JPWO2002063171A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
JPWO2002063171A1
JPWO2002063171A1 JP2002553789A JP2002553789A JPWO2002063171A1 JP WO2002063171 A1 JPWO2002063171 A1 JP WO2002063171A1 JP 2002553789 A JP2002553789 A JP 2002553789A JP 2002553789 A JP2002553789 A JP 2002553789A JP WO2002063171 A1 JPWO2002063171 A1 JP WO2002063171A1
Authority
JP
Japan
Prior art keywords
pressure
frame
scroll
compressor
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002553789A
Other languages
English (en)
Other versions
JP4757431B2 (ja
Inventor
池田 清春
清春 池田
喜英 小川
喜英 小川
伏木 毅
毅 伏木
西木 照彦
照彦 西木
瀬畑 崇史
崇史 瀬畑
佐野 文昭
文昭 佐野
関屋 慎
慎 関屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2002063171A1 publication Critical patent/JPWO2002063171A1/ja
Application granted granted Critical
Publication of JP4757431B2 publication Critical patent/JP4757431B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving

Abstract

給油経路途中に設けた絞りや流量調整弁にて決定されるボス部外側空間の圧力Pm1(MPa)を、Pm1=Ps+αとし、スクロール圧縮機の運転圧力範囲の中で、高低圧力差の最も小さくなる差圧値をmin(Pd−Ps)で表した場合における上式α値を、0<α<min(Pd−Ps)で示される範囲に設定した。ただし、Psは圧縮機の吸入圧力(MPa)、Pdは圧縮機の吐出圧力(MPa)。

