JPWO2002049069A1 - ガス放電管用傍熱型電極 - Google Patents

ガス放電管用傍熱型電極 Download PDF

Info

Publication number
JPWO2002049069A1
JPWO2002049069A1 JP2002550285A JP2002550285A JPWO2002049069A1 JP WO2002049069 A1 JPWO2002049069 A1 JP WO2002049069A1 JP 2002550285 A JP2002550285 A JP 2002550285A JP 2002550285 A JP2002550285 A JP 2002550285A JP WO2002049069 A1 JPWO2002049069 A1 JP WO2002049069A1
Authority
JP
Japan
Prior art keywords
gas discharge
discharge tube
indirectly heated
coil
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002550285A
Other languages
English (en)
Other versions
JP3968015B2 (ja
Inventor
河合 浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Publication of JPWO2002049069A1 publication Critical patent/JPWO2002049069A1/ja
Application granted granted Critical
Publication of JP3968015B2 publication Critical patent/JP3968015B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/24Insulating layer or body located between heater and emissive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • H01J17/06Cathodes
    • H01J17/063Indirectly heated cathodes, e.g. by the discharge itself
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes

Landscapes

  • Discharge Lamp (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

ガス放電管用傍熱型陰極C1は、加熱用ヒータ1と、二重コイル2と、金属酸化物10とを有する。加熱用ヒータ1の表面には、電気絶縁層4が形成される。二重コイル2の内側には、加熱用ヒータ1が設けられている。二重コイル2は、加熱用ヒータ1の接地側の端子に接続されることにより、接地されている。金属酸化物10は、二重コイル2に保持され、当該二重コイル2に接触して設けられている。加熱用ヒータ1は、電気絶縁層4を介して、金属酸化物10と二重コイル2に接触している。

Description

技術分野
本発明は、ガス放電管用傍熱型電極に関する。
背景技術
この種のガス放電管用傍熱型電極として、たとえば特公昭62−56628号公報(米国特許4441048号公報)に開示されたようなものが知られている。特公昭62−56628号公報に開示されたガス放電管用傍熱型電極(ガス放電管用傍熱型陰極)は、熱良導性の円筒の外壁に2重コイルを複数ターン巻回して密に固定し、ペースト状の陰極物質材を2重コイルの1次螺旋内部及び2次螺旋間に塗布して円筒表面に一様な陰極面を形成し、円筒の内部にヒータを設けて構成されている。
発明の開示
本発明は、容易に製造することが可能なガス放電管用傍熱型電極を提供することを課題としている。
本発明者らは、調査研究の結果、以下のような事実を新たに見出した。円筒に2重コイルを巻き回わす場合、2重コイルの剛性が低いために、2重コイルを円筒の外側に巻き回すことが容易でない。円筒を有さない構成を採用した場合には、2重コイルが容易に変形してしまう。
また、陰極物質材と2重コイルとで電子放射部が構成されることになるが、この電子放射部とヒータとの間に円筒が介在しているために、ヒータの熱を確実且つ効率よく電子放射部に伝えることができない。更に、円筒により放熱面積が大きくなり、熱陰極動作に必要となる熱量が損失してしまう。このため、熱陰極動作時に、外部からの電極への熱量(電圧)供給が多く必要となる。
かかる調査研究結果を踏まえ、本発明に係るガス放電管用傍熱型電極は、マンドレルを有するコイルをコイル状に巻き回して構成した多重コイル部材と、多重コイル部材の内側に配設され、その表面に電気絶縁層が形成された加熱用ヒータと、多重コイル部材に接触するように当該多重コイル部材に保持される易電子放射物質としての金属酸化物と、を有し、多重コイル部材が接地されていることを特徴としている。
本発明に係るガス放電管用傍熱型電極では、多重コイル部材がマンドレルを有しているので、多重コイル部材の剛性が高くなり、成形を容易に行うことができ、この結果、ガス放電管用傍熱型電極の製造が容易となる。また、加工時及び使用時の多重コイル部材の変形を抑制することができる。
また、本発明に係るガス放電管用傍熱型電極では、易電子放射物質である金属酸化物がコイル部分の間隔である、ピッチ(心距)間に挟み込まれて保持されることになる。これにより、各ピッチ間の距離は隙間程度に小さいため振動による金属酸化物の脱落を抑制することができる。また、隙間構造のピッチが多数存在するため、多量の金属酸化物を保持でき、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。
また、金属酸化物は、電気絶縁層を介して加熱用ヒータに接触していることが好ましい。このように構成した場合、加熱用ヒータの熱が直接的に金属酸化物に伝わり、予熱時に加熱用ヒータの熱を確実且つ効率よく金属酸化物に伝えることができる。また、従来技術のように円筒を有するものに比して、熱陰極動作に必要となる熱量の損失を抑制することができる。このため、外部からの電極への熱量供給、強制過熱を大きくすることなく電極を動作させることが可能となる。
また、多重コイル部材は、電気絶縁層を介して加熱用ヒータに接触していることが好ましい。このように構成した場合、加熱用ヒータの熱が直接的に多重コイル部材に伝わり、予熱時に加熱用ヒータの熱を確実且つ効率よく多重コイル部材に伝えることができる。また、従来技術のように円筒を有するものに比して、熱陰極動作に必要となる熱量の損失を抑制することができる。このため、外部からの電極への熱量供給、強制過熱を大きくすることなく電極を動作させることが可能となる。
また、多重コイル部材は、巻き回された複数のコイル部分のうち少なくとも一部のコイル部分が隣接するコイル部分に接触していることが好ましい。このように構成した場合、コイル部分が接触している部分において、等電位面が実効的に形成されるので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなり、放電位置における負荷が軽減されることになる。これにより、局所的な放電の発生を抑制でき、電極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくでき、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型電極を提供でき、パルス動作、大電流動作を実現することができる。
また、多重コイル部材は、巻き回された複数のコイル部分の全てが隣接するコイル部分に接触していることが好ましい。このように構成した場合、多重コイル部材の長手方向全体にわたって等電位面が実効的に形成されるので、形成された等電位面の極めて広い領域で熱電子放出が起きて放電面積が大幅に増加し、単位面積当りの電子放出量(電子放出密度)が大きくなり、放電位置における負荷がより一層軽減されることになる。これにより、局所的な放電の発生を抑制でき、電極の更なる長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくでき、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型電極を提供でき、パルス動作、大電流動作を実現することができる。
また、筒状に形成された基体金属を更に有しており、基体金属の内側には加熱用ヒータが配置されると共に、基体金属の外側には多重コイル部材が当該基体金属に接触するようにコイル状に巻き回されていることが好ましい。このように構成した場合、多重コイル部材の裏面(放電面とは反対側の面)において、基体金属及び多重コイル部材の内側部分により陰極表面に等電位面が実効的に形成されるので、形成された等電位面の広い領域で熱電子放出が起きるために放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなり、放電位置における負荷が軽減されることになる。これにより、劣化要因である金属酸化物のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができ、電極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくでき、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型電極を提供でき、パルス動作、大電流動作を実現することができる。また、基体金属により、易電子放射物質としての金属酸化物と加熱用ヒータに形成された電気絶縁層とが確実に隔絶されることになる。
また、金属酸化物は、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)の内のいずれか単体の酸化物、又はこれらの酸化物の混合物あるいは希土類金属の酸化物を含んでいることが好ましい。このように、金属酸化物がバリウム、ストロンチウム、カルシウムの内のいずれか単体の酸化物、又はこれらの酸化物の混合物あるいは希土類金属の酸化物を含んでいることにより、電子放射部における仕事関数を効果的に小さくすることが可能となり、熱電子の放出が容易となる。
発明を実施するための最良の形態
以下、図面を参照しながら本発明によるガス放電管用傍熱型電極の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
(第1実施形態)
図1は、第1実施形態に係るガス放電管用傍熱型陰極の概略正面図であり、図2は、同じく第1実施形態に係るガス放電管用傍熱型陰極の概略側面図であり、図3は、同じく第1実施形態に係るガス放電管用傍熱型陰極の概略断面図である。なお、図1及び図2は、電気絶縁層4及び金属酸化物10の図示を説明のため省略している。また、本実施形態においては、ガス放電管用傍熱型電極を陰極(ガス放電管用傍熱型陰極)に適用した例を示す。
ガス放電管用傍熱型陰極C1は、図1〜図3に示されるように、加熱用ヒータ1と、多重コイル部材としての二重コイル2と、易電子放射物質(陰極物質)としての金属酸化物10とを有している。加熱用ヒータ1は、直径0.03〜0.1mm、たとえば0.07mmのタングステン素線を二重に巻回したフィラメントコイルからなり、このタングステンフィラメントコイルの表面には、電着法等により電気絶縁材料(たとえば、アルミナ、ジルコニア、マグネシア、シリカ等)が被覆されて電気絶縁層4が形成されている。なお、電気絶縁層4の代わりに電気絶縁材料(たとえば、アルミナ、ジルコニア、マグネシア、シリカ等)の円筒パイプを用い、当該円筒パイプ内に加熱用ヒータ1を挿入して加熱用ヒータ1を絶縁する構成を採用してもよい。
二重コイル2は、コイル状に巻き回されたコイルより構成される多重コイルであって、直径0.0913mmのタングステン素線を外径0.250mmの1次マンドレル21にピッチ0.218mmで巻き回して一次コイル(外周径0.433mm)に形成し、さらにその一次コイルを外径1.8mmの2次マンドレルにピッチ0.511mmで、たとえば6回巻き回して二重コイルに形成したものである。
二重コイル2は、2次マンドレルを取り除き1次マンドレル21を残した状態で用いられ、当該1次マンドレル21を有することになる。この1次マンドレル21は、たとえばモリブデンからなる。また、二重コイル2は、巻き回された複数のコイル部分が所定の間隔(0.1mm〜0.3mm)を有している。ここで、マンドレルとは、フィラメントコイル作成時に巻径を決める型の役割を果たす芯線のことである。
二重コイル2の内側には、加熱用ヒータ1が挿入されて配設されている。二重コイル2は、加熱用ヒータ1の接地側の端子に接続されることにより、リードロッド7を介して接地(GND)されている。なお、コイル部材としては、二重コイル2を用いる代わりに、三重コイル等を用いるようにしもよい。
金属酸化物10は、二重コイル2及び加熱用ヒータ1に保持されている。金属酸化物10の表面及び二重コイル2の表面がガス放電管用傍熱型陰極C1の外側に露出しており、金属酸化物10の表面部分に二重コイル2の表面部分が接触するようになっている。
金属酸化物10としては、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)の内のいずれか単体の酸化物、又はこれらの酸化物の混合物、あるいは、主構成要件がバリウム、ストロンチウム、カルシウムの内のいずれか単体の酸化物、又はこれらの酸化物の混合物であり副構成要件がランタン系を含む希土類金属(周期律表のIIIa)である酸化物が用いられる。バリウム、ストロンチウム、カルシウムは、仕事関数が小さく、熱電子を容易に放出することができ、熱電子供給量を増加させることができる。また、副構成要件として希土類金属(周期律表のIIIa)を添加した場合、熱電子供給量を更に増加させることができると共に、耐スパッタ性能を向上することもできる。
金属酸化物10は、陰極物質材として金属炭酸塩(たとえば、炭酸バリウム、炭酸ストロンチウム、炭酸カルシウム等)の形で塗布され、塗布された金属炭酸塩を真空加熱分解することにより得られる。なお、加熱用ヒータ1への通電により真空加熱分解を行う場合、直流加熱分解に比べ交流加熱分解の方が好ましい。このようにして得られた金属酸化物10が最終的に易電子放射物質となる。陰極物質材としての金属炭酸塩は、図1及び図2に示されたように、二重コイル2の内側に加熱用ヒータ1が配設されている状態において、二重コイル2の表面側から塗布される。なお、金属炭酸塩は、ガス放電管用傍熱型陰極C1(二重コイル2)の全周を覆うように塗布する必要はなく、放電面側となる部分のみに塗布するようにしてもよい。
また、二重コイル2の内側に加熱用ヒータ1が配設されていない状態で陰極物質材としての金属炭酸塩を二重コイル2(メッシュ状部材31)に塗布し、その後、二重コイル2の内側に加熱用ヒータ1を挿入してもよい。このように、金属炭酸塩の塗布後に加熱用ヒータ1を挿入して配設するのは、加熱用ヒータ1に形成された電気絶縁層4に小孔が有る場合、加熱用ヒータ1を配設した状態で金属炭酸塩を塗布すると、塗布した金属炭酸塩が小孔内に入り込み、金属炭酸塩から得られる金属酸化物10と加熱用ヒータ1とが短絡状態となるのを回避するためである。
加熱用ヒータ1は、図3に示されるように、電気絶縁層4を介して、金属酸化物10と二重コイル2に接触している。このため、予熱時に加熱用ヒータ1の熱を確実且つ効率よく金属酸化物10及び二重コイル2に伝えることができる。また、特公昭62−56628号公報に開示されたガス放電管用傍熱型陰極のように熱良導性の円筒を有するものに比して、熱陰極動作に必要となる熱量の損失を抑制することができる。このため、外部からの電極への熱量供給、強制過熱を必要とせず、自己加熱による熱量のみで電極が動作するよう設計できる。ここで、自己加熱とは、ガス放電管において電極から電子が出る際、放電空間中のイオン化したガス分子が衝突して電気的に中和されるが、ガス分子が電極に衝突する衝撃により、熱が発生することをいう。
なお、上記した金属酸化物以外には、熱電子供給源としてほう化ランタン等の金属ほう化物、金属炭化物、金属窒化物等を用いることも考えられるが、これらの金属ほう化物、金属炭化物、金属窒化物等はガス放電管用の熱陰極としての熱電子供給源としての実績が乏しく、主副構成要件として加える意味はない。ただし、熱電子供給源以外の効果、たとえば放電部以外での熱放散量を抑制するための絶縁効果向上等のために陰極周辺部に使用することがある。
ところで、多重コイル部材としてマンドレルを有する2重コイルを用い、電源として交流電源を用いた場合には、マンドレルの表面上での熱量の均衡によって放電が保たれる。マンドレルの表面上での放電により電極表面上の発生熱量は放電電流(Id)と比例関係にある。また、マンドレルの断面積(Sm)が大きいと、表面積も増えることになるため熱損失量は増える。以上のことから、電極表面温度(Tc)は、
Tc∝Id/Sm                 ………  (1)
との関係を有する。表面電極温度が許容範囲より小さすぎると、陰極動作温度不足となる。このため、放電を持続するように、局所的に温度を上昇させて熱電子を供給しようとして、放電が集中する。この結果、局所過熱による易電子放射物質のスパッタ現象を助長し、電極の劣化を加速させる。一方、表面電極温度が許容範囲より大きすぎると、電極表面全体が過熱状態となり、易電子放射物質の蒸発を助長し、電極の劣化を加速させる。
以上のことから、ガス放電管用傍熱型陰極C1では、二重コイル2がマンドレル21を有しているので、二重コイル2の剛性が高くなり、成形を容易に行うことができ、この結果、ガス放電管用傍熱型陰極C1の製造が容易となる。また、加工時及び使用時の二重コイル2の変形を抑制することができる。
また、ガス放電管用傍熱型陰極C1では、易電子放射物質である金属酸化物10が二重コイル2のコイル部分の間隔である、ピッチ(心距)間に挟み込まれて保持されることになる。これにより、各ピッチ間の距離は隙間程度に小さいため振動による金属酸化物10の脱落を抑制することができる。また、隙間構造のピッチが多数存在するため、多量の金属酸化物10を保持でき、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。
また、二重コイル2に含まれるタングステン素線とマンドレル21との間に生じる空間にも金属酸化物10が保持されることになる。このタングステン素線とマンドレル21との間に生じる空間に金属酸化物10は、電極動作中の金属酸化物10のスパッタ等により消失する金属酸化物分を有効に補充する機能を有する。タングステン素線とマンドレル21との間に生じる空間に金属酸化物10を有効に保持させるためには、上述した一次コイルにおけるコイル部分の間隔が1.0mm以下であることが好ましく、0.01mm〜0.3mmの範囲が更に好ましい。
(第2実施形態)
図4は、第2実施形態に係るガス放電管用傍熱型陰極の概略側面図であり、図5は、第2実施形態に係るガス放電管用傍熱型陰極の概略断面図である。第2実施形態は、二重コイルのコイル部分が接触している点で第1実施形態と相違する。
ガス放電管用傍熱型陰極C2は、図4及び図5に示されるように、加熱用ヒータ1と、二重コイル2と、易電子放射物質としての金属酸化物10とを有している。二重コイル2は、第1実施形態における二重コイル2と同様に、コイル状に巻き回されたコイルより構成される多重コイルであって、マンドレル21を有している。加熱用ヒータ1は、二重コイル2の内側に設けられている。二重コイル2は、巻き回された複数のコイル部分の全てが隣接するコイル部分に接触している。二重コイル2は、加熱用ヒータ1の接地側の端子に接続されることにより、接地(GND)されている。
二重コイル2は、コイル状に巻き回されたコイルより構成される多重コイルであって、直径0.0913mmのタングステン素線を外径0.250mmの1次マンドレル21にピッチ0.218mmで巻き回して一次コイル(外周径0.433mm)に形成し、さらにその一次コイルを外径1.8mmの2次マンドレルにピッチ0.433mmで一次コイルの隣接するコイル部分同士接触するように、たとえば6回巻き回して二重コイルに形成したものである。二重コイル2は、2次マンドレルを取り除き1次マンドレル21を残した状態で用いられ、当該1次マンドレル21を有することになる。
金属酸化物10は、二重コイル2及び加熱用ヒータ1に保持される。二重コイル2の表面部分及び金属酸化物10は、金属酸化物10の表面及び二重コイル2の表面部分が放電面となるように、ガス放電管用傍熱型陰極C2の外側に露出しており、金属酸化物10の表面部分に二重コイル2の表面部分が接触するようになっている。金属酸化物10は、第1実施形態と同様にして、設けられる。
加熱用ヒータ1は、図5に示されるように、電気絶縁層4を介して、金属酸化物10と二重コイル2に接触している。このため、予熱時に加熱用ヒータ1の熱を確実且つ効率よく金属酸化物10及び二重コイル42に伝えることができる。また、第1実施形態と同じく、熱陰極動作に必要となる熱量の損失を抑制することができ、外部からの電極への熱量供給、強制過熱を必要とせず、自己加熱による熱量のみで電極が動作するよう設計できる。
したがって、ガス放電管用傍熱型陰極C2では、第1実施形態のガス放電管用傍熱型陰極C1と同じく、ガス放電管用傍熱型陰極C2の製造が容易となる。また、加工時及び使用時の二重コイル2の変形を抑制することができる。
また、ガス放電管用傍熱型陰極C2では、第1実施形態のガス放電管用傍熱型陰極C1と同じく、金属酸化物10の脱落を抑制することができるとともに、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。
また、ガス放電管用傍熱型陰極C2では、二重コイル2の巻き回された複数のコイル部分の全てが隣接するコイル部分に接触しているので、二重コイル2は、長手方向全体にわたって等電位面を実効的に形成することになる。すなわち、二重コイル2は、複数の電気配線(導電路)で構成され、かつ単一の方向へ電流が流れるよう規制されることはない。したがって、二重コイル2の表面の端々間の電気抵抗は著しく小さく、二重コイル2の表面においてはほぼ等電位状態となっており、複数の放電点あるいは放電線からなる放電面の電位はほぼ等しくなる。言い換えると、二重コイル2により、放電面に平行な方向に放電電流が流れ得る複数の電気回路が形成、つまり、放電電子(エミッション)の通り路(等電位回路)が複数形成されることとなる。
したがって、ガス放電管用傍熱型陰極C2では、二重コイル2そのものにより、二重コイル2の表面(放電面)において等電位面が実効的に形成されているので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなって放電位置における負荷が軽減されることになり、劣化要因である金属酸化物10のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができる。この結果、局所的な放電の発生を抑制でき、陰極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加することから、ガス放電管用傍熱型陰極C2の動作電圧及び発生熱量を低くすることもできる。
また、ガス放電管用傍熱型陰極C2にあっては、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくできる。これにより、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型陰極を提供でき、パルス動作、大電流動作の実現が可能となる。
また、二重コイル2に含まれるタングステン素線とマンドレル21との間に生じる空間にも金属酸化物10が保持されることになる。これにより、電極動作中の金属酸化物10のスパッタ等により消失する金属酸化物分を有効に補充することができる。
なお、本第2実施形態においては、二重コイル2は巻き回された複数のコイル部分の全てが隣接するコイル部分に接触して構成されているが、これに限られるものではない。巻き回された複数のコイル部分のうち少なくとも一部のコイル部分が隣接するコイル部分に接触していれば、この接触している部分において、等電位面が実効的に形成されることになり、上述した効果を有することになる。もちろん、等電位面を広く形成するという観点では、巻き回された複数のコイル部分の全てが隣接するコイル部分に接触していることが好ましい。
(第3実施形態)
図6は、第3実施形態に係るガス放電管用傍熱型陰極の概略断面図である。第3実施形態は、電気導体としてのメッシュ状部材を有している点等で第1及び第2実施形態と相違する。
ガス放電管用傍熱型陰極C3は、図6に示されるように、加熱用ヒータ1と、二重コイル2と、メッシュ状部材31(電気導体)と、易電子放射物質としての金属酸化物10とを有している。
メッシュ状に形成されたメッシュ状部材31は、導電性を有する剛体(金属導体)で、周期律表のIIIa〜VIIa、VIII、Ib族に属し、具体的にはタングステン、タンタル、モリブデン、レニウム、ニオブ、オスミウム、イリジウム、鉄、ニッケル、コバルト、チタン、ジルコニウム、マンガン、クロム、バナジウム、ロジウム、希土類金属等の高融点金属(融点1000℃以上)の単体金属もしくはこれらの合金からなる。本実施形態においては、直径0.03mmのタングステン素線をメッシュ状に編んだメッシュ状部材を用いている。メッシュ状部材31におけるメッシュの大きさは、80メッシュとされている。メッシュ状部材31は、所定長さを有している。
メッシュ状部材31は、二重コイル2の内側(加熱用ヒータ1と二重コイル2との間)に二重コイル2の長手方向にわたって、放電方向に略直交して設けられている。メッシュ状部材31は、二重コイル2と電気的に接続された状態にある。また、メッシュ状部材31は、二重コイル2の内側において複数のコイル部分に接触しており、二重コイル2と複数個の接点を形成している。メッシュ状部材31は、加熱用ヒータ1の接地側の端子に接続されることにより、リードロッド7を介して接地(GND)されている。メッシュ状部材31が接地されることにより、二重コイル2も接地されることになる。
金属酸化物10は、二重コイル2及び加熱用ヒータ1に保持される。二重コイル2の表面部分及び金属酸化物10は、金属酸化物10の表面及び二重コイル2の表面部分が放電面となるように、ガス放電管用傍熱型陰極C3の外側に露出しており、金属酸化物10の表面部分に二重コイル2の表面部分が接触するようになっている。金属酸化物10は、第1実施形態と同様にして、設けられる。
加熱用ヒータ1は、図6に示されるように、電気絶縁層4を介して、金属酸化物10と二重コイル2とに接触している。このため、予熱時に加熱用ヒータ1の熱を確実且つ効率よく金属酸化物10及び二重コイル2に伝えることができる。また、第1実施形態と同じく、熱陰極動作に必要となる熱量の損失を抑制することができ、外部からの電極への熱量供給、強制過熱を必要とせず、自己加熱による熱量のみで電極が動作するよう設計できる。
以上のことから、本実施形態のガス放電管用傍熱型陰極C3では、第1及び第2実施形態のガス放電管用傍熱型陰極C1,C2と同じく、ガス放電管用傍熱型陰極C3の製造が容易となる。また、加工時及び使用時の二重コイル2の変形を抑制することができる。
また、ガス放電管用傍熱型陰極C3においては、金属酸化物10に接触するとともに二重コイル2に接触してメッシュ状部材31が設けられているので、メッシュ状部材31は、二重コイル2の裏面(放電面とは反対側の面)において等電位面を実効的に形成することになる。すなわち、メッシュ状部材31は、複数の電気配線(導電路)で構成され、かつ単一の方向へ電流が流れるよう規制されることはない。したがって、メッシュ状部材31の表面の端々間の電気抵抗は著しく小さく、メッシュ状部材31の表面においてはほぼ等電位状態となっており、複数の放電点あるいは放電線からなる放電面の電位はほぼ等しくなる。言い換えると、メッシュ状部材31により、放電面に平行な方向に放電電流が流れ得る複数の電気回路が形成、つまり、放電電子(エミッション)の通り路(等電位回路)が複数形成されることとなる。
したがって、ガス放電管用傍熱型陰極C3では、メッシュ状部材31により、二重コイル2の裏面(放電面とは反対側の面)において等電位面が実効的に形成されているので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなって放電位置における負荷が軽減されることになり、劣化要因である金属酸化物10のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができる。この結果、局所的な放電の発生を抑制でき、陰極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加することから、ガス放電管用傍熱型陰極C3の動作電圧及び発生熱量を低くすることもできる。
また、ガス放電管用傍熱型陰極C3にあっては、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくできる。これにより、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型陰極を提供でき、パルス動作、大電流動作の実現が可能となる。
また、電気導体としてメッシュ状部材31を用いているので、熱電子放出能の低下及び放電位置の移動を抑制し得る構成の電気導体を低コスト且つより一層簡易に実現することができる。また、メッシュ状部材31(電気導体)が剛体となるために、加工が容易であると共に、金属酸化物10に密接して設けることができる。更に、メッシュ状部材31と金属酸化物10とが接触する箇所を容易に多く設けることができる。
また、本実施形態のガス放電管用傍熱型陰極C3においては、加熱用ヒータ1を核として、その外側に金属酸化物10を保持する二重コイル2を取り巻くように配置し、二重コイル2の内側において金属酸化物10に接触するようにメッシュ状部材31を配設することにより、二重コイル2の振動抑制効果が働き、金属酸化物10の落下を防ぐことができる。また、二重コイル2のピッチ間に多量の金属酸化物10が保持されることになり、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。
(第4実施形態)
図7は、第4実施形態に係るガス放電管用傍熱型陰極の概略断面図である。第4実施形態は、基体金属を有している点で第1及び第2実施形態と相違する。
ガス放電管用傍熱型陰極C4は、図7に示されるように、加熱用ヒータ1と、二重コイル2と、易電子放射物質としての金属酸化物10と、基体金属33とを有している。
基体金属33は、筒状に形成され、導電性を有している。基体金属33は、たとえば、モリブデン等からなる。この基体金属33の内側に、加熱用ヒータ1が挿入されて配設される。二重コイル2は、基体金属33の外側表面に複数回巻き付けられて固定される。また、基体金属33は、易電子放射物質としての金属酸化物10と加熱用ヒータ1に形成された電気絶縁層4とを隔絶する機能を有している。なお、基体金属33として、動作中の陰極温度よりも高い融点を有する中高融点金属を用いることができる。また、基体金属33としては、円筒形状の筒状部材が一般的であるが、切り欠き部を有する円弧形状(開放された形状)の筒状部材を用いるようにしてもよい。
基体金属33は、二重コイル2の内側(加熱用ヒータ1と二重コイル2との間)に二重コイル2の長手方向にわたって、放電方向に略直交して設けられている。基体金属33は、二重コイル2と電気的に接続された状態にある。また、基体金属33は、二重コイル2の内側において複数のコイル部分に接触しており、二重コイル2と複数個の接点を形成している。基体金属33は、加熱用ヒータ1の接地側の端子とともにリードロッド7に接続されることにより、接地(GND)されている。基体金属33が接地されることにより、二重コイル2も接地されることになる。
金属酸化物10は、二重コイル2に保持される。二重コイル2の表面部分及び金属酸化物10は、金属酸化物10の表面及び二重コイル2の表面部分が放電面となるように、ガス放電管用傍熱型陰極C4の外側に露出しており、金属酸化物10の表面部分に二重コイル2の表面部分が接触するようになっている。金属酸化物10は、第1実施形態と同様にして、設けられる。
以上のことから、本実施形態のガス放電管用傍熱型陰極C4では、第1〜第3実施形態のガス放電管用傍熱型陰極C1〜C3と同じく、ガス放電管用傍熱型陰極C4の製造が容易となる。また、加工時及び使用時の二重コイル2の変形を抑制することができる。
また、ガス放電管用傍熱型陰極C2では、第1実施形態のガス放電管用傍熱型陰極C1と同じく、金属酸化物10の脱落を抑制することができるとともに、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。
また、ガス放電管用傍熱型陰極C4においては、金属酸化物10に接触するとともに二重コイル2に接触して基体金属33が設けられているので、基体金属33は、二重コイル2の裏面(放電面とは反対側の面)において当該二重コイル2の内側部分とともに等電位面を実効的に形成することになる。すなわち、基体金属33と二重コイル2とは、複数の電気配線(導電路)で構成され、かつ単一の方向へ電流が流れるよう規制されることはない。したがって、基体金属33の表面の端々間の電気抵抗は著しく小さく、基体金属33の表面においてはほぼ等電位状態となっており、複数の放電点あるいは放電線からなる放電面の電位はほぼ等しくなる。言い換えると、基体金属33により、放電面に平行な方向に放電電流が流れ得る複数の電気回路が形成、つまり、放電電子(エミッション)の通り路(等電位回路)が複数形成されることとなる。
したがって、ガス放電管用傍熱型陰極C4では、基体金属33と二重コイル2とにより、二重コイル2の裏面(放電面とは反対側の面)において等電位面が実効的に形成されているので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなって放電位置における負荷が軽減されることになり、劣化要因である金属酸化物10のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができる。この結果、局所的な放電の発生を抑制でき、陰極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加することから、ガス放電管用傍熱型陰極C4の動作電圧及び発生熱量を低くすることもできる。
また、ガス放電管用傍熱型陰極C4にあっては、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくできる。これにより、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型陰極を提供でき、パルス動作、大電流動作の実現が可能となる。
なお、第1〜第4実施形態においては、二重コイル2の表面部分が露出するようにしているが、必ずしもこれを露出させる必要はなく、金属酸化物10に二重コイル2の表面部分が接触しているのであれば、二重コイル2の表面部分が金属酸化物10に覆われていてもよい。なお、二重コイル2の表面部分を露出させることにより、放電性をより向上させることができる。
(第5実施形態)
まず、図8及び図9に基づいて、第5実施形態に係るガス放電管DT1を説明する。図8は、本第5実施形態に係るガス放電管を示す概略構成図であり、図9は、同じくガス放電管の断面構造を説明するための概略図である。
ガス放電管DT1は、図8に示されるように、管状の放電容器としてのガラスバルブ101と、ガラスバルブ101の外側に配設される外部電極111と、ガラスバルブ101の内側に配設される内部電極としての傍熱型電極C5とを備えている。ガラスバルブ101は、たとえば合成石英ガラス管からなり、誘電体を形成している。このガラスバルブ101の一端部には、一対の導入線(導入ピン)103,105が封装されており、導入線103,105の先端部には傍熱型電極C5が装着されている。ガラスバルブ101の内部(放電空間S)には、誘電体バリア放電によってエキシマ分子を形成するガスとして、たとえばキセノン(Xe)ガスが気密封止されている。
ところで、エキシマ光発光効率は、放電距離、それにより付随的に生じる放電維持電圧によっても、変化するが、最も発光効率に影響する要素は、封入ガス圧力である。中でも172nmに発光領域を有するキセノンが使用上最も実用的であり、キセノンガスは他の希ガスである、クリプトン、ネオン等と混合され使用されることもある。ここで、実用上封入されるキセノンガス圧力は、混合割合、放電距離等放電状況により、2kPaから100kPaの範囲で使用可能である。またエキシマ光発光効率は、キセノンガスとして凡そ10kPaから50kPaにピークを有し使用状好ましい範囲である。
外部電極111は、導電性を有する剛体(金属導体)、たとえばニッケル、ステンレス鋼等からなる。本実施形態においては、直径0.1mm程度のニッケル素線をメッシュ状に編んで外部電極111を構成している。外部電極111におけるメッシュの大きさは、5〜20メッシュ程度とされている。外部電極111は、図9に示されるように、ガラスバルブ101の外周に巻き付けることにより配設されている。このように、外部電極111はメッシュ状に形成されているので、外部電極111によりガス放電管DT1から放出される光が遮蔽されることはない。なお、外部電極111としては、ニッケル、ステンレス鋼等の素線をガラスバルブ101の外周に巻き付けることにより、配設するようにしてもよい。
傍熱型電極C5は、図10に示されるように、加熱用ヒータ113と、電子放射部125と、線状部材131とを有している。
加熱用ヒータ113は、直径0.03〜0.1mm、たとえば0.07mmのタングステン素線を二重に巻回したフィラメントコイルからなり、このタングステンフィラメントコイルの表面には、電着法等により電気絶縁材料(たとえば、アルミナ、ジルコニア、マグネシア、シリカ等)が被覆されて電気絶縁層114が形成されている。加熱用ヒータ113の一端部113aは、一対の導入線103,105のうちの一方の導入線103と電気的に接続されている。また、加熱用ヒータ113の他端部113bは、一対の導入線103,105のうちの他方の導入線105と電気的に接続されている。
電子放射部125は、加熱用ヒータ113からの熱を受けて電子を放出するものであり、二重コイル127と、易電子放射物質としての金属酸化物129とを含んでいる。二重コイル127は、コイル状に巻き回されたコイルより構成される多重コイルであって、直径0.091mmのタングステン素線を径0.25mm、ピッチ0.146mmの一次コイルに形成し、さらにその一次コイルで径1.7mm、ピッチ0.6mmの二重コイルに形成したものである。二重コイル127の内側には、加熱用ヒータ113が挿入されて配設されている。
また、二重コイル127は、マンドレル128を有している。ここで、マンドレルとは、フィラメントコイル作成時に巻径を決める型の役割を果たす芯線のことである。
線状部材131は、導電性を有する剛体(金属導体)で、周期律表のIIIa〜VIIa、VIII、Ib族に属し、具体的にはタングステン、タンタル、モリブデン、レニウム、ニオブ、オスミウム、イリジウム、鉄、ニッケル、コバルト、チタン、ジルコニウム、マンガン、クロム、バナジウム、ロジウム、希土類金属等の高融点金属(融点1000℃以上)の単体金属もしくはこれらの合金からなる。本実施形態においては、タングステン製の線状部材を用いている。線状部材131の直径は、0.1mm程度に設定されている。線状部材131は、二重コイル127の外側に二重コイル127の長手方向にわたって、放電方向に略直交するように配設されており、二重コイル127と線状部材131とは電気的に接続されている。なお、本実施形態においては、線状部材131の本数は2本に設定されているが、これに限られることなく、1本、あるいは3本以上であってもよい。線状部材131は、加熱用ヒータ113の一端部113aと同様に、導入線103と電気的に接続されている。
金属酸化物129は、二重コイル127に保持され、線状部材131に接触して設けられている。金属酸化物129及び線状部材131は、金属酸化物129の表面及び線状部材131の表面が放電面となるように、傍熱型電極C5の外側に露出しており、金属酸化物129の表面部分に線状部材131が接触するようになっていている。
金属酸化物129としては、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)の内のいずれか単体の酸化物、又はこれらの酸化物の混合物、あるいは、主構成要件がバリウム、ストロンチウム、カルシウムの内のいずれか単体の酸化物、又はこれらの酸化物の混合物であり副構成要件がランタン系を含む希土類金属(周期律表のIIIa)である酸化物が用いられる。バリウム、ストロンチウム、カルシウムは、仕事関数が小さく、熱電子を容易に放出することができ、熱電子供給量を増加させることができる。また、副構成要件として希土類金属(周期律表のIIIa)を添加した場合、熱電子供給量を更に増加させることができると共に、耐スパッタ性能を向上することもできる。
金属酸化物129は、電極物質材として金属炭酸塩(たとえば、炭酸バリウム、炭酸ストロンチウム、炭酸カルシウム等)の形で塗布され、塗布された金属炭酸塩を真空加熱分解することにより得られる。このようにして得られた金属酸化物129が最終的に易電子放射物質となる。電極物質材としての金属炭酸塩は、二重コイル127の内側に加熱用ヒータ113を配設すると共に二重コイル127の外側に線状部材131を配設した状態で、線状部材131側から塗布される。
再び、図8を参照する。ガス放電管DT1には、駆動回路141が接続されている。駆動回路141は、ヒータ電源143、予熱スイッチ145、高周波電源147を含んでいる。ヒータ電源143及び予熱スイッチ145は、導入線103,105との間に直列接続されている。予熱スイッチ145が閉じられることにより、ヒータ電源143から傍熱型電極C5の加熱用ヒータ113に電力が供給され、傍熱型電極C5が予熱されることになる。高周波電源147は、導入線103と外部電極111との間に直列接続されており、外部電極111と傍熱型電極C5との間に高周波電圧を印加する。
上述した構成のガス放電管DT1においては、傍熱型電極C5が予熱され、外部電極111と傍熱型電極C5との間に高周波電圧が印加されていると、加熱用ヒータ113からの熱を受けて電子放射部125(金属酸化物129)から電子が放出され、誘電体バリア放電が発生する。この誘電体バリア放電の発生によって、キセノンのエキシマ分子が形成される。そして、形成されたキセノンのエキシマ分子からエキシマ光(真空紫外光)が放射されることになる。このとき、ガラスバルブ101の内面に蛍光体が塗布されていれば、塗布された蛍光体がエキシマ光により励起されて可視光を放出する。
このように、本第5実施形態のガス放電管DT1においては、内部電極が傍熱型電極C5とされているので、傍熱型電極C5から放電電子を放出するために必要な電位(加速電圧)が低くてすみ、ガス放電管DT1の発光効率を高めることができる。
また、内部電極が傍熱型電極C5とされているので、内部電極(傍熱型電極C5)から取り出すことのできる放電電流が多くなる。これにより、外部電極111の単位面積当たりの放電電流量が増えて、キセノンのエキシマ分子の生成量が増加することになる。この結果、ガス放電管DT1の光出力を大きくすることができる。
また、本第5実施形態の傍熱型電極C5においては、金属酸化物129に接触して線状部材131が設けられ、線状部材131により等電位面が実効的に形成されるので、形成された等電位面の広い領域で熱電子放出が起きるために放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなり、放電位置における負荷が軽減されることになり、劣化要因である金属酸化物129のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができる。この結果、局所的な放電の発生を抑制でき、傍熱型電極C5の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。
また、本第5実施形態の傍熱型電極C5にあっては、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくできる。これにより、従来のものとほぼ同一形状で、大放電電流の傍熱型電極を提供できる。
また、本第5実施形態の傍熱型電極C5にあっては、線状部材131を用いているので、熱電子放出能の低下及び放電位置の移動を抑制し得る構成の電気導体を低コスト且つより一層簡易に実現することができる。また、線状部材131(電気導体)が剛体となるために、加工が容易であると共に、金属酸化物129に密接して設けることができる。
また、本第5実施形態の傍熱型電極C5にあっては、加熱用ヒータ113を核として、その外側に金属酸化物129を保持する二重コイル127を取り巻くように配置し、二重コイル127に保持された金属酸化物129の表面部分に接触するように線状部材131を配設することにより、二重コイル127の振動抑制効果が働き、金属酸化物129の落下を防ぐことができる。また、二重コイル127のピッチ間に多量の金属酸化物129が保持されることになり、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。
また、本第5実施形態の傍熱型電極C5にあっては、二重コイル127がマンドレル128を有しているので、加工時に二重コイル127が変形するのを抑制することができる。また、二重コイル127がマンドレル128を有することにより、二重コイル127の熱容量が大きくなり、耐熱性が向上する。
(第6実施形態)
次に、図11及び図12に基づいて、第6実施形態に係るガス放電管DT2を説明する。図11は、本第6実施形態に係るガス放電管を示す概略構成図であり、図12は、同じくガス放電管の断面構造を説明するための概略図である。
ガス放電管DT2は、第5実施形態と同様に、ガラスバルブ101と、導入線103,105と、外部電極111と、傍熱型電極C5とを備えている。ただし、図11に示されるように、導入線103は、ガラスバルブ101の一端部に封装されており、導入線105はガラスバルブ101の他端部に封装されている。
ガス放電管DT2には、図11及び図12に示されるように、外部電極111の外側に、エキシマ光を反射するための光反射部材151が設けられている。ガラスバルブ101における光反射部材151が設けられていない部分が、光取り出し部分となる。光反射部材151は、アルミニウム等の金属を膜状に蒸着させることにより形成することができる。なお、光反射部材151と外部電極111とを別体にて構成しているが、光反射部材151をアルミニウム等の導電性を有した金属蒸着膜で構成した場合には、光反射部材151そのものを外部電極として用いるようにしてもよい。
ガス放電管DT2には、図11に示されるように、駆動回路171が接続されている。駆動回路171は、ヒータ電源143、予熱スイッチ145、矩形波電源173を含んでいる。矩形波電源173は、バラストコンデンサ75と共に、導入線103と外部電極111との間に直列接続されており、外部電極111と傍熱型電極C5との間に矩形波電圧(パルス電圧)を印加する。
上述した構成のガス放電管DT2においては、傍熱型電極C5が予熱され、外部電極111と傍熱型電極C5との間に矩形波電圧が印加されると、加熱用ヒータ113からの熱を受けて電子放射部125(金属酸化物129)から電子が放出され、誘電体バリア放電が発生する。そして、この誘電体バリア放電によりキセノンのエキシマ分子が形成され、エキシマ光が放射されることになる。
このように、本第6実施形態のガス放電管DT2においては、第5実施形態のガス放電管DT1と同じく、内部電極が傍熱型電極C5とされているので、傍熱型電極C5から放電電子を放出するために必要な電位(加速電圧)が低くてすみ、ガス放電管DT2の発光効率を高めることができる。
また、内部電極が傍熱型電極C5とされているので、内部電極(傍熱型電極C5)から取り出すことのできる放電電流が多くなる。これにより、外部電極111の単位面積当たりの放電電流量が増えて、キセノンのエキシマ分子の生成量が増加することになる。この結果、ガス放電管DT2の光出力を大きくすることができる。
また、本第6実施形態のガス放電管DT2にあっては、エキシマ光が光反射部材151により反射されて、光反射部材151が設けられていない部分から放出されるので、ガラスバルブ101の外面の全周からほぼ均一に光が放出される構成のガス放電管(たとえば、第5実施形態のガス放電管DT1)に比較し、コンパクトで大光出力を得ることができる。
(第7実施形態)
次に、図13及び図14に基づいて、第7実施形態に係るガス放電管DT3を説明する。図13は、本第7実施形態に係るガス放電管を示す概略構成図であり、図14は、同じくガス放電管の断面構造を説明するための概略図である。
ガス放電管DT3は、第5及び第6実施形態と同様に、ガラスバルブ101と、導入線103,105と、外部電極111と、傍熱型電極C5とを備えている。ガス放電管DT2には、図13及び図14に示されるように、ガラスバルブ101の内面に、エキシマ光を反射するための光反射部材151が設けられている。これにより、第6実施形態のガス放電管DT2と同様に、ガラスバルブ101における光反射部材151が設けられていない部分が、光取り出し部分となる。
ガス放電管DT3には、図13に示されるように、駆動回路181が接続されている。駆動回路181は、グロー管183、高周波電源147を含んでいる。なお、グロー管183を使ったグロースタータ式に替えて、タイマ機能を有する半導体素子を用いた電子スタート式、タイマ機能の有無を問わず機械式(有接点)スイッチを用いるようにしてもよい。
このように、本第7実施形態のガス放電管DT2においては、第5実施形態のガス放電管DT1及び第6実施形態のガス放電管DT2と同じく、内部電極が傍熱型電極C5とされているので、傍熱型電極C5から放電電子を放出するために必要な電位(加速電圧)が低くてすみ、ガス放電管DT3の発光効率を高めることができる。
また、内部電極が傍熱型電極C5とされているので、内部電極(傍熱型電極C5)から取り出すことのできる放電電流が多くなる。これにより、外部電極111の単位面積当たりの放電電流量が増えて、キセノンのエキシマ分子の生成量が増加することになる。この結果、ガス放電管DT3の光出力を大きくすることができる。
また、本第7実施形態のガス放電管DT3にあっては、第6実施形態のガス放電管DT2と同じく、エキシマ光が光反射部材151により反射されて、光反射部材151が設けられていない部分から放出されるので、ガラスバルブ101の外面の全周からほぼ均一に光が放出される構成のガス放電管(たとえば、第5実施形態のガス放電管DT1)に比較し、コンパクトで大光出力を得ることができる。
なお、上述した第5〜第7実施形態においては、ガス放電管用傍熱型陰極として傍熱型電極C5を用いた例を示すが、傍熱型電極C5の代わりにガス放電管用傍熱型陰極C1〜C4のいずれかを用いるようにしてもよい。また、誘電体バリア放電によってエキシマ分子を形成するガスとして、キセノンガス以外に、クリプトン(Kr)、アルゴン(Ar)、ネオン(Ne)の単体、あるいは混合ガス等を用いることもできる。
産業上の利用可能性
本発明のガス放電管用傍熱型電極は、希ガスランプ、希ガス蛍光ランプ、水銀ランプ、水銀蛍光ランプ、重水素ランプ等の傍熱型電極(傍熱型陰極)に利用できる。
【図面の簡単な説明】
図1は、第1実施形態に係るガス放電管用傍熱型陰極を示す概略正面図である。
図2は、第1実施形態に係るガス放電管用傍熱型陰極を示す概略側面図である。
図3は、第1実施形態に係るガス放電管用傍熱型陰極を示す概略断面図である。
図4は、第2実施形態に係るガス放電管用傍熱型陰極を示す概略側面図である。
図5は、第2実施形態に係るガス放電管用傍熱型陰極を示す概略断面図である。
図6は、第3実施形態に係るガス放電管用傍熱型陰極を示す概略断面図である。
図7は、第4実施形態に係るガス放電管用傍熱型陰極を示す概略断面図である。
図8は、第5実施形態に係るガス放電管を示す概略構成図である。
図9は、第5実施形態に係るガス放電管の断面構造を説明するための概略図である。
図10は、第5実施形態に係るガス放電管に含まれる、内部電極(傍熱型電極)を示す概略断面図である。
図11は、第6実施形態に係るガス放電管を示す概略構成図である。
図12は、第6実施形態に係るガス放電管の断面構造を説明するための概略図である。
図13は、第7実施形態に係るガス放電管を示す概略構成図である。
図14は、第7実施形態に係るガス放電管の断面構造を説明するための概略図である。

Claims (7)

  1. マンドレルを有するコイルをコイル状に巻き回して構成した多重コイル部材と、
    前記多重コイル部材の内側に配設され、その表面に電気絶縁層が形成された加熱用ヒータと、
    前記多重コイル部材に接触するように当該多重コイル部材に保持される易電子放射物質としての金属酸化物と、を有し、
    前記多重コイル部材が接地されていることを特徴とするガス放電管用傍熱型電極。
  2. 前記金属酸化物は、前記電気絶縁層を介して前記加熱用ヒータに接触していることを特徴とする請求の範囲第1項に記載のガス放電管用傍熱型電極。
  3. 前記多重コイル部材は、前記電気絶縁層を介して前記加熱用ヒータに接触していることを特徴とする請求の範囲第1項に記載のガス放電管用傍熱型電極。
  4. 前記多重コイル部材は、巻き回された複数のコイル部分のうち少なくとも一部のコイル部分が隣接するコイル部分に接触していることを特徴とする請求の範囲第1項に記載のガス放電管用傍熱型電極。
  5. 前記多重コイル部材は、巻き回された複数のコイル部分の全てが隣接するコイル部分に接触していることを特徴とする請求の範囲第1項に記載のガス放電管用傍熱型電極。
  6. 筒状に形成された基体金属を更に有しており、
    前記基体金属の内側には前記加熱用ヒータが配置されると共に、前記基体金属の外側には前記多重コイル部材が前記基体金属に接触するようにコイル状に巻き回されていることを特徴とする請求の範囲第1項に記載のガス放電管用傍熱型電極。
  7. 前記金属酸化物は、バリウム、ストロンチウム、カルシウムの内のいずれか単体の酸化物、又はこれらの酸化物の混合物あるいは希土類金属の酸化物を含んでいることを特徴とする請求の範囲第1項に記載のガス放電管用傍熱型電極。
JP2002550285A 2000-12-13 2001-12-13 ガス放電管用傍熱型電極及びガス放電管 Expired - Fee Related JP3968015B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000379360 2000-12-13
JP2000379360 2000-12-13
JP2001238226 2001-08-06
JP2001238207 2001-08-06
JP2001238207 2001-08-06
JP2001238226 2001-08-06
PCT/JP2001/010939 WO2002049069A1 (fr) 2000-12-13 2001-12-13 Electrode a chauffage indirect pour tube a decharge gazeuse

Publications (2)

Publication Number Publication Date
JPWO2002049069A1 true JPWO2002049069A1 (ja) 2004-04-15
JP3968015B2 JP3968015B2 (ja) 2007-08-29

Family

ID=27345434

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002550285A Expired - Fee Related JP3968015B2 (ja) 2000-12-13 2001-12-13 ガス放電管用傍熱型電極及びガス放電管
JP2002550286A Expired - Fee Related JP3968016B2 (ja) 2000-12-13 2001-12-13 ガス放電管用傍熱型電極、これを用いたガス放電管及びその点灯装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2002550286A Expired - Fee Related JP3968016B2 (ja) 2000-12-13 2001-12-13 ガス放電管用傍熱型電極、これを用いたガス放電管及びその点灯装置

Country Status (6)

Country Link
US (2) US7193367B2 (ja)
EP (1) EP1351274A4 (ja)
JP (2) JP3968015B2 (ja)
CN (1) CN1279575C (ja)
AU (2) AU2002221136A1 (ja)
WO (2) WO2002049069A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218047B2 (en) * 2000-12-13 2007-05-15 Hamamatsu Photonics K. K. Indirectly heated electrode for gas discharge tube
WO2002049069A1 (fr) * 2000-12-13 2002-06-20 Hamamatsu Photonics K.K. Electrode a chauffage indirect pour tube a decharge gazeuse
KR100672363B1 (ko) * 2005-02-18 2007-01-24 엘지전자 주식회사 램프
US7633216B2 (en) * 2005-11-28 2009-12-15 General Electric Company Barium-free electrode materials for electric lamps and methods of manufacture thereof
US7893617B2 (en) * 2006-03-01 2011-02-22 General Electric Company Metal electrodes for electric plasma discharge devices
WO2008059639A1 (fr) * 2006-11-14 2008-05-22 Sharp Kabushiki Kaisha Partie d'électrode, source de lumière, dispositif d'éclairage et dispositif d'affichage à cristaux liquides
EA016479B1 (ru) * 2007-12-10 2012-05-30 Сандвик Интеллекчуал Проперти Аб Электрическое нагревательное устройство
JP2009231198A (ja) * 2008-03-25 2009-10-08 Nec Lighting Ltd 熱陰極放電ランプ及び電極の製造方法
DE102008020164A1 (de) * 2008-04-22 2009-10-29 Siemens Aktiengesellschaft Kathode mit einem Flachemitter
JP2016206484A (ja) * 2015-04-24 2016-12-08 株式会社リコー ヒータ、定着装置及び画像形成装置
JP6739326B2 (ja) * 2016-12-27 2020-08-12 三菱電機株式会社 評価装置及び評価方法
CA3006364A1 (en) * 2017-05-29 2018-11-29 McMillan-McGee Corp Electromagnetic induction heater
CN112103155B (zh) * 2020-09-22 2023-11-21 成都创元电子有限公司 一种电子轰击式六硼化镧阴极

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US178122A (en) * 1876-05-30 Improvement in thill-couplings
US14911A (en) * 1856-05-20 Improvement in artificial decoloring compounds
US178121A (en) * 1876-05-30 Improvement in gas-engines
US35306A (en) * 1862-05-20 Improvement in combined cultivator and seeding-machine
NL36929C (ja) * 1930-04-29
GB444737A (en) 1934-08-10 1936-03-26 British Thomson Houston Co Ltd Improvements in and relating to thermionic electron emissive electrodes for gas or vapour electric discharge devices
US2107945A (en) * 1934-11-20 1938-02-08 Gen Electric Cathode structure
US2704821A (en) * 1951-01-03 1955-03-22 Rca Corp Gas tube voltage regulators
US3003077A (en) * 1953-07-10 1961-10-03 Sylvania Electric Prod Discharge lamp cathode
GB766881A (en) * 1953-10-14 1957-01-30 British Thomson Houston Co Ltd Improvements relating to cathodes for high power valves
US3662211A (en) * 1961-03-15 1972-05-09 Gen Electric Cathode construction
GB1006423A (en) * 1961-04-27 1965-09-29 Sylvania Electric Prod Fast warm-up cathode assembly
BE785860A (fr) * 1971-07-06 1973-01-05 Gen Electric Electrode a filament et procede pour la fabrication de celle-ci
JPS57147860A (en) * 1981-03-06 1982-09-11 Hamamatsu Tv Kk Cathode for gas discharge tube
JPS5860852A (ja) 1981-10-08 1983-04-11 Nippon Telegr & Teleph Corp <Ntt> 端末間誤接続の有無判別方式
FR2583843B1 (fr) 1985-06-24 1989-07-28 Skf Cie Applic Mecanique Ressort pour dispositif de roue libre et assemblage comportant un tel ressort
JPS6255833A (ja) * 1985-09-04 1987-03-11 Hitachi Ltd 傍熱形陰極ヒ−タ
US4780645A (en) * 1986-01-14 1988-10-25 Matsushita Electric Works, Ltd. Electronic light radiation tube
JPS6329439A (ja) * 1986-07-23 1988-02-08 Hitachi Ltd 低圧放電灯
JPH01206537A (ja) * 1988-02-13 1989-08-18 Futaba Denshi Kk 傍熱形陰極及び傍熱形陰極を使用した蛍光発光装置
JPH02181352A (ja) * 1989-01-06 1990-07-16 Hitachi Ltd 低圧放電灯
US5343112A (en) * 1989-01-18 1994-08-30 Balzers Aktiengesellschaft Cathode arrangement
JP2741235B2 (ja) * 1989-02-21 1998-04-15 浜松ホトニクス株式会社 重水素放電管の傍熱陰極
JP2862887B2 (ja) * 1989-02-21 1999-03-03 浜松ホトニクス株式会社 ガス放電管の駆動回路
JPH04306550A (ja) * 1990-06-15 1992-10-29 Hitachi Ltd 重水素放電管
JPH04137422A (ja) 1990-09-28 1992-05-12 Toshiba Lighting & Technol Corp セラミック放電灯
JPH04357659A (ja) * 1991-02-05 1992-12-10 Hamamatsu Photonics Kk 放電管
JPH04292829A (ja) * 1991-03-20 1992-10-16 Futaba Corp 傍熱形陰極
JPH04315761A (ja) * 1991-04-15 1992-11-06 Hitachi Ltd 重水素放電ランプ
JPH04370642A (ja) * 1991-06-19 1992-12-24 Hitachi Ltd 重水素放電管
JP2923413B2 (ja) 1993-07-09 1999-07-26 松下電工株式会社 低圧放電ランプ及び低圧放電ランプ用陰極
JP2769436B2 (ja) * 1994-08-31 1998-06-25 浜松ホトニクス株式会社 ガス放電管及びその点灯装置
US5864209A (en) * 1996-10-30 1999-01-26 Imaging & Sensing Technology Corporation Cathode filament for an ultra-violet discharge lamp
WO2002049069A1 (fr) * 2000-12-13 2002-06-20 Hamamatsu Photonics K.K. Electrode a chauffage indirect pour tube a decharge gazeuse
US7218047B2 (en) * 2000-12-13 2007-05-15 Hamamatsu Photonics K. K. Indirectly heated electrode for gas discharge tube

Also Published As

Publication number Publication date
US20060071606A1 (en) 2006-04-06
AU2002221136A1 (en) 2002-06-24
CN1486503A (zh) 2004-03-31
JP3968016B2 (ja) 2007-08-29
AU2002221135A1 (en) 2002-06-24
US20040051436A1 (en) 2004-03-18
JP3968015B2 (ja) 2007-08-29
JPWO2002049070A1 (ja) 2004-04-15
WO2002049069A1 (fr) 2002-06-20
US7193367B2 (en) 2007-03-20
EP1351274A4 (en) 2008-01-09
EP1351274A1 (en) 2003-10-08
US7429826B2 (en) 2008-09-30
WO2002049070A1 (fr) 2002-06-20
CN1279575C (zh) 2006-10-11

Similar Documents

Publication Publication Date Title
US7429826B2 (en) Indirectly heated electrode for gas discharge tube, gas discharge tube using said indirectly heated electrode, and lighting device for said gas discharge tube
JP2006269301A (ja) 放電灯及び照明装置
US2488716A (en) Electric high-pressure discharge tube
US7218047B2 (en) Indirectly heated electrode for gas discharge tube
US20080007178A1 (en) Metal Halide Lamp and Illuminating Device Using the Same
JP3999663B2 (ja) ガス放電管用直熱型電極及びガス放電管
JP4012904B2 (ja) ガス放電管
JP2004014467A (ja) ガス放電管
US3215881A (en) Start-run plural cathode structure
JP2005071816A (ja) 光源装置
US20090026956A1 (en) Coiled coil electrode design for high pressure sodium lamps
JP4054017B2 (ja) ガス放電管
JPWO2002049073A1 (ja) ガス放電管
JP4575842B2 (ja) 電球形蛍光ランプ
JP4227364B2 (ja) ガス放電管及びガス放電管装置
JP2004014464A (ja) ガス放電管の駆動方法
JP2004014468A (ja) ガス放電管の駆動方法
JPH04306550A (ja) 重水素放電管
JP4880623B2 (ja) 蛍光ランプ
JPH01296542A (ja) マグネトロン
JP2005183046A (ja) ガス放電管
JP2003123621A (ja) 傍熱型陰極
JPH11288687A (ja) 放電ランプ
JPH02230652A (ja) 低圧放電灯の製造方法
JP2011249308A (ja) 放電ランプ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees