JPWO2003018132A1 - 放射線治療装置 - Google Patents

放射線治療装置 Download PDF

Info

Publication number
JPWO2003018132A1
JPWO2003018132A1 JP2003522644A JP2003522644A JPWO2003018132A1 JP WO2003018132 A1 JPWO2003018132 A1 JP WO2003018132A1 JP 2003522644 A JP2003522644 A JP 2003522644A JP 2003522644 A JP2003522644 A JP 2003522644A JP WO2003018132 A1 JPWO2003018132 A1 JP WO2003018132A1
Authority
JP
Japan
Prior art keywords
radiation
irradiation
guide
radiotherapy
isocenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003522644A
Other languages
English (en)
Inventor
三原 一正
一正 三原
原 謙治
謙治 原
山下 一郎
一郎 山下
若元 郁夫
郁夫 若元
祐一郎 神納
祐一郎 神納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2003018132A1 publication Critical patent/JPWO2003018132A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/548Remote control of the apparatus or devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • A61N5/1047X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT with movement of the radiation head during application of radiation, e.g. for intensity modulated arc therapy or IMAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • A61N5/1082Rotating beam systems with a specific mechanical construction, e.g. gantries having multiple beam rotation axes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B2090/101Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis for stereotaxic radiosurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

放射線治療装置(1)は、放射線発生装置(4)が出射するX線(R1)がアイソセンタ(13)で交差するように、放射線発生装置(4)を所定の半径の軌道に沿って移動させるガイド(9)と、アイソセンタ(13)を通る傾倒軸(11)中心にこのガイド(9)を回転させる支持部材(12)とを備える。放射線発生装置(4)は、ガイド(9)と支持部材(12)によって、球状面に沿って移動し、多方位からアイソセンタ(13)に向けてX線(R1)を照射する。

Description

技術分野
本発明は、照射対象の回りを移動する放射線発生装置を備え、放射線を多方位から照射対象に照射する放射線治療装置に関する。
背景技術
例えば、放射線治療に用いられる放射線治療装置は、放射線を発生させる線形加速器と、この線形加速器から出射される放射線を多方位から照射対象に通過させる位置決め装置とを備える。
水平軸を中心に回転するガントリを位置決め装置として備える放射線治療装置がある。線形加速器は、ガントリの内部に配置される。放射線は、ガントリの端から回転中心に向けて出射される。この放射線治療装置は、ガントリを回転させ、放射線を出射する場合、放射線が1点で交差するので、アイソセントリック型と称される。照射対象は、アイソセンタに配置される。
また、多軸マニピュレータを位置決め装置として備える放射線治療装置がある。線形加速器は、多軸制御のマニピュレータのヘッドに取付けられる。この放射線治療装置は、マニピュレータを動かして、放射線を出射する場合、放射線が特定の1点で交差しないので、ノンアイソセントリック型と称される。照射対象は、マニピュレータの移動範囲内に配置される。
位置決め装置としてガントリを備えた放射線治療装置において、放射線の照射方位は、ガントリが回転することによって変化するのみである。したがって、ガントリが回転することによって変化する放射線の照射方位以外の方位から放射線を照射するために、照射対象は、ガントリの回転中心軸と異なる角度の軸を中心に回転しなければならない。
特に、放射線治療において、照射対象は、患者の体内にあるので、患者は、照射対象を回転させるためにアイソセンタを中心に回転されなければならない。この場合、鉛直軸を中心に回転させる場合を除き、患者は、アイソセンタを中心に傾けられるので、重力などの外的要因によって患者の姿勢や患部の形状は、変化してしまう。
位置決め装置として多軸制御のマニピュレータを備える放射線治療装置において、放射線の照射方位は、マニピュレータに備わった各軸をそれぞれ制御することで、照射対象を中心とする任意の角度に設定することができる。また、同じ照射方位であっても、マニピュレータの姿勢は、多様であり、1つに定まらない。マニピュレータの撓み及び各軸にかかる負荷は、姿勢ごとに異なるので、放射線を出射するヘッドは、精度よく位置決めされ難い。また、ヘッドの位置補整は、複雑であり、放射線の照射角度の再現性が乏しい。
したがって、これら従来の放射線治療装置では、精度よく放射線を照射することができないので、照射対象以外への放射線量が増加する。
そこで、放射線の照射対象を傾けることなく、多方位から放射線を照射することができるとともに、放射線の照射角度の再現性に優れる放射線治療装置が、切望されている。
発明の開示
本発明に係る放射線治療装置は、放射線発生装置とガイドと支持部材とを備える。放射線発生装置は、放射線を出射する。ガイドは、出射される放射線が1点で交差するようにアイソセンタを中心に放射線発生装置を所定の曲率半径の軌道に沿って移動させる。支持部材は、アイソセンタを通る傾倒軸を中心にガイドを回転させる。
本発明に係る放射線治療装置は、放射線発生装置の移動範囲を最大にするために、傾倒軸は、軌道が形成する平面と平行に配置するとよい。そして、ガイドは、傾倒軸上の1か所、またはアイソセンタの両側の傾倒軸上の2か所で支持部材に支持されることが好ましい。
本発明に係る放射線治療装置は、アイソセンタを外して照射対象に放射線を照射するために、互いに交差する2つの回動軸を介して放射線発生装置を枢支する可動部材をガイドに備えるとよい。放射線の照射角度の再現性を向上させるために、この可動部材は、ガイドに設けられた少なくとも1対のレールに取付けるとよい。
本発明に係る放射線治療装置において、ガイドは、アイソセンタに対して正反対の位置から放射線を照射する以上に放射線発生装置を移動させる移動範囲を有するとよい。
また、本発明に係る放射線治療装置において、ガイドは、円弧状に設けられ、アイソセンタを水平に通る傾倒軸あるいは鉛直に通る傾倒軸において支持部材で支持されるとよい。または、ガイドは、環状に設けられ、アイソセンタを水平に通る傾倒軸或いは鉛直に通る傾倒軸において支持部材で支持されてもよい。支持部材は、アイソセンタより床に近い位置に固定してもよいし、アイソセンタより天井に近い側に固定してもよい。
本発明に係る放射線治療装置は、支持部材がガイドを枢支する箇所に、傾倒軸を中心にガイドを回転させる駆動装置を備えることが好ましい。傾倒軸上のアイソセンタの両側の2か所ガイドを枢支する場合は、少なくとも一方に駆動装置を備えればよい。
本発明に係る放射線治療装置において、可動部材は、たとえば、ガイドの外周側に取付けられたベルトを掴んで移動する駆動装置を備える。
本発明に係る放射線治療装置において、放射線発生装置は、出射する放射線の断面形状を変化させるために、放射線を出射する窓の形状が変化する可変式コリメータを備えるとよい。
本発明に係る放射線治療装置は、アイソセンタに配置された照射対象を確認するために、さらに放射線透過画像の情報を取得する診断用イメージャを備えるとよい。
本発明に係る放射線治療装置において、診断用イメージャは、複数の放射線源とこれら放射線源と対で設けられる検出器とを少なくとも備える。照射対象の3次元位置及び形状を知るために、放射線源は、出射する放射線がアイソセンタで互いに交差するように配置されるとよい。検出器は、放射線源から出射されてアイソセンタを通過した放射線を検出する位置に配置されればよい。
本発明に係る放射線治療装置は、イメージャで確認された照射対象の位置に放射線発生装置から出射される放射線を向けるために、イメージャで取得した情報を基に放射線発生装置を枢支する可動部材の2つの軸を制御する制御装置を備えるとよい。
また、本発明に係る放射線治療装置は、イメージャで確認された照射対象の形状に放射線発生装置から出射される放射線の断面形状を合わせるために、イメージャで取得した情報を基に放射線が出射される可変式コリメータの窓の形状を変化させる制御装置を備えるとよい。
本発明に係る放射線治療装置において、取得される放射線透過画像の情報量をふやすために、イメージャは、X線CTスキャナにするとよい。
本発明に係る放射線治療装置は、ガイドに搭載される放射線発生装置を軽量化するために、可動部材及びガイドと離れた位置にマイクロ波源を配置し、放射線発生装置に導波管を通してマイクロ波を供給するとよい。
本発明に係る放射線治療装置は、アイソセンタを含む範囲に照射対象を位置決めするために、さらに可動台を備えるとよい。この可動台は、照射対象を載せるスライドボードと、互いに直交する3つの軸に沿ってスライドボードを移動させる駆動機構とを備える。
本発明に係る放射線治療装置は、治療用放射線を出射する放射線発生装置と、前記放射線発生装置を搭載した可動部材と、前記可動部材を所望の向きに位置決めするマニピュレータと、前記放射線発生装置から出射される前記治療用放射線の照射野を変化させる可変式コリメータと、前記治療用放射線が照射される照射対象の3次元位置および3次元形状を検出する診断用イメージャと、前記診断用イメージャによって検出された前記照射対象の3次元位置と3次元形状、及び前記照射対象に対する前記治療用放射線の照射角度を基に、前記可変式コリメータの出射口を、この出射口から出射される治療用放射線の照射野が前記3次元位置及び3次元形状を追尾するように制御する制御装置と、前記照射対象を前記治療用放射線の照射野に位置決めする3軸直交型の位置決め装置とを備える。
本発明に係る放射線治療装置は、治療用放射線を出射する放射線発生装置と、前記放射線発生装置を搭載した可動部材と、患者を中心に前記可動部材を回転させるガントリと、前記治療用放射線の照射野を変化させる可変式コリメータと、前記治療用放射線が照射される照射対象の3次元位置及び3次元形状を検出する診断用イメージャと、前記診断用イメージャによって検出された前記照射対象の3次元位置と3次元形状、及び前記照射対象に対する前記治療用放射線の照射角度を基に、前記可変式コリメータの出射口をこの出射口から出射される治療用放射線の照射野が前記3次元位置及び3次元形状を追尾するように制御する制御装置と、前記照射対象を前記治療用放射線の照射野に位置決めする3軸直交型の位置決め装置とを備える。
本発明に係る治療用放射線の照射方法は、診断用イメージャの検出範囲内に位置決めされた患者の治療対象部位の3次元位置及び3次元形状を前記診断用イメージャで検出し、治療用放射線の照射角度と、前記診断用イメージャで検出された治療対象部位の3次元位置及び3次元形状とを基に、前記治療用放射線を通過させる可変式コリメータの出射口の位置及び形状を前記治療用放射線の照射方向から見た前記治療対象部位の投影断面積に対応させて連続的に変化させ、前記治療用放射線の照射野を前記治療対象部位に連続的に追尾させることによって行われる。
診断用イメージャを備える放射線治療装置の制御方法において、本発明の放射線治療装置の制御方法は、前記診断用イメージャの検出範囲内に位置決めされた患者の治療対象部位の3次元位置及び3次元形状を前記診断用イメージャで検出し、治療用放射線の照射角度と、前記診断用イメージャで検出された治療対象部位の3次元位置及び3次元形状とを基に、前記治療用放射線の照射野を前記治療対象部位に連続的に追尾させるべく前記治療用放射線を通過させる可変式コリメータの出射口の位置及び形状を前記治療用放射線の照射方向から見た前記治療対象部位の投影断面積に対応させて連続的に変化させる。
発明を実施するための最良の形態
本発明の第1の実施形態に係る放射線治療装置1について、図1及び図2を参照して説明する。図1に示す放射線治療装置1は、放射線発生装置4と、可変式コリメータ5と、マニピュレータ2と、可動台6と、診断用イメージャ7と、制御装置8とを備える。
放射線発生装置4は、治療用の放射線としてX線Rを出射する。このX線Rは、電子銃から発射された電子を加速器で加速させ、ターゲットに衝突させることで、発生する。
可変式コリメータ5は、放射線発生装置4の出射口に取付けられる。したがって、発生したX線Rは、可変式コリメータ5を通して出射される。図2に示すように、可変式コリメータ5は、2つのスライド群19a,19bを備えている。各スライド群19a,19bは、X線Rが出射されるA方向に対して直交するS方向に移動する多数のスライド20a,20bを備えている。スライド20a,20bは、A方向及びS方向とそれぞれ直交するW方向に束ねられている。各スライド群19a,19bは、端部をS方向に突き合せて配置されている。スライド20a,20bは、X線Rを充分に吸収できる遮蔽厚さ及び材質、例えば比重の重い金属、具体的には、タングステンや鉛などを主成分に作られている。この可変式コリメータ5は、図1に示すように制御装置8によって制御され、スライド20a,20bの可動範囲内21において、スライド群19a,19bの間に任意の断面形状の出射口22を形成する。
マニピュレータ2は、図1に示すように、可動部材3と、ガイド9と、支持部材12とを備えている。可動部材3は、互いに交差する2つの回動軸C,Dを介して放射線発生装置4を枢支している。回動軸C,Dは、放射線発生装置4から出射されるX線Rの出射方向と互いに直交するように配置される。回動軸Cは、放射線発生装置4を矢印U方向に傾け、回動軸Dは、放射線発生装置4を矢印V方向に傾ける。これにより、放射線発生装置4は、いわゆる首振り動作をする。また、可動部材3は、ガイドに支持されており、図示しない駆動装置によって、ガイド9に沿って移動する。
ガイド9は、円弧状に形成されている。ガイド9は、放射線発生装置4から出射されるX線Rが1点で交差するアイソセンタ13を中心に、放射線発生装置4を所定の半径の軌道に沿って移動させる。また、ガイド9は、アイソセンタ13に対して正反対の方位からX線Rを照射する範囲以上に放射線発生装置4を移動させる移動範囲を有している。つまり、ガイド9は、アイソセンタ13を中心に放射線発生装置4を180°以上回転させることができる。
支持部材12は、傾倒軸11を中心にガイド9を回転させる。傾倒軸11が水平に配置されることで、ガイド9は、いわゆるΩ形に配置される。傾倒軸11は、放射線発生装置4がガイド9に沿って回動する回動軸10とアイソセンタ13において交差する。この場合、回動軸10と傾倒軸11は、放射線発生装置4の位置決め制御の観点から、互いに直交していることが好ましい。回動軸10と傾倒軸11を互いに直交するように配置すると、傾倒軸11は、放射線発生装置4が移動する軌道が形成する平面と平行に配置されることとなる。また、この逆も同じである。
支持部材12は、傾倒軸11上のアイソセンタ13の両側に配置され、床に固定される。また、2つ配置された支持部材12の一方のガイド9を枢支する位置には、ガイド9を回転させる駆動装置としてサーボモータ12aが取付けられている。
ガイド9は、アイソセンタ13から偏心して配置されている。そこで、傾倒軸11に重心を配置するために、傾倒軸11を中心としてガイド9と反対側に、カウンターウェイト14を取付ける。ガイド9が傾いた状態でも重心の位置が傾倒軸11上にあるので、サーボモータ12aにかかる負荷が軽減される。
以上のように、放射線治療装置1は、マニピュレータ2によって、アイソセンタ13を中心とする球面上に放射線発生装置4を位置決めする。したがって、制御装置8は、極座標を使うと、放射線発生装置4の位置を制御しやすい。
また、放射線治療装置1は、回動軸C,Dを使って放射線発生装置4から出射されるX線Rの向きをアイソセンタ13から外すことができる。つまり、放射線治療装置1は、アイソセンタ13を中心に放射線発生装置4を位置決めし、アイソセンタ13を外してX線Rの照射野をノンアイソセントリックに位置決めすることができる。
可動台6は、図1に示すように、放射線治療を必要とする患者Pを乗せるスライドボード6aと、直交する3つの軸に沿ってスライドボード6aを移動させる駆動機構6bを備える。可動台6は、患者Pの体軸Bをマニピュレータ2の傾倒軸11と直交させる向きに配置される。可動台6は、照射対象として、患者Pの体内にある治療対象部位となる病巣Tを駆動機構6bによってアイソセンタ13に位置決めできる。
診断用イメージャ7は、図1に示すように、X線源15と検出器16と解析装置18とを備えている。X線源15は、複数、本実施形態では2つ、の放射線源であって、出射するX線Rがアイソセンタ13で交差するように配置される。検出器16は、X線源15と対で設けられ、アイソセンタ13を中心として放射線源15と点対称の位置に配置される。検出器16は、アイソセンタ13を中心とする検出範囲M内を通過したX線Rの情報を検出する。検出された情報は、解析装置18に送られる。解析装置18は、X線源15と検出器16の方位の情報及び送られてきたX線Rの情報を基に、検出範囲M内に位置決めされた病巣Tのアイソセンタ13を基準とする3次元位置及び3次元形状を求める。また、放射線源15と検出器16の組は、互いの位置関係を保った状態で、アーム7aに支持されている。アーム7aは、アイソセンタ13を通って傾倒軸11と直交する軸17を中心に、X線源15と検出器16を回動する。
制御装置8は、図1に示すように、マニピュレータ2、放射線発生装置4、可変式コリメータ5、可動台6、診断用イメージャ7にそれぞれ接続されており、それぞれが互いに接触しないためのソフトリミットを備えている。制御装置8は、診断用イメージャ7によって得られる病巣Tの3次元位置及び3次元形状の情報や、マニピュレータ2によって位置決めされる放射線発生装置4の位置や角度の情報を基に、放射線発生装置4から病巣TへのX線Rの照射投影断面形状を求める。制御装置8は、求められた照射投影断面形状を基に、可変式コリメータ5の出射光22の形状を制御する。また、制御装置8は、図示しないモニタと操作盤を備えている。モニタは、診断用イメージャ7で検出したX線Rの情報を基に、検査範囲内Mの透過診断画像及び、病巣Tの3次元位置及び3次元形状を目視確認することができる。操作盤は、マニピュレータ2、放射線発生装置4、可変式コリメータ5、可動台6、診断用イメージャ7などを遠隔操作するために設けられる。
以上のように構成された放射線治療装置1の動作について説明する。放射線治療を施される病巣Tを持つ患者Pは、スライドボード6aに寝かされる。可動台6は、予め実施された検査で判明している病巣Tをアイソセンタ13の近傍に位置決めする。病巣Tは、検査範囲Mの内側に入るので、診断用イメージャ7で位置を確認され、必要に応じて可動台6を動かし、位置を微調整される。
事前に実施された検査によって決められた治療計画と、診断用イメージャ7によって得られた病巣T及びその周辺の情報を基に、放射線治療装置1は、病巣Tに照射するX線Rの照射野の形状及び照射角度などを設定される。
図2に示すように、病巣TがTaからTbまで変形及び移動する場合、診断用イメージャ7によって、変形及び移動に対して充分に短い時間間隔で、アイソセンタ13を中心とする検査範囲MのX線透過撮像を行なう。これによって、病巣Tの3次元位置及び3次元形状は、得られるX線Rの情報を基に、診断用イメージャ7の解析装置18によって、追尾される。
解析装置18によって追尾される病巣Tの3次元位置及び3次元形状と、このときのマニピュレータ2、放射線発生装置4、診断用イメージャ7の位置関係を基に、その都度制御装置8によって、放射線発生装置4から病巣Tへの照射投影断面形状が求められる。制御装置8は、移動及び変形するにつれてTaからTbへ変化する病巣Tの照射投影断面形状に合わせて、X線Rの照射野が変化するように、可変式コリメータ5の出射口22を22aから22bへ変化させる。
以上のように、放射線治療装置1は、アイソセンタ13を中心に放射線発生装置4を任意の半径の軌道に沿って移動させるガイド9と、アイソセンタ13を通る傾倒軸11を中心にガイド9を回転させる。したがって、放射線治療装置1は、アイソセンタ13を中心とする任意の球面上に放射線発生装置4を位置決めする。したがって、アイソセンタ13に配置された病巣Tなどの照射対象を動かすことなく、立体的に多方位からX線Rを照射することができる。
また、放射線治療装置1は、診断用イメージャ7を備えているので、病巣Tが放射線治療中に移動及び変形しても、病巣Tの位置及び形状を追尾し、X線Rを照射することができる。病巣Tを追尾する場合、実際に稼動する部分は、可変式コリメータ5のスライド20a,20bである。放射線治療装置1は、マニピュレータ2や放射線発生装置4を動かすことなく、病巣Tの移動及び変形に対してX線Rの照射野を追尾させる。したがって、放射線治療装置1は、病巣Tの小刻みなあるいは素早い移動や変形に対しても追尾応答性が良く、精度の良い追尾を行なうことができる。
また、放射線治療装置1は、治療中に得られる診断用イメージャ7の情報に基づいて病巣Tの位置及び形状にX線Rの照射野を適宜調節することができるので、照射対象以外の部位に対して不必要な放射線量を少なくすることができる。放射線治療装置1は、X線Rを連続的に病巣Tに対して照射することができるので、治療時間を短縮することができる。その結果、患者Pへの負担は、低減される。
なお、病巣Tが治療中に動く原因として、心鼓動、呼吸運動、蠕動運動などが考えられる。これら生理運動による動きは、体軸Bに沿う方向への移動量の方が大きい。そこで、可変式コリメータ5は、スライド20a,20bを束ねたW方向を体軸Bに沿う方向に合わせて取付ける。病巣Tの動きに対してX線Rの照射野で追尾可能な範囲は、スライド20a,20bを束ねる量を増やすことで、広くなる。
なお、可動部材3に搭載する放射線発生装置4の重量を軽減するために、マイクロ波発生装置、例えばクライストロンをマニピュレータ2の基部に設置し、このクライストロンから導波管を使用して放射線発生装置4に内蔵される加速器にマイクロ波を供給してもよい。その具体的な例を第2の実施形態において説明する。
本発明の第2の実施形態に係る放射線治療装置について、図3から図6を参照して説明する。なお、第1の実施形態の放射線治療装置1と同じ構成については、同一の符号を付してその説明を省略する。
図3に示す放射線治療装置41は、図1の放射線治療装置1と同様に、水平にアイソセンタ13を通る傾倒軸11を中心にガイド9を回転させる。ガイド9は、アイソセンタ13の両側で支持部材12に支持される。すなわち放射線治療装置41は、両側支持のΩ形である。
放射線治療装置41は、マイクロ波を供給するマイクロ波源36を放射線発生装置4と離れた位置に配置した点が、図1に示す放射線治療装置1と異なる。この他、可変式コリメータや診断用イメージャは、図示されていないが、放射線治療装置1と同様に装備してもよい。
マイクロ波源36から放射線発生装置4の近傍までのマイクロ波の供給は、導波管37a,37b,37cとロータリーRFカプラ38a,38b,38cを通して行われる。放射線発生装置4の周辺の導波管37d,37eの配置は、図4から図6を参照して説明する。放射線治療装置41のその他の部分は、図1に示す放射線治療装置1と同様であるので、図3において簡略して図示している。
図3に示すマイクロ波源36は、支持部材12の近傍に配置されている。マイクロ波源36として、例えばクライストロンやマグネトロンなどが使用される。導波管37aは、図3に示すように、マイクロ波源36から支持部材12の中を通って傾倒軸11上まで配管される。支持部材12とガイド9の間の回転部分は、図示されないロータリーRFカプラで連結される。
ガイド9から放射線発生装置4の近傍までの間の導波管37b,37cは、放射線発生装置4が移動したときにアイソセンタ13に配置される患者Pと干渉しないために、迂回して配置される。図3において、導波管37b,37cの両端は、回動軸10と平行な軸を中心に回転するロータリーRFカプラ38a,38b,38cで連結され、放射線発生装置4が移動する平面と平行な面に沿って移動する。なお、図3において、ガイド9と放射線発生装置4との間は、2つの導波管37b,37cで繋がれているが、これよりも多数の導波管で繋がれていてもよい。
導波管37cの放射線発生装置4側の端部に取付けられたロータリーRFカプラ38cの回転軸は、図4または図5に示すように可動部材3の回動軸Dと同軸上に配置する。こうすることで、放射線発生装置4が回動軸Dを中心に回転する場合、導波管37b,37c及びロータリーRFカプラ38bが動かない。したがって、ロータリーRFカプラ38cは、回動軸Dと同軸上に配置されなくても、放射線治療装置41の動作に、支障をきたさない。
回動軸Cを中心に放射線発生装置4を回動させるために、図6に示すように、ロータリーRFカプラ38は、導波管37dに接続される。導波管37dは、放射線発生装置4の周りを迂回して、回動軸Cを中心に回転するロータリーRFカプラ38dに接続されている。ロータリーRFカプラ38dは、導波管37eを介して放射線発生装置4に接続される。
以上の構成により、マイクロ波は、マイクロ波源36から導波管37a、図示されないロータリーRFカプラ、ロータリーRFカプラ38a、導波管37b、ロータリーRFカプラ38b、導波管37c、ロータリーRFカプラ38c、導波管37d、ロータリーRFカプラ38d、導波管37eの順番に伝播され、放射線発生装置4に供給される。なお、回動軸Cの回転角度が充分に小さく設定されている場合、導波管37d,37e、ロータリーRFカプラ38dの代わりに、フレキシブル導波管でロータリーRFカプラ38cから放射線発生装置4に直接接続してもよい。
図5に示すように、ガイド9と可動部材3との間には、スライドユニット42を備えている。スライドユニット42は、ガイド9に固定されるレール43と可動部材3に固定されるスライダ44を備えている。レール43は、図6に示すように回動軸10を中心とする同心円状に形成されている。レール43は、図5に示すように一対、本実施形態では両側面に1つずつ、取付けられている。スライダ44は、図4に示すように同じレール43に複数取付けられる。スライダ44は、循環する転動体を有したベアリングの一種である。転動体がレール43とスライダ44の間に隙間なしで配置されるので、可動部材3は、滑らかに移動することができる。
可動部材3は、図5及び図6に示すように駆動装置45を備えている。駆動装置45は、図6に示すベルト46及び走行プーリ47と、図5に示すモータ48とを備える。走行ベルト46は、ガイド9の外周面と平行して設けられたブラケット49の外周に回しかけられている。走行ベルト46は、図6に示すように複数並べられた走行プーリ47の間をジグザグに通り抜ける。走行プーリ47は、走行ベルト46の張力を調節するために、走行ベルト46の厚さ方向に移動することができる。走行プーリ47の一つは、可動部材3に固定されたモータ48と駆動ベルト50で連結されている。走行プーリ47は、モータ48よって回転されると、走行ベルト46を掴んで送り出す。これにより、可動部材3は、レール43に沿って移動する。
なお、駆動装置45は、ベルト46を掴んで移動するベルト駆動であるので、位置決め精度をよくするために、インダクトシンなどの位置測定センサを併用するとよい。また、駆動装置45は、ラック・アンド・ピニオンなどであってもよい。
また、可動部材3は、サーボモータ51とサーボモータ52を備えている。サーボモータ51は、回動軸C上に配置され、直接或いは減速器を介して、放射線発生装置4をオシレートさせる。サーボモータ52は、回動軸Dと平行な位置に配置され、ベルト駆動によって、放射線発生装置4をオシレートさせる。放射線発生装置4がマニピュレータ2によって任意の位置に位置決めされた状態で、サーボモータ51を作動させると、回動軸Cを中心に放射線発生装置4と導波管37eが回転する。同様にサーボモータ52を作動させると、回動軸Dを中心に回動軸Cごと放射線発生装置4、導波管37e、ロータリーRFカプラ38d、及び導波管37dが回転する。
第2の実施形態に係る放射線治療装置41によれば、マイクロ波源36を放射線発生装置4から離して別置にしたので、放射線発生装置4が軽量化される。したがって、放射線治療装置41は、装置全体の撓みが小さく、かつ各駆動装置にかかる負担が軽減される。そして、放射線発生装置4の位置決め精度が向上する。
本発明の第3の実施形態に係る放射線治療装置61について、図7、図4、図5、図6を参照して説明する。なお、第1及び第2の実施形態の放射線治療装置1,41と同じ構成については、同一の符号を付してその説明を省略する。
図7に示す放射線治療装置61は、図3に示す放射線治療装置41と同様に、水平にアイソセンタ13を通る傾倒軸11を中心にガイド9を回転させる。また、マイクロ波源36は、放射線発生装置4と離して床に設置されている。ガイド9は、アイソセンタ13の両側で支持部材12に支持される。すなわち放射線治療装置61は、両側支持のΩ形である。
放射線治療装置61は、図3に示す放射線治療装置41と支持部材12の配置が異なる。支持部材12は、天井に固定され、マニピュレータ2を天井から吊り下げるように保持している。支持部材12を通る導波管37aは、一旦天井まで上げた後、傾倒軸11上の図示されないロータリーRFカプラまで配管される。なお、導波管37aは、天井まで上げずに、支持部材12の途中から挿入してもよい。
以上のように構成された放射線治療装置61は、支持部材12が天井に固定されているので、放射線治療に先駆けて行われる準備作業などを行ないやすい。また、床の上を有効に利用することができる。
なお、作業性を改善し、床の上を有効に利用する点においては、支持材12は、アイソセンタ13を水平に通る面よりも天井に近い位置に取付けられていればよい。また、放射線治療装置61は、使用しない場合、支持部材12によって天井側に引っ込められるようにしてもよい。
本発明の第4の実施形態に係る放射線治療装置71について、図8、図4、図5、図6を参照して説明する。なお、第1から第3の実施形態における放射線治療装置1,41,61と同じ構成については、同一の符号を付してその説明を省略する。
図8に示す放射線治療装置71は、図3の放射線治療装置41と同様に、水平にアイソセンタ13を通る傾倒軸11を中心にガイド9を回転する。また、放射線治療装置71は、図3に示す放射線治療装置41がアイソセンタ13の両側でガイド9が支持部材12に支持されていることに対し、アイソセンタ13を通る傾倒軸11上の1か所で支持部材12がガイド9を支持していることが他の実施形態と異なる。すなわち、放射線治療装置71は、片持ち式のΩ形である。
放射線治療装置71は、支持部材12がガイド9を片側で支持しているので、支持部材12から遠い位置に放射線発生装置4が移動すると、ガイド9が撓む。放射線治療装置71は、放射線発生装置4をガイド9に沿って移動し、ガイド9を傾倒することで、アイソセンタ13に対する放射線の照射角度が決まる。つまり、放射線治療装置71において、アイソセンタ13に対する照射角度は、回動軸10と傾倒軸11の回転角度に関する2つの変数によって、決定される。また、放射線治療装置71は、照射角度に対して1対1に照射位置が決まる。任意の照射角度についてガイド9に生じる撓みには、再現性があるので、容易に補正することができる。したがって、放射線治療装置71は、精度よくかつ再現性よく放射線発生装置4を位置決めし、X線Rを照射することができる。また、放射線治療装置71は、片側支持であるので、両側支持の放射線治療装置に比べて小さい。
本発明の第5の実施形態に係る放射線治療装置81について、図9、図4、図5、図6を参照して説明する。なお、第1から第4の実施形態における放射線治療装置1,41,61,71と同じ構成については、同一の符号を付してその説明を省略する。
図9に示す放射線治療装置81は、図1、図3、図7、図8に示す放射線治療装置と同様に、水平にアイソセンタ13を通る傾倒軸11を中心にガイド9を回転させる。ガイド9は、図8に示す放射線治療装置71と同様に、片持ち支持である。また、支持部材12は、図7に示す放射線治療装置61と同様に、天井に固定されている。そして、マイクロ波源36は、放射線発生装置4と離して床に設置されている。すなわち、放射線治療装置81は、天井から吊り下げられた片持ち式のΩ形である。
放射線治療装置81は、放射線治療装置1や放射線治療装置41と同じ機能を発揮するとともに、放射線治療装置61と放射線治療装置71の利点をそれぞれ兼ね備える。
本発明の第6の実施形態に係る放射線治療装置91について、図10、図4、図5、図6を参照して説明する。なお、第1から第5の実施形態における放射線治療装置1,41,61,71,81と同じ構成については、同一の符号を付してその説明を省略する。
図10に示す放射線治療装置91は、鉛直にアイソセンタ13を通る傾倒軸11を中心にガイド9を回転させる。ガイド9は、傾倒軸11上のアイソセンタ13の両側となる天井と床に設けられた支持部材12で支持される。したがって、円弧状のガイド9は、いわゆるC形に配置される。
マイクロ波源36は、放射線発生装置4と離して床に設置される。マイクロ波は、導波管37a,37b,37c,37d,37eとロータリーRFカプラ38a,38b,38c,38dを通して天井側から放射線発生装置4に供給される。なお、床側からマイクロ波を供してもよい。
第1の実施形態における放射線治療装置1に代表されるようなΩ形のガイド9は、サーボモータ12aの負担を軽減するために、重力が作用する環境下において、カウンターウェイト14を必要とする。これに対して、放射線治療装置91において、ガイド9が回転する場合、ガイド9の重心は、水平に移動する。また、ガイド9が停止している場合、サーボモータ12aに負荷がかからない。したがって、放射線治療装置91は、ガイド9にカウンターウェイト14を取付けなくてもよい。
放射線治療装置91において、放射線発生装置4は、患者Pの下まで回り込むようになるので、回動軸10は、床から高い位置に設けられる。可動台6が高くせり上がることで、患者Pによっては不安感を抱くことがある。そこで、マニピュレータ2が設置された床よりも高い位置に第2の床92を設け、そこに可動台6を設置する。マイクロ波源36は、第2の床92よりも下に配置されてもよい。
支持部材12が、天井と床に配置されるので、放射線治療装置91は、周辺領域を有効に利用できる。また、放射線治療装置91は、鉛直方向に配置された天井と床の支持部材12でガイド9の鉛直方向の荷重を支持するので、ガイド9の撓みが少ない。
本発明の第7の実施形態に係る放射線治療装置101について、図11、図4、図5、図6を参照して説明する。なお、第1から第6の実施形態における放射線治療装置1,41,61,71,81,91と同じ構成については、同一の符号を付してその説明を省略する。
図11に示す放射線治療装置101は、図10に示す放射線治療装置91と同様に、鉛直にアイソセンタ13を通る傾倒軸11を中心にガイド9を回転させる。放射線治療装置101は、ガイド9を床側に設けられた支持部材12で支持し、放射線発生装置4にマイクロ波を床側から供給する点が、図10に示す放射線治療装置91と異なる。すなわち、図10に示す放射線治療装置91が、両側支持のC形であることに対し、図11に示す放射線治療装置101は、床側支持のC形である。
放射線治療装置101は、片側支持であるので、放射線発生装置4が支持部材12から遠い天井側に移動したとき、ガイド9は、撓む。マニピュレータ2によって放射線発生装置4がアイソセンタ13に対して任意の照射角度に位置決めされる場合、照射角度は、回動軸10と傾倒軸11の回転角度に関する2つの変数によって1対1に決定される。
これに対し、ガイド9の撓みは、放射線発生装置4がガイド9に沿って移動する場合に変化し、ガイド9が傾倒軸11を中心に回転する場合には変化しない。つまり、ガイド9の撓みに関する補正は、回動軸10を中心に移動する放射線発生装置4の回転角度に関してのみ行なえばよい。
したがって、放射線治療装置101は、ガイド9に生じる撓みを用意に補正することができ、位置決め精度がよい。また、第2の床を適度な高さに設けることで、放射線治療装置101を使用しない場合、放射線発生装置4、支持部材12、マイクロ波源36、及び導波管やロータリーRFカプラによるマイクロ波伝達経路などを第2の床面よりも下に隠すことができる。
本発明の第8の実施形態に係る放射線治療装置111について、図12、図4、図5、図6を参照して説明する。なお、第1から第7の実施形態における放射線治療装置1,41,61,71,81,91,101と同じ構成については、同一の符号を付してその説明を省略する。
図12に示す放射線治療装置111は、図10及び図11に示す放射線治療装置91,101と同様に、鉛直にアイソセンタ13を通る傾倒軸11を中心にガイド9を回転させる。放射線治療装置111は、ガイド9を天井側に設けられた支持部材12で支持する点が、放射線治療装置101と異なる。また、放射線治療装置111において、放射線発生装置4は、放射線治療装置91と同様に、天井側を回してマイクロ波が供給される。つまり、放射線治療装置111は、天井側支持のC形である。
放射線治療装置111は、放射線治療装置101と同様に片側支持である。したがって、放射線発生装置4がガイド9に沿って移動することでガイド9が撓むが、放射線治療装置101と同じ理由により、放射線治療装置111は、補正を容易に行なうことができる。また、放射線治療装置111は、天井から吊り下げられているので、第2の床上での周辺領域を有効に利用することができる。
本発明の第9の実施形態に係る放射線治療装置121について、図13を参照して説明する。なお、第1から第8の実施形態における放射線治療装置1,41,61,71,81,91,101,111と同じ構成については、同一の符号を付してその説明を省略する。
図13に示す放射線治療装置121は、マニピュレータ122、放射線発生装置4、可動台6、診断用イメージャ、及び制御装置8を備える。マニピュレータ122は、可動部材123、ガイド129及び支持部材12を備える。診断用イメージャは、放射線源15と検出器16の組を複数組、本実施形態では2組、備える。
可動部材123とガイド129は、環状に設けられている。可動部材123は、ガイド129の内側に組みつけられている。可動部材123とガイド129との間には、図5に示すスライドユニット42が組み込まれる。可動部材123は、回動軸10を中心に回転する。
放射線発生装置4と放射線源15と検出器16は、可動部材123の内側に配置される。放射線発生装置4は、X線Rの出射方向と互いに交差する回動軸C,Dによって可動部材123に支持される。放射線発生装置4は、各回動軸C,Dを中心に、U方向及びV方向に回動する。放射線発生装置4から出射されるX線Rが回動軸10と直角に交わる点をアイソセンタ13とする。
支持部材12は、水平にアイソセンタ13を通る傾倒軸11を中心にガイド129を回転させる。その結果、放射線治療装置121は、球状面の任意の位置に放射線発生装置4を位置決めし、アイソセンタ13を中心に多方位からX線Rを照射することができる。支持部材12は、傾倒軸11上の2か所となるガイドの両外側に配置され、床に固定される。したがって、この放射線治療装置121は、水平に両側が支持されたO形である。
各放射線源15は、アイソセンタ13でX線Rが交差するように配置される。そして、放射線源15は、検出されるX線Rが放射線発生装置4から出射されるX線Rに干渉されないために、放射線発生装置4から離れた位置に取付けられる。検出器16は、対となる放射線源15から出射されたX線Rを検出する位置に取付けられる。また、アイソセンタ13を中心とする放射線発生装置4と対称の位置には、X線Rを遮断するために、ビームストッパ124を取付ける。放射線発生装置4と検出器16は、検出器16の検出面を除いて、フード125で覆われる。放射線源15とビームストッパ124は、フード126で覆われる。
また、放射線発生装置4は、マニピュレータ122と離して配置されたマイクロ波源36からマイクロ波を供給される。マイクロ波は、導波管37p,37q,37rとロータリーRFカプラ38p,38q,38r,38s,38tを通して放射線発生装置4の近傍まで伝達される。なお、ロータリーRFカプラ38pは、アイソセンタ13を通る軸上に配置される。放射線発生装置4の近傍の導波管及びロータリーRFカプラについては、図4から図6に示す配置と同じであるので、説明を省略する。
以上のように構成された放射線治療装置121は、ガイド129および可動部材123が環状に形成されている。したがって、放射線発生装置4をガイドに沿って移動させたときにガイド129に生じる変形が少ないので、簡単な補正で放射線発生装置4を精度よく位置決めすることができる。また、第1から第8の実施形態の放射線治療装置と同様に、放射線治療装置121は、患者Pの姿勢を変えることなく、多方位からX線Rを照射することができる。さらに、放射線治療装置121は、照射対象を診断用イメージャで確認し、アイソセンタ13から外れた照射対象にも回動軸C,Dを中心に放射線発生装置4の照射方向を変え、X線Rを照射することができる。可動部材123の任意の位置にバランサーウェイトを取付けて、放射線発生装置4などが取付けられることで偏心している可動部材123の重心をアイソセンタ13に設定することで、可動部材123に取付けられる駆動装置にかかる負担を軽減することができる。
本発明の第10の実施形態に係る放射線治療装置131について、図14を参照して説明する。なお、第1から第9の実施形態における放射線治療装置1,41,61,71,81,91,101,111,121と同じ構成については、同一の符号を付してその説明を省略する。
図14に示す放射線治療装置131は、鉛直にアイソセンタ13を通る回動軸10を中心にガイド129を回転させる。放射線治療装置131は、この点が図13に示す放射線治療装置121と異なる。支持部材12は、天井と床にそれぞれ配置されるとともに、サーボモータ12aを備えている。すなわち、放射線治療装置131は、鉛直に両側が支持されたO形である。
傾倒軸11が鉛直方向に配置されるので、放射線発生装置4が移動しても、ガイド129を面外方向に変形させる荷重が働かない。したがって、放射線治療装置131は、ガイド129の面内方向の変形について補正を行なうことで、精度よくX線Rを患部Tに照射することができる。
本発明の第11の実施形態に係る放射線治療装置141について、図15を参照して説明する。なお、第1から第10の実施形態における放射線治療装置1,41,61,71,81,91,101,111,121,131と同じ構成については、同一の符号を付してその説明を省略する。
図15に示す放射線治療装置141は、ガイド129を床側の1か所で支持している点が図14に示す放射線治療装置131と異なる。すなわち、放射線治療装置141は、鉛直方向に床側で支持するO形である。
放射線治療装置141は、天井側の支持部材がないので、天井の補強工事を行なわなくても設置することができる。
本発明の第12の実施形態に係る放射線治療装置151について、図16を参照して説明する。なお、第1から第11の実施形態における放射線治療装置1,41,61,71,81,91,101,111,121,131,141と同じ構成については、同一の符号を付してその説明を省略する。
図16に示す放射線治療装置151は、図14及び図15の放射線治療装置131,141と比較して、ガイド129を天井側の1か所で支持する点が異なる。すなわち、放射線治療装置151は、鉛直方向に天井側で支持するO形である。放射線治療装置151において、マニピュレータ122は、天井から吊り下げるように配置され、支持部材12よりもガイド129などの重心が下にある。したがって、放射線治療装置151は、静止状態で安定しやすい。
本発明の第13の実施形態に係る放射線治療装置31について、図17を参照して説明する。なお、第1から第12の実施形態における放射線治療装置1,41,61,71,81,91,101,111,121,131,141,151と同じ構成については、同一の符号を付してその説明を省略する。
図17に示す放射線治療装置31は、ガントリ32と、放射線発生装置4と、可変式コリメータ5と、可動部6と、診断用イメージャ7とを備える。ガントリ32は、回転軸33を中心に回転するドラム34と、このドラム34を支持するフレーム35を備えている。なお、ドラム34は、可動部材の一形態である。ドラム34は、放射線発生装置4と診断用イメージャ7の放射線源15及び検出器16とを所定の配置で搭載している。また、ドラム34の中空部は、回転軸33に沿う方向に患者Pを乗せた可動台6のスライドボード6aを挿入できる大きさを有している。
放射線発生装置4は、回転軸33に向かってX線Rを出射するように回動軸C,Dに支持されている。回動軸C,Dは、互いに直交するように配置され、放射線発生装置4を回転軸33に沿う方向U、及び回転軸33を横切る方向Vにそれぞれ回動させる。すなわち放射線発生装置4は、回動軸C,Dによって、いわゆる首振り動作ができる。
放射線発生装置4は、マイクロ波源36を可動部材3から離して配置している。マイクロ波は、導波管37,37d及びロータリーRFカプラ38p,38cを通して供給される。また、放射線発生装置4は、可変式コリメータ5が取付けられており、制御装置8によって制御されている。
放射線源15は、検出器16と対をなし、出射するX線Rが回転軸33上のアイソセンタ13で互いに交差するように配置される。放射線源15は、ドラム34に固定されて、放射線発生装置4とともに回転するので、照射野を互いに遮ることはない。
以上のように構成された第13の実施形態の放射線治療装置31は、患者Pを可動台6に乗せ、ドラム34内にスライドボード6aごと挿入する。医師または放射線技師は、患者Pの病巣Tを診断用イメージャ7によって確認しながら位置決めする。ガントリ32のドラム34の位置、放射線発生装置4の首振り角度、及び診断用イメージャ7によって得られる病巣Tの3次元位置及び3次元形状を基に、可変式コリメータ5は、制御装置8に制御され、病巣Tの動きに対して、X線Rの照射野を追尾させる。
放射線治療装置31は、放射線治療中の病巣Tの3次元位置及び3次元形状に対してX線Rの照射野を追尾させるので、病巣Tが放射線治療中に移動する場合にも精度の良くX線Rを照射することができる。つまり、放射線治療装置31は、放射線治療中に移動する病巣Tに連続してX線Rを照射することができるとともに、健全な部分に対する不要な放射線量を低減することができる。
また、第1から第13の実施形態において、診断用イメージャ7をCTスキャナとすると、精細な病巣Tの3次元位置及び3次元形状を得ることができるので、X線Rの照射野を精度よく病巣Tに対して追尾させることができる。
第2から第8の実施形態において、イメージャ及び可変式コリメータを図示していないが、第1の実施形態のようにイメージャと可変式コリメータを備え、X線Rの照射対象である病巣Tを確認するとともに、病巣Tを照射野で追尾するように制御することができる。
本発明に係る放射線治療装置は、診断用イメージャと可変式コリメータを備える場合、放射線治療中の治療対象部位の3次元位置及び3次元形状を診断用イメージャで検出し、治療対象部位の3次元位置と3次元形状及び治療用放射線の照射角度を基に制御装置で可変式コリメータを制御する。これによって、放射線治療装置は、治療用放射線の照射野を治療対象部位に追尾させる。したがって、放射線治療装置は、移動及び変形する治療対象部位に対して精度よく放射線の照射野を追尾させることができる。
診断用イメージャをX線CTスキャナとすることで、本発明に係る放射線治療装置は、精細な治療対象部位の3次元位置及び3次元形状を得ることができる。したがって、治療用放射線の照射野を精度よく治療対象部位に対して追尾させることができる。
また、本発明に係る放射線治療装置の制御方法は、診断用イメージャの検出範囲内に位置決めされた患者の治療対象部位の3次元位置及び3次元形状を前記診断用イメージャで検出し、治療用放射線の照射角度と、前記診断用イメージャで検出された治療対象部位の3次元位置及び3次元形状とを基に、前記治療用放射線の照射野を前記治療対象部位に連続的に追尾させるべく、前記治療用放射線を通過させる可変式コリメータの出射口の位置及び形状を前記治療用放射線の照射方向から見た前記治療対象部位の投影断面積に対応させて連続的に変化させる。したがって、移動及び変形する治療対象部位に対して精度よく放射線の照射野を追尾させて治療できる。
また、上記第1から第13の実施形態において、イメージャと可変式コリメータを備える放射線治療装置は、放射線治療中においても、患者の治療対象部位を確認し、その位置及び形状に合わせて照射野の形状を変えることができる。したがって、放射線治療装置は、照射対象部位以外への放射線の照射を抑制するとともに、放射線量の分布を調節し、精密な照射治療をすることもできる。
また、上述の実施形態で説明した本発明にかかる放射線治療装置は、循環器系や消化器系、及びその周辺など、心鼓動、呼吸運動、蠕動運動などによって常に動く部位であっても、イメージャによって治療対象部位を確認し、その治療対象部位を追尾するように放射線の照射野を可変式コリメータによって変化させることができる。したがって、放射線治療時間が短縮されるので、患者への負担が軽減される。
また、本発明に係る放射線治療装置は、患者を動かすことなく治療用放射線の照射角度を変えることができるとともに、照射対象の病巣を追尾することができるので、患者に不快感を与えることが少ない。
本発明の第14の実施形態に係る放射線治療装置161について、図18から図26を参照して説明する。
図18〜図20に示すように、本実施形態に係る放射線治療装置161は、患者204を載置するスライドボードとしての天板208を有する寝台207と、患者204に設定され得る照射野205に治療用放射線を照射する照射ヘッド210と、患部である照射野205の断層画像を取得するX線CT装置230とを備える。
図18において、天板208は、寝台207に内蔵された図示しないX−Y駆動機構により寝台長手方向、ここではX軸方向と寝台幅方向、ここではY軸方向との2軸に移動可能である。また、天板208は図示しないTVカメラの撮影画像に基づいて患者204の照射野205がアイソセンタ205aに位置するように、図示しないコンピュータシステムにより位置制御されるようになっている。さらに、天板208は、画像取得装置であるX線CT装置230又はPET(Positron Emission Tomography)装置等に適合した材質及び形状が選定されている。符号203bは、X線CT装置230による画像取得用X線(画像取得用放射線)である。符号220は、X線CT装置230を図示K1方向に傾斜させる傾斜機構である。
以後、寝台長手方向をX軸方向とし、寝台幅方向をY軸方向とし、寝台上下方向をZ軸方向としている。ここに、患者204は、天板208の寝台長手方向に体軸が沿うように天板208上に載置される。また、X軸及びY軸方向は水平方向であり、Z軸方向は垂直方向である。
照射ヘッド210は、周回移動機構268及び首振り機構269を介してアークガイドレール209に可動に支持され、治療用放射線203aを照射する。この周回移動機構268及び首振り機構269により、照射ヘッド210は、アイソセンタ205aを中心とする1/2球の範囲内で任意の照射位置に位置決めされる。
周回移動機構268は、図19に示すように、照射ヘッド210をアークガイドレール209に沿って周回移動(H1)させるものであり、ラック・アンド・ピニオン方式やベルト方式を採用することができる。また、照射ヘッド210には、導波管系211,215の第4の関節部216が連結されている。尚、照射ヘッド210は、詳細は後述する図21に示すように、照射ヘッド210は、導波管系211を構成する導波管路250,251,252を介してクライストロンの如きマイクロ波発振器270に電磁気的に接続されている。首振り機構269は、図19に示すように照射ヘッド210をアークガイドレール209上にて第4関節部216まわりに首振り(H2)させる。なお、照射ヘッド210は、全長が800〜1000mm、本体の外径が300〜500mmである。
アークガイドレール209は、図19及び図20に示すように天板208より上半分の円弧状をなす半円リングからなり、天板208を幅方向に跨ぐように設けられている。このアークガイドレール209は、モータ221A,221B及びボールスクリュウ222からなる傾動機構及び一対のシリンダ機構228により可動に支持されている。傾動機構は、アークガイドレール209を図19の傾動軸226まわりに0°〜180°の範囲内で図18に示すように傾動する(G1)。アークガイドレール209は、例えばステンレス鋼のように剛性の大きい材料でつくられ、幅が200〜400mm、厚みが20〜50mm、アイソセンタ5aからの半径が800〜1000mmである。
一対のシリンダ機構228は、図19に示すようにアークガイドレール209の左右両下端部をそれぞれ支持し、アークガイドレール209をZ軸方向に昇降(G2)させる。なお、両シリンダ機構228は動作が同期するように位置制御手段であるコンピュータ262により制御されている。
上述したように、本実施形態では、アークガイドレール209の傾動(G1)と、照射ヘッド210の周回移動(H1)とにより、照射ヘッド210は、アイソセンタ205aを中心とする1/2球上でアイソセントリックな動きが可能になる。また、アークガイドレール209の昇降(G2)と照射ヘッド210の首振り(H2)とにより、照射ヘッド210は、アイソセンタ205aを中心とする1/2球から外れた位置でノンアイソセントリックな動きが可能となる。
X線CT装置230は、ドーナツ状真空槽を備え、当該真空槽内に、同心円上配置した多数のX線発生ユニットを内蔵している。ここに、真空槽は中央開口を有し、該開口は診断用スペースに用いられる。すなわち、診断用スペースに患者204が天板208と共に出し入れされる。
本実施形態のX線CT装置230は非磁気型画像取得装置である。本実施形態のX線CT装置230は、X線源及び検出器が静止している所謂第5世代の装置であり、詳細は後述する。なお、本実施形態のX線CT装置230に代えて、X線源及び検出器が回転する第3世代のX線CT装置、X線源が回転し検出器が静止している第4世代のX線CT装置等も使用することができる。
本実施形態のX線CT装置230は、図18に示す画像取得装置傾斜機構220により例えばZ軸に対して20°〜30°の傾斜した姿勢で支持され得る。傾斜機構220を駆動させると、X線CT装置230は傾動(K1)し、画像取得用X線203bの照射角が変えられるようになっている。なお、X線CT装置230とアークガイドレール209は機械的に密に結合されており、共通の座標基準を有するが、X線CT装置230は、アークガイドレール209及び照射ヘッド210が干渉しないように制御される。画像取得装置としてX線CT装置230に代えてX線透視装置を用いる場合は、分解能やコントラストがX線CT装置230より劣るので、例えば小型金プレートを照射野の付近に埋め込んで、該プレートを透視画像に写し込む。これにより、プレートの画像をマーカとし、該マーカを基準に照射野を標識することにより、位置決めの精度を確保することができる。
なお、画像取得装置としては、上述したX線CT装置やX線透視装置の他に、PETを採用することができる。さらに、磁気型画像取得装置としてMRI装置も採用することができる。
図18に示すSAD(Source Axis Distance)は、アイソセンタ205aから照射ヘッド210内のターゲット310(図21参照)までの距離に相当するものである。本実施形態ではSADを80cmに設定している。
また、本実施形態では、図19に示すように、アイソセンタ205aからノンアイソセンタ205bへのシフト量DV1と、下式とをコンピュータ262により位置決め演算し、該演算結果に従ってノンアイソセンタ205bに対しX線を照射を行う際のアークガイドレール209の駆動(G1,G2)及び照射ヘッド210の駆動(H1,H2)を制御する。
H1=θ1 ...(1)
H2=θ1−arctan((r sinθ1−DV1)/(r cosθ1)) ...(2)
G1=0 ...(3)
G2=z ...(4)
但し、
θ1:アークガイドレール209のアイソセンタ垂直軸方向からの回転角
r:アークガイドレール9の曲率半径(アイソセンタ205aから照射ヘッド210の首振り中心までの距離)
z:アイソセンタ205aから垂直方向ずれ量
図19において、導波管系211の関節部214a〜214c,216は、加速用マイクロ波を軸回転で伝えるロータリーRFカプラ250を内部に有する。
また、図22に示すように、導波管系211の中には、導波管251,252が設けられ、該導波管251,252は、関節部214a〜214c内のロータリーRFカプラ250により電磁気的に連通している。
さらに、図23に示すように、ロータリーRFカプラ250は、フランジ継手253,254により導波管251,252の各々に接続されている。なお、符号255a,255bは、導波管251,252の導波路である。
また、図24に示すように、導波管251,252の導波路255a,255bは、ロータリーRFカプラ250の回転部材256,257に取り囲まれた回転スペースに連通し、該回転スペースに電界(ベクトル又はモード)が形成され、マイクロ波が伝播する。なお、図中にて符号258は軸受を示し、符号259はλ/4波長チョークを示す。このようなロータリーRFカプラ250と導波管251,252との組み合わせにより、床等に固定されたクライストロンの如きマイクロ波発振器から、移動する照射ヘッド210へ、加速用マイクロ波を円滑に供給することができる。
図19に示すように、導波管系211は、その一端が第1の関節部214aを介してアークガイドレール209の端部に固定され、他端が第4の関節部216を介して照射ヘッド210に連結してなるリンク機構である。
導波管系211は、アークガイドレール209の端部に固定された第1の関節部214aと、この第1の関節部214aに一端が回転可能に連結された第1の導波管212と、この第1の導波管212の他端が連結された第2の関節部214bと、この第2の関節部214bに一端が連結された第2の導波管213と、この第2の導波管213の他端が連結された第3の関節部214cと、この第3の関節部214cに一端が連結された第3の導波管215と、この第3の導波管215の他端が連結され且つ照射ヘッド210に連結してなる第4の関節部216とからなる。
ここに、第1の関節部214aのみがY軸に沿って設けられ、第2〜第4の関節部214b,214c,216はそれぞれX軸に沿って設けられている。
次に、X線CT装置230について詳細に説明する。
X線CT装置230は、患者204の如き被検体の照射野205に、扇状X線である画像取得用X線203bを多方面から照射して透過X線を検出して、該検出データを画像処理することによりコンピュータ画面上に照射野205の断層像を表示させる。
本実施形態のX線CT装置230は、所謂第5世代装置と称されるものであり、診断用スペースである中央開口を有する図示しないドーナツ状真空槽を有する。真空槽の内部には、排気ポートを介して真空ポンプにより真空排気される。真空槽内には、外周寄りの同心円上に配列された図示しない多数のX線発生ユニットと、該多数のX線発生ユニットに対応して内周寄りの同心円上に配列された図示しない多数のセンサアレイとが設けられている。これらのX線発生ユニットとセンサアレイとは、X軸方向にシフトして配置され、画像取得用X線203bは真空槽の半径に対して前傾する方向に扇状に照射される。このため、扇状の画像取得用X線203bは、X線照射側のセンサアレイに遮られることなく、診断用スペースに在る患者204を透過し、該透過X線は反対側のセンサアレイで検出することができる。
さらに、真空槽内にはビームリミッタ、電子銃駆動回路、画像信号ディジタイザなどが配置されている。X線発生ユニットから出射された扇状X線203bは、コリメータにより絞られ、さらにビームリミッタにより照射位置での幅に規定される。
センサアレイは、診断用スペースを取り囲む円周上に稠密に固定して配置され、多数個の超高感度CdTeセンサからなるものであり、0.5mmの分解能を有している。ちなみに、画像取得時における1ショットの撮像幅は約80mmである。また、X線の照射時間は1ショット当たり0.01秒である。
図示しないX線発生制御装置には図示しないデータ収録装置が接続されており、コンピュータ262からX線発生指令信号が入力される。センサアレイで検出されたX線透過データは、透過X線量に比例した電流信号に変換され、図示しないプリアンプ及びメインアンプを介して図示しないディジタイザ及び図示しないデータ収録装置に送られて収録されるようになっている。データ収録のタイミングはコンピュータ262からのX線発生指令信号によって制御される。収録されたデータは、データ収録装置から図示しない信号処理装置に出力され、信号処理装置でデータ処理される。処理されたデータは、照射野205の断層像として図示しないディスプレイ上に再生表示される。
一方、X線発生制御装置の出力側には電源及びX線発生ユニット内の図示しないアノード、カソード、ゲートアレイのグリッド電極がそれぞれ接続されている。コンピュータ262からX線発生指令信号がX線発生制御装置に向けて出されると、その指令に基づいてX線発生制御装置は図示しない電源から図示しない電子銃駆動回路への給電動作を制御すると共に、ゲートアレイのなかから撮影部位に適したグリッド電極を選択する。これに応じてX線発生ユニット内のいずれかのカソードから電子線が出射され、選択したグリッド電極に印加したマイナスのバイアス電圧が解除されてゼロ電位となり、電子線がグリッド電極の孔を通過してアノードに入射する。アノードに電子線が入射すると、アノードから二次X線が発生し、窓に取付けたコリメータを介して患者204に向けて扇状の画像取得用X線203bが出射されるようになっている。
コンピュータ262は、X線CT装置230から照射野205の透過X線データが入力されると、このデータに基づいて周回移動機構268、首振り機構269、傾斜機構220の駆動をそれぞれ制御することにより照射ヘッド210の位置と向きとを微調整し、アイソセンタ205a又はノンアイソセンタ205bにある照射野205に対して照射ヘッド210の照準を合わせて狙いをつけさせる。
次に、図21を参照して照射ヘッド210について詳しく説明する。
本実施形態の照射ヘッド210は、電子を4MeV〜20MeVのエネルギーに加速し、治療用放射線203aを発生するものであり、放射線治療装置161の照射ヘッドとして機能する。この照射ヘッド210は、放射線に対して遮蔽性のある外装ケース301で外側を覆われ、この外装ケース301内に電子銃303、加速管305、集束コイル309、X線ターゲット310、フラットニングフィルタ312、集束管313を備えている。
外装ケース310の尾端には絶縁キャップ302が被せられ、この絶縁キャップ302を介して電源264に接続されたケーブル304がケース301内に導入され、電子銃303に接続されている。なお、電子銃303の電源264はコンピュータ262により出力が制御されるようになっている。
電子銃303からフラットニングフィルタ312までは電子ビームの中心軸に沿って直列に配置されている。電子銃303から加速管305に続き、さらに加速管305から集束管313に続いている。
加速管305には導波管251が連通している。導波管251はマイクロ波発振器270に連通すると共に、真空ポンプ271にも連通している。このため、加速管305の内部は導波管251を介してポンプ271により真空排気される。なお、真空ポンプ271に分岐して連通する導波管251の主路にはセラミック窓272が嵌め込まれ、マイクロ波発振器270からセラミック窓272までの導波管内に封入されたSF6ガスを遮断して漏洩を防ぐと共に、マイクロ波のみを通過させるようにしている。
マイクロ波発振器270は出力安定性に優れたクライストロン方式のものである。マイクロ波発振器270の電源回路は、コンピュータ262に接続されている。電子銃303は、真空ポンプ271により真空排気されるチャンバ内に設けられたフィラメント(カソード)を備えている。
電子銃303が収納されたチャンバに連通連続して加速管305が設けられ、電子銃303から出射された電子線が加速されるようになっている。加速管305の内部は複数の仕切306で仕切られ、複数の加速室307が形成されている。仕切306の中央には電子ビーム通過孔306aが開口している。各加速室307の外周にはコイル308がそれぞれ巻き付けられ、コイル308はコンピュータ262により動作を制御される電源回路に接続されている。
加速管305に連続して集束管313が設けられている。集束管313には集束コイル309、X線ターゲット310、フラットニングフィルタ312がこの順に取付けられている。集束コイル309は加速管305で加速された電子をX線ターゲット310に向けて絞り込むものである。
X線ターゲット310は、高エネルギーの加速電子が入射して制動輻射X線を出射するものであるため、流路311aを有する水冷ジャケット311が取付けられ、熱損傷を防ぐために強制冷却されるようになっている。なお、ターゲット310にはタングステン、モリブデン、タンタル等の単体金属またはこれらの合金を用いることが好ましい。
フラットニングフィルタ312は、金属でつくられ、ターゲット310から出射されるX線の強度を平均化してほぼ均一なエネルギー密度をもつ治療用放射線203aとするためのものである。
さらに、外装ケース301の外側にはコリメータ314及び線量計測管320が取付けられている。コリメータ314は外装ケース301の先端にねじ込まれ、集束管313に連通する中空部を有している。コリメータ314は治療用の放射線203aが透過できない鉛などの遮蔽性の高い材料でつくられ、中空部を通って線量計測管320にX線203aが送られるようになっている。
線量計測管320は、ガスが封入された電離箱からなり、放射線通過時に発生する電離したガスの電荷量を検出して、放射線の線量を計測する。
次に、図25を参照して本実施形態装置の制御システムについて説明する。
本実施形態の放射線治療装置は、治療用寝台システム207,208、照射ヘッド210、X線CT装置230、信号処理装置231、マイクロ波発振器270、システム制御装置280、システムユーティリティ290からなる制御システムを有する。システム制御装置280が全体を統括して制御する。
システム制御装置280は、システム制御計算機、システム管理アルゴリズム、画像追尾アルゴリズム、治療計画アルゴリズム、治療管理アルゴリズム、グラフィカルユーザインターフェイス、治療データベース、インターロックアルゴリズム、システムモニタ及びBITを含む。システム制御装置280が制御システムの全体を統括し、他のブロックとの間で入出力信号のやりとりがなされる。
X線CT装置230は、信号処理装置231を経由してシステム制御装置280に接続されていることにより、放射線治療中に、X線CT装置230による画像取得がリアルタイムでなされ、医師はディスプレイ上に表示された画像を観ながら治療を行うことができる。
マイクロ波発振器270は、クライストロンモジュレータ・アンド・リニアックシステム制御装置、クライストロン及びRFドライバを具備している。加速管305にマイクロ波を供給する供給源であるクライストロンは、導波管系211を介して照射ヘッド210に接続されている。
照射ヘッド210のアイソセントリック駆動機構及び首振り駆動機構の各ドライバはシステム制御装置280に接続され、アイソセントリック照射時における照射ヘッド210の周回移動駆動及び擬似ノンアイソセントリック照射時における照射ヘッド210の2軸首振り駆動がそれぞれ制御されるようになっている。
また、上記実施形態では、1/2球殻からの放射線の照射について説明したが、X線CT装置230よりもさらに小型化した画像取得装置を照射ヘッド210に内包できるようにユニット化することにより、さらに上半球全体からの照射が可能となることが見込まれる。
次に、図26を参照して本発明の装置を用いた治療方法について説明する。
放射線治療においては、医師が治療計画を立てる。この治療計画は術前に行われる種々の検査に基づくものである。さらに医師は手術中において本実施形態の放射線治療装置を用いることにより患部の病巣を、直接的にリアルタイムで画像取得する。この画像取得により、高精度で確実性の高いの放射線治療を行うことができる。
図26の(a)に示すように、X線CT装置230のみを用いて照射野205及びその近傍領域の取得画像を得る。システム画面で照射野205の各断面図を確認して、画像追尾のための輪郭線を定義する。治療開始に先立って照射野205のマッピングは終了しており、これを参考に複数のスライスで照射野205の輪郭を定義する。
図26の(b)に示すように、放射線治療装置の画像追尾システムにより、実際の照射野205の画像の輪郭抽出を行う。この抽出した輪郭と定義された輪郭線とのパターンマッチングを行って画像追尾を開始する。医師は画像追尾状況を目視で確認する。
図26の(c)に示すように、画像追尾が安定した後に、医師はマスターアームスイッチ(Master Arm SW)を操作して、システムをARMED状態にする。システムは、照準をクロスヘアラインで画像上に表示すると共に、また照射ボリュームを赤色で同じ画像上に表示する。画像追尾が継続しているため、照準及び照射ボリュームは照射野の移動とともに自動的に追従する。
図26の(d)に示すように、医師のトリガ操作で治療用放射線203aの照射を開始する。治療計画の段階で予定の照射時間は決まっており、画面上ではカウントダウンが開始され、カウントゼロになると治療用放射線は自動的に停止する。画面上には線量分布が継続的に表示され、この表示された線量分布を医師は確認しながらトリガを引き続けて照射を継続する。システムは画像のサンプリング、治療用放射線203aの照射を高速に交互に続け、画像追尾と治療ビームの照射とをリアルタイムで継続する。カウントダウンがゼロになる前であっても、医師がトリガを離せば、そのタイミングで直ちに治療用放射線203aは停止するので、安全性は十分に確保される。
図26の(e)に示すように、医師はマスターアームスイッチ(Master Arm SW)をSAFE位置としてシステムを安全な状態にし、照射ヘッド210を次の照射位置へ移動させる。医師は、各ポータルにおける照射終了時と一連の照射終了後に累積被曝線量の総計にあたるトータルドウズ(Total Dose)を確認する。累積線量及び1クール内の累積線量分布が画面に表示され、患者毎に作成される治療ファイルに記憶される。
以上のように本実施形態によれば、放射線の照射位置及び照射時間等の条件を、X線CT装置230により照射野を確認しながら高精度に制御することができる。このため、臓器自体に動きがない頭部の治療に適用できることは勿論のこと、心臓や肺などの動きのある臓器の小病巣に対しても放射線を正確に照射することができ、放射線治療の分野において用途が拡大することが大いに期待される。
また本実施形態によれば、剛性の点で問題の多い片持型のロボットアームと異なり、高強度・高剛性の照射ヘッド支持構造を採用することができ、高い絶対精度を機械的に保証することが可能となる。このため、ロボットアームを使用して所要の位置決め精度を確保する場合に必要となるティーチングが不要となり、効率的な治療が可能となる。
従来、ノンアイソセントリックな照射治療に、所要の自由度を遙かに超える過剰な自由度を持つ汎用の産業用ロボットアームを適用するのは患者の安全性の点で問題がある。即ち、ロボットアームの誤動作等の事故の際に、ロボットアームもしくはその先端の照射ヘッドが患者に接触して、患者に対して外傷的な危害が及ぶ可能性がある。これに対して、本実施形態の放射線治療装置では、照射ヘッド支持機構及び照射ヘッド自体が機械的に可動範囲が制限されており、患者に対する絶対的な安全性が確保できる。
従来技術では、照射治療中に照射野をリアルタイムに監視することができず、推定に基づく照射を余儀なくされたが、本実施形態の放射線治療装置によれば、X線透視装置、X線CT装置、PET、DSA等の画像取得装置で、照射治療中に照射野をリアルタイムで監視することが可能となり、信頼性・安全性の高い照射治療が可能となる。また、リアルタイムに得られる上記の照射野画像を基にして画像追尾を行い、移動する照射野への追従照射が可能となる。
また本実施形態の放射線治療装置によれば、医師とのマンマシンインタフェイスが図られるので、安全性・信頼性に優れた確実な放射線治療が可能となる。
本発明の第15の実施形態に係る放射線治療装置162について、図18〜図26と同一部分には同一符号を付した図27〜図42を参照して説明する。なお、図27〜図29は図18〜図20に相当し、図35は図25に相当し、図38〜図39は図22〜図23に相当し、図42は図26に相当するので、これら図において重複部分の説明は省略する。
本実施形態の照射ヘッド1000は、図27〜図29及び図37A〜図37Dに示すように、周回移動機構268及び第1及び第2の首振り機構1310,1320によりアークガイドレール209に支持されている。周回移動機構268及び第1及び第2の首振り機構1310,1320は、アイソセンタ205aを中心とする二分の一球(1/2球)の範囲内で任意の照射位置に、照射ヘッド1000を位置決めする。
周回移動機構268は、ラック・アンド・ピニオン方式、ベルト方式等により照射ヘッド1000をアークガイドレール209に沿って周回移動(H1)させる。
第1の首振り機構1310は、図37A〜図37Dに示すように、サーボモータを備え、照射ヘッド1000をアークガイドレール209上でロータリーRFカプラ216の第1の軸S1まわりに首振り動作させる。また、この場合、ロータリーRFカプラ216は、照射ヘッド1000が首振りしたときの慣性力が小さくなるように、照射ヘッド1000の慣性中心をほぼ通る軸上に設けられている。
第2の首振り機構1320は、図37A〜図37Dに示すように、サーボモータを備え、照射ヘッド1000をロータリーRFカプラ500A,500Bの第2の軸S2まわりに首振り動作させる。ロータリーRFカプラ500A,500Bは、照射ヘッド1000が首振りしたときの慣性力が小さくなるように、照射ヘッド1000の慣性中心をほぼ通る軸上に設けられている。ちなみに、本実施形態の照射ヘッド1000は、全長が500〜600mm、幅500mm×深さ300mm、重量が60〜80kgである。
また、照射ヘッド1000は、導波管系211のロータリーRFカプラ216に首振り可能に連結される。図37Aに示すジンバル機構上の導波管510及びロータリーRFカプラ500によりマイクロ波発振器270に接続されている。
上記2軸の駆動(G1,H1)により、照射ヘッド1000は、アイソセンタ205aを中心とする1/2球殻上で、アイソセントリックな動きが可能になる。さらに、上記2軸の駆動(S1,S2)により、照射ヘッド1000は、1/2球殼上で、擬似的にノンアイソセントリックな動きが可能となる。
この擬似ノンアイソセントリック動作は、照射ヘッド1000の慣性中心まわりの首振り運動であるため、アイソセントリック動作と比べて格段に素早い動きとなる。擬似ノンアイソセントリックな高応答性の迅速な追尾モーションにより、例えば心鼓動等の早い動きに対してもヘッド照準を高応答かつ精密に追従させることが可能となる。
本実施形態において、照射野の移動に追従して照射するには、図32、図33及び図34に示すように、画像データから得られるシフト量DV1,DV2と、所定の算式とを用いてS1首振りドライブ軸まわりの微小変位角θ1とS2首振りドライブ軸まわりの微小変位角θ2とを演算し、該演算結果に従って首振り機構331,332の駆動をそれぞれ制御し、照射ヘッド1000を微小変位角θ1及び微小変位角θ2の分だけ高速首振りさせる。これにより呼吸、心鼓動、蠕動、膀胱内の尿量等の動きを伴う腫瘍等の頚部下の患部205に対し、照射ヘッド1000の照準が迅速かつ高応答に追随させることが可能となり、放射線の高精度照射が実現される。ちなみに、本実施形態の放射線治療装置においては、取得画像の処理時間を含めて0.1秒以内に照射ヘッド1000を高速で首振り動作させることができ、照射野(患部)の動きに対して迅速に追随させることができる。
また、図40Aに示すように、導波管510の導波路550a,550bはロータリーRFカプラ500の回転部材560,570に取り囲まれた回転スペースに連通し、このなかを図40Bに例示するような管内モードでマイクロ波が導かれる。
システム制御装置280は、画像取得装置としてのX線CT装置230から照射野205の断層像データが入力されると、このデータに基づいて周回移動機構268、傾動機構、寝台207の駆動をそれぞれ制御することにより、アイソセンタ205aにある照射野205に照射ヘッド1000の照準を合わせる。
さらに、照射野205が動いた場合には、システム制御装置280はX線CT装置230からの入力データに基づいて画像追尾のための演算を行い、その演算結果に基づいて第1及び第2の首振り機構1310,1320の動作をそれぞれ制御して照射ヘッド1000を首振りさせる。なお、照射ヘッド1000の首振り動作中はインターロックが作動して放射線の照射は禁止されるので、近傍部位の被曝量は最小限に抑えられる。
次に、本実施形態の照射ヘッド1000の詳細を説明する。
照射ヘッド1000は、図30A〜図30C及び図36に示すように、ヘッド本体部をカバー1010で覆い、該ヘッド本体部の先端側に放射線を出射するための出射部1200が取付けられている。ヘッド本体部を覆うカバー1010内には、電気回路/冷却水回路1160、加速管1100、RF窓520、導波管510、ロータリーRFカプラの一部500B、排気管1070、イオンポンプ1120、ターゲット排気室1190、ターゲット1210、冷却板1220が設けられている。また、加速管1100の尾部の絶縁碍子1030から外部電源に接続された図示しないケーブルがカバー1010内に導入され、電子銃1040のカソード1050に接続されている。このカソード1050と向き合ってアノード1060が配置されている。カソード1050とアノード1060との間は、イオンポンプ1120に連通する排気管1070により排気される。電子銃1040の電源は、システム制御装置280により制御される。なお、電子銃1040は、加速管1100から出射部1200に続いている。また、絶縁碍子1030から加速管1100の先端までの長さは、約360mmである。
図31に示すように、電子銃1040のアノード1060の中央孔は、加速管1100のバンチャ空洞1090に連通している。加速管1100は、電子銃1040から出射された電子線を加速させ、高エネルギーの電子ビームをX線ターゲット1210に衝突させる。加速管1100の内部には電子ビーム通過用の中央孔を有する加速空胴1110bが配置されている。加速空胴1110bは、サイドカップルキャビティ1110aを介して左右一対の側方排気管1080にそれぞれ連通している。左右一対の側方排気管1080は、イオンポンプ1120に接続される。これにより左右一対の側方排気管1080は、イオンポンプ1120によって真空排気される。すなわち、加速管1100の内部は、側方サイドカップルキャビティ1110a及び側方排気管1080を介してイオンポンプ1120により真空排気される。
加速管1100には導波管510が連通している。導波管510はセラミック製のRF窓520及びロータリーRFカプラ500A,500Bを経由してマイクロ波発振器270に連通している。RF窓520は、導波管510内に封入されたSF6ガスの漏洩を防ぐとともに、マイクロ波を加速管1100へ導入させる入口である。なお、マイクロ波発振器70は出力安定性に優れたクライストロン方式のものである。マイクロ波発振器270の電源回路はシステム制御装置280に接続されている。
出射部1200は、カバー1010で覆われたヘッド本体部の先端に設けられ、X線ターゲット1210、ターゲット冷却板1220、一次コリメータ1230、フラットニングフィルタ1240を備えている。電子銃1040から加速管1100を経てフラットニングフィルタ1240に至るまでは電子ビームの光軸に沿って直列に並び、加速された電子線はターゲット排気室1190を通って出射部1200のターゲット1210に入射するようになっている。
X線ターゲット1210は、高エネルギーの加速電子が入射して制動ふく射X線を出射する。このためX線ターゲット1210は、熱損傷を受け易い。この熱対策として、冷却板1220によりX線ターゲット1210を冷却する。なお、ターゲット1210にはタングステン、タンタル等の高融点金属単体またはこれらの合金を用いている。
一次コリメータ1230は、タングステンなどの放射線に対する遮蔽性に優れ、かつ熱中性子発生の少ない材料でつくられ、ターゲット1210からのX線をフラットニングフィルタ1240に導くものである。
フラットニングフィルタ1240は、ターゲット1210から出射される放射線(X線)の強度を平均化して均一なドーズ分布をもつ治療用放射線203aとするためのものである。
さらに、出射部1200の先端側には二次コリメータ1250及び線量計測用電離箱1260が取付けられている。二次コリメータ1250は、治療用放射線203aが透過できないタングステンなどの遮蔽性の高い材料でつくられ、中空部を通って線量計測用電離箱1260に治療用放射線203aが送られるようになっている。この二次コリメータ1250は一次コリメータ1230の端面部に着脱可能にネジ込まれている。
線量計測用電離箱1260は、二次コリメータ1250の先端に取付けられ、所定成分のガスが封入された電離箱であり、放電電荷を検出する図示しない検出回路が接続されている。この検出回路はシステム制御装置280の入力側に接続されている。システム制御装置280は、線量計測用電離箱1260からの入力信号に基づいて照射ヘッド1000から出射される治療用放射線の線量を算出し、患者204が受ける治療用ドーズデータとしてメモリに保存するようになっている。
次に、図35を参照して本実施形態の放射線治療装置の制御システムについて説明する。
本実施形態装置の制御システムは、寝台208、照射ヘッド1000、X線CT装置230、信号処理装置231、マイクロ波発振器270、システム制御装置280、システムユーティリティ290からなり、システム制御装置280が全体を統括して制御する。
システム制御装置280は、システム制御計算機、システム管理アルゴリズム、画像追尾アルゴリズム、治療計画アルゴリズム、治療管理アルゴリズム、グラフィカルユーザインターフェイス、治療データベース、インターロックアルゴリズム、システムモニタ及びBITを含む。
X線CT装置230は、信号処理装置231を経由してシステム制御装置280に接続されている。これにより画像取得が治療中にリアルタイムでなされ、医師はディスプレイ上に表示された取得画像を観ながら治療を行うことができるようになっている。
マイクロ波発振器270は、クライストロンモジュレータ・アンド・リニアックシステム制御装置、クライストロン及びRFドライバを具備している。加速管1100にマイクロ波を供給するクライストロンは、導波管系211を介して照射ヘッド1000に接続される。
照射ヘッド1000のアイソセントリック駆動機構及び首振り駆動機構の各ドライバは、システム制御装置280に接続され、アイソセントリック照射時には、周回移動機構268が制御され、また擬似ノンアイソセントリック照射時には、2軸首振り機構1310,1320が制御される。
次に、本実施形態における首振り機構について、図32〜図34と、図36、図37A〜図37Dとを参照して詳細に説明する。
図36に示すように、本実施形態の照射ヘッド1000は、ヘッドカバー1010のジンバル構造支持フレーム1020に支持されている。支持フレーム1020は照射ヘッド1000の慣性中心を含むS1軸及びS2軸が通る位置座標に取付けられている。
図37Aに示すように、支持フレーム1020には導波管系211のロータリーRFカプラ216、一対のロータリーRFカプラ500A,500B、サーボモータからなるS1首振り機構1310、サーボモータからなるS2首振り機構1320がそれぞれ各辺に取付けられている。
図37Bに示すように、導波管系211のロータリーRFカプラ216は支持フレーム1020の一方側長辺の中央に取付けられ、これと向き合うようにS1首振り機構1310の駆動軸1310aがフレーム1020の対向長辺の中央に取付けられている。駆動軸1310aを回転駆動させると、図34に示すようにS1ドライブ軸まわりに照射ヘッド1000が首振りするようになっている。
図37Dに示すように、一対のロータリーRFカプラ500A,500Bは支持フレーム1020の一方側短辺の中央に取付けられている。
図37Cに示すように、一対のロータリーRFカプラ500A,500Bに向き合うようにS2首振り機構1320の駆動軸1320aが、支持フレーム1020の対向短辺の中央に取付けられている。すなわち、S2首振り機構1320の本体は、支持フレーム1020側のブラケット1020aに固定支持され、駆動軸1320aは、軸受1330を介して支持フレーム1020に回転可能に支持されている。駆動軸1320aを回転駆動させると、図33に示すように、S2ドライブ軸まわりに照射ヘッド1000が首振りする。
図37Aに示すように、導波管系211の各リンクアーム213,215内には導波管510が設けられている。各関節部214,216内には、ロータリーRFカプラ500が設けられている。一対のロータリーRFカプラ500A,500Bを通って照射ヘッド内の加速管1100に、マイクロ波が導入される。
次に、本実施形態の放射線と治療装置162の動作、特に、治療用放射線の直接線、漏洩線及び散乱線の検出器への影響を防止し、画像取得用X線の照射と治療用放射線の照射とのリアルタイム時分割処理を実現する方法を、図41に示すタイミングチャートを参照して説明する。
先ず放射線治療装置162のメインスイッチをONすると、治療用寝台システム207,208、照射ヘッド1000、X線CT装置230、マイクロ波発振器270、システム制御装置280、システムユーティリティ290の電源がそれぞれ待機状態となる。天板208が移動して患者204を治療エリア内に移動させる。このとき、X線CT装置230及び/又は寝台207を移動させて、患部205がアイソセンタ205aに一致するように位置合わせする。このアイソセントリック位置合わせ完了後、X線CT装置230によるリアルタイム画像取得と、照射ヘッド1000による放射線治療とを開始する。
図41中の時間t0において、X線CT装置230は、照射野205に向けて画像取得用X線203bの照射を開始する。その透過像を図41に示す時間t0〜t1において取得画像として検出する。なお、被曝を最小限度とするため画像取得用X線203bの照射時間も時間t0〜t1の間に限定する。また、少なくとも画像取得用X線203bを照射している時間t0〜t1において、治療用放射線203aの直接線、漏洩線及び散乱線が検出器に影響を与えないようにするため、照射ヘッド1000は、治療用放射線203aを出射しないようにインターロックされている。
検出された取得画像は、時間t1〜t2において取り込まれる(収録される)。取り込まれた取得画像の追尾画像データなどの情報は、時間t2〜t3において信号処理装置231やシステム制御装置280で処理され、処理画像をディスプレイ上に表示される。また、この画像追尾計算の結果、処理された情報は、位置補正データとして、首振り機構1310,1320に送られる。そして、時間t0〜t3までと同じ画像取得から画像処理までのサイクルが、時間t3以降、繰返される。
時間t3〜t5にかけて次の画像検出と画像取り込みが行なわれている間に、首振り機構1310,1320の首振りサーボは、位置補正データとして送られてきた画像追尾計算の結果を基に、微小首振り角θ1及びθ2、駆動される。首振り機構1310,1320を駆動させている時間t3〜t5の間、治療用放射線203aを照射しないように、照射ヘッド1000は、安全性を考慮してインターロックされている。
首振り機構1310,1320が停止する時間t5において、照射ヘッド1000のインターロックは、解除され、治療用放射線203aは、照射されはじめる。治療用放射線203aの照射時間は、次に首振り機構1310,1320が駆動されるまでの、時間t5〜t6である。また、この時間t5〜t6と同期して、時間t3〜t5の間に取得された取得画像の追尾画像データの画像追尾計算が実行される。時間t6において、3回目の画像検出と2回目の首振りサーボ駆動が開始され、2回目の画像追尾計算と1回目の治療用放射線203aの照射が完了する。
治療用放射線203aの照射停止後、時間t6に画像取得用X線203bの照射を開始し、時間t6から始まる次の画像処理のサイクルに移行する。時間t0から3回目の画像取り込み後のタイミングt8に照射ヘッド1000のインターロックが解除され、2回目の治療用放射線203aの照射が再開される。
このように、画像処理のサイクルと首振り及び照射のサイクルとは、互いにオーバーラップしている。ある画像処理のサイクルの間に行なわれる首振りヘッドの駆動及び治療用放射線203aの照射を行なうサイクルは、この画像処理のサイクルの1つ前に行なわれた画像処理のサイクルの情報に基づいて行なわれる。
なお、心鼓動などの早い動きに追従する場合、画像検出の開始から、照射ヘッド1000を首振りさせて、治療用放射線203aを照射し終わるまでの時間t0〜t6は、0.1秒以内が一つの目安とされている。そこで、図41に示すタイムチャートは、画像処理の1サイクル及び首振り及び照射の1サイクルをそれぞれ0.05秒とした場合を示している。したがって、図41に示すタイムチャート中の時間は、一例であって、これ以外の時間間隔で実施されてもよい。
また、画像取得や画像追尾計算に異常が生じた場合、その時点で治療用放射線203aの照射を停止するようにインターロックをかけ、安全性を向上させる。なお、本実施形態の放射線治療装置162では、照射ヘッド1000の首振り及び位置決めが正常に行われたことを確認してから治療用放射線203aの照射がなされるよう構成されている。
このように本実施形態の放射線治療装置162において、画像検出のサイクル、画像取込のサイクル、画像追尾計算のサイクル、それに基づくヘッド首振り制御のサイクル、治療用放射線203aの照射のサイクルが繰返され、寝台207の1/2球殻の位置から照射野205への追従照射による治療が行われる。
上述した本実施形態の放射線治療装置162の治療方法は、図42の(a)〜(e)にて示される。この図42は、図26と同様なので説明は省略する。
上述した本実施形態の放射線治療装置162によれば、画像処理時間を含めて0.1秒以内に照射ヘッド1000を高速首振り動作させ、照射野(患部)の動きに対して追随させることができるので、高精度な放射線の照射を実現することができる。
このように本実施形態の放射線治療装置162は、患部の動きに対応して高応答かつ高精度にノンアイソセントリック照射することが可能であるので、呼吸、心鼓動、蠕動、膀胱内の尿量等、臓器の運動や状態の影響を受けて腫瘍等の照射対象が移動する頚部以下の部位を治療対象とすることができる。
本発明の第16の実施形態に係る放射線治療装置163について、図43及び図44を参照して説明する。なお、図43及び図44において、先の図と重複する部分は、同じ符号を付してその説明は省略する。
本実施形態の放射線治療装置163は、回転ドラム299上に、照射ヘッド1000、X線CT装置のX線管である画像取得用X線源297及びセンサアレイ298を搭載した構成であり、第3世代X線CT装置等のドラム部上に、照射ヘッド1000を装備した構造としている。回転ドラム299の回転中心は、アイソセンタ205aとされている。照射ヘッド1000は、4MeV〜10MeVの放射線を発生する線形加速器を搭載し、図示のように2軸(S1,S2)の首振り機構を有し、これらの首振り機構による動作によって、回転ドラム299の回転軸周りにノンアイソセントリックな照射が可能である。なお、S2軸の首振りには、回転ドラム299の回転に伴う照準角度補正も含める必要があるが、S1軸の首振りに関しての照準角度補正は不要である。
画像取得用X線源297及びセンサアレイ298は、照射ヘッド1000と干渉を生じない回転ドラム299上に所定箇所にそれぞれ取付けられ、画像取得用X線源297とセンサアレイ298とは互いに向き合っている。センサアレイ298はMulti Lawタイプの多列センサである。
次に、本発明の第17の実施形態に係る放射線治療装置164について、図45を参照して説明する。なお、図45において、先の図と重複する部分は、同一の符号を付してその説明を省略する。
本実施形態の放射線治療装置164は、回転ドラム299上に、照射ヘッド1000と、X線源297A,297B及びセンサアレイ298A,298Bが装備されている。このX線源297Aとセンサアレイ298Aとのセットと、X線源297Bとセンサアレイ298BとのセットとはそれぞれX線透視装置として機能する。2つのX線透視装置の目視線は互いに一致しないようになっている。これにより患者204の体内のランドマーク又は微小金プレート等のマーカを写し込んだX線透視画像を2軸方向について取得することができ、患部位置の動きを把握可能としている。なお、X線透視画像の画像強調方法としては、造影剤を用いてDSAのような画像処理を行うことも可能である。なお、照射ヘッド1000は、第16の実施形態で説明した放射線治療装置163の照射ヘッド1000と同様である。
産業上の利用可能性
本発明によれば、優れた治療性能を有する放射線治療装置を提供することが可能となる。
【図面の簡単な説明】
図1は、本発明の第1の実施形態に係る放射線治療装置を示す斜視図である。
図2は、図1の放射線治療装置の可変式コリメータと診断用イメージャを部分的に抽出し、照射対象との位置関係を示す斜視図である。
図3は、本発明の第2の実施形態に係る放射線治療装置を示す斜視図である。
図4は、図3の放射線治療装置において、放射線発生装置と可動部材の周辺を示す上面図である。
図5は、図3の放射線治療装置において、放射線発生装置と可動部材の周辺を示す側面図である。
図6は、図3の放射線治療装置において、放射線発生装置と可動部材の周辺を示す正面図である。
図7は、本発明の第3の実施形態に係る放射線治療装置を示す斜視図である。
図8は、本発明の第4の実施形態に係る放射線治療装置を示す斜視図である。
図9は、本発明の第5の実施形態に係る放射線治療装置を示す斜視図である。
図10は、本発明の第6の実施形態に係る放射線治療装置を示す斜視図である。
図11は、本発明の第7の実施形態に係る放射線治療装置を示す斜視図である。
図12は、本発明の第8の実施形態に係る放射線治療装置を示す斜視図である。
図13は、本発明の第9の実施形態に係る放射線治療装置を示す斜視図である。
図14は、本発明の第10の実施形態に係る放射線治療装置を示す斜視図である。
図15は、本発明の第11の実施形態に係る放射線治療装置を示す斜視図である。
図16は、本発明の第12の実施形態に係る放射線治療装置を示す斜視図である。
図17は、本発明の第13の実施形態に係る放射線治療装置を示す斜視図である。
図18は、本発明の第14の実施形態に係る放射線治療装置を寝台軸に直交する方向から見た構成図である。
図19は、同実施形態の放射線治療装置を寝台軸方向から見た構成図である。
図20は、同実施形態の放射線治療装置による放射線治療を説明する斜視図である。
図21は、同実施形態の放射線治療装置における照射ヘッドの部分断面図である。
図22は、同実施形態の放射線治療装置における導波管系及びロータリーRFカプラを示す斜視図である。
図23は、同実施形態の放射線治療装置におけるロータリーRFカプラ及び導波管を示す斜視図である。
図24は、同実施形態の放射線治療装置におけるロータリーRFカプラを説明する図である。
図25は、同実施形態に係る放射線治療装置のブロック図である。
図26は、同実施形態における放射線治療の操作手順を、モニタ画面の変化で示す図である。
図27は、本発明の第15実施形態に係る放射線治療装置を寝台軸に直交する方向から見た構成図である。
図28は、同実施形態の放射線治療装置を寝台軸方向から見た構成図である。
図29は、同実施形態の放射線治療装置による放射線治療を説明する斜視図である。
図30A、図30B及び図30Cは、夫々本発明の第15実施形態に係る放射線治療装置における照射ヘッドを示す。図30Bは、図30AにおけるXIIIB−XIIIBに沿う断面図である。図30Cは、図30AにおけるXIIIC−XIIICに沿う断面図である。
図31は、同実施形態の放射線治療装置における照射ヘッドに備わる超小型C−Band加速管を示す構成図である。
図32は、同実施形態の放射線治療装置による擬似ノンアイソセントリックで放射線治療を行う際の照射ヘッド及び患者を示す斜視図。
図33は、同実施形態の放射線治療装置による擬似ノンアイソセントリックで放射線治療を行う際の照射ヘッドの首振り動作の一例を説明するものであって、図32におけるXVI−XVIに沿う部分断面図である。
図34は、同実施形態の放射線治療装置による擬似ノンアイソセントリックで放射線治療を行う際の照射ヘッドの首振り動作の他例を説明するものであって、図32におけるXVII−XVIIに沿う部分断面図である。
図35は、本発明の第15実施形態に係る放射線治療装置のブロック図である。
図36は、本発明の第15実施形態に係る放射線治療装置の照射ヘッドを示す斜視図である。
図37A〜Dは、同実施形態における首振り機構を示し、図37Aは導波管と首振り機構及び駆動モータを示す斜視図である。図37Bは、図37AにおけるXXB−XXBに沿う断面図である。図37Cは、図37AにおけるXXC−XXCに沿う断面図である。図37Dは、図37AにおけるXXD−XXDに沿う断面図である。
図38は、同実施形態の放射線治療装置における導波管系及びロータリーRFカプラを示す斜視図である。
図39は、同実施形態の放射線治療装置におけるロータリーRFカプラ及び導波管を示す斜視図である。
図40A,図40Bは、夫々同実施形態の放射線治療装置におけるロータリーRFカプラを説明する図である。
図41は、同実施形態における動作を示すタイミングチャートである。
図42は、同実施形態における放射線治療の操作手順を、モニタ画面の変化で示す図である。
図43は、本発明の第16実施形態に係る放射線治療装置を、寝台軸の方向から見た構成図である。
図44は、同実施形態に係る放射線治療装置を、寝台軸の方向から見た構成図である。
図45は、本発明の第17実施形態に係る放射線治療装置を、寝台軸の方向から見た構成図である。

Claims (38)

  1. 放射線を出射する放射線発生装置と、
    出射される放射線が1点で交差するようにアイソセンタを中心に前記放射線発生装置を所定の半径の軌道に沿って移動させるガイドと、
    前記アイソセンタを通って前記軌道が形成する平面と平行に配置される傾倒軸を中心に前記ガイドを回転させる支持部材とを備える放射線治療装置。
  2. 請求項1に記載の放射線治療装置において、
    前記ガイドは、互いに交差する2つの回動軸を介して前記放射線発生装置を枢支する可動部材を備える。
  3. 請求項1に記載の放射線治療装置において、
    前記可動部材は、前記ガイドに設けられる少なくとも1対のレールに取付けられる。
  4. 請求項1に記載の放射線治療装置において、
    前記ガイドは、前記アイソセンタに対して正反対の方位から放射線を照射する範囲以上に前記放射線発生装置を移動させる移動範囲を有している。
  5. 請求項1に記載の放射線治療装置において、
    前記ガイドは、前記傾倒軸上の1か所で前記支持部材に支持される。
  6. 請求項1に記載の放射線治療装置において、
    前記ガイドは、前記傾倒軸上のアイソセンタの両側2か所で前記支持部材に支持される。
  7. 請求項1に記載の放射線治療装置において、
    前記ガイドは、円弧状に設けられ、前記アイソセンタを水平に通る傾倒軸で前記支持部材に枢支される。
  8. 請求項1に記載の放射線治療装置において、
    前記ガイドは、円弧状に設けられ、前記アイソセンタを鉛直に通る傾倒軸で前記支持部材に枢支される。
  9. 請求項1に記載の放射線治療装置において、
    前記ガイドは、環状に形成され、前記アイソセンタを水平に通る傾倒軸で前記支持部材に枢支される。
  10. 請求項1に記載の放射線治療装置において、
    前記ガイドは、環状に形成され、前記アイソセンタを鉛直に通る傾倒軸で前記支持部材に枢支される。
  11. 請求項1に記載の放射線治療装置において、
    前記支持部材は、前記アイソセンタよりも床に近い位置に取付けられる。
  12. 請求項1に記載の放射線治療装置において、
    前記支持部材は、前記アイソセンタよりも天井に近い位置に取付けられる。
  13. 請求項5に記載の放射線治療装置は、
    前記支持部材が前記ガイドを枢支する箇所に、前記傾倒軸を中心に前記ガイドを回転させる駆動装置を備える。
  14. 請求項6に記載の放射線治療装置は、
    前記支持部材が前記ガイドを枢支する箇所の少なくとも1つに、前記傾倒軸を中心に前記ガイドを回転させる駆動装置を備える。
  15. 請求項2に記載の放射線治療装置において、
    前記可動部材は、ガイドの外周側に取付けられたベルトを掴んで移動する駆動装置を備える。
  16. 請求項1に記載の放射線治療装置において、
    前記放射線発生装置は、放射線を出射する窓の形状が変化する可変式コリメータを備える。
  17. 請求項1に記載の放射線治療装置は、
    前記アイソセンタを含む範囲の放射線透過画像の情報を取得するイメージャをさらに備える。
  18. 請求項17に記載の放射線治療装置において、
    前記イメージャは、出射する放射線が前記アイソセンタで交差する放射線透過画像取得用の複数の放射線源と、これらの放射線源と対に設けられて前記放射線源から出射されて前記アイソセンタを通過した放射線をそれぞれ検出する検出器とを備える。
  19. 請求項17に記載の放射線治療装置は、
    前記イメージャで取得した情報を基に前記放射線発生装置を枢支する前記可動部材の2つの軸を制御する制御装置をさらに備える。
  20. 請求項17に記載の放射線治療装置は、
    前記放射線発生装置から出射される放射線の断面形状を変化させる可変式コリメータと、前記イメージャで取得した情報を基に前記可変式コリメータの前記窓の形状を変化させる制御装置とを備える。
  21. 請求項17に記載の放射線治療装置において、
    前記イメージャは、X線CTスキャナである。
  22. 請求項1に記載の放射線治療装置は、
    前記放射線発生装置に導波管を通してマイクロ波を供給するマイクロ波源を前記可動部材及び前記ガイドと離れた位置に備える。
  23. 請求項1に記載の放射線治療装置は、
    前記アイソセンタを含む範囲に照射対象を位置決めする可動台をさらに備える。
  24. 請求項23に記載の放射線装置において、
    前記可動台は、照射対象を載せるスライドボードと、互いに直交する3つの軸に沿って前記スライドボードを移動させる駆動機構とを備える。
  25. 治療用放射線を出射する放射線発生装置と、
    前記放射線発生装置を搭載した可動部材と、
    前記可動部材を所望の向きに位置決めするマニピュレータと、
    前記放射線発生装置から出射される前記治療用放射線の照射野を変化させる可変式コリメータと、
    前記治療用放射線が照射される照射対象の3次元位置および3次元形状を検出する診断用イメージャと、
    前記診断用イメージャによって検出された前記照射対象の3次元位置と3次元形状、及び前記照射対象に対する前記治療用放射線の照射角度を基に、前記可変式コリメータの出射口を、この出射口から出射される治療用放射線の照射野が前記3次元位置及び3次元形状を追尾するように制御する制御装置と、
    前記照射対象を前記治療用放射線の照射野に位置決めする3軸直交型の位置決め装置とを備える放射線治療装置。
  26. 治療用放射線を出射する放射線発生装置と、
    前記放射線発生装置を搭載した可動部材と、
    患者を中心に前記可動部材を回転させるガントリと、
    前記治療用放射線の照射野を変化させる可変式コリメータと、
    前記治療用放射線が照射される照射対象の3次元位置及び3次元形状を検出する診断用イメージャと、
    前記診断用イメージャによって検出された前記照射対象の3次元位置と3次元形状、及び前記照射対象に対する前記治療用放射線の照射角度を基に、前記可変式コリメータの出射口をこの出射口から出射される治療用放射線の照射野が前記3次元位置及び3次元形状を追尾するように制御する制御装置と、
    前記照射対象を前記治療用放射線の照射野に位置決めする3軸直交型の位置決め装置とを備える放射線治療装置。
  27. 請求項25に記載の放射線治療装置において、
    前記可動部材は、前記治療用放射線の出射方向と交差する軸周りに回動する。
  28. 請求項26に記載の放射線治療装置において、
    前記可動部材は、前記治療用放射線の出射方向と交差する軸周りに回動する。
  29. 請求項25に記載の放射線治療装置は、
    前記放射線発生装置にマイクロ波を供給するマイクロ波源を前記可動部材と離して設け、前記マイクロ波源から前記放射線発生装置までマイクロ波を伝播する導波管を備える。
  30. 請求項26に記載の放射線治療装置は、
    前記放射線発生装置にマイクロ波を供給するマイクロ波源を前記可動部材と離して設け、前記マイクロ波源から前記放射線発生装置までマイクロ波を伝播する導波管を備える。
  31. 請求項25に記載の放射線治療装置において、
    前記診断用イメージャは、
    出射される診断用X線が前記照射対象で互いに交差する複数のX線源と、
    このX線源と対に設けられて前記照射対象を透過した前記診断用X線を検出する検出器と、
    これらの検出器で検出された前記診断用X線を基に前記照射対象の3次元位置及び3次元形状を求める解析装置とを備える。
  32. 請求項26に記載の放射線治療装置において、
    前記診断用イメージャは、
    出射される診断用X線が前記照射対象で互いに交差する複数のX線源と、
    このX線源と対に設けられて前記照射対象を透過した前記診断用X線を検出する検出器と、
    これらの検出器で検出された前記診断用X線を基に前記照射対象の3次元位置及び3次元形状を求める解析装置とを備える。
  33. 請求項25に記載の放射線治療装置において、
    前記診断用イメージャは、X線CTスキャナである。
  34. 請求項26に記載の放射線治療装置において、
    前記診断用イメージャは、X線CTスキャナである。
  35. 請求項25に記載の放射線治療装置において、
    前記制御装置は、前記診断用イメージャによって検出された前記照射対象の3次元位置及び3次元形状を基に、前記照射対象の前記放射線発生装置から見た投影面積に対応させて、前記可変式コリメータの出射口を変化させる。
  36. 請求項26に記載の放射線治療装置において、
    前記制御装置は、前記診断用イメージャによって検出された前記照射対象の3次元位置及び3次元形状を基に、前記照射対象の前記放射線発生装置から見た投影面積に対応させて、前記可変式コリメータの出射口を変化させる。
  37. 診断用イメージャの検出範囲内に位置決めされた患者の治療対象部位の3次元位置及び3次元形状を前記診断用イメージャで検出し、治療用放射線の照射角度と、前記診断用イメージャで検出された治療対象部位の3次元位置及び3次元形状とを基に、前記治療用放射線を通過させる可変式コリメータの出射口の位置及び形状を前記治療用放射線の照射方向から見た前記治療対象部位の投影断面積に対応させて連続的に変化させ、前記治療用放射線の照射野を前記治療対象部位に連続的に追尾させる治療用放射線の照射方法。
  38. 診断用イメージャを備える放射線治療装置の制御方法において、
    前記診断用イメージャの検出範囲内に位置決めされた患者の治療対象部位の3次元位置及び3次元形状を前記診断用イメージャで検出し、
    治療用放射線の照射角度と、前記診断用イメージャで検出された治療対象部位の3次元位置及び3次元形状とを基に、前記治療用放射線の照射野を前記治療対象部位に連続的に追尾させるべく前記治療用放射線を通過させる可変式コリメータの出射口の位置及び形状を前記治療用放射線の照射方向から見た前記治療対象部位の投影断面積に対応させて連続的に変化させる放射線治療装置の制御方法。
JP2003522644A 2001-08-24 2002-08-23 放射線治療装置 Pending JPWO2003018132A1 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2001254891 2001-08-24
JP2001254892 2001-08-24
JP2001254892 2001-08-24
JP2001254891 2001-08-24
JP2002022253 2002-01-30
JP2002022253 2002-01-30
PCT/JP2002/008504 WO2003018132A1 (en) 2001-08-24 2002-08-23 Radiotherapeutic device

Publications (1)

Publication Number Publication Date
JPWO2003018132A1 true JPWO2003018132A1 (ja) 2004-12-09

Family

ID=27347377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003522644A Pending JPWO2003018132A1 (ja) 2001-08-24 2002-08-23 放射線治療装置

Country Status (6)

Country Link
US (1) US7188999B2 (ja)
EP (4) EP2145650A1 (ja)
JP (1) JPWO2003018132A1 (ja)
CA (2) CA2634071C (ja)
DE (1) DE60238201D1 (ja)
WO (1) WO2003018132A1 (ja)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2449087A1 (en) * 2001-08-30 2003-03-13 Tolemac, Llc Antiprotons for imaging and termination of undesirable cells
DE10157523C1 (de) * 2001-11-23 2003-07-10 Deutsches Krebsforsch Kollimator und Programm zur Steuerung des Kollimators
JP3691020B2 (ja) * 2002-02-28 2005-08-31 株式会社日立製作所 医療用荷電粒子照射装置
US20060259282A1 (en) * 2003-03-14 2006-11-16 Failla Gregory A Deterministic computation of radiation transport for radiotherapy dose calculations and scatter correction for image reconstruction
DE50300447D1 (de) 2003-05-21 2005-05-19 Prohealth Ag Vorrichtung zur überwachten Tumorbestrahlung
EP1660175B1 (en) 2003-08-12 2012-02-29 Loma Linda University Medical Center Modular patient support system
EP1725166B1 (en) * 2004-02-20 2011-03-30 University of Florida Research Foundation, Inc. System for delivering conformal radiation therapy while simultaneously imaging soft tissue
DE102004010004B4 (de) * 2004-03-01 2006-04-27 Siemens Ag Anlage zur nichtinvasiven medizinischen Behandlung
US7130372B2 (en) * 2004-06-08 2006-10-31 Siemens Medical Solutions Usa, Inc. Linear accelerator with X-ray imaging elements mounted on curved support
US20060023843A1 (en) * 2004-07-27 2006-02-02 Kusch Jochen K Cone-beam imaging for brachytherapy
JP2006051215A (ja) * 2004-08-12 2006-02-23 Mitsubishi Heavy Ind Ltd 放射線治療装置用治療台
JP2006051216A (ja) * 2004-08-12 2006-02-23 Mitsubishi Heavy Ind Ltd 放射線治療装置、放射線治療装置用治療台、及び放射線治療装置の座標校正方法
US20060079753A1 (en) * 2004-09-27 2006-04-13 Michael Gurley Pre-acquisition identification of region for image acquisition time optimization for radiation imaging systems
US7729472B2 (en) 2004-12-06 2010-06-01 Best Medical International, Inc. System for analyzing the geometry of a radiation treatment apparatus, software and related methods
GB2424163A (en) 2005-03-10 2006-09-13 Elekta Ab Radiotherapeutic apparatus utilising helical motion of the source relative to the patient
US7590218B2 (en) 2005-03-23 2009-09-15 Best Medical International, Inc. System for monitoring the geometry of a radiation treatment apparatus, trackable assembly, program product, and related methods
US20070016014A1 (en) * 2005-06-15 2007-01-18 Kenji Hara Radio therapy apparatus and operating method of the same
WO2006138643A2 (en) * 2005-06-16 2006-12-28 Nomos Corporation System, tracker, and program product to facilitate and verify proper target alignment for radiation delivery, and related methods
EP1907066A4 (en) * 2005-07-22 2009-10-21 Tomotherapy Inc SYSTEM AND METHOD FOR THE ADMINISTRATION OF RADIATION THERAPY IN A POTENTIAL INTEREST
JP5390855B2 (ja) 2005-07-23 2014-01-15 トモセラピー・インコーポレーテッド ガントリおよび治療台の協調した動きを利用した放射線療法の撮像およびデリバリー
JP4713282B2 (ja) * 2005-09-01 2011-06-29 株式会社日立製作所 放射線治療装置
EP2389977A3 (en) 2005-11-18 2012-01-25 Still River Systems, Inc. Charged particle radiation therapy
US7507975B2 (en) * 2006-04-21 2009-03-24 Varian Medical Systems, Inc. System and method for high resolution radiation field shaping
US7418079B2 (en) * 2006-05-23 2008-08-26 Carestream Health, Inc. System for the real-time detection of targets for radiation therapy
ES2367807T3 (es) * 2006-10-24 2011-11-08 Pompilio Gatto Aparato para radioterapia intraoperatoria con guia de ondas de acoplamiento rotatorio doble.
WO2008064271A2 (en) 2006-11-21 2008-05-29 Loma Linda University Medical Center Device and method for immobilizing patients for breast radiation therapy
JP2008173182A (ja) * 2007-01-16 2008-07-31 Mitsubishi Heavy Ind Ltd 放射線照射方法および放射線治療装置制御装置
JP4228019B2 (ja) * 2007-02-16 2009-02-25 三菱重工業株式会社 医療装置
JP4228018B2 (ja) 2007-02-16 2009-02-25 三菱重工業株式会社 医療装置
DE102008007245B4 (de) * 2007-02-28 2010-10-14 Siemens Aktiengesellschaft Kombiniertes Strahlentherapie- und Magnetresonanzgerät
US8487269B2 (en) * 2007-02-28 2013-07-16 Siemens Aktiengesellschaft Combined radiation therapy and magnetic resonance unit
US8093572B2 (en) * 2007-06-29 2012-01-10 Accuray Incorporated Integrated variable-aperture collimator and fixed-aperture collimator
EP2190530B1 (en) * 2007-09-13 2017-11-08 Toby D. Henderson Patient positioner system
US20090084984A1 (en) * 2007-09-28 2009-04-02 Siemens Medical Solutions Usa, Inc. Irradiation system and method
US7936858B2 (en) * 2007-09-28 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method for tomosynthesis
US7502443B1 (en) 2007-11-07 2009-03-10 Acceletronics Digital Imaging Llc Radiation therapy machine with triple KV/MV imaging
CN103252024B (zh) * 2007-11-30 2016-02-10 梅维昂医疗系统股份有限公司 粒子束治疗系统
EP2363170B1 (en) * 2007-11-30 2014-01-08 Mevion Medical Systems, Inc. Inner gantry
WO2009072124A1 (en) * 2007-12-05 2009-06-11 Navotek Medical Ltd. Detecting photons in the presence of a pulsed radiation beam
US8017915B2 (en) 2008-03-14 2011-09-13 Reflexion Medical, Inc. Method and apparatus for emission guided radiation therapy
US8588369B2 (en) * 2008-08-28 2013-11-19 Varian Medical Systems, Inc. Radiation system with rotating patient support
US7835494B2 (en) * 2008-08-28 2010-11-16 Varian Medical Systems International Ag Trajectory optimization method
FR2937854B1 (fr) * 2008-10-31 2010-12-03 Aripa Services Innovations Ind Dispositif pour positionner un patient par rapport a un rayonnement.
US8394007B2 (en) 2008-10-31 2013-03-12 Toby D Henderson Inclined beamline motion mechanism
US8602647B2 (en) * 2008-12-03 2013-12-10 Daniel Navarro Radiation beam analyzer and method
DE102009007370A1 (de) * 2009-02-04 2010-08-12 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Strahlentherapiegeräts
DE102009040389A1 (de) * 2009-09-07 2011-03-17 Siemens Aktiengesellschaft Strahlentherapievorrichtung und Verfahren zur Überwachung einer Bestrahlung
JP5566854B2 (ja) * 2010-02-08 2014-08-06 三菱重工業株式会社 放射線治療装置制御装置および放射線治療装置制御方法
WO2011106433A1 (en) 2010-02-24 2011-09-01 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US9687200B2 (en) 2010-06-08 2017-06-27 Accuray Incorporated Radiation treatment delivery system with translatable ring gantry
US8804901B2 (en) 2010-06-08 2014-08-12 Accuray Incorporated Imaging methods for image-guided radiation treatment
EP3248652B1 (en) 2010-07-23 2019-09-04 Brainlab AG Non-planar treatment beam control
WO2012021459A1 (en) 2010-08-08 2012-02-16 Accuray, Inc. Radiation treatment delivery system with outwardly movable radiation treatment head extending from ring gantry
EP2420861A1 (en) * 2010-08-20 2012-02-22 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO A radiation dose meter for measuring radiation dose in an external magnetic field
US9324468B2 (en) 2010-08-23 2016-04-26 Varian Medical Systems, Inc. Multileaf collimators with transverse motion
US20130225974A1 (en) * 2010-11-09 2013-08-29 Koninklijke Philips Electronics N.V. Magnetic resonance imaging system and radiotherapy apparatus with an adjustable axis of rotation
US8584864B2 (en) 2010-11-19 2013-11-19 Coldcrete, Inc. Eliminating screens using a perforated wet belt and system and method for cement cooling
DE102010062533B4 (de) 2010-12-07 2012-10-31 Siemens Aktiengesellschaft Strahlentherapieanlage und Röntgenbildgebungsmodul, welche unabhängig voneinander bewegbar sind
NL2005901C2 (en) 2010-12-22 2012-06-25 Nucletron Bv A mobile x-ray unit.
WO2012087129A1 (en) * 2010-12-22 2012-06-28 Nucletron Operations B.V. A mobile x-ray unit
US8536547B2 (en) * 2011-01-20 2013-09-17 Accuray Incorporated Ring gantry radiation treatment delivery system with dynamically controllable inward extension of treatment head
JP5744578B2 (ja) 2011-03-10 2015-07-08 住友重機械工業株式会社 荷電粒子線照射システム、及び中性子線照射システム
KR101307266B1 (ko) * 2011-05-25 2013-09-11 한국생산기술연구원 갠트리 포지셔닝 장치 및 이를 이용한 이미징 장치
JP5911213B2 (ja) * 2011-06-29 2016-04-27 株式会社東芝 X線ct装置
WO2013078529A1 (en) * 2011-11-30 2013-06-06 Titan Medical Inc. Apparatus and method for supporting a robotic arm
US9308395B2 (en) 2011-12-02 2016-04-12 Varian Medical Systems, Inc. Radiation systems with minimal or no shielding requirement on building
JP6169102B2 (ja) * 2011-12-21 2017-07-26 イオン・ビーム・アプリケーションズ・エス・アー ハドロン治療装置用のガントリー構造体
US9757593B2 (en) * 2012-09-05 2017-09-12 Varian Medical Systems, Inc. Radiation systems with minimal or no shielding requirement on building
US11259760B2 (en) * 2012-09-28 2022-03-01 P-Cure Ltd. Apparatus and method for providing patient imaging
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
WO2014069899A1 (ko) * 2012-10-30 2014-05-08 성균관대학교 산학협력단 더블 헤드 방식의 광 치료장치
KR101465650B1 (ko) * 2012-10-30 2014-11-27 성균관대학교산학협력단 더블 헤드 방식의 광 치료장치
GB2507585B (en) * 2012-11-06 2015-04-22 Siemens Plc MRI magnet for radiation and particle therapy
KR101415600B1 (ko) 2012-11-16 2014-08-06 이화여자대학교 산학협력단 진단 및 치료를 위한 의료용 방사선 장치
KR101415596B1 (ko) * 2012-11-16 2014-08-06 이화여자대학교 산학협력단 진단 및 치료를 위한 복합형 의료용 방사선 장치
BR112015018518A2 (pt) 2013-02-04 2017-07-18 Coldcrete Inc sistema e método para aplicar dióxido de carbono durante a produção de concreto
MX351335B (es) * 2013-02-06 2017-10-11 Rapiscan Systems Inc Sistemas y metodos para reduccion de peso de fuente de rayos x.
CN105027227B (zh) 2013-02-26 2017-09-08 安科锐公司 电磁致动的多叶准直器
US10927042B2 (en) 2013-06-25 2021-02-23 Carboncure Technologies, Inc. Methods and compositions for concrete production
US9388072B2 (en) 2013-06-25 2016-07-12 Carboncure Technologies Inc. Methods and compositions for concrete production
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
US20160107939A1 (en) 2014-04-09 2016-04-21 Carboncure Technologies Inc. Methods and compositions for concrete production
US10500420B2 (en) 2013-09-23 2019-12-10 John K. Grady Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
US10188878B2 (en) * 2013-09-23 2019-01-29 John K. Grady Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
GB2519592B (en) 2013-10-28 2020-01-29 Elekta Ab Radiotherapy apparatus with a tiltable gantry arm
EP3153211A1 (en) * 2013-12-17 2017-04-12 Varian Medical Systems Particle Therapy GmbH Irradiation device and method
KR101652575B1 (ko) * 2014-02-14 2016-08-30 인제대학교 산학협력단 선형가속기기반 방사선 수술장비의 방사선 분포측정기 정밀 조종장치
WO2015123769A1 (en) 2014-02-18 2015-08-27 Carboncure Technologies, Inc. Carbonation of cement mixes
US10071263B1 (en) 2014-03-25 2018-09-11 Varian Medical Systems, Inc. Pivoting multileaf collimator and method for large field coverage
CA2943791C (en) 2014-04-07 2023-09-05 Carboncure Technologies Inc. Integrated carbon dioxide capture
KR101403787B1 (ko) * 2014-04-07 2014-06-03 재단법인대구경북과학기술원 의료용 로봇
KR101485292B1 (ko) * 2014-04-07 2015-01-28 재단법인대구경북과학기술원 로봇
KR101485291B1 (ko) * 2014-04-07 2015-01-21 재단법인대구경북과학기술원 로봇
US10548540B2 (en) * 2014-07-22 2020-02-04 Carestream Health, Inc. Extremity imaging apparatus for cone beam computed tomography
US9616251B2 (en) * 2014-07-25 2017-04-11 Varian Medical Systems, Inc. Imaging based calibration systems, devices, and methods
CN111346303B (zh) 2014-08-22 2022-05-13 瓦里安医疗系统公司 将粒子射束从粒子源传送至支撑装置的方法
US9545526B1 (en) * 2014-09-11 2017-01-17 Larry D. Partain System and method for projection image tracking of tumors during radiotherapy
US9791592B2 (en) * 2014-11-12 2017-10-17 Schlumberger Technology Corporation Radiation generator with frustoconical electrode configuration
US9805904B2 (en) 2014-11-12 2017-10-31 Schlumberger Technology Corporation Radiation generator with field shaping electrode
CN113782246A (zh) 2015-06-10 2021-12-10 反射医疗公司 高带宽双态多叶式准直器设计
US10049449B2 (en) * 2015-09-21 2018-08-14 Shanghai United Imaging Healthcare Co., Ltd. System and method for image reconstruction
US20170192067A1 (en) * 2016-01-04 2017-07-06 General Electric Company Systems and methods for heat management in a magnetic resonance imaging system
CA3013272A1 (en) * 2016-02-01 2017-08-10 Imaginalis S.R.L. Radiological imaging device
USD816845S1 (en) * 2016-03-25 2018-05-01 Mitsubishi Electric Corporation Radiation irradiator for particle beam treatment equipment
USD815742S1 (en) * 2016-03-25 2018-04-17 Mitsubishi Electric Corporation Radiation irradiator for particle beam treatment equipment
JP1567339S (ja) * 2016-03-25 2017-01-23
JP1567338S (ja) * 2016-03-25 2017-01-23
AU2017249444B2 (en) 2016-04-11 2022-08-18 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water
HUE054949T2 (hu) 2016-07-06 2021-10-28 Univ Clemson Res Foundation Sugárzás-leadó eszközök
US10646726B2 (en) 2016-07-13 2020-05-12 Sensus Healthcare, Inc. Robotic intraoperative radiation therapy
JP7201243B2 (ja) 2016-11-15 2023-01-10 リフレクション メディカル, インコーポレイテッド 放出誘導型高エネルギー光子送達のためのシステム
CN116943051A (zh) 2016-11-15 2023-10-27 反射医疗公司 放射治疗患者平台
WO2018183748A1 (en) 2017-03-30 2018-10-04 Reflexion Medical, Inc. Radiation therapy systems and methods with tumor tracking
KR102488780B1 (ko) 2017-03-31 2023-01-13 엠피리언 메디컬 시스템스, 인코포레이티드 3차원 빔 형성 x-레이 소스
US10406382B2 (en) 2017-04-21 2019-09-10 Varian Medical Systems, Inc. Dual-axis ring gantry radiotherapy systems
US11058892B2 (en) 2017-05-05 2021-07-13 Zap Surgical Systems, Inc. Revolving radiation collimator
CA3068082A1 (en) 2017-06-20 2018-12-27 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water
CN111050849B (zh) 2017-07-11 2022-04-08 反射医疗公司 用于pet检测器余辉管理的方法
US11045667B2 (en) 2017-07-18 2021-06-29 Sensus Healthcare, Inc. Real-time x-ray dosimetry in intraoperative radiation therapy
CN111148471B (zh) 2017-08-09 2023-08-22 反射医疗公司 用于发射引导放射治疗中的故障检测的系统和方法
CN110382051B (zh) * 2017-08-29 2021-07-27 胜赛斯医疗有限责任公司 具有校准井的机械iort x射线放射系统
CN108401421B (zh) 2017-09-06 2022-12-20 睿谱外科系统股份有限公司 自屏蔽的集成控制放射外科系统
US11033759B2 (en) * 2017-09-15 2021-06-15 Shenzhen Our New Medical Technologies Development Co., Ltd. Radiotherapy device and system
JP6918388B2 (ja) * 2017-09-22 2021-08-11 リフレクション メディカル, インコーポレイテッド シャトルモード放射線送達のためのシステムおよび方法
WO2019099551A1 (en) 2017-11-14 2019-05-23 Reflexion Medical, Inc. Systems and methods for patient monitoring for radiotherapy
US11358008B2 (en) 2018-02-13 2022-06-14 Reflexion Medical, Inc. Beam station treatment planning and radiation delivery methods
US11672491B2 (en) 2018-03-30 2023-06-13 Empyrean Medical Systems, Inc. Validation of therapeutic radiation treatment
CN110448811A (zh) * 2018-05-08 2019-11-15 河北亿邦医疗设备股份有限公司 一种万向微波辐射器
US20210162241A1 (en) * 2018-05-25 2021-06-03 Wip Innovations Pty Ltd Improvements to linear accelerators
US11147989B2 (en) * 2018-06-20 2021-10-19 Accuray Incorporated Compensating for target rotation with a collimation system
KR102068326B1 (ko) * 2018-06-27 2020-01-20 한국원자력의학원 동물용 방사선 치료기
GB2576342A (en) * 2018-08-15 2020-02-19 Elekta ltd Adjustable support
CN108635687A (zh) * 2018-08-24 2018-10-12 西安大医集团有限公司 一种放射治疗设备
US10940334B2 (en) 2018-10-19 2021-03-09 Sensus Healthcare, Inc. Systems and methods for real time beam sculpting intra-operative-radiation-therapy treatment planning
US11684446B2 (en) 2019-02-27 2023-06-27 Zap Surgical Systems, Inc. Device for radiosurgical treatment of uterine fibroids
EP3815742A1 (en) * 2019-10-30 2021-05-05 Ion Beam Applications S.A. Radiotherapy apparatus comprising an imaging ring
CN113491844B (zh) 2021-07-30 2022-04-29 北京瑞尔世维医学研究有限公司 一种全球面放射治疗系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3310100B1 (ja) * 1955-01-12 1958-11-21
JPS5218073Y1 (ja) * 1964-10-28 1977-04-23
JPS62206798A (ja) * 1986-03-06 1987-09-11 三菱電機株式会社 線形加速器
JPH06502330A (ja) * 1990-10-19 1994-03-17 アキュレイ インコーポレイテッド 定位固定外科用装置および方法
JPH06154349A (ja) * 1992-08-31 1994-06-03 Mitsubishi Electric Corp 放射線治療装置
JPH0811134B2 (ja) * 1993-09-01 1996-02-07 技術研究組合医療福祉機器研究所 定位的放射線治療装置
JPH08504347A (ja) * 1992-12-10 1996-05-14 アキュレイ インコーポレイテッド 定位的放射線手術および定位的放射線治療を実行する装置および方法
WO2000007669A1 (en) * 1998-08-06 2000-02-17 Wisconsin Alumni Research Foundation Delivery modification system for radiation therapy
JP2000167072A (ja) * 1998-12-03 2000-06-20 Mitsubishi Electric Corp 動体追跡照射装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1033844B (de) 1951-09-04 1958-07-10 Ialicenciaia Talalmanyokat Ert Roentgenapparat fuer Bewegungsbestrahlung
US2781454A (en) * 1952-12-04 1957-02-12 Ca Atomic Energy Ltd Rotational therapy unit
DE1516422A1 (de) * 1965-03-27 1969-08-07 Setaelae Kai Martin Edvard Einrichtung zur Strahlenbehandlung einschliesslich der Ausfuehrung der damit zusammenhaengenden Messungen
CH585372A5 (ja) 1975-03-17 1977-02-28 Von Roll Ag
US4230129A (en) * 1975-07-11 1980-10-28 Leveen Harry H Radio frequency, electromagnetic radiation device having orbital mount
US5317616A (en) * 1992-03-19 1994-05-31 Wisconsin Alumni Research Foundation Method and apparatus for radiation therapy
US5321271A (en) * 1993-03-30 1994-06-14 Intraop, Inc. Intraoperative electron beam therapy system and facility
US5446548A (en) * 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
DE4418216A1 (de) * 1994-05-25 1995-11-30 Laser Applikationan Gmbh Verfahren und Vorrichtung zur Positionierung eines Patienten auf einer verstellbaren Unterlage
IT1281184B1 (it) 1994-09-19 1998-02-17 Giorgio Trozzi Amministratore Apparecchiatura per la radioterapia intraoperatoria mediante acceleratori lineari utilizzabili direttamente in sala operatoria
JPH09509354A (ja) * 1994-12-12 1997-09-22 フィリップス エレクトロニクス エヌ ベー 複合c字型アークプロファイルからなる医学診断及び/又は治療装置
GB9520564D0 (en) * 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
US5818902A (en) * 1996-03-01 1998-10-06 Elekta Ab Intensity modulated arc therapy with dynamic multi-leaf collimation
AU3880397A (en) * 1996-07-11 1998-02-09 Board Of Trustees Of The Leland Stanford Junior University High-speed inter-modality image registration via iterative feature matching
US5949846A (en) * 1997-02-03 1999-09-07 Hologic, Inc. Bone densitometry using x-ray imaging systems
DE19717109A1 (de) * 1997-04-23 1998-04-30 Siemens Ag Röntgenuntersuchungsgerät mit einem C-Bogen
DE19728788A1 (de) * 1997-07-05 1999-01-07 Nis Peter Boysen Verfahren zur Patienten-Positionierung relativ zum Behandlungsgerät
US6031888A (en) * 1997-11-26 2000-02-29 Picker International, Inc. Fluoro-assist feature for a diagnostic imaging device
US7016457B1 (en) * 1998-12-31 2006-03-21 General Electric Company Multimode imaging system for generating high quality images
US6285902B1 (en) * 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US6260999B1 (en) * 1999-07-26 2001-07-17 Siemens Medical Systems, Inc. Isocenter localization using electronic portal imaging
JP2002085390A (ja) * 2000-06-29 2002-03-26 Siemens Ag X線設備

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3310100B1 (ja) * 1955-01-12 1958-11-21
JPS5218073Y1 (ja) * 1964-10-28 1977-04-23
JPS62206798A (ja) * 1986-03-06 1987-09-11 三菱電機株式会社 線形加速器
JPH06502330A (ja) * 1990-10-19 1994-03-17 アキュレイ インコーポレイテッド 定位固定外科用装置および方法
JPH06154349A (ja) * 1992-08-31 1994-06-03 Mitsubishi Electric Corp 放射線治療装置
JPH08504347A (ja) * 1992-12-10 1996-05-14 アキュレイ インコーポレイテッド 定位的放射線手術および定位的放射線治療を実行する装置および方法
JPH0811134B2 (ja) * 1993-09-01 1996-02-07 技術研究組合医療福祉機器研究所 定位的放射線治療装置
WO2000007669A1 (en) * 1998-08-06 2000-02-17 Wisconsin Alumni Research Foundation Delivery modification system for radiation therapy
JP2000167072A (ja) * 1998-12-03 2000-06-20 Mitsubishi Electric Corp 動体追跡照射装置

Also Published As

Publication number Publication date
US7188999B2 (en) 2007-03-13
EP1419801A4 (en) 2006-06-07
CA2456106A1 (en) 2003-03-06
EP2145650A1 (en) 2010-01-20
EP2305350A1 (en) 2011-04-06
US20040184579A1 (en) 2004-09-23
DE60238201D1 (de) 2010-12-16
CA2634071C (en) 2012-12-11
CA2634071A1 (en) 2003-03-06
EP2039393A1 (en) 2009-03-25
WO2003018132A1 (en) 2003-03-06
EP1419801A1 (en) 2004-05-19
EP1419801B1 (en) 2010-11-03
EP2039393B1 (en) 2012-08-15
CA2456106C (en) 2012-06-12

Similar Documents

Publication Publication Date Title
JPWO2003018132A1 (ja) 放射線治療装置
US7239684B2 (en) Radiotherapy apparatus monitoring therapeutic field in real-time during treatment
JP3872789B2 (ja) 放射線治療装置
JP3746747B2 (ja) 放射線治療装置
JP3785136B2 (ja) 放射線治療装置及び放射線治療装置の動作方法
JP2006021046A (ja) 放射線治療装置
EP2311528B1 (en) An imaging device for radiation treatment applications
US20070016014A1 (en) Radio therapy apparatus and operating method of the same
JP2008514325A (ja) 医用放射線治療装置
EP3639892B1 (en) Radiotherapy system and operating method
JP4381422B2 (ja) 放射線治療システム
US11904188B2 (en) Fully-spherical radiation therapy system
JP3746744B2 (ja) 放射線治療装置
WO2019008793A1 (ja) 粒子線照射装置
JP3790481B2 (ja) 放射線治療装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061127

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324