Description

技術分野
この発明は、冷凍空調機器に使用される冷媒圧縮機に関するものである。
背景技術
図7は特開2000−161254号公報に示された従来のスクロール圧縮機の構成を示す縦断面図である。
図7において、1は固定スクロールで、外周部はガイドフレーム15にボルト(図示せず)によって締結されている。台板部1aの一方の面(図7における下側)には板状渦巻歯1bが形成されると共に、外周部にはオルダム案内溝1cがほぼ一直線上に2ヶ形成されている。このオルダム案内溝1cにはオルダムリング9の爪9cが往復摺動自在に係合されている。さらに固定スクロール1の側面からは、吸入管10aが密閉容器10を貫通して圧入されている。
2は揺動スクロールであり、台板部2aの上面には固定スクロール1の板状渦巻歯1bと実質的に同一形状の板状渦巻歯2bが設けられており、幾何学的に圧縮室1dを形成している。台板2aの板状渦巻歯2bと反対側の面の中心部には中空円筒のボス部2fが形成されており、そのボス部2fの内側面には揺動軸受け2cが形成されている。またボス部2fと同じ側の面の外側にはコンプライアントフレーム3のスラスト軸受け3aと圧接摺動可能なスラスト面2dが形成されている。揺動スクロール台板2aの外周部には、前記固定スクロール1のオルダム案内溝1cと90度の位相差をもつオルダム案内溝2eがほぼ一直線上に2ヶ形成されており、このオルダム案内溝2eにはオルダムリング9の爪9aが往復摺動自在に係合されている。また台板部2aには前記圧縮室1dとスラスト面2dを貫通する抽出孔2jが設けられている。この抽出孔2jのスラスト面2d側の開口部2kはその円軌跡がコンプライアントフレーム3のスラスト軸受け面3aの内部に常時おさまるように位置されている。
コンプライアントフレーム3はその外周部に設けられた上下2つの円筒面3d、3eを、ガイドフレーム15の内周部に設けた円筒面15a、15bにより半径方向に支持されており、その中心部にはモータ7により回転駆動される主軸4を半径方向に支持する主軸受け3cおよび副主軸受け3hが形成されている。またコンプライアントフレーム3の外側とガイドフレーム15の内側は円筒面15c、15dに配置されたシール材16a、16bによってフレーム空間15fが構成されており、スラスト軸受3a面よりつながる連絡通路3sおよび抽出孔2iを介して圧縮室1dと連通し、圧縮室1dより供給される圧縮途中の冷媒ガスを封入する構造となっている。
コンプライアントフレーム3には調整弁収納空間3pも形成されており、この調整弁収納空間3pの一端(図7における下端)はコンプライアントフレーム3の内周と揺動スクロール2のスラスト面2dにより構成されるボス部外側空間2hに連通するとともに他端(図7において上端)は吸入圧力雰囲気空間1gに開放されている。この調整弁収納空間3pには、その下部に往復運動自在に中間圧調整弁3iが、その上部には中間圧調整スプリング押さえ3tがコンプライアントフレーム3に固着されて収納されており、これら中間圧調整弁3iと中間圧調整スプリング押さえ3tの間には中間圧調整スプリング3mが自然長より縮められて収納されている。
ガイドフレーム15の外周面15gは焼きばめ、もしくは溶接などによって密閉容器10に固着されているものの、その外周部に設けた切り欠き部15cにより、固定スクロール1の吐出ポート1fから吐出される高圧の冷媒ガスをモータ側に設けられた吐出管10bに導く流路は確保されている。
4は主軸であり、その上端部は揺動スクロール2の揺動軸受け2cと回転自在に係合する揺動軸4bが形成されており、その下側には主軸バランサ4eが焼きばめられている。さらにその下にはコンプライアントフレーム3の主軸受け3cおよび副主軸受け3hと回転自在に係合する主軸部4cが形成されている。また主軸4の下側はサブフレーム6の副軸受け6aと回転自在に係合する副軸部4dが形成され、この副軸部4dと前述した主軸部4c間にはロータ8が焼きばめられている。
ロータ8の上端面には上バランサ8aが、下端面には下バランサ8bが固定されており、前述した主軸バランサ4eとあわせて合計3ヶのバランサにより、静バランスおよび動バランスがとられている。さらに主軸4の下端にはオイルパイプ4fが圧入されており、密閉容器10底部にたまった冷凍機油10eを吸い上げる構造となっている。
密閉容器10の側面にはガラス端子10fが設置されており、モータ7からのリード線が接合されている。
次にこの従来のスクロール圧縮機の基本動作について説明する。
低圧の吸入冷媒は吸入管10aから固定スクロール1および揺動スクロール2の板状渦巻歯で形成される圧縮室1dにはいる。モータ7により駆動される揺動スクロール2は偏芯旋回運動とともに圧縮室1dの容積を減少させる。この圧縮行程により吸入冷媒は高圧となり、固定スクロール1の吐出ポート1fより密閉容器10内に吐き出される。
なお上記圧縮行程において圧縮途中の中間圧力の冷媒ガスは揺動スクロール2の抽出孔2jよりコンプライアントフレーム3の連絡通路3sを経て、フレーム空間15fに導かれ、この空間の中間圧力雰囲気を維持する。
高圧となった吐出ガスは密閉容器10内を高圧雰囲気で満たし、やがて吐出パイプ10bから圧縮機外に放出される。
密閉容器10底部の冷凍機油10eは、差圧により主軸4を軸方向に貫通する中空空間4gを通り揺動軸受け部2gと、主軸4に設けられた横穴から主軸受け3cに導かれる。これら2つの軸受け部の絞り作用によって中間圧力となった冷凍機油10e(冷凍機油に溶解していた冷媒の発泡で、一般にはガス冷媒と冷凍機油の2相流になっている)は、揺動スクロール2とコンプライアントフレーム3によって囲まれたボス部外側空間2hに達し、調整弁収納空間3pに配置した中間圧調整スプリング3mによって負荷される力に打ち勝って中間圧調整弁3iを押し、吸入圧力雰囲気空間1gに導かれ、低圧の冷媒ガスとともに圧縮室1dに吸入される。
以上説明したように、ボス部外側空間2hの中間圧力Pm1(MPa)は、中間圧調整スプリング3mのバネ力と中間圧調整弁3iの中間圧露出面積とによってほぼ決定されるので、所定の値αによって制御されている。
Figure 2002063171
ただし、Ps:吸入圧力すなわち低圧(MPa)
で制御されている。
ここで密閉容器内の圧力Pd(MPa)(すなわち吐出圧力)とボス部外側空間圧力Pm1の差は主軸受け3c、揺動軸受け2gに冷凍機油10eを供給するために必要な給油差圧ΔPであり、常に正値を確保する必要がある。
Figure 2002063171
圧縮行程により冷凍機油10eは高圧の冷媒ガスとともに吐出ポート1fから密閉容器10内に開放され、ここで冷媒ガスと分離されて再び密閉容器底部に戻る。
冷媒ガスの圧縮室1dは揺動スクロール2の台板部2aに設けられた抽出孔2jはコンプライアントフレーム3に設けられた連絡通路3sを介して、フレーム空間15fと常時もしくは間欠的に連通する。フレーム空間15fは2つのシール材16a,16bで密閉された空間なので、圧縮室1dの圧力変動に呼応してフレーム空間15fの圧力も呼吸変動するが、おおまかには抽出孔2jの臨む圧縮室1d内の圧力変動の積算平均値となる。
以上説明したようにフレーム空間15fの中間圧力Pm2(MPa)は、抽出孔2jの臨む圧縮室1dの位置で決定される所定の倍率値βによって
Figure 2002063171
ただし、Ps:吸入圧力すなわち低圧(MPa)
で制御される。
さて、コンプライアンドフレーム3にはボス部外側空間2hの中間圧力Pm1に起因してコンプライアントフレーム3と揺動スクロール2を引き離そうとする力Fpm1と、圧縮作用により固定スクロール1と揺動スクロール2が軸方向に離れようとするスラストガス力Fgthの合計が、コンプライアントフレーム3を圧縮室1dとは反対方向に移動させる力として作用する。
一方、圧縮途中の冷媒ガスを導いて中間圧Pm2となったフレーム空間15fがコンプライアントフレーム3とガイドフレーム15を引き離そうとする力Fpm2と、下部の高圧雰囲気に露出している部分に作用する差圧力Fpd2の合計が、コンプライアントフレーム3を圧縮室の方向に移動させる力として作用する。
定常運転時においては前記圧縮室の方向に移動させる力が上回るように設定されており、このためコンプライアントフレーム3は上下2つの嵌合された円筒面3d、3eにガイドされて圧縮室方向に移動する。揺動スクロール2はコンプライアントフレーム3と密着摺動して同方向に移動し、その板状渦巻歯2bを固定スクロール1に接触させて摺動する。
また起動時や液圧縮時などには前述したスラストガス力Fgthが大きくなり、揺動スクロール2はスラスト軸受け3aを介してコンプライアントフレーム3を下方に強く押し下げるので、揺動スクロール2と固定スクロール1の歯先と歯底には比較的大きな隙間が生じ、圧縮室の異常な圧力上昇は回避される。この動作をリリーフ動作といい、生じる隙間量をリリーフ量という。
リリーフ量はコンプライアントフレーム3とガイドフレーム15が衝突するまでの距離により管理される。
コンプライアントフレーム3には揺動スクロール2に発生する転覆モーメントの一部または全部が、スラスト軸受け3aを介して伝達されるものの、主軸受け3cから受ける軸受け負荷と、その反作用である2つの合力、すなわちコンプライアントフレーム3とガイドフレーム15の上下2つの円筒嵌合面3d、3eから受ける反力の合力によって生じる偶力が前記転覆モーメントを打ち消すように作用するので、非常に良好な定常運転時追随動作安定性、およびリリーフ動作安定性を有する。
次に従来のスクロール圧縮機に作用する軸方向の力関係について詳細に説明する。
図8は従来のスクロール圧縮機において、揺動スクロール2、コンプライアントフレーム3に作用する軸方向の力関係について説明したものである。
揺動スクロール2には冷媒ガスを圧縮することによる反力Fgthと、固定スクロール1と歯先を接触摺動することによる歯先接触力Ftipが図中下向きの方向に作用する。また前記ボス部外側空間2h内の圧力Pm1が揺動スクロール2とコンプライアントフレーム3を引き離そうとする力Fpm1、揺動スクロールのボス部内側の高圧雰囲気に露出した部分に差圧により作用する力Fpd1、さらにスラスト面の接触摺動によるスラスト接触力Fthが図中上向きの力として作用する。ここで、
Figure 2002063171
これらより揺動スクロール2に作用する力は次式で示される。
Figure 2002063171
一方、コンプライアントフレーム3には、ボス部外側空間15fの中間圧力Pm1に起因して揺動スクロール2とコンプライアントフレーム3を引き離そうとする力Fpm2と揺動スクロール2と接触摺動することによるスラスト接触力Fthが図中下向きの力として作用し、またフレーム空間15fの中間圧力Pm2に起因してコンプライアントフレーム3とガイドフレーム15を引き離そうとする力Fpm2とコンプライアントフレーム下端の高圧雰囲気に露出している部分に作用する差圧による力Fpd2が図中上向き方向に作用する。
Figure 2002063171
これらによりコンプライアントフレーム3に作用する力は次式で示される。
Figure 2002063171
(6)式と(9)式を連立すると歯先接触力Ftipとスラスト接触力Fthが求められる。
Figure 2002063171
(10)式はFpm2(フレーム空間15fの圧力Pm2がコンプライアントフレーム3とガイドフレーム15を引き離そうとする力)を大きく設定するほど歯先接触力Ftipは増大することを示している。つまりフレーム空間15fの中間圧力Pm2を大きく(β値を大きく)設定するほど歯先接触力Ftipは増大する。
一方(11)式ではFpm1(ボス部外周空間2hの圧力Pm1がコンプライアントフレーム3と揺動スクロール2を引き離そうとする力)が大きく設定するとスラスト接触力Fthは減少することを示している。つまりボス部外側空間2hの中間圧力Pm1を大きく(α値を大きく)設定するほどスラスト接触力Fthは減少する。すなわちスラスト摺動損失を低減でき、圧縮機の電気入力を節約するのに役立つ構造となっている。
上述したようにボス部外側空間の圧力Pm1やフレーム空間の圧力Pm2の調整により、歯先接触力Ftipやスラスト接触力Fthは自由に調整できるが、圧縮機が正常な圧縮動作を行うためにこの2つの力は常に正値を確保しなければならない。
Figure 2002063171
次にフレーム空間15fを構成するためにガイドフレーム15とコンプライアントフレーム3の円筒嵌合面に配設されたシール材について、図9を用いて説明する。
フレーム空間15fには圧縮途上の冷媒ガスを抽出して導いているので、通常運転時の圧力レベルは、一般に下式となる
Figure 2002063171
したがってシール材の構成は、フレーム空間15fへの吐出圧力ガスの侵入を防止するUリングと、フレーム空間15fから吸入圧力雰囲気への漏れを防止するUリングを図9に示す方向で設置するのが通例である。またこれらUリングの材料はテフロンなどが用いられることが多い。
従来のスクロール圧縮機は、ボス部外側空間2hの中間圧力Pm1を大きく設定すると、(11)式に示すスラスト接触力Fthすなわちスラスト摺動損失を低減でき、圧縮機の電気入力を節約できることは先に述べた。しかしPm1を過大に設定すると、Fth<0となって揺動スクロール2とコンプライアントフレーム3が離反し、正常な圧縮動作ができない。また揺動スクロール2が軸方向リリーフ量の隙間内でふらついて揺動軸受けが片当たりを発生し、異常摩耗や損傷を起こすなどの問題があった。
また同様にPm1を過大に設定すると、(2)式のΔP=Pd−Pm1<0となり、揺動軸受け2cと主軸受け3cへの給油差圧が確保できず、軸受けを損傷するなどの問題があった。
この発明はかかる問題を解消するためになされたもので、(1)式におけるα値に上限を設けることでボス部外側空間2hの圧力Pm1を設定し、スラスト接触力Fthを適正に保つことにより、スラスト摺動損失を低減しつつも、揺動スクロール2とコンプライアントフレーム3の離反が起こらずに圧縮動作を正常に行い、また揺動軸受けの異常摩耗や損傷が発生しない、さらに給油差圧を確保して揺動軸と主軸を損傷しない、つまり高性能で信頼性の高いスクロール圧縮機を提供することを目的とする。
また従来のスクロール圧縮機はフレーム空間15fの中間圧力Pm2を小さく設定するとコンプライアントフレーム3を圧縮室側に移動させる力が発生せず、歯先接触力Ftipが負値となって定常運転時に固定スクロール1と揺動スクロール2が離反して正常な圧縮動作を行えない。また揺動スクロール2が軸方向リリーフ量の隙間内でふらつき、軸受けを損傷するなどの問題があった。また、逆にPm2を過大に設定すると、歯先接触力Ftipが大きくなって摺動損失が増大し圧縮機の電気入力が大きくなる。また歯先が異常摩耗する、最悪の場合は焼き付くなどの問題があった。
この発明はまたかかる問題を解消するためになされたもので、(3)式においてβ値の設定に適正な範囲を設けることで、コンプライアントフレーム3を圧縮室方向に確実に移動させて固定スクロールと揺動スクロールを軸方向に適正な押しつけ力で密着させ、歯先接触力Ftipを適正に保つことで正常な圧縮動作を確保する、また軸受け損傷等のない、さらに摺動損失が増大せず歯先の異常摩耗や焼き付きを発生しない、高性能で信頼性の高いスクロール圧縮機を提供することを目的とする。
また従来のスクロール圧縮機は、フレーム空間15fを構成するためにシール部材を2ヶ用いているので、シール部材自体のコストと、これらのシール部材を配設するための2つの溝加工を行わねばならず、加工時間とコストを必要とする問題があった。
この発明はまたかかる問題を解消するためになされたもので、シール部材自体の数とやシール部材設置のための溝加工数を減らすことができ、さらに抽気孔2jや連絡通路3sなどの加工を省略でき、部品コストや加工コストを低減できて生産性に優れたスクロール圧縮機を提供することを目的とする。
また、従来のスクロール圧縮機は、シール部材にテフロンなどで構成されたUリングを用いているので材料自体が比較的高価であった。
また、圧縮機の起動前など密閉容器内がバランス圧となっている場合では、圧縮機起動直後に圧縮室1dで行われる圧縮途上の中間圧力の冷媒ガスを抽出しているフレーム空間15fは比較的圧力の上昇が早いのに対して、密閉容器内はフレーム空間15fに比較してその体積が非常に大きいので、圧力の上昇がフレーム空間15fに対して遅くなる。
このような場合、フレーム空間15fの圧力Pm2と密閉容器内の圧力(すなわち吐出圧力)Pdの圧力レベルがある時間、次式で示す状態となる。
Figure 2002063171
シール部材は定常運転を想定してフレーム空間15fへの吐出圧力ガスの侵入を防止する構造としているが、その逆方向の流れを防止することができない。
(15)式で示す状態ではフレーム空間15fの冷媒ガスが密閉空間に漏れだしてフレーム空間内圧力Pm2が上昇せず、コンプライアントフレーム3を圧縮室側に移動させる力が不充分となる。つまり正常な圧縮動作を開始するのに時間がかかる、またこの間コンプライアントフレーム3とこれに接触して軸方向に移動する揺動スクロール2は、軸方向リリーフ量の隙間内でふらついて軸受けの片当たりなどによる損傷、焼き付きを起こすなどの問題があった。
この発明はまたかかる問題を解消するためになされたもので、テフロンのかわりにOリングを用いることで材料にかかるコストを低減できる。
また圧縮機の起動時にも圧縮室1dからフレーム空間15fに供給される中間圧力の冷媒ガスをリークさせることなくフレーム空間15fの圧力Pm2を速やかに上昇させて、確実にコンプライアントフレーム3および揺動スクロール2を圧縮室側方向に移動させる力を発生し、すばやく正常な圧縮動作を開始できる。すなわち安価で、起動性に優れた、また軸受け損傷のない、信頼性の高いスクロール圧縮機を供給することを目的とする。
またHFC系の冷媒(R407C、R410Aなど)を作動流体として用いる場合、シール部材に従来の一般的なCR(クロロプレン・ゴム)製のOリングを使用すると、冷媒との相性からOリングが膨潤して劣化し、そのシール特性を失うなどの問題があった。
この発明はまたかかる問題を解消するためになされたもので、HFC系の冷媒にはHNBR(アクリロニトリル・ブタジエンゴム分子の一部に水素原子を結合させたもの)製のOリングを用いることで、劣化がなく、シール特性を失わない、信頼性の高いスクロール圧縮機を提供することを目的とする。
発明の開示
この発明にかかわるスクロール圧縮機は、密閉容器内に設けられ、それぞれの板状渦巻歯が相互間に圧縮室を形成するように噛み合わされた固定スクロールおよび揺動スクロールと、この揺動スクロールを軸線方向に支持するとともに、この揺動スクロールを駆動する主軸を半径方向に支持し、軸線方向に変位可能なコンプライアントフレームと、このコンプライアントフレームを半径方向に支持するガイドフレームとを備え、前記コンプライアントフレームの前記ガイドフレームに対する軸線方向の移動により、前記揺動スクロールを軸線方向に移動可能としたスクロール圧縮機において、前記揺動スクロールは板状渦巻歯と反対側の面にスラスト面を有し、これと圧接摺動する前記コンプライアントフレームのスラスト軸受けの内側に形成されるボス部外側空間を、圧縮機の運転高低圧力差を利用して潤滑油を供給する差圧給油経路の途中に配置するとともに、前記給油経路途中に設けた絞りや圧力調整装置によって決定される前記ボス部外側空間の圧力Pm1(MPa)をPm1=Ps+αで表し、スクロール圧縮機の運転圧力範囲の中で高低圧差の最も小さくなる差圧値をmin(Pd−Ps)で表した場合に、上式におけるα値を、下記の範囲に設定したことを特徴とする。
0<α<min(Pd−Ps)、
ただし、Ps:圧縮機の吸入圧力(MPa)、
Pd:圧縮機の吐出圧力(MPa)。
これにより、圧縮機の全ての運転圧力範囲において揺動軸受けと主軸受けへの給油差圧を確保しつつも、コンプライアントフレームと揺動スクロールの離反の起こらない信頼性の高いスクロール圧縮機を得られる。
また、密閉容器内に設けられ、それぞれの板状渦巻歯が相互間に圧縮室を形成するように噛み合わされた固定スクロールおよび揺動スクロールと、この揺動スクロールを軸線方向に支持するとともに、この揺動スクロールを駆動する主軸を半径方向に支持し、軸線方向に変位可能なコンプライアントフレームと、このコンプライアントフレームを半径方向に支持するガイドフレームを備え、前記コンプライアントフレームの前記ガイドフレームに対する軸線方向の移動により、前記揺動スクロールを軸線方向に移動可能としたスクロール圧縮機において、前記コンプライアントフレームと前記ガイドフレームにて形成される円筒面または平坦面に2つのシール部材を配置することにより構成される密閉されたフレーム空間に、前記圧縮室から圧縮途上の冷媒ガスを抽出して導くとともに、このフレーム空間内の圧力Pm2(MPa)を、圧縮機の吸入圧力Ps(MPa)の1.2倍以上2倍以下の範囲に設定した。
これにより、圧縮機の全ての運転圧力範囲において固定スクロールと揺動スクロールを適正な押し付け力で接触摺動させて離反の起こらない、また過剰な押しつけによる摺動損失の増大や焼き付きの起こらない、高効率かつ信頼性の高いスクロール圧縮機を得られる。
また、密閉容器内に設けられ、それぞれの板状渦巻歯が相互間に圧縮室を形成するように噛み合わされた固定スクロールおよび揺動スクロールと、この揺動スクロールを軸線方向に支持するとともに、この揺動スクロールを駆動する主軸を半径方向に支持し、軸線方向に変位可能なコンプライアントフレームと、このコンプライアントフレームを半径方向に支持するガイドフレームを備え、前記コンプライアントフレームの前記ガイドフレームに対する軸線方向の移動により、前記揺動スクロールを軸線方向に移動可能としたスクロール圧縮機において、前記コンプライアントフレームと前記ガイドフレームに形成される円筒面または平坦面に高圧空間より低圧空間への流体の移動を遮断する1つのシール部材を配設した。
これにより、部品点数と加工時間とコストを小さくでき、低コストで生産性の高いスクロール圧縮機を得られる。
また、前記シール部材をOリングとすることで、シール部材にかかるコストを低減でき、さらに圧縮機の起動時にもフレーム空間の圧力が密閉容器内にリークすることなく、速やかにコンプライアントフレームおよび揺動スクロールが圧縮室側に移動して、正常な圧縮動作を開始できる。このため低コストで信頼性の高いスクロール圧縮機が得られる。
また、HFC系の冷媒(R407C,R410Aなど)を作動流体として用いる場合は、前記シール部材をHNBR(アクリロニトリル・ブタジエンゴム分子の一部に水素原子を結合させたもの)からなるOリングとすることで、Oリングの膨潤や劣化を少なくしたシール特性が得られる。このため信頼性の高いスクロール圧縮機を得られる。
発明を実施するための最良の形態
実施の形態1.
図1は実施の形態1におけるスクロール圧縮機を示した縦断面図である。各部品の名称とその機能は従来例と同様であり、同符号を記してその説明を省略する。
フレーム空間15fを形成する2つのシール部材はOリング16c、16dであり、ガイドフレーム15内周とコンプライアントフレーム3外周で構成された円筒面15d、15dに設置されている。Oリングの材料はHNBR製のOリングを使用しており、HFC系の冷媒を用いる場合でもOリングが膨潤して劣化する恐れはない。Oリングは圧縮機内を満たす冷媒の種類や雰囲気温度等により、適切な材料を選定すればよい。
圧縮機の起動時は、圧縮室1dでの圧縮途上の冷媒ガスを抽出して導くフレーム空間15f内の圧力Pm2が、密閉容器内の圧力(すなわち吐出圧力)Pdよりも早く上昇するが、フレーム空間15fを構成するOリングにより、フレーム空間15fから密閉容器内への圧力リークは防止できる構造となっているので、フレーム空間内圧力Pm2の速やかな上昇によりコンプライアントフレーム3は圧縮室1dの方向に移動する力を与えられ、速やかに正常な圧縮動作を開始できる構造となっている。
ボス部外側空間2hは密閉容器内にある冷凍機油10eの給油経路の途中に配置されている。差圧給油経路は高圧の密閉容器底部の冷凍機油10eが主軸中空部4gを通り、主軸受け3cおよび揺動軸受け2cを経てボス部外側空間に達し、コンプライアントフレーム3に設けた中間圧力の調整弁収納空間3pを通って低圧空間1gに導かれる通路である。ボス部外側空間2hの圧力Pm1は主軸受け3cおよび揺動軸受け2cの絞り作用と調整弁収納空間に設けた中間圧調整スプリング3mのバネ定数を調整することで、(1)式で示すα=0.3程度になるよう設定されている。これにより圧縮機の全ての運転圧力範囲においてスラスト接触力Fthを軽減してスラスト摺動損失を軽減しつつも、揺動スクロール2とコンプライアントフレーム3の離反が起こらずに正常な圧縮動作を確保できるとともに、冷凍機油の給油差圧ΔPは正値を確保し、揺動軸受け2cおよび主軸受け3cへの給油は中断されることは無い。
フレーム空間15fは、抽出孔2jおよび連絡通路3sを介して連続または間欠的に供給される中間圧力の冷媒ガスを封入するが、この空間の圧力Pm2は抽出孔2jが臨む圧縮室1dの位置により、(3)式で示すβ=1.6程度になるよう設定されている。これにより圧縮機の全ての運転圧力範囲において歯先接触力Ftipは負値とならずに、揺動スクロール2と固定スクロール1の離反が起こらずに正常な圧縮動作を確保できるとともに、歯先押しつけ過剰となって摺動損失を増大させることはない。
なお、ボス部外側空間やフレーム空間の中間圧作用面積や高圧作用面積は、上記したα値やβ値との兼ね合いで決定されており、これら面積の調整で最適なα、β値も変化する。一般的にボス部外側空間2hの中間圧作用面積Spm1はオルダムリングやスラスト軸受など幾何学的な形状により決定され、設定の自由度はあまりない。一方フレーム空間15fの中間圧作用面積Spm2の調整は比較的自由度は大きく、中間圧作用面積Spm2をできるだけ大きく設定してβ値を小さめ、すなわちフレーム空間の中間圧力Pm2を小さめに設定したほうが圧縮機の運転圧力広範囲において安定した歯先接触力Ftipが得られる。また小さい中間圧力Pm2でコンプライアントフレーム3および揺動スクロール2を圧縮室方向に移動させることができるので、圧縮機の起動特性が向上するなどの計算、実験結果が得られている。
ここでボス部外側空間2hの圧力Pm1を決定するα値の設定について述べる。
α値を大きく設定することでスラスト接触力Fthすなわちスラスト摺動損失を軽減できることは従来例に述べた通りである。しかしα値を過大に設定する、すなわちボス部外側空間2hの圧力Pm1を過大に設定するとスラスト接触力Fthが負値となって揺動スクロール2とコンプライアントフレーム3の離反が発生したり、揺動軸受け2cや主軸受け3cへの給油差圧ΔPが確保できない問題がある。
図2は圧縮機の保証する一般的な運転温度範囲を示している。この広範囲において給油は確保されなければならない。この図の中で給油が困難な条件についてみると、凝縮温度CTと蒸発温度ETの差が最も小さい、すなわち吐出圧力Pdと吸入圧力Psの差が最も小さくなる運転ポイント(低圧縮比)といえる。図2では運転温度範囲の右下のポイントがそれであり、CT/ET=30/10℃となる。このポイントでの吐出圧力Pdと吸入圧力Psの差min(Pd−Ps)は使用する冷媒によって異なるが、これを次頁の図10にまとめる。
揺動軸受け2cおよび主軸受け3cに給油を行う差圧ヘッドは(2)式で示したように、密閉容器内圧力(すなわち吐出圧力)Pdとボス部外側空間内圧力Pm1の差圧ΔPとなるが、例えば使用冷媒をR407Cとした場合、α値が0.6以上となると、図10に示した運転ポイント(Pd/Ps=1.27/0.71MPa)において
Pm1=Ps+α=0.71+0.6=1.31(MPa)
ΔP=Pd−Pm1=1.27−1.31=−0.04(MPa)<0
となりこの運転圧力条件において給油ができないことを示している。つまりR407Cを作動冷媒として使用する場合、α値は低圧縮比運転圧力(Pd/Ps=1.27/0.71MPa)における高低圧力差min(Pd−Ps)値以下、すなわち0.56以下に設定する必要がある。
同様にR22を作動冷媒とする場合はα<0.51、R410Aを作動冷媒とする場合はα<0.8に設定しなければ、圧縮機の運転圧力範囲において無給油領域が発生する事態となる。したがってα値は上記した値以下になるよう設定しなければならない。
圧縮機の使用する冷媒や運転圧力範囲が上記と異なる場合も、α値はその圧縮機の運転圧力範囲における高低圧の最も小さくなる差圧値min(Pd−Ps)以下に設定する必要がある。
図3はR407Cを作動冷媒とし、α値を変化させたときの定格性能割合を示している。定格性能割合は性能MAX値を100%としたときの性能比で表している。α値が小の領域ではスラスト接触力Fthを緩和する効果が十分に得られず、スラスト摺動損失が増大して性能はゆるやかに低下する傾向にある。α値を徐々に大きくしていくとスラスト摺動損失の緩和効果が発揮され性能は上昇し、α=0.3程度で性能はピーク(100%)となる。さらにα値を大きくするとスラスト摺動損失はより小さくなるものの、スラスト接触力Fthが不足気味となり、揺動スクロールに発生する転覆モーメントを支持することができずに歯先に微小ながら隙間を生じはじめ、体積効率の悪化や内部漏れ損失が増大して性能は再び低下する傾向となる。α値が0.7を超えるとスラスト接触力Fthは完全に不足してコンプライアントフレーム3と揺動スクロール2の離反が発生し、性能は急激に低下する。図3では性能MAX値に対し、95%以上の性能を確保するのに必要なα値は0〜0.5の範囲であった。
次に高圧作動冷媒を用いる場合の本実施例のメリットについて述べる。
高圧作動冷媒(例えばR401AやR32)は、他の冷媒(例えばR22やR407C)に比べてその作動運転圧力が高いので、揺動軸受け2cや主軸受け3cなどのラジアル負荷とスラスト軸受け3aの負荷が大きくなる。
一般的に高圧作動冷媒ではその冷媒自体の熱物性から圧縮機のストローク体積Vstが小さくなるが、スクロール圧縮機では高圧冷媒による渦巻歯の発生応力を緩和するの目的により、渦巻歯の高さを小さくする、または歯厚を大きくするなどでこのストローク体積Vstの調整を行うのが一般的である。この方法により揺動軸受け2cや主軸受け3cのラジアル負荷は従来レベルまで小さくすることが可能である。しかしこの方法ではスラスト軸受け負荷を軽減することはできず、このスラスト摺動損失の増大が圧縮機の性能ダウンの要因となる。
この問題に対し、本発明のスクロール圧縮機ではボス部外側空間2hの圧力Pm1を大きく(α値を大きく)設定すれば、スラスト軸負荷を軽減できる構造となっている。しかも図10に示すようにR410Aのケースでは給油差圧を確保するα値の上限が0.8程度で、他の冷媒(R22やR407C)の場合のそれに比べて大きくなっており、α値を大きく設定できる自由度が大きいことからスラスト軸負荷を軽減できる効果も大きい。すなわち高圧作動冷媒であるほど、本実施例に示すスクロール圧縮機の優位性が発揮できる。
図4は高圧作動冷媒であるR410Aを用いた場合のα値と定格性能割合の相関を示している。図には先に述べたR407Cのケースも併記してある。
α値が小さい領域ではスラスト軸負荷が大きい上に、この負荷をキャンセルする本実施例の効果が十分に発揮されず、R407Cの場合よりも性能割合が小さい値となっている。α値を徐々に大きくしていくと、本実施例のスラスト軸負荷をキャンセルする効果が現れ、R407Cの場合と比較してα値の大きいレベルで性能最高点となる。本例ではα=0.5で性能最高点となった。上述したように高圧作動冷媒(R410A)では、R407CやR22よりもスラスト軸負荷が大きいので、より高いボス部外側空間2hの中間圧力Pm1すなわち大きなα値を設定することにより良好な性能を得ることができる。さらにα値を大きくしていくと、スラスト接触力Fthが不足して再び性能が低下する理由は図3における説明と同様である。
図4では性能割合が95%以上を維持するのに必要なα値は0.2<α<0.7程度であった。
以上より、α値は図10で示すように圧縮機の運転圧力範囲において、最も高低圧力差の小さくなる差圧値min(Pd−Ps)を上限として設定する必要がある。最適なα値は、このmin(Pd−Ps)以下で、スラスト接触力Fthが過小または過大とならない範囲で性能を測定するなどして実験的に決定されるべきである。
α値はその中間圧力の作用面積Spm1によっても多少変化するが、本実施例において実験的に求めた最適なα値は、概ね図10にしめしたmin(Pd−Ps)の半分付近すなわちα≒{min(Pd−Ps)}/2に近い値となった。
次に(11)式におけるガイドフレーム15とコンプライアントフレーム3を引き離そうとする力Fpm2を適正値に設定するための、(3)式におけるβ値の決定について述べる。
β値を過小に設定すると、ある運転圧力において歯先押しつけ力Ftipが正値を確保するのが困難となり正常な圧縮動作を保証できない、一方β値を過大に設定すると(10)式における歯先押しつけ力Ftipが必要以上に大きくなり、摺動損失の増大による圧縮機の性能低下や歯先焼き付きなどの不具合を発生する原因となる。
図5は本実施例にしめすスクロール圧縮機において、β値を変化させたときの定格性能割合を示している。定格性能割合は先と同様に、性能MAX値を100%としたときの性能比で表している。
β値が小さい範囲では歯先接触力Ftipが完全に不足してコンプライアントフレーム3および揺動スクロール2が圧縮室方向に移動することができず、正常な圧縮動作ができないことから性能は著しく低い。βを徐々に大きくすると歯先接触力Ftipは正値となるが、揺動スクロール2に発生する転覆モーメントを支持することができずに歯先に微小隙間が発生し、体積効率悪化や内部漏れ損失の増大から性能はまだ十分とはいえない。しかしβ=1.2あたりから徐々にこの漏れ現象も低下し、十分な歯先接触力Ftipとなることから性能は上昇し、β=1.6程度でピーク(100%)となる。その後は歯先接触力Ftipの増大から歯先摺動損失も増大して、性能は再び低下傾向となる。
本図では性能比95%以上を確保するのに必要なβ値の範囲は1.2<β<2.0であった。
実施の形態2.
図6は実施の形態2を示した縦断面である。各部品の名称とその機能は実施の形態1と同様であり、同符号を記してその説明を省略する。
コンプライアントフレーム3とガイドフレーム15により形成された円筒嵌合面15hにHNBR製の1本のOリング16eが配設されており、Oリング16eより圧縮室側は吸入圧力雰囲気空間1gに開放しており、Oリング16eよりモータ側は吐出圧力雰囲気に開放されている。さらに図1に示す実施例と比較してフレーム空間15fと抽出孔2j、連絡通路3sさらに2つあるOリングとOリング溝のセットのうち、どちらか1つ省略した構成となっている。
図1に示す実施例ではフレーム空間15fの圧力Pm2によるガイドフレーム15とコンプライアントフレーム3を引き離そうとする力Fpm2がコンプライアントフレーム3および揺動スクロール2を圧縮室側に移動させる力として作用し、歯先接触力Ftipを正値にするのに関与していたのに対し、図6ではフレーム空間15f自体が存在しないので、このガイドフレーム15とコンプライアントフレーム3を引き離そうとする力Fpm2も発生しない。この歯先接触力Ftipの不足分は、コンプライアントフレーム下端の高圧雰囲気に露出している面積(Spd2´)を大きく設定し、この部分に作用する差圧による力(Fpd2´)を大きくすることで、実施の形態1と同等の機能を有している。即ち、実施の形態1では歯先接触力Ftipおよびスラスト接触力Fthが(10)(11)式になるのに対して、
Figure 2002063171
実施の形態2では
Figure 2002063171
となるので、実施の形態2において形態1と同様の歯先接触力Ftipおよびスラスト接触力Fthを確保するには上式を連立して、
Figure 2002063171
が必要であり、(力=圧力×面積)より
Figure 2002063171
となる。つまり実施の形態2では高圧雰囲気に露出する面積(Spd2´)を、実施の形態1で示した値を用いて(20)式のように設定すれば、実施の形態1と同様の効果を得ることができる。すなわち構成部品点数を少なくして、低コストで生産性に優れたスクロール圧縮機を実現している。
【図面の簡単な説明】
図1は発明の実施の形態1の縦断面図。
図2は圧縮機の運転温度範囲を示すグラフ。
図3は冷媒がR407Cの場合のα値と定格性能割合の相関を示すグラフ。
図4は冷媒がR410Aの場合のα値と定格性能割合の相関を示すグラフ。
図5はβ値と定格性能割合の相関を示すグラフ。
図6は発明の実施の形態2の縦断面図。
図7は従来のスクロール圧縮機の縦断面図。
図8は各部品に作用する軸方向の力の説明図。
図9はシール部材付近の拡大断面図。
図10は本発明における各冷媒における低圧縮比運転圧力の表である。

Claims (7)

  1. 密閉容器内に設けられ、それぞれの板状渦巻歯が相互間に圧縮室を形成するように噛み合わされた固定スクロールおよび揺動スクロールと、この揺動スクロールを軸線方向に支持するとともに、この揺動スクロールを駆動する主軸を半径方向に支持し、軸線方向に変位可能なコンプライアントフレームと、このコンプライアントフレームを半径方向に支持するガイドフレームとを備え、前記コンプライアントフレームの前記ガイドフレームに対する軸線方向の移動により、前記揺動スクロールを軸線方向に移動可能としたスクロール圧縮機において、
    前記揺動スクロールは板状渦巻歯と反対側の面にスラスト面を有し、これと圧接摺動する前記コンプライアントフレームのスラスト軸受けの内側に形成されるボス部外側空間を、圧縮機の運転高低圧力差を利用して潤滑油を供給する差圧給油経路の途中に配置するとともに、前記給油経路途中に設けた絞りや圧力調整装置によって決定される前記ボス部外側空間の圧力Pm1(MPa)をPm1=Ps+αで表し、スクロール圧縮機の運転圧力範囲の中で高低圧差の最も小さくなる差圧値をmin(Pd−Ps)で表した場合に、上式におけるα値を、下記の範囲に設定したことを特徴とするスクロール圧縮機、
    0<α<min(Pd−Ps)
    ただし、Ps:圧縮機の吸入圧力(MPa)
    Pd:圧縮機の吐出圧力(MPa)。
  2. 前記コンプライアントフレームと前記ガイドフレームにて形成される円筒面または平坦面に2つのシール部材を配置することにより構成される密閉されたフレーム空間に、前記圧縮室から圧縮途上の冷媒ガスを抽出して導くとともに、このフレーム空間内の圧力Pm2(MPa)を、圧縮機の吸入圧力Ps(MPa)の1.2倍以上2倍以下の範囲に設定したことを特徴とする請求項1記載のスクロールに圧縮機。
  3. 前記コンプライアントフレームと前記ガイドフレームにて形成される円筒面または平坦面に、高圧空間より低圧空間への流体の移動を遮断する1つのシール部材を配設したことを特徴とする請求項1記載のスクロール圧縮機。
  4. 密閉容器内に設けられ、それぞれの板状渦巻歯が相互間に圧縮室を形成するように噛み合わされた固定スクロールおよび揺動スクロールと、この揺動スクロールを軸線方向に支持するとともに、この揺動スクロールを駆動する主軸を半径方向に支持し、軸線方向に変位可能なコンプライアントフレームと、このコンプライアントフレームを半径方向に支持するガイドフレームを備え、前記コンプライアントフレームの前記ガイドフレームに対する軸線方向の移動により、前記揺動スクロールを軸線方向に移動可能としたスクロール圧縮機において、
    前記コンプライアントフレームと前記ガイドフレームにて形成される円筒面または平坦面に2つのシール部材を配置することにより構成される密閉されたフレーム空間に、前記圧縮室から圧縮途上の冷媒ガスを抽出して導くとともに、このフレーム空間内の圧力Pm2(MPa)を、圧縮機の吸入圧力Ps(MPa)の1.2倍以上2倍以下の範囲に設定したことを特徴とするスクロール圧縮機。
  5. 密閉容器内に設けられ、それぞれの板状渦巻歯が相互間に圧縮室を形成するように噛み合わされた固定スクロールおよび揺動スクロールと、この揺動スクロールを軸線方向に支持するとともに、この揺動スクロールを駆動する主軸を半径方向に支持し、軸線方向に変位可能なコンプライアントフレームと、このコンプライアントフレームを半径方向に支持するガイドフレームを備え、前記コンプライアントフレームの前記ガイドフレームに対する軸線方向の移動により、前記揺動スクロールを軸線方向に移動可能としたスクロール圧縮機において、
    前記コンプライアントフレームと前記ガイドフレームにて形成される円筒面または平坦面に、高圧空間より低圧空間への流体の移動を遮断する1つのシール部材を配設したことを特徴とするスクロール圧縮機。
  6. 前記シール部材がOリングであることを特徴とする請求項2から5のいずれかに記載のスクロール圧縮機。
  7. HFC系冷媒を作動流体として用いる場合、前記シール部材はHNBR(アクリロニトリル・ブタジエンゴム分子の一部に水素原子を結合させたもの)からなるOリングを用いることを特徴とする請求項2から5のいずれかに記載のスクロール圧縮機。
JP2002553789A 2001-02-07 2001-02-07 スクロール圧縮機 Expired - Fee Related JP4757431B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/000846 WO2002063171A1 (fr) 2001-02-07 2001-02-07 Compresseur a conduit spirale

Publications (2)

Publication Number Publication Date
JPWO2002063171A1 true JPWO2002063171A1 (ja) 2004-06-10
JP4757431B2 JP4757431B2 (ja) 2011-08-24

Family

ID=11736999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002553789A Expired - Fee Related JP4757431B2 (ja) 2001-02-07 2001-02-07 スクロール圧縮機

Country Status (6)

Country Link
US (1) US6769887B2 (ja)
EP (1) EP1359323B1 (ja)
JP (1) JP4757431B2 (ja)
KR (1) KR100471736B1 (ja)
CN (1) CN1240973C (ja)
WO (1) WO2002063171A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010225A (ja) * 2013-07-02 2015-01-19 三菱電線工業株式会社 樹脂組成物およびシール部材

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440564B2 (ja) 2003-06-12 2010-03-24 パナソニック株式会社 スクロール圧縮機
CN101216035B (zh) * 2008-01-04 2011-01-19 美的集团有限公司 一种涡旋式的压缩机及其控制方法
CN101303018B (zh) * 2008-06-06 2010-06-09 西安交通大学 涡旋压缩机
CN105041661A (zh) * 2015-07-09 2015-11-11 广东美芝制冷设备有限公司 压缩机和具有其的空调系统
CN104976125A (zh) * 2015-07-09 2015-10-14 广东美芝制冷设备有限公司 空调系统的压缩机和具有该压缩机的空调系统
US11193490B2 (en) * 2018-03-30 2021-12-07 Kabushiki Kaisha Toyota Jidoshokki Scroll compressor including bushing mounted on eccentric shaft containing cylindrical and auxiliary weight portions and balancer disposed above annular rotor remote from back pressure chamber
WO2020067739A1 (en) * 2018-09-28 2020-04-02 Samsung Electronics Co., Ltd. Scroll compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107938A (ja) * 1997-10-01 1999-04-20 Mitsubishi Electric Corp 冷媒圧縮機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816209B2 (ja) 1989-11-29 1998-10-27 株式会社日立製作所 スクロール圧縮機
JP3172591B2 (ja) 1992-06-30 2001-06-04 株式会社ガスター 浴槽洗浄方法
JPH10184568A (ja) 1996-12-27 1998-07-14 Mitsubishi Heavy Ind Ltd スクロール圧縮機及びその背圧室圧力制御弁
JPH1194490A (ja) * 1997-09-19 1999-04-09 Hitachi Ltd 空気調和機
JP3661454B2 (ja) * 1998-11-20 2005-06-15 三菱電機株式会社 スクロ−ル圧縮機
JP3863685B2 (ja) 1999-05-31 2006-12-27 三菱電機株式会社 スクロール圧縮機
JP2000337273A (ja) 1999-05-31 2000-12-05 Mitsubishi Electric Corp スクロール圧縮機
US6386593B1 (en) * 1999-10-29 2002-05-14 Automotive Fluid Systems, Inc. Dual-plane seal for fluid-tight conduit connection
JP2001304147A (ja) * 2000-04-27 2001-10-31 Mitsubishi Electric Corp スクロール圧縮機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107938A (ja) * 1997-10-01 1999-04-20 Mitsubishi Electric Corp 冷媒圧縮機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010225A (ja) * 2013-07-02 2015-01-19 三菱電線工業株式会社 樹脂組成物およびシール部材

Also Published As

Publication number Publication date
US20030077194A1 (en) 2003-04-24
EP1359323A4 (en) 2004-10-13
US6769887B2 (en) 2004-08-03
CN1420965A (zh) 2003-05-28
JP4757431B2 (ja) 2011-08-24
KR20020091126A (ko) 2002-12-05
WO2002063171A1 (fr) 2002-08-15
EP1359323B1 (en) 2006-04-12
EP1359323A1 (en) 2003-11-05
CN1240973C (zh) 2006-02-08
KR100471736B1 (ko) 2005-03-09

Similar Documents

Publication Publication Date Title
US7331774B2 (en) Back pressure control mechanism of orbiting scroll in scroll compressor
US7549851B2 (en) Rotary fluid machine having a pair of rotation mechanisms and a partition plate disposed between the rotation mechanisms
AU2016225716B2 (en) Scroll-type compressor
JP4440564B2 (ja) スクロール圧縮機
KR100540251B1 (ko) 스크롤 압축기
US6533561B1 (en) Scroll type compressor
US9541083B2 (en) Scroll compressor including communication hole with improved back pressure chamber and back pressure hole locations
EP1674731A1 (en) Rotary fluid machine
CN108603502B (zh) 涡旋压缩机
JPH10339283A (ja) スクロ−ル圧縮機
JP4757431B2 (ja) スクロール圧縮機
GB2452379A (en) Scroll compressor back pressure chamber defined between seals on spaced planes
JP4930022B2 (ja) 流体機械
JP2018048649A (ja) スクロール圧縮機
JP5018018B2 (ja) 回転式圧縮機
JP2008309078A (ja) スクロール圧縮機
EP1574715B1 (en) Scroll compressor
JP2005180317A (ja) 回転式圧縮機
JP7154421B2 (ja) スクロール圧縮機
JP2006009640A (ja) スクロール圧縮機
JP4508075B2 (ja) 回転式圧縮機
JP2009052462A (ja) スクロール圧縮機
KR100557059B1 (ko) 스크롤 압축기
JP5871713B2 (ja) スクロール圧縮機
JP5077194B2 (ja) スクロール膨張機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees