の先頭(時刻Tb)をFFT演算開始位置とする。具体的には、時刻Ta〜Tb間のデータを後にシフトしてFFT演算を実行する。すなわち、図1(d)に示すように、Ta〜Tb間の直接波部分D01及び遅延波部分GI0′を最後尾にシフトし、シフト後の1OFDMシンボルに対して先頭よりFFT演算を実行する。最後尾にシフトしてもデータの連続性は維持されるから何ら問題は生じない。以上のようにすれば、シンボル間干渉ISIをなくせ、かつ、FFT変換の平均値を大きく、回転振幅を小さくでき、チャネル推定を正しく行うことができるようになる。
以上では、遅延波の受信電力が大きいとした場合であるが、直接波の受信電力が大きい場合もある。このため、上記時刻Tbは受信電力が最大となる波(直接波または遅延波)のOFDMシンボルの先頭時刻であり、この先頭時刻はチャネル推定値をIFFTして得られる遅延プロファイルより決定することができる。
又、前述のようにシフトしてFFT演算を行うには、時刻Taのタイミングで入力データ列より1OFDMシンボルを取り込んでバッファに記憶し、時刻Tbに応じたバッファ記憶位置から順にデータを読み出してFFT演算部に入力し、バッファの最後まで読み出せば、以後、バッファの先頭から時刻Tbに応じたバッファ記憶位置まで読み出してFFT演算部に入力することにより行う。
(B)OFDM受信装置
(a)全体の構成
図2は本発明のOFDM受信装置の要部構成図、図3はOFDM受信装置の一部詳細図である。タイミング同期/OFDMシンボル取り出し部 51は、直接波のOFDMシンボルの先頭タイミングTa(図1参照)を検出し、該タイミングに基づいてガードインターバルを含まない1OFDMシンボルを取り出して出力する。このタイミング同期/OFDMシンボル取出部51は図21におけるタイミング同期/ガードインターバル除去部23に相当する部分である。
FFT演算位置シフト部52は、後述する遅延ブロファイルに基づいて受信電力が最大となる波の直接波からの遅延時間(Tb−Ta)(実際にはFFTウインドウ開始タイミングからの遅延時間)を決定し、タイミング同期/OFDMシンボル取出部51で取り出したOFDMシンボルに対するFFT演算開始位置を(Tb−Ta)分ずらすと共に、先頭の(Tb−Ta)部分を最後尾にシフトする。
FFT演算部53はFFT演算位置シフト部52から入力するOFDMシンボルデータ(時間領域の信号)にFFT演算処理を施し、サブキャリア数Nの信号SC〜SCN−1(周波数領域の信号)に変換する。チャネル推定部54は図22で説明した方法によりサブキャリア毎にチャネルを推定し、チャネル推定値C〜CN−1を出力する。チャネル補償部55の乗算部55〜55N−1はそれぞれ、サブキャリア毎のチャネル推定値C〜CN−1をFFT演算部53から出力するN個のサブキャリア信号SC〜SCN−1に乗算してチャネル補償(フェージング補償)を施し、これらチャネル補償されたN個のサブキャリア信号を図示しない後段の逆拡散部に入力する。
IFFT演算部56はチャネル推定部54から出力するサブキャリア数Nのチャネル推定値C〜CN−1にIFFT(Inverse Fast Fourier Transform)演算を施し、図4(a)に示す1シンボル期間当たり N個のサンプルからなる遅延プロファイルを出力する。各サンプルは直接波、遅延波の各波の強さを示し、FFTウインドウ位置(=0)から最大遅延時間Mを越える遅延プロファイルの各サンプル値は設定レベル以下の小さな値になる。尚、FFTウインドウタイミング(=0)より前に到来する波に応じたサンプル値は図4(b)に示すように遅延プロファイルの後尾に現れる。
(b)タイミング同期/OFDMシンボル取り出し部
タイミング同期/OFDMシンボル取り出し部51において、AD変換部51aは図示しない直交復調部から出力するベースバンド信号(複素数のI成分、Q成分)をディジタルデータに変換し、FFTウインドウタイミングリカバリ部51bは相関演算により直接波のガードインターバルの先頭位置を検出してOFDMシンボル切り出し部51cに入力する。OFDMシンボル切り出し部51cは、ガードインターバルの先頭位置よりガードインターバル期間が経過したタイミングTaで1OFDMシンボルデータを入力データ列より取り出し、FFT演算位置シフト部52に入力する。
図5はFFTウインドウタイミングリカバリ部51bの構成図、図6はFFTウインドウタイミングリカバリ部の動作説明図である。ガードインターバルGIは、図6(a)に示すようにサンプル数N個の1OFDMシンボルの先頭部にサンプル数N個の末尾部分をコピーして作成しているから、1OFDMシンボル前の受信信号と現受信信号との相関を演算することにより図6(b)に示すようにガードインターバルGI部分で相関値が最大となり、最大となる時刻tよりFFTウインドウタイミングを検出できる。すなわち、相関演算部61の遅延部61aは、受信信号を1OFDMシンボル(サンプル数N)分遅延し、共役複素数演算部61bは遅延部61aで遅延した受信信号の複素共役を演算し、乗算部61cは共役複素数演算部61bから出力する1OFDMシンボル前の受信信号の複素共役と現受信信号とを乗算し、乗算結果(相関値)を出力する。
シフトレジスタ62はガードインターバルのサンプル数N分の長さを有し、最新のN摘の乗算結果(相関値)を記憶し、加算部63はN個の相関値を加算して出力する。ガードインターバル期間において1OFDMシンボル前の受信信号と現受信信号(I+jQ)は理想的には同じであるから、ガードインターバル期間では乗算部61cよりI+Qが得られる。従って、シフトレジスタに62に記憶されるガードインターバル期間の相関値の数が多くなるに従って図6(b)に示すように加算値が漸増し、ガードインターバル期間における N個の全ての相関値がシフトレジスタ62に記憶されたとき加算値は最大となり、以後、シフトレジスタに62に記憶されるガードインターバル期間の相関値の数が減少してゆき加算値は漸減する。従って、加算値のピークタイミングミングを検出することにより直接波のガードインターバルGIの先頭タイミングを検出できる。しかし、マルチパス環境では加算部63の加算値は、図6(c)に示すように直接波の加算値CR1(一点鎖線)と遅延波の加算値CR2(点線)の和CRとなり、ピーク位置は直接波のピーク位置からΔt分ずれる。
ピークタイミング検出部64は加算値のピーク位置を検出し、該ピーク位置tをガードインターバルの先頭位置としてOFDMシンボル切り出し部51cに入力する。
OFDMシンボル切り出し部51cは、ガードインターバルの先頭位置よりガードインターバル期間が経過してから1OFDMシンボルデータを入力データ列より取り出し、FFT演算位置シフト部52に入力する。
(c)FFT演算位置シフト部
バッファメモリ52aはOFDMシンボル切り出し部51cから入力する1OFDMシンボル分のN個のサンプルを記憶する。シフトタイミング検出部52bはIFFT演算部56から入力する遅延プロファイルより受信電力が最大となる波の直接波(FFTウインドウ位置)からの遅れ時間をサンプル数で換算したシフト量S(図4参照)として求める。タイミングシフト部52cは、タイミング同期/OFDMシンボル取出部51で取り出したOFDMシンボルに対するFFT演算開始位置を上記Sサンプル分ずらすと共に、OFDMシンボルの先頭Sサンプル分を最後尾にシフトする。具体的には、タイミングシフト部52cはバッファメモリ52aのj番目に読み出すデータのアドレスiを次式、
Figure 2003032541
により求め、このアドレスiよりデータを読み出してFFT演算部53に入力する。ただし、バッファメモリ52aにはOFDMシンボル長と同じN個の複素データxが蓄えられ、i=0,…,(N−1)であり、S=シフト量である。又、modはモジュロ演算を現し、(j+S)をNで割った時の余りに相当する。
すなわち、タイミングシフト部52cはバッファメモリ52aからの読み出し時、jを0から(N−1)まで変化させながら、式(1)で計算したアドレスiのサンプルデータxを順次読み出す。これにより、Sサンプル分シフトさせたサンプルデータをFFT演算部53に入力し、かつ、先頭Sサンプル分のデータを最後尾にシフトすることができる。
(d)動作
以上より、タイミング同期/OFDMシンボル取り出し部51は、FFTウインドウタイミング、理想的には直接波のOFDMシンボルの先頭時刻を基準にして、入力データ列よりNサンプルで構成された1OFDMシンボルを取り出してFFT演算位置シフト部52に入力する。このOFDMシンボルを用いてFFT演算することによりシンボル間干渉ISIの発生を防止できる。
FFT演算位置シフト部52は、入力されたNサンプル分の1OFDMシンボルデータをバッファメモリ52aに格納すると共に、IFFT演算部56から入力する遅延プロファイルに基づいてFFTウインドウタイミングから受信電力最大の波までの遅延時間をサンプル数で換算したシフト量Sを求め、(1)式が示すバッファメモリ52aのアドレスiから順次サンプルデータを読み出してFFT演算部53に入力する。FFT演算部53はFFT演算位置シフト部52から入力するSサンプル分シフトしたOFDMシンボルデータにFFT演算処理を施し、サブキャリア数Nの信号SC〜SCN−1を出力する。Sサンプル分シフトさせることにより、FFT変換の回転変動分を小さくできる。
チャネル推定部54はサブキャリア毎にチャネルを推定し、チャネル補償部55はサブキャリア毎のチャネル推定値C〜CN−1をFFT演算部53から出力するN個のサブキャリア信号SC〜SCN−1に乗算してチャネル補償を施す。又、IFFT演算部56はチャネル推定部54から出力するサブキャリア数Nのチャネル推定値C〜CN−1にIFFT演算を施し、遅延プロファイルを出力する。
以後、上記動作をOFDMシンボル毎に行うことにより、シンボル間干渉ISIの発生を防止でき、且つ、FFT出力の回転変動部の振幅を小さくでき、正確にチャネルを推定することが可能になる。
(C)シフトタイミング検出部の実施例
図7はFFT演算位置シフト部52におけるシフトタイミング検出部52bの各種実施例説明図である。尚、以下の説明において、sは求めるシフト量、Nはサブキャリア数、cはi番目のサブキャリアのチャネル推定値(複素数値)、pはチャネル推定値cをIFFTして得られる遅延プロファイル(複素数値)であり、i=0,…,(N−1)である。
(a)最大電力に基づいた算出法
図7(a)は電力|pを最大にするiをシフト量sとする実施例である。
電力計算部71は遅延プロファイルの各サンプル値pの電力|pを計算し、最大電力検出部72はN個のサンプルp(i=0,…,(N−1))の電力のうち最大電力pを検出し、シフト量決定部73は該最大電力pを示すサンプル位置sをシフト量として決定する。すなわち、任意のpに対して|p≧|pとなるシフト量sを求める。
(b)電力重み付けに基づいた算出法
図7(b)は電力|pで重み付け平均したiをシフト量とする実施例であり、次式
Figure 2003032541
で求まるsをシフト量とする。すなわち、電力計算部71は遅延プロファイルの各サンプル値pの電力|pを計算し、第1演算部74aは(2)式の分子Pを算出する。分子Pは電力|pで重み付けしたiの合計値である。又、第2演算部74bは(2)式の分母P、すなわち電力の総和を演算し、シフト量決定部75はP/Pにより電力|pで重み付けしたiの重み付け平均を演算し、得られた平均値をシフト量sとして出力する。ただし、このままではsは実数となるので、シフト量決定部75は四捨五入や切捨てなどにより整数に丸める。
(c)振幅重み付けに基づいた算出法
図7(c)は振幅|p|で重み付け平均したiをシフト量とする実施例であり、次式
Figure 2003032541
で求まるsをシフト量とする。すなわち、絶対値化部76は遅延プロファイルの各サンプル値pの振幅|p|を計算し、第1演算部77aは(3)式の分子Aを算出する。分子Aは振幅|p|で重み付けしたiの合計値である。又、第2演算部77bは(3)式の分母A、すなわち振幅の総和を演算し、シフト量決定部78はA/Aにより振幅|p|で重み付けしたiの重み付け平均を演算し、得られた平均値をシフト量sとして出力する。ただし、このままではsは実数となるので、シフト量決定部78は四捨五入や切捨てなどにより整数に丸める。
(d)重み付け関数を用いた重み付け平均に基づいた算出法
図7(d)はpを引数とする重み付け関数f()で重み付け平均したiをシフト量とする実施例であり、次式
Figure 2003032541
で求まるsをシフト量とする。すなわち、重み付け関数算出部79は重み付け関数値f(p)を算出し、第1演算部80aは(4)式の分子Fを算出する。分子Fは重み付け関数値f(p)で重み付けしたiの合計値である。又、第2演算部80bは(4)式の分母F、すなわち重み付け関数値f(p)の総和を演算し、シフト量決定部81はF/Fにより重み付け関数値f(p)で重み付けしたiの重み付け平均を演算し、得られた平均値をシフト量sとして出力する。ただし、このままではsは実数となるので、シフト量決定部81は四捨五入や切捨てなどにより整数に丸める。
この一般化した方式は、以下の(5),(6)式のように重み付け関数f()を定めると上記(a)の最大電力に基づいた算出法と同じになる。
Figure 2003032541
また、以下の(7)式のように重み付け関数f()を定めると上記(b)の電力重み付けに基づいた算出法と同じになる。
Figure 2003032541
更に、以下の(8)式のように重み付け関数f()を定めると上記(c)の振幅重み付けに基づいた算出法と同じになる。
Figure 2003032541
(e)足きりによるシフト量の算出法
遅延プロファイル(複素数値)pは足切りをしてからシフト量の検出に使用する。このようにすれば雑音を除去でき、シフト量の計算精度を向上できる。図8は足きり部91を備えたシフトタイミング検出部の構成図であり、図7(a)〜(d)のいずれかのシフトタイミング検出部92の前段に足きり部91を設けた構成になっている。足きり部91は適当なしきい値Tを決め、Tよりも小さければq=0、大きければq=pとする。すなわち、
Figure 2003032541
にしたがってqを決定し、シフトタイミング検出部92はこのqを用いて上記(a)〜(d)と同じ操作をしてシフト量sを求める。
足切りレベルTの決定法は各種考えられるが、例として、次式
Figure 2003032541
に従って、|pの平均値の4倍を足切りレベルTとする。あるいは、次式
Figure 2003032541
にしたがって、|pの最大値の4分の1を足切りレベルTとする。図9は図8の構成に加えて足きりレベル決定部93を備えたシフトタイミング検出部の構成図であり、足きりレベル決定部93は(11)または(12)式に従って足切りレベルTを決定して足きり部91に入力する。足きり部91はしきい値Tよりも小さければq=0、大きければq=pとし、シフトタイミング検出部92はこのqiを用いて上記(a)〜(d)と同じ操作をしてシフト量sを求める。
(f)足きりの変形例
足切り方式における(9),(10)式を以下のように、
Figure 2003032541
変形し、得られたqを用いて次式
Figure 2003032541
に従ってシフト量sを求める。このように変形して足切りすると、マルチパスの単純な平均遅延時間(シフト量)が求まる。例えば2パスの場合において、それぞれの遅延プロファイルのタイミングをtとtとすると、変形方式によればパスの大小関係に関わらず、2パスの丁度まん中のタイミング(t+t)/2がパスの平均遅延時間(シフト量s)として得られる。
(g)遅延プロファイルのシフト操作
FFTウインドウタイミングよりも前にパスが存在すると、すなわち、FFTウインドウタイミングよりも前に到来する波が存在すると、該パスに応じた遅延プロファイルは図4(b)に示すように後尾に現れる。かかる場合、正しい位置に遅延プロファイルが存在しないため、正確にシフト量を検出することができなくなる。図10に従って説明する。例えば図10(a)に示すような2パスのとき、FFTウインドウタイミングの開始タイミングWが2つのパスA,Bのちょうど中間に有った場合、パスA,Bの遅延プロファイルP,Pは図10(b)の実線位置に現れる。このため、重み付けによりシフト量sを求めるとsは図10(b)の様に遅延プロファイル範囲の中央付近になる。所望のシフト量sは0付近なので、これは好ましくない。そこで、図10(c)に示すように、予めspだけパスA,Bの遅延プロファイルP,PをシフトさせてP′,P′としてからsを求め、その後で、s=s−sとして元に戻すことで正確なシフト量sを求める。
図10は遅延プロファイルをシフトする手段を備えたシフトタイミング検出部の構成図である。遅延プロファイルシフト部95は遅延プロファイルp(i=0,…,(N−1))をsだけ次式
=p
Figure 2003032541
によりシフトしてqとし、しかる後、図7(a)〜(d)及び図8〜図9のいずれかのシフトタイミング検出部92は、このqを用いて仮のシフト量sを求める。仮のシフト量sが求まった後、シフト量補正部96は次式
Figure 2003032541
によりシフト量sからspを減じて本来のsを算出して出力する。シフト量sは遅延プロファイルの広がり(最大遅延時間)よりも十分に大きければよいので、カードインターバル長の2倍程度でよいと思われる。
以上本発明によれば、シンボル間干渉ISIをなくせ、かつ、FFT変換の平均値を大きく、回転振幅を小さくでき、チャネル推定を正しく行うことができる。
【図面の簡単な説明】
図1は本発明の原理説明図である。
図2は本発明のOFDM受信装置の要部構成図である。
図3はOFDM受信装置の一部詳細図である。
図4は遅延プロファイル説明図である。
図5はFFTウインドウタイミングリカバリ部の構成図である。
図6はFFTウインドウタイミングリカバリ部の動作説明図である。
図7はFFT演算位置シフト部におけるシフトタイミング検出部の各種実施例である。
図8は足きり部を備えたシフトタイミング検出部の構成図である。
図9は図8の構成に加えて足きりレベル決定部を備えたシフトタイミング検出部の構成図である。
図10はシフト操作が必要な理由説明図である。
図11は遅延プロファイルをシフトする手段を備えたシフトタイミング検出部の構成図である。
図12は従来のマルチキャリア伝送方式の説明図である。
図13は従来の直交周波数分割多重方式の説明図である。
図14はCDMAのコード拡散変調説明図である。
図15はCDMAにおける帯域の拡散説明図である。
図16はマルチキャリアCDMA方式の原理説明図である。
図17はサブキャリア配置説明図である。
図18は従来のMC−CDMAの送信側の構成図である。
図19はシリアルパラレル変換説明図である。
図20はガードインターバル説明図である。
図21は従来のMC−CDMAの受信側の構成図である。
図22はチャネル推定部の動作説明図である。
図23は2パス(2波)の場合のFFTウインドウタイミング説明図である。
図24はフーリエ変換説明図である。
図25は直接波の受信電力が大きく、遅延波の受信電力が小さい場合におけるFFT変換説明図である。
図26は直接波の受信電力が小さく、遅延波の受信電力が大きい場合におけるFFT変換説明図である。

Claims (17)

  1. 直交周波数分割多重(OFDM)された信号を受信し、該受信信号にFFT演算を施して送信データを復調するOFDM受信方法において、
    受信信号から一定数のサンプルデータよりなるOFDMシンボルを取り出し、
    該OFDMシンボルのFFT演算開始位置をマルチパスの状況に基づいてシフトし、
    該シフトされた位置からFFT演算を行う、
    ことを特徴とするOFDM受信方法。
  2. 受信信号と1OFDMシンボル時間前の受信信号との相関を演算し、得られた相関値に基づいてFFTウインドウタイミングを決定し、
    該FFTウインドウタイミングに基づいて前記OFDMシンボルを受信信号より取り出す、
    ことを特徴とする請求項1記載のOFDM受信方法。
  3. 一定数のサンプルデータよりなるOFDMシンボルをバッファメモリに格納し、
    前記シフトされたFFT演算開始位置に応じたバッファメモリのアドレスからサンプルデータを順番に読み出してFFT演算部に入力し、バッファの終わりまで読み出した時は、以後、バッファの先頭よりサンプルデータを読み出してFFT演算部に入力することによりFFT演算開始位置をシフトする、
    ことを特徴とする請求項1または2記載のOFDM受信方法。
  4. 受信信号に含まれる既知データのFFT演算結果よりチャネル推定値を求め、
    該チャネル推定値にIFFT演算を施してマルチパスの遅延プロファイルを求め、
    該遅延プロファイルを用いて前記マルチパスの状況を取得する、
    ことを特徴とする請求項1乃至3記載のOFDM受信方法。
  5. 前記マルチパスにおける遅延プロファイルのうち電力が最大となるパスの位置に基づいて前記FFT演算開始位置を決定する、
    ことを特徴とする請求項4記載のOFDM受信方法。
  6. 各パスの遅延プロファイルの電力を用いて各パスの位置を重み付けし、重み付け平均して得られる位置に基づいて前記FFT演算開始位置を決定する、
    ことを特徴とする請求項4記載のOFDM受信方法。
  7. 各パスの遅延プロファイルの振幅を用いて各パスの位置を重み付けし、重み付け平均して得られる位置に基づいて前記FFT演算開始位置を決定する、
    ことを特徴とする請求項4記載のOFDM受信方法。
  8. 遅延プロファイル値を変数とする重み付け関数を用いて各パスの位置を重み付けし、重み付け平均して得られる位置に基づいて前記FFT演算開始位置を決定する、
    ことを特徴とする請求項4記載のOFDM受信方法。
  9. 前記マルチパスにおける各パスの遅延プロファイルと設定レベルを比較し、設定レベル以下の場合には遅延プロファイルを0として前記FFT演算開始位置を決定する、
    ことを特徴とする請求項4乃至8記載のOFDM受信方法。
  10. 前記マルチパスにおける各パスの遅延プロファイルを予め所定時間遅延し、
    該所定時間遅延した遅延プロファイルに基づいて仮のFFT演算開始位置を求め、該仮のFFT演算開始位置を前記所定時間進めることにより本来のFFT演算開始位置を算出する、
    ことを特徴とする請求項4乃至8記載のOFDM受信方法。
  11. 直交周波数分割多重(OFDM)された信号を受信し、該受信信号にFFT演算を施して送信データを復調するOFDM受信装置において、
    受信信号から一定数のサンプルデータよりなる OFDMシンボルを取り出すOFDMシンボル取り出し部、
    該OFDMシンボルのFFT演算開始位置をマルチパスの状況に基づいて決定するFFT演算開始位置決定部、
    該FFT演算開始位置からFFT演算を行わせるFFT演算開始位置制御部、
    FFT演算を行うFFT演算部、
    を備えたことを特徴とするOFDM受信装置。
  12. 前記OFDMシンボル取り出し部は、
    受信信号と1OFDMシンボル時間前の受信信号との相関を演算する相関演算部、
    得られたられた相関値に基づいてFFTウインドウタイミングを決定するFFTウインドウタイミング決定部、
    該FFTウインドウタイミングに基づいて前記OFDMシンボルを受信信号より取り出すシンボル取り出し手段、
    を有することを特徴とする請求項11記載のOFDM受信装置。
  13. 前記FFT演算開始位置制御部は、
    前記取り出された一定数のサンプルデータよりなるOFDMシンボルを格納するバッファメモリ、
    前記決定されたFFT演算開始位置に応じたバッファメモリのアドレスからサンプルデータを順番に読み出してFFT演算部に入力し、バッファの終わりまで読み出した時は、以後、バッファの先頭より残りのサンプルデータを読み出してFFT演算部に入力する制御手段、
    を有することを特徴とする請求項11記載のOFDM受信装置。
  14. 前記FFT演算開始位置決定部は、
    受信信号に含まれる既知データのFFT演算結果よりチャネル推定値を算出するチャネル推定部、、
    該チャネル推定値にIFFT演算を施して各パスの遅延プロファイルを求めるIFFT演算部、
    該遅延プロファイルに基づいてFFT演算開始位置を決定する手段、
    を有することを特徴とする請求項11乃至13記載のOFDM受信装置。
  15. 前記FFT演算開始位置決定手段は、
    前記マルチパスにおける遅延プロファイルのうち電力が最大となるパスの位置に基づいて前記FFT演算開始位置を決定する、
    ことを特徴とする請求項14記載のOFDM受信装置。
  16. 前記FFT演算開始位置決定手段は、
    前記各パスの遅延プロファイルと設定レベルを比較し、設定レベル以下の場合には遅延プロファイルを0として前記FFT演算開始位置を決定する、
    ことを特徴とする請求項14記載のOFDM受信装置。
  17. 前記FFT演算開始位置決定手段は、
    各パスの遅延プロファイルを所定時間遅延させる手段、
    該所定時間遅延させた遅延プロファイルに基づいて仮のFFT演算開始位置を求る手段、
    該仮のFFT演算開始位置を前記所定時間進めることにより本来のFFT演算開始位置を算出する手段、
    を有することを特徴とする請求項14記載のOFDM受信装置。
JP2003535380A 2001-09-28 2001-09-28 Ofdm受信方法及びofdm受信装置 Expired - Fee Related JP4640754B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/008487 WO2003032541A1 (fr) 2001-09-28 2001-09-28 Procede et dispositif de reception a multiplexage par repartition orthogonale de la frequence

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009243072A Division JP4640870B2 (ja) 2009-10-22 2009-10-22 受信装置

Publications (2)

Publication Number Publication Date
JPWO2003032541A1 true JPWO2003032541A1 (ja) 2005-01-27
JP4640754B2 JP4640754B2 (ja) 2011-03-02

Family

ID=11737767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003535380A Expired - Fee Related JP4640754B2 (ja) 2001-09-28 2001-09-28 Ofdm受信方法及びofdm受信装置

Country Status (3)

Country Link
US (1) US7693035B2 (ja)
JP (1) JP4640754B2 (ja)
WO (1) WO2003032541A1 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882619B1 (en) * 2001-02-21 2005-04-19 At&T Corp. Interference suppressing OFDM method for wireless communications
US7158474B1 (en) 2001-02-21 2007-01-02 At&T Corp. Interference suppressing OFDM system for wireless communications
JP3628977B2 (ja) * 2001-05-16 2005-03-16 松下電器産業株式会社 無線基地局装置及び通信端末装置
US20040110508A1 (en) * 2002-09-20 2004-06-10 Jacobus Haartsen Methods and electronic devices for wireless ad-hoc network communications using receiver determined channels and transmitted reference signals
DE602004028790D1 (de) * 2003-11-11 2010-10-07 Ntt Docomo Inc Signalempfangsgerät und Empfangszeiterkennungsverfahren
KR100689454B1 (ko) * 2004-05-14 2007-03-08 삼성전자주식회사 직교 주파수 분할 다중 접속 무선 통신 시스템에서 하향링크 채널 스케쥴링 방법 및 장치와 시스템
WO2006001143A1 (ja) * 2004-06-24 2006-01-05 Matsushita Electric Industrial Co., Ltd. 無線送信装置、無線受信装置およびシンボル配置方法
JP4445839B2 (ja) * 2004-11-18 2010-04-07 パイオニア株式会社 Ofdm信号受信機及び受信方法
US8401503B2 (en) * 2005-03-01 2013-03-19 Qualcomm Incorporated Dual-loop automatic frequency control for wireless communication
US8009775B2 (en) * 2005-03-11 2011-08-30 Qualcomm Incorporated Automatic frequency control for a wireless communication system with multiple subcarriers
US7421045B2 (en) * 2005-03-18 2008-09-02 Interdigital Technology Corporation Method and apparatus for computing SIR of time varying signals in a wireless communication system
US7474611B2 (en) * 2005-04-21 2009-01-06 Telefonaktiebolaget L M Ericsson (Publ) Reduced complexity channel estimation in OFDM systems
JP4856171B2 (ja) 2005-04-21 2012-01-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Ofdmシステムにおける複雑度を低減したチャネル推定
KR100729726B1 (ko) * 2005-09-14 2007-06-18 한국전자통신연구원 직교 주파수 분할 다중화 방식의 통신 시스템의 타이밍획득 및 반송파 주파수 오차 추정 장치 및 방법
US7710858B1 (en) * 2005-09-16 2010-05-04 Nvidia Corporation Apparatus, system, and method for sample timing synchronization in a receiver
US8315191B2 (en) * 2005-09-20 2012-11-20 Qualcomm Incorporated Timing acquisition and mode and guard detection for an OFDM transmission
DE602005013683D1 (de) * 2005-12-14 2009-05-14 Ericsson Telefon Ab L M Verfahren und Vorrichtung zur Signalverarbeitung
KR101310496B1 (ko) * 2006-02-06 2013-09-24 소니 주식회사 복조 장치, 방법 및 프로그램이 기록된 기록매체
KR101223783B1 (ko) * 2006-03-06 2013-01-17 삼성전자주식회사 무선 통신 시스템에서 심벌 타이밍 오프셋 추정 장치 및방법
US7639754B2 (en) * 2006-03-29 2009-12-29 Posdata Co., Ltd. Method of detecting a frame boundary of a received signal in digital communication system and apparatus of enabling the method
JP4944106B2 (ja) * 2006-05-25 2012-05-30 シャープ株式会社 受信機および伝搬路推定方法
US8290031B1 (en) * 2006-08-14 2012-10-16 The Board Of Trustees Of The Leland Stanford Junior University Arrangements and methods for providing compensation for non-idealities of components in communications systems
JP4961918B2 (ja) * 2006-09-12 2012-06-27 ソニー株式会社 Ofdm受信装置及びofdm受信方法
US20080069250A1 (en) * 2006-09-18 2008-03-20 Conexant Systems, Inc. Multipath processing systems and methods
US7907673B2 (en) * 2006-10-26 2011-03-15 Telefonaktiebolaget L M Ericsson (Publ) Robust and low-complexity combined signal power estimation
US7684313B2 (en) * 2007-03-30 2010-03-23 Zoran Corporation System and method for FFT window timing synchronization for an orthogonal frequency-division multiplexed data stream
JP4892422B2 (ja) * 2007-06-27 2012-03-07 京セラ株式会社 無線通信システム、送信装置、受信装置、シンボル同期方法
JP5231762B2 (ja) 2007-07-02 2013-07-10 富士通株式会社 受信機及び受信処理方法
US8675744B1 (en) * 2007-09-24 2014-03-18 Atmel Corporation Channel tracking in an orthogonal frequency-division multiplexing system
US8743855B2 (en) * 2007-12-17 2014-06-03 Lg Electronics Inc. Method of generating data and transmitting synchronization channel in mobile communication system
EP2262140B1 (en) * 2008-03-31 2019-11-20 Panasonic Intellectual Property Management Co., Ltd. Receiver, method of reception, reception program, integrated circuit, and digital television
US8559296B2 (en) 2008-08-01 2013-10-15 Broadcom Corporation Method and system for an OFDM joint timing and frequency tracking system
JP5182699B2 (ja) * 2008-08-22 2013-04-17 日本電気株式会社 受信装置、無線信号の受信方法および無線通信システムならびにプログラム
JP4626698B2 (ja) * 2008-09-29 2011-02-09 ソニー株式会社 情報処理装置及び方法、表示装置、並びにプログラム
US20100182899A1 (en) * 2009-01-17 2010-07-22 Qualcomm Incorporated OFDM Time Basis Matching With Pre-FFT Cyclic Shift
CN101800724B (zh) * 2009-02-11 2012-10-24 北京泰美世纪科技有限公司 移动多媒体广播发送系统
US8275074B2 (en) * 2009-02-17 2012-09-25 Telefonaktiebolaget Lm Ericsson (Publ) OFDM receiver for dispersive environment
JP5410812B2 (ja) * 2009-03-31 2014-02-05 三星電子株式会社 無線通信装置、無線通信システム、及び直接波の受信タイミング検出方法
KR101671424B1 (ko) * 2010-11-25 2016-11-01 한국전자통신연구원 이기종 통신 시스템 검출 방법 및 장치
JP5543033B2 (ja) * 2011-09-05 2014-07-09 三菱電機株式会社 受信装置および受信方法
TWI551064B (zh) * 2012-12-27 2016-09-21 晨星半導體股份有限公司 無線接收系統及其頻道效應估計方法
KR102616669B1 (ko) * 2015-07-12 2023-12-21 코히어 테크놀로지스, 아이엔씨. 복수의 협대역 부-반송파 상에서의 직교 시간 주파수 공간 변조
US10411782B2 (en) * 2016-03-31 2019-09-10 Qualcomm Incorporated Channel estimation for per-tone continuous precoding in downlink MIMO transmission
CN110798808B (zh) * 2018-08-02 2021-07-23 成都鼎桥通信技术有限公司 多播终端解调的定时方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075229A (ja) * 1996-05-20 1998-03-17 Sharp Corp 直交周波数分割多重方式の復調器
JPH10224319A (ja) * 1997-01-31 1998-08-21 Jisedai Digital Television Hoso Syst Kenkyusho:Kk Dft回路とofdm同期復調装置
JP2000022657A (ja) * 1998-07-06 2000-01-21 Jisedai Digital Television Hoso System Kenkyusho:Kk 直交周波数分割多重方式受信装置
JP2000115087A (ja) * 1998-09-30 2000-04-21 Jisedai Digital Television Hoso System Kenkyusho:Kk 遅延プロファイル測定装置
JP2010022056A (ja) * 2009-10-22 2010-01-28 Fujitsu Ltd 受信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942236B1 (ja) * 1998-03-31 1999-08-30 株式会社次世代デジタルテレビジョン放送システム研究所 Ofdm変調回路
WO1999053665A1 (en) * 1998-04-14 1999-10-21 Fraunhnofer-Gesellschaft Zur Förderung Der Angewand Ten Forschung E.V. Frame structure and frame synchronization for multicarrier systems
JP3085944B2 (ja) * 1999-02-15 2000-09-11 三菱電機株式会社 Ofdm通信システム用受信装置
EP1063824B1 (en) * 1999-06-22 2006-08-02 Matsushita Electric Industrial Co., Ltd. Symbol synchronisation in multicarrier receivers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075229A (ja) * 1996-05-20 1998-03-17 Sharp Corp 直交周波数分割多重方式の復調器
JPH10224319A (ja) * 1997-01-31 1998-08-21 Jisedai Digital Television Hoso Syst Kenkyusho:Kk Dft回路とofdm同期復調装置
JP2000022657A (ja) * 1998-07-06 2000-01-21 Jisedai Digital Television Hoso System Kenkyusho:Kk 直交周波数分割多重方式受信装置
JP2000115087A (ja) * 1998-09-30 2000-04-21 Jisedai Digital Television Hoso System Kenkyusho:Kk 遅延プロファイル測定装置
JP2010022056A (ja) * 2009-10-22 2010-01-28 Fujitsu Ltd 受信装置

Also Published As

Publication number Publication date
US20040228272A1 (en) 2004-11-18
JP4640754B2 (ja) 2011-03-02
WO2003032541A1 (fr) 2003-04-17
US7693035B2 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
JP4640754B2 (ja) Ofdm受信方法及びofdm受信装置
US8605843B2 (en) Method and apparatus for signal acquisition in OFDM receivers
US20070041348A1 (en) Transmitting/receiving apparatus and method for cell search in a broadband wireless communications system
US7515641B2 (en) Apparatus and method for processing ranging channel in orthogonal frequency division multiple access system
JPWO2003061170A1 (ja) Ofdmシステムにおけるパイロット多重方法及びofdm受信方法
JPWO2004021616A1 (ja) 送受信装置及び送受信方法
CN104717174B (zh) 一种复杂多径信道下的ofdm抗干扰同步方法
KR20070030281A (ko) 무선 통신 시스템에서의 신호 획득
TW200929968A (en) Synchronization in a broadcast OFDM system using time division multiplexed pilots
WO2007022362A2 (en) Frame synchronization
JP4043287B2 (ja) 無線通信システム、通信装置および受信品質測定方法
EP1533968B1 (en) Signal reception device and method of signal reception timing detection
KR101110312B1 (ko) 주파수 옵셋 추정 장치 및 방법
CN101212429B (zh) 一种多载波码分多址系统的信道估计方法和系统
KR100519919B1 (ko) Ofdma 시스템에서의 전송 프레임 구성 방법과 그를이용한 단말기 동기 획득 장치 및 방법
JP3970092B2 (ja) シンボルタイミング同期装置およびシンボルタイミング同期方法
JP2006054900A (ja) スペクトラム拡散受信機のチップ等化器、該チップ等化器で用いられる雑音指数演算方法及びフィルタ係数決定方法
JP4640870B2 (ja) 受信装置
JP3997226B2 (ja) 受信装置及び受信タイミング検出方法
JP3544147B2 (ja) Ofdm信号受信装置、ofdm信号通信システム及びその通信制御方法
JPWO2003032542A1 (ja) 周波数同期方法及び周波数同期装置
KR20040105519A (ko) Tds-ofdm 시스템에서 반복 pn시퀀스를 이용한반송파주파수복원장치 및 그 방법
JP4134609B2 (ja) マルチキャリアcdma通信システム及びその復調処理回路、受信装置、並びに復調処理方法及び受信方法
KR20070037004A (ko) Ofdm 시스템에서 반복특성을 갖는 하나의 프리앰블 및프리앰블에 대한 순환프리픽스를 이용한 최대 우도 심벌타이밍 및 반송파 주파수 오프셋 추정 방법 및 장치
JP3793198B2 (ja) Ofdm信号通信システム及びofdm信号送信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

R150 Certificate of patent or registration of utility model

Ref document number: 4640754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees