JPWO2002021520A1 - 光ヘッドおよび光ディスク装置 - Google Patents

光ヘッドおよび光ディスク装置 Download PDF

Info

Publication number
JPWO2002021520A1
JPWO2002021520A1 JP2002525650A JP2002525650A JPWO2002021520A1 JP WO2002021520 A1 JPWO2002021520 A1 JP WO2002021520A1 JP 2002525650 A JP2002525650 A JP 2002525650A JP 2002525650 A JP2002525650 A JP 2002525650A JP WO2002021520 A1 JPWO2002021520 A1 JP WO2002021520A1
Authority
JP
Japan
Prior art keywords
light
signal
spherical aberration
optical
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002525650A
Other languages
English (en)
Other versions
JP4085812B2 (ja
Inventor
島野 健
前田 武志
助田 裕史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2002021520A1 publication Critical patent/JPWO2002021520A1/ja
Application granted granted Critical
Publication of JP4085812B2 publication Critical patent/JP4085812B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • G11B7/13927Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/0857Arrangements for mechanically moving the whole head
    • G11B7/08576Swinging-arm positioners

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

従来は、検出面上では干渉の影響で焦点ずれ信号が劣化し、球面収差を安定に検出できる範囲が狭くなるという問題がある。そこで、光検出器に集光する前に、回折格子により光束の内側と外側を別々の光検出器に集光させるようにし、それぞれ独立に焦点ずれ信号を演算したのちにこれらの差を得ることによって球面収差信号を得る。これにより、球面収差信号をより安定に検出できる。

Description

技術分野
本発明は光ヘッド、光ディスク装置に係り、特に基板厚さずれや、高NA用2枚対物レンズにおける球面収差の補正技術に関する。
背景技術
近年、光ディスクは高密度化の一途をたどり、民生用再生専用光ディスクである0.65GBのCD−ROMに対して4.7GBのDVD−ROMが発売されている。記録可能な大容量光ディスクとしては2.6GBのDVD−RAMがすでに実用化され、平成12年上半期中にはその大容量版である4.7GB容量のものが発売される見通しである。このような記録可能なDVDは、コンピュータ用のストレージメディアとしての用途のみならず、巻き戻しや早送りが不要のビデオ画像記録用としての応用の要求が高まっており、平成11年末にはすでに光ディスクを用いたビデオレコーダが発売され始めている。DVD−RAMを用いたビデオレコーダも4.7GB容量版から、サポートされる見込みであり、CDやDVD−ROMとの互換性の点で、市場からの期待は大きい。しかし容量は4.7GBに留まらず、さらに今後の衛星放送のディジタル化に伴い、高精細動画像を2時間録画可能な20GBの大容量化が望まれている。
光ディスクの記録密度は記録再生する光スポットの大きさλ/NA(λ:光波長、NA:対物レンズ開口数)によりほぼ制限される。したがって大容量化のためには波長を短くするか、開口数を大きくすることが必要である。波長については近年、波長410nmの青紫色半導体レーザの開発が進んでいる。現状の4.7GBのDVDでは波長650nmであるため、青紫色半導体レーザを用いるだけで、原理的にはこれらの波長比の2乗で約2.5倍、約12GBの容量は実現できることになる。しかしこれをさらに20GBまで高めるには、NAを1.3倍、すなわち現状DVDの0.6に対して0.78まで高める必要がある。
このようにNAを増大させる従来の技術としてはたとえば特開平11−195229がある(第1の従来例)。ここでは2群2枚の対物レンズを用いて、NAを最大0.85まで高めている。このとき、NAが大きくなるとそれにともなって光学系のずれや、ディスク基板の厚さと傾きの誤差などで発生する収差が増大する問題がある。これに対して上記従来例においては、ディスク傾きにより発生するコマ収差を低減するためには基板の厚さを0.1mmまで薄くし、基板厚さ誤差により発生する球面収差についてはディスクの表面と記録面の焦点ずれ信号の差から基板の厚さを検出し、それに基づいて2枚のレンズの間隔を変えて球面収差を補償している。
さらに他の従来例としては特開2000−057616がある(第2の従来例)。ここでは上記のように球面収差を補償するための制御信号を、光検出器上で光スポットの内側と外側を分離して検出した非点収差方式による焦点ずれ信号の差信号によって検出している。またこのときそれらの和の信号を焦点ずれ信号としている。
しかし、上記第1の従来例においては、表面と記録膜面からの焦点ずれ信号から基板厚さを検出することで球面収差を検出しているが、この場合には直接球面収差を検出しているわけではないため、基板の屈折率のずれや、光検出器のずれ等の影響で誤差が生じやすく、制御が難しいという問題点がある。
また第2の従来例においては、後で詳細に説明するように、球面収差そのものによる焦点ずれ信号波形の劣化が大きく、球面収差の検出可能な焦点ずれ範囲が狭いという問題点がある。さらに球面収差による焦点ずれ信号のオフセットも大きい。
以上の課題に鑑み、本発明の目的は、基板厚や光学系のずれにともなう球面収差を、精度よく、安定に検出し、これを補正するとともに、オフセットの少ない焦点ずれ信号を検出し、安定に光ディスクの記録再生を行う光ディスク装置を提供することである。
発明の開示
(解決手段)
上記課題を解決するための本発明の光ヘッドは、基本的に、半導体レーザと、その光を光ディスク上に集光する光学系と、集光される光の焦点位置を可変にする可変焦点機構と、集光される光に可変の球面収差を付加する球面収差付加機構と、光ディスクからの反射光を半導体レーザから光ディスクまでの光路から分岐する光分岐素子と、分岐された反射光を集光するレンズと、このレンズにより集光された光を受光して電気信号に変換する受光素子から構成される。
このとき光分岐素子によって分岐された反射光を、さらに光軸付近の第1の光束と周辺部の第2光束に分離して前記受光素子に集光されるように分岐させる第2の光分岐素子を付加する。この光分岐素子は実質的にホログラムとなる。球面収差付加機構としては、2群2枚の対物レンズの間隔を可変とする静電アクチュエータ、または電気的に透過光の位相を制御する液晶フィルタを用いる。またこれらの2つの焦点ずれ信号の和信号を焦点ずれ信号とする。これを用いて前記可変焦点機構を制御する。可変焦点機構には実質的に対物レンズを搭載して可動する静電アクチュエータを用いる。
このとき第1、第2の光分岐素子を一体として光学系を簡素化することができる。
また一体となった光分岐素子を偏光性ホログラムとすることで、光量損失を抑えることができる。
また第1の光分岐素子を偏光性素子とし、球面収差付加機構を液晶素子とし、液晶素子を半導体レーザと第1の光分岐素子の間に配置することで、光ヘッドを小型化するとともに、液晶素子を往路光学系にのみ用いることで光量損失を抑えることができる。ここで、偏光性素子とは、偏光ビームスプリッタと偏光性回折格子など、分岐する光量比に対して入射偏光依存性のある光学素子をいう。
また第1の光分岐素子を無偏光性素子とし、球面収差付加機構を液晶素子として第1の光分岐素子と対物レンズの間に配置する事で、光ヘッドを小型化すると共に、液晶素子による球面収差が往復光路で作用するため、後で述べる球面収差のオフセットなどの影響を回避することができる。ここで、無偏光性素子とは、無偏光ビームスプリッタや、無偏光回折格子など、分岐する光量比に対して入射偏光依存性のない光学素子をいう。
また半導体レーザから対物レンズまでの光学系に影響しない、第1の光分岐素子と光検出器の間の光学素子では、レンズなど球面収差を発生する光学素子を配置しないようにすることにより、検出される球面収差と補償される光ディスク面上の球面収差にオフセットが生じないようにすることができる。
また対物レンズと球面収差付加機構を一体として固定する事により、トラッキング制御に伴うレンズ偏心に起因して発生する球面収差補正の軸ずれの影響をなくすことができる。
また対物レンズの有効光束系を1mm以下とし、半導体レーザ、球面収差付加機構、第1、第2の光分岐素子、対物レンズ、光検出器を一体として固定して可変焦点機構に搭載することで、光ヘッドを小型化できるとともに、トラッキング制御に伴うレンズ偏心に起因して発生する球面収差補正の軸ずれの影響をなくすことができる。基板厚0.1mmの光ディスクであれば、対物レンズの有効径を1mmとしても、1枚のレンズでワーキングディスタンス0.1mm以上を確保することができる。対物レンズの有効光束系を1mm以下とする根拠を図33を用いて説明する。図33はNA0.85、ディスク基板厚0.1mm、基板屈折率1.62、対物レンズ屈折率1.8、単レンズの対物レンズの第1面曲率半径が光束径の1/2という条件において、有効径に対するワーキングディスタンスの計算結果である。ここでは松居吉哉「レンズ設計法」(共立出版、1989年、初版第7刷)に基づき、収差論から解析的に導かれた球面収差の値が極小となるレンズ厚において、ワーキングディスタンスを解析的に求めた。第1面曲率半径が光束径の1/2という条件は、幾何学的にはレンズが成立するためのギリギリの条件であるが、実際上は非球面形状であるため、この近傍であればレンズは成立する。これにより、NA0.85、基板厚0.1mmであっても、有効径1mmでワーキングディスタンスが0.1mm程度は確保できることがわかる。これは図11に示した有効径3mmの2枚組レンズのワーキングディスタンス0.13mmとほぼ同等であり、十分実現可能である。
また球面収差付加機構と対物レンズが一体になっていない場合には、トラッキング制御のために対物レンズが半径方向に移動したとき、球面収差付加機構によって発生する球面収差の軸が対物レンズの光軸からずれて、実効的にコマ収差が発生する。コマ収差付加機構を付加することで、これを補償することができる。また球面収差付加機構と対物レンズが一体となっている場合にも、光ディスク基板が傾いた場合に発生するコマ収差に対して有効である。
また光ヘッドを小型に構成する場合には、半導体レーザチップが光検出器の基板上に一体に構成することで、組立調整を容易にすることができる。
また光ディスクのトラックピッチが細かい場合には、球面収差の検出補償を、差動プッシュプル方式によるトラッキングと組み合わせることで、トラッキング制御に伴う対物レンズ移動によるオフセットをキャンセルすることができる。この場合には対物レンズに向かう光束中に、光束の内側と外側を異なる方向に回折させる回折格子を設けるとともに、外側の光束はディスクの略接線方向に、内側の光束は略半径方向に回折させる。特に外側の光束は回折されない0次光の両側に実質的に光ディスクの案内溝またはピット列の周期の1/2だけずれて配置されるようにする。ここで「実質的」の意味は0次光と回折される±1次光のずれが、1/2周期でも、nを整数として (n+1/2)周期でも、実質的に同じであること、または1/2周期を意図して回折格子の方位を調整したとしても、信号に影響を生じない誤差範囲(±1/8周期以内程度)では効果は実質的に同じであることを意図している。また同様にして「略接線方向」の意味も上記の「実質的」なずれを含んだ接線方向ということを意味している。
このようにすることで外側の光束からは、レンズ移動によるオフセットは0次光と同じ極性のまま、0次光とは極性の反転したトラッキング信号が得られる。したがってこれらの差動出力をとることで、オフセットがキャンセルされたトラッキング信号を得ることができる。トラックピッチが細かい場合には内側の光束には回折光による干渉の影響が現れないため、略半径方向に配置することで回折光の回折角を対物レンズの画角の許容範囲以下に容易に抑えることができる。ここで「略半径方向」の意味は、上記のように内側の光束では回折光による干渉の影響が現れないため、案内溝との相対位置はほとんど無関係であるため、検出時に外側の光束と分離が可能な範囲内ということである。
また内側と外側の光束の分離をディスクからの反射光路中で行う場合には、焦点検出の方式として非点収差法を用いることで、光検出器からの信号出力線数を減らすことができる。この場合には光束の内外分離のための回折格子において非点収差を付加するようなパターンとすればよい。
また上記課題を解決するための光ディスク装置は、上記光ヘッドと、その受光素子の電気信号から、再生信号と焦点ずれ信号を得る演算回路から少なくとも構成される。そして前記第1の光束と前記第2の光束の各々についてそれぞれ第1、第2の焦点ずれ信号を独立に検出して、実質的にそれらの差信号により球面収差にほぼ比例する信号を得る。これを用いて球面収差付加機構を制御し、集光スポットの球面収差を低減する。ここで球面収差検出信号の演算に関して「実質的」という言葉で意味しているのは、回路演算の順序が、まず第1の光束の焦点ずれ信号と、第2の光束の焦点ずれ信号を、それぞれ独立に演算してから、その差信号を演算するという順序だけでなく、演算の結果が実質的に等価になるような他の順序の演算(たとえば、結果に対して+の極性に寄与する成分と、−の極性で寄与する成分をすべて足し合わせたのちに、それらの差をとるなど)も含むということである。
またこのような光ディスク装置において、液晶素子などを偏光ビームスプリッタとλ/4板を組み合わせる光学系において用いる場合に、液晶素子により位相差が付加されるのは1方向の直線偏光成分のみであるため、球面収差はディスクの向かう往路の光束のみに作用することになる。ここで、λ/4板とは、光軸に垂直な面内において、入射する直線偏光が直線偏光のままで透過しうるような、直交する2つの光学軸を有し、それぞれの光学軸の方向に偏光した直交する2つの直線偏光の入射光に対して4分の1波長の位相差を与える光学素子をいう。このような光学素子は2つの光学軸に平行な直線偏光が、同じ振幅で同位相で入射している場合、すなわち光学軸に対して45°傾いた直線偏光を入射させる場合には、透過する光を円偏光に変換する効果がある。なぜならディスクに向かう光がλ/4板を透過すると円偏光になり、ディスクを反射して戻る光束が再びλ/4板を透過すると、往路とは直交する偏光方向の直線偏光となるからである。ところが光検出器によって検出され、演算によって求められる球面収差は、往路、復路、両方の光路によって加わる球面収差が反映されるため、実質的にこの信号をそのまま球面収差補償機構にフィードバックすると往復の球面収差が往路光路のみで補償されて光検出器上で球面収差がないように制御されるため、光ディスク上のスポットではもともと片道分の球面収差しか加わっていなかったところを、往復分の球面収差が往路のみで補償されてしまうため、差し引きもとの球面収差と同じ量だけ逆符号で球面収差が残留することになる。したがってこれを防ぐためにはディスク面上での球面収差がゼロとなるようにフィードバック系を構成する。ここで「実質的」という言葉で意味しているのは、すでに述べたように回路演算の順序が、演算の結果が実質的に等価になるような他の順序の演算も含むということである。
またたとえばそのために、電気的に球面収差付加機構を駆動する駆動信号を球面収差誤差を増幅する系にフィードバックするループを設ける。
さらにまたこれらの光ディスク装置において、ディスク面上の球面収差だけが補償されることになるので、復路の球面収差は補償されないことにより、この場合に焦点ずれ信号にオフセットが生じる。これを補償するために、検出された球面収差信号に応じて、焦点ずれ信号のオフセットを補償するために、球面収差信号に適当な係数を乗じて、可変焦点機構の駆動信号に付加して、可変焦点機構を駆動する。
また球面収差付加機構と対物レンズが一体になっていない場合には、すでに述べたように、トラッキング制御のために対物レンズが半径方向に移動したとき、球面収差付加機構によって発生する球面収差の軸が対物レンズの光軸からずれて、実効的にコマ収差が発生する。コマ収差付加機構のある光ヘッドを用いた光ディスク装置において、これを補償するために対物レンズの移動量を検出し、これを用いてコマ収差付加機構を駆動する。
またたとえば対物レンズの移動量を検出するために、分岐された光軸付近の光束の、ディスク半径方向のアンバランスを検出する。ディスクのトラックピッチが十分狭い場合には、ディスクの案内溝による回折光は光束の周辺部分に偏るため、光軸付近の光束にはこれらの回折光による干渉の影響が現れない。したがってこの領域の光をディスク接線方向の直径で分割される2つの領域において独立に検出しその差を求めることで、トラッキングに伴う対物レンズの半径方向への移動を検出することができる。
また、光ディスクのトラックピッチが細かい場合には(すなわち、対物レンズの開口数NA、波長λに対してトラックピッチλ/NAμm未満のとき)、球面収差の検出補償を、差動プッシュプル方式によるトラッキングと組み合わせることで、トラッキング制御に伴う対物レンズ移動によるオフセットをキャンセルすることができる。この場合にはすでに述べたように、対物レンズに向かう光束中に、光束の内側と外側を異なる方向に回折させる回折格子を設けるとともに、外側の光束はディスクの接線方向に、内側の光束は半径方向に回折させる光ヘッドを用いる。特に外側の光束は回折されない次光の両側に光ディスクの案内溝またはピット列の周期の1/2だけずれて配置されるようにする。このようにすることで外側の光束からは、レンズ移動によるオフセットは0次光と同じ極性のまま、0次光とは極性の反転したトラッキング信号が得られる。したがってこれらの差動出力をとることで、オフセットがキャンセルされたトラッキング信号を得ることができる。トラックピッチが細かい場合には内側の光束には回折光による干渉の影響が現れないため、半径方向に配置することで回折光の回折角を対物レンズの画角の許容範囲以下に容易に抑えることができる。このようにして得られたトラッキング信号によりトラッキング制御機構を制御する。同時に光束の内外で分離された光束それぞれについて、焦点ずれ検出を行い、それらの差から球面収差、和から焦点ずれを検出して、それぞれ球面収差付加機構と、焦点ずれ制御機構の制御を行う。
あるいは他の方法として、球面収差制御機構を有する光ディスク装置において、光ディスク上の記録層に焦点制御を開始したのちに、焦点位置を合焦位置から前後に動かし、前記トラッキング信号の振幅の変化から球面収差を検出して球面収差制御機構を駆動する。
発明を実施するための最良の形態
(実施例1)
以下、図を用いて本発明の実施の形態を説明する。
図1は本発明による光ディスク装置の基本的な実施形態である。
半導体レーザ101からの光はコリメートレンズ102により平行光となり、ビームスプリッタ103を透過し、2群2枚の対物レンズ106、107により光ディスク108の記録膜面に、基板越しに集光されている。ビームスプリッタは請求項に記載の第1の光分岐素子に相当している。2群2枚の対物レンズは第1レンズ106が、2次元アクチュエータ104に搭載され光軸方向と光ディスクの半径方向に駆動される。第2レンズ107は第1レンズと一体となって駆動される球面収差補正用アクチュエータ105に搭載され、2枚のレンズの間隔を可変され、その間隔に応じた球面収差を発生させる。光ディスク108から反射された光はビームスプリッタ103を反射し、光分離ホログラム109に入射し、図示しない光軸付近の光と周辺部分の光が、異なる方向に分離され、ともに集光レンズ110により、シリンドリカルレンズ111を通して光検出器112に入射している。光検出器112には複数の受光領域があり、これらの光を複数の受光領域で分割して検出し、光電流に変換する。それらを焦点ずれ信号検出回路113、トラッキング誤差信号検出回路114、球面収差信号検出回路115、再生信号検出回路116により、電圧信号としてそれぞれの信号を出力する。焦点ずれ信号は、2次元アクチュエータ106の焦点方向の駆動信号としてフィードバックされ、光ディスク上に常に最良な像点が結像されるように制御される。トラッキング誤差信号は2次元アクチュエータ104のディスク半径方向への駆動信号としてフィードバックされる。球面収差信号は球面収差補正用アクチュエータ105にフィードバックされ、光ディスク108の基板厚さのばらつきや、レンズ間隔ずれによる球面収差を補償するように制御される。再生信号検出回路116においては、電流電圧変換や、波形等化処理、2値化処理等を含み、光ディスクに記録されている信号を再生する。図1において、コリメートレンズ102は、集光レンズ109と共用化して、ビームスプリッタ103と第1レンズ106の間に配置することも可能である。また光利用効率を向上させるためには、ビームスプリッタ103と第1レンズ106の間に1/4波長板をおいて、ビームスプリッタ103を偏光ビームスプリッタとすればよい。また本実施例においては焦点ずれ検出方式としては、非点収差方式を用いる場合を示すためにシリンドリカルレンズ111を配置しているが、例えばナイフエッジ方式や、ビームサイズ方式を用いる場合には不要となる。非点収差方式の場合にも、非点収差を発生させる素子であればよく、例えば傾いた平行平面板で代用することもできる。また本実施形態においては球面収差補償機構としては2群2枚の対物レンズの間隔にフィードバックしているが、これはたとえばコリメートレンズ102をアクチュエータに搭載して動かしてもよい。また電圧駆動の液晶可変位相変調素子を用いて、波面を直接変調してもよい。
図2に図1の実施形態における光分離ホログラム109のパターンの概略図を示す。入射光束201の径に対して、光量でほぼ等分になるような半径で境界202を設定し、その内側領域203と外側領域204で回折格子の方向を異ならせる。これにより光束の内側と外側が分離されて検出器112上に集光されることになる。ここでは非点収差方式による例を示したが、例えばナイフエッジ方式ではさらに光束を2分割する少なくとも1本の直径をさらに境界として分割される領域についても回折格子の方向を異ならせればよい。ビームサイズ検出方式であれば、図2の内側と外側で格子の方向を異ならせたまま、回折光に対してレンズ作用をさせるように格子を曲線格子とすればよい。
図3に図1の実施形態における光検出器112の受光面パターンと、その出力信号から焦点ずれ信号、球面収差信号、トラッキング誤差信号、再生信号を得る回路演算方法を示す模式図を示す。光分離ホログラム109により光束の内側と外側に分離された光は4つの受光領域301、302、303、304により受光される。このうち4分割受光領域301、302で外側光束1次回折光305、内側光束1次回折光306を受光し、非分割受光領域303、304で外側光束−1次回折光307、内側光束−1次回折光308を受光する。これらの受光領域の出力をバッファアンプ309で電圧に変換し、抵抗310で決定される適当なゲインで差動アンプ311、312、313、314、315、316を加減演算する。このとき内側光束と外側光束で、それぞれ2組の対角領域をそれぞれ加算したのち差を演算して独立の焦点ずれ信号を得たのち、内側と外側の焦点ずれ信号を加算することで焦点ずれ信号を求め、減算することで球面収差信号を求める。このとき光束の内外の分割の光量比が均等でない場合には、抵抗310を可変抵抗として、調整すればよい。トラッキング誤差信号はここではプッシュプル方式を用い、光束に対してディスクの半径方向の直径で分割される2つの領域の検出光量の差を得るように演算する。通常のプッシュプル方式では接線方向の直径で分割される2つの領域の受光光量の差の演算を行うが、図1の実施形態では非点収差焦点ずれ検出方式を用いているため、非点収差による最小錯乱円において、光束の方向が90°回転し、ディスクの案内溝による回折パターンが接線方向に現れる。そのため分割は半径方向の直径で行う。
次に図4を用いて球面収差の検出原理を説明する。球面収差があると図に示すようにレンズ401で集光される光線のうち、光軸に近い光線と、光軸から遠い光線で焦点の位置が異なる。したがって光束の内側と外側に分離すると、それぞれの焦点ずれ信号は、この焦点位置のずれに伴ってずれることになる。したがって光束の内側と外側の焦点ずれ信号の差が球面収差をあらわすことになる。前記した第2の従来例においても、非点収差焦点ずれ検出において検出器上で光束を内側と外側に分離しているため、本発明とほぼ同様の原理で球面収差の検出が可能となる。しかしながら検出器上で分離すると、収差が大きい場合に光束の内側と外側の光線が重なって完全に分離できない上に、それらの重なりあった光による干渉で信号が劣化する。そこで本発明では検出器に入射する前に内側の光束と外側の光束を分離するのである。
分離の位置(第2の光分岐素子の位置)は後で図を用いて説明するように、効果の違いによりいくつかの選択が可能である。まず第1には第1の光分岐素子と光検出器の間が考えられる。この場合には偏光性のない回折格子(無偏光回折格子)を用いて、内側の光束と外側の光束が異なる光検出器位置に分離するのがよい。このときに回折格子の位相を適切に選択することで、100%回折するようにするのでなく、0次光を残すようにすると、内側と外側を分離しない光も同時に検出することができる。たとえばこれをRF信号とすれば、光検出器を分割することなく、光束の全域の光を検出することになるので、電流電圧変換のアンプのノイズ等が複数個分混入することを防ぐことができる。また第2には第1の光分岐素子と対物レンズの間が考えられる。この場合には偏光性回折格子を用いるのがよい。そしてたとえばディスクに向かう光束(往路光束)では光が回折されないようにし、ディスクで反射して戻る光束(復路光束)で回折されるようにすることで、光量の損失を抑えることができる。偏光性回折格子は無偏光回折格子に比べて、往路光束で回折されない条件と復路光束で0次光を残す構成とする条件の両立が製造上、膜厚の精度が困難になる場合がある。しかしながら原理的に不可能であるわけではない。さらにこの場合には往路光束で回折されて、復路光束で回折しないような構成も可能である。このときディスク面上では分離される複数の光束の光スポットが生じる。これらを用いれば、たとえば後で説明する差動プッシュプル法によるトラッキング制御信号を得ることができる。このトラッキング方法はトラックピッチが光スポット径に比べて細かい場合に有効である。またさらに第3の位置としては半導体レーザと第1の光分岐素子との間が考えられる。この場合にはディスクを反射した光束は再びこの分離素子を通らないので、無偏光回折格子を用いて、内側の光束と外側の光束を分離するのがよい。無偏光回折格子では回折効率が自由に選択できると同時に、偏光性回折格子に比べて安価であるメリットもある。この場合には光ディスク上には回折した光束による複数の光スポットが形成される。上で説明したように、この場合もトラックピッチが光スポット径より狭い場合で差動プッシュプル法を用いるの有効である。第4の位置としては第1の光分岐素子と共用することが考えられる。この場合には半導体レーザと光検出器が同じパッケージに実装されたレーザモジュールの場合に有効である。このとき光分岐素子としては偏光性回折格子を用いるのがよい。第1の光分岐素子と共用とすることで、回折されない0次光は半導体レーザに戻るため、往路光束では回折せず、復路で回折されるようにし、0次光を残さずすべて回折されるようにするのがよい。
また光束を分離して検出することで、実質的に収差を低減することもできる。収差は通常波面収差のRMS値を直接の評価指標とするが、光束を分割して制限すると、それぞれの光束ではRMS波面収差が小さくなる。そのため焦点ずれ信号の劣化が少なくなり、オフセット等も軽減されることが期待できる。また以下の説明における球面収差の符号を図に示したように定義した。
図5は本発明における球面収差の検出原理を計算機シミュレーションにより確認した結果である。シミュレーションはスカラー回折理論に基づき、検出器上の光強度分布をフーリエ積分により求めた。焦点ずれ検出方式は非点収差法である。計算条件は波長655nm、リム強度0.57、対物レンズNA0.6、検出系集光レンズNA0.088、検出系非点格差0.92mm、4分割光検出器サイズ100μm□、検出器分割線幅10μm、光束分割境界直径有効口径比70.7%である。グラフ横軸は光ディスク上のスポットの焦点ずれ量、縦軸は振幅で規格化した焦点ずれ信号である。(a)は球面収差をザイデルの波面収差係数で−0.6λ、(b)は無収差、(c)は+0.6λの場合で、それぞれ光束の内側のみの信号と、外側のみの信号と、全体を同時に検出したときの信号である。球面収差により、光束の内外の焦点ずれ信号がシフトしていることがわかる。
図6はこの結果を用いて本発明における球面収差信号を計算した結果である。(a)は横軸に光ディスク上のデフォーカス量をとり、球面収差を変えて縦軸に球面収差信号を示している。合焦位置を中心として±3μm程度の範囲で球面収差に比例した信号が得られていることがわかる。(b)は横軸に球面収差をとり、デフォーカスを変えて球面収差信号を示している。デーフォーカスがあるとやや球面収差信号にオフセットが加わるものの、ほぼ良好に球面収差に比例した信号が検出できていることがわかる。
図7は比較のために前記の第2の従来例に従い、光束中でなく、検出器上で光束の内外を分割してそれぞれの焦点ずれ信号を計算したものである。図5と比較するとかなり信号の波形が劣化していることがわかる。特に球面収差があると内外でDC的なオフセットが生じている。
図8は図6と同様の計算を従来例に基づき、検出器上の光束分割で計算したものである。図6と比較して球面収差信号がデフォーカスに対して急激に変化することがわかる。このため(b)に示すように、球面収差に対する信号の感度がデフォーカスにより急激に低下したり、DCオフセットが増大することがわかる。
図9は球面収差に対する焦点ずれ信号のオフセットの計算結果である。全光束では球面収差により焦点ずれ信号のオフセットが大きくなるが、本発明にもとづいて、内外の光束を分離して検出するとオフセットが非常に小さくなることがわかる。
図10は検出した球面収差をレンズ間隔により補償する2枚レンズの補償効果を確認するための計算モデルである。これは前記の第1の従来例で示されているレンズ形状であり、波長410nm、NA0.85の2群2枚の対物レンズである。ディスク基板108は厚さが0.1mmである。
図11にこのレンズの面形状を示す。面番号は図10の左から順に番号づけされている。
図12にレンズ間隔を変えたときに発生する球面収差の計算結果を示す。縦軸はザイデルの球面収差係数であり、波長単位で示している。面間隔により球面収差が変化することがわかる。
(実施例2)
図13は第1、第2の光分岐素子が一体となった場合の本発明の光ディスク装置の実施例である。ここでは半導体レーザ1303、光検出器1302、1304は1つのパッケージ1301に一体化されており、2つの光分岐素子は1/4波長板と偏光性回折格子が一体となった複合光分岐素子1305となっている。複合光分岐素子1305は入射する半導体レーザからの偏光には入射側の偏光回折格子が作用せず、出射側の1/4波長板で円偏光とされディスク108を反射した光が再び1/4波長板に入射して、半導体レーザ出射時と偏光方向が90°回転した直線偏光となって偏光性回折格子に入射する。このときに回折格子の位相シフトが作用して回折し、コリメートレンズ102により光検出器1302、1304に集光される。偏光性回折格子のパターンは先に示したように焦点ずれ検出方式として非点収差方式を用いる場、合には、検出器方向に回折すると同時に非点収差を生じる曲線回折格子とすればよい。光検出器の受光面パターンとしては図3の中心にレーザの発光点が配置されるように、半導体レーザ1303を配置すればよい。たとえば光検出器基板にシリコンを用いれば異方性エッチングにより容易に45°に傾斜したミラーを形成できるので、このミラーを用いて半導体レーザの出射光を立ち上げるようにすれば、光検出器をその周囲に配置するだけで、コンパクトに半導体レーザと光検出器を一体化できる。
(実施例3)
図14にさらに別の実施形態を示す。半導体レーザ1401からの光をコリメートレンズ1402により平行光とし、ビーム成形プリズム1403、1404により楕円状の強度分布のビームを円形ビームとし、液晶位相補償素子1405により球面収差を付加する。液晶位相補償素子は透明電極をパターニングした2枚のガラス基板で液晶を挟んだもので、電極に交流電圧を印加することにより透過光の位相を変化させることができる。電極を球面収差の波面形状に合わせて複数領域に分離し、それぞれの領域で位相差を低減するような電圧を印加させる。液晶を透過した光は偏光ビームスプリッタ1406、λ/4板1407、立上げミラー1408、対物レンズ1411を通して、光ディスク1412に集光する。対物レンズはアクチュエータ1410に搭載され、焦点制御、トラッキング制御を行なう。光ディスク1412からの反射光は同じ経路を偏光ビームスプリッタまで戻り、ここで反射されてλ/2板1413に入射する。λ/2板1413はその光軸まわりの回転により、次の偏光ビームスプリッタ1414での光束の分離比を調節する際に用いる。偏光ビームスプリッタ1414を透過した光は回折格子1415によりトラッキング信号を検出するために光束を半径方向、接線方向の直径により4つに分割されて光検出器1417に入射し、その出力をトラッキングサーボ回路1422、再生信号回路1423で演算することにより、それぞれトラッキング信号と、再生RF信号を検出する。トラッキング信号はあとに述べる焦点ずれ信号とともにアクチュエータ1410にフィードバックされる。一方、偏光ビームスプリッタ1414を反射した光は反射ミラー1418で反射され、回折格子1419で光束が分割され集光レンズ1420により光検出器1421に集光される。光検出器1421からの出力からAFサーボ回路、球面収差サーボ回路によりそれぞれ焦点ずれ信号、球面収差信号を検出し、焦点ずれ信号はアクチュエータ1410にフィードバックされ、球面収差信号は液晶位相補償素子1405にフィードバックされる。ここで先の実施形態と異なり、焦点検出にナイフエッジ法を用いる場合について以下に回折格子1419と光検出器1421の構成を説明する。
図15は回折格子1419の形態である。この回折格子は光束を内外に分離すると同時にディスクからの反射光束の中でディスクの半径方向の直径についても分割し、別々に検出することで、内側光束による焦点誤差信号と、外側光束による焦点誤差信号を独立に検出する。
図16に光検出器1421とそこに入射している回折格子1419による回折光を示す。回折光は便宜上、焦点ずれのある場合を示しており、0次光は図示していない。0次光がほとんど生じないように回折格子1419の格子の深さを調整することは容易である。また0次光を生じさせて中心部にも受光部をおいて総光量を検出してもよい。ここでは回折光を4分割光検出領域1601、1602、2分割光検出領域1603、1604で受光している。4分割光検出領域1601、1602からの出力を図のように検出し、図の下に示すように演算を行なうことにより球面収差信号SASを検出することができる。ここで半導体レーザの強度分布ばらつきの影響などを補償するために、外側焦点ずれ信号と、内側焦点ずれ信号の差の演算においてゲインGを内側焦点ずれ信号に乗じている。焦点ずれ信号FESは2分割光検出領域1603、1604の出力から同様に図に示すように演算を行なうことにより得られる。ここでは別々の回折光を用いたが、もちろん内側焦点ずれ信号と外側焦点ずれ信号を加算することでも焦点ずれ信号を得ることはできる。このようなナイフエッジ法を用いた検出においては、ディスク面上の光スポットが合焦状態の場合に、光検出器面上の光スポットも焦点をむすぶ。したがってたとえば2層ディスクなどに適用する場合に、受光面のサイズをある程度小さく設計しておくことで、他の層からのクロストークを低減することができる。
図14に示した実施形態においては液晶素子がディスクへ向かう光線の光路にしか作用していないために、補償する球面収差は片道しか作用しない。ところがディスクの基板厚誤差などによって生じる球面収差は入射光だけでなく、反射光にも生じるため、光検出器で検出される球面収差は往復分となる。したがって球面収差信号によりそのまま液晶位相補償素子を駆動して、検出光束の球面収差を0となるように制御すると、ディスク面上の焦点の球面収差は過補正となってしまう問題がある。これは液晶素子を偏光ビームスプリッタ1406と対物レンズ1411の間に挿入しても同様である。なぜなら液晶素子は通常特定の方向の直線偏光でしか位相差が付加されないためである。ただしλ/4板1407と偏光ビームスプリッタ1406による光アイソレーションを用いない場合には液晶素子により往復光束で位相を付加することができるが光利用効率は低下する。このような場合に焦点面上の光スポットの球面収差を補償するための制御系の概略図を図17に示す。ここで光学系は簡略化して示している。液晶位相補償素子1405により球面収差W’が作用し、ディスクの基板厚ずれにより片道Wの球面収差が作用する場合にディスク面上の焦点の球面収差はW−W’=δとなる。そしてさらに復路の光束でも球面収差が作用するため、光検出器1421位置の光束の球面収差は2W−W’=δ+Wとなる。これが検出系により球面収差信号としてSAS=α(δ+W)として検出されるとする。αは検出系のゲインで、フィードバック制御のため通常負とする。この信号が差動アンプ1701に入力され、先の信号から帰還された信号との差信号が、さらに増幅器1702でk倍に増幅される。この信号は増幅器1703によりγ倍されて先の帰還信号とするのと同時に液晶駆動回路1704に入力され、先に示した液晶位相補償素子1405により付加される球面収差−W’が液晶駆動回路への入力信号のβ倍とする。このとき、
Figure 2002021520
が成り立ち、これより
Figure 2002021520
が導ける。したがって、
Figure 2002021520
となるようにゲインγを調節することにより、
Figure 2002021520
となり、ゲインkが十分大きければ、ディスク面上の球面収差δを0に漸近させることができる。
(実施例4)
図18は本発明による光ディスク装置の別な実施形態である。
半導体レーザ101からの光はコリメートレンズ102により平行光となり、球面収差補正用アクチュエータ1801を介して、ビームスプリッタ103を透過し、2群2枚の対物レンズ106、107により光ディスク108の記録膜面に、基板越しに集光されている。ビームスプリッタは請求項に記載の第1の光分岐素子に相当している。2群2枚の対物レンズは第1レンズ106が、2次元アクチュエータ104に搭載され光軸方向と光ディスクの半径方向に駆動される。第2レンズ107は第1レンズと一体となって駆動される。光ディスク108から反射された光はビームスプリッタ103を反射し、光分離ホログラム109に入射し、図示しない光軸付近の光と周辺部分の光が、異なる方向に分離され、ともに集光レンズ110により、シリンドリカルレンズ111を通して光検出器112に入射している。光検出器112には複数の受光領域があり、これらの光を複数の受光領域で分割して検出し、光電流に変換する。それらを焦点ずれ信号検出回路113、トラッキング誤差信号検出回路114、球面収差信号検出回路1802、再生信号検出回路116により、電圧信号としてそれぞれの信号を出力する。焦点ずれ信号は、2次元アクチュエータ106の焦点方向の駆動信号としてフィードバックされ、光ディスク上に常に最良な像点が結像されるように制御される。トラッキング誤差信号は2次元アクチュエータ104のディスク半径方向への駆動信号としてフィードバックされる。球面収差信号は球面収差補正用アクチュエータ1801にフィードバックされ、光ディスク108の基板厚さのばらつきや、レンズ間隔ずれによる球面収差を補償するように制御される。再生信号検出回路116においては、電流電圧変換や、波形等化処理、2値化処理等を含み、光ディスクに記録されている信号を再生する。図18において、コリメートレンズ102は、集光レンズ109と共用化して、ビームスプリッタ103と第1レンズ106の間に配置することも可能である。また光利用効率を向上させるためには、ビームスプリッタ103と第1レンズ106の間に1/4波長板をおいて、ビームスプリッタ103を偏光ビームスプリッタとすればよい。また本実施例においては焦点ずれ検出方式としては、非点収差方式を用いる場合を示すためにシリンドリカルレンズ111を配置しているが、例えばナイフエッジ方式や、ビームサイズ方式を用いる場合には不要となる。非点収差方式の場合にも、非点収差を発生させる素子であればよく、例えば傾いた平行平面板で代用することもできる。また本実施形態においては球面収差補償機構としては、たとえばコリメートレンズ102をアクチュエータに搭載して動かしてもよい。また電圧駆動の液晶可変位相変調素子を用いて、波面を直接変調してもよい。この実施例では入射光のみに球面収差補正が入るため、反射光で球面収差を検出し、そのままフィードバックをかける、これまで説明した制御系では以下に述べる問題が発生する。
この構成で検出した球面収差誤差をεとする。入射光束は球面収差補償機構によりyだけの波面収差を与えられて、ディスク面に入射する。ディスク面で発生する球面収差をxとすると、反射光で見るとディスク面で発生した収差は2xになるが、球面収差補償機構で与えられた収差はそのままの値となる。すると、球面収差検出系の検出誤差εをゼロとするように制御をかけるとy=2xとなり、ディスク面上ではx分だけ過補償となる。x=yとなるような制御をしないとディスク面での球面収差をゼロにすることができない。
そこで、図19のような制御系のブロック構成を考えてみる。
ブロック1901は反射過程で発生する収差の2倍化を表わす。ブロック1902は球面収差検出器を示し、収差誤差εを出力する。系は基本的には収差検出器1902、制御補償系1904、球面収差補償アクチュエータ1905の要素から構成する。制御量は入射光の球面収差yであり、球面収差補償アクチュエータにより駆動させられる。直接目標値xを測定することは不可能であるが、2x−yの偏差量を測定することが可能であるため、この系を用いてx−yがゼロとなるフィードバック制御系を構成する。通常の制御系と異なるのは制御補償系1904を挿入したことである。。すると、位相検出部から球面収差補償アクチュエータまでの開ループ一巡関数Gは
Figure 2002021520
となる。また、閉ループ伝達関数Hは、式6のように表せる。
Figure 2002021520
さらに、xから見たyへの伝達関数は2・Hとなり、以下の式7のように表せる。
Figure 2002021520
x−yをゼロにするためには、少なくともxの取りうる帯域で、以下の式が成立する必要がある。
Figure 2002021520
すなわち
Figure 2002021520
従って、式9の条件を満たすようにG2を選択すればよい。
G2として以下の実施例が考えられる。
(1)式xにしたがって、G1とG3の逆関数の積を作成する。例えば、球面収差補償アクチュエータとして、液晶板を使用すると、駆動入力に対する波面位相量の周波数特性は図46のような低域フィルタの特性をしめす。したがって、G3を以下の伝達関数で表す。
Figure 2002021520
G1は対象とする帯域ではほぼ定数、K1と見なせる。したがって、G2は以下の伝達関数となればよい。
Figure 2002021520
すなわち、G2はK1とK3の積の逆数のゲインを持つ伝達関数と時定数Tの微分の伝達関数と定数1の和からなる伝達関数となる。G2は図47のように表される。このなかに、微分を含むことから、実際の制御系を構成するためには、高域でノイズが増加しないように、かつ制御系に影響をおよぼさないように制御帯域よりも高い周波数からゲインが低下する低域フィルタをG1からG3の間に入れておく。好適には微分回路の後に前述の低域フィルタを図48に示すように挿入する。
(2)この実施例では収差検出誤差をゼロとする系を基本系と考える。収差検出器1902、位相補償要素4902、増幅器4901、球面収差補償アクチュエータ1905の要素から構成されている。制御量は入射光の球面収差yであり、球面収差補償アクチュエータの入力に比例する。直接目標値xを測定することは不可能であるが、2x−yの偏差量を測定することが可能であるため、従来通りフィードバックをかけると2x=yとなる。
そこで、ブロック4903で球面収差補償アクチュエータの動きを電気的に模擬し、ブロック4904で模擬した球面収差を電気信号に変換し、収差検出信号から差し引くこととした。すると収差信号から差し引いた後の信号は、(2x−y)−y=2(x−y)に比例した信号となる。この信号でフィードバックをかけると、x=yに制御されることになる。これを実現するブロック図を図49に示す。ブロック4903の伝達関数としてはG3、ブロック4904の伝達関数はG1とすればよい。この構成で位相補償要素4902の伝達関数をg1、増幅器4901の伝達関数をg2とすると、G2は次のように表される。
Figure 2002021520
g1・g2が1に比較して十分に大きいと、
Figure 2002021520
となり、G2がG1とG3の積の逆関数となる。
以上の制御系を構成するために、G2のブロックは図20に示すような構成となる。球面収差信号を差動アンプ2005のプラス端子に入力し、マイナス端子には球面収差補償アクチュエータを駆動する駆動回路2002の駆動電圧を球面収差補償アクチュエータ(アクチュエータ駆動回路の特性を含む)の伝達関数と収差検出器の伝達関数が直列につながった伝達関数をもつ模擬回路2001を通した信号を入力する。差動アンプ2005の出力は増幅器2004に入力され、その出力は2次積分回路2006を介して、位相進み補償回路2003に入力され、その出力が球面収差補償アクチュエータを駆動する駆動回路2002の駆動電圧となる。駆動回路2002の出力が球面収差補償アクチュエータ1905に入力され、入射光に球面収差を与える。
以下、制御系の設計方法について上記(2)の制御系の構成を例に述べる。位相補償回路4902は、2次の積分回路2006と位相進み回路2003とからなる。2次の積分回路は周波数に対してゲインがマイナス40dB/decで減少する周波数特性を持つ。2次の積分回路の特性をK/(s)と表す。ここで、s=jωである。これが図21に示すような周波数特性になるようにKを調整する。
さらに、制御系の応答特性を良くするために、図22に示す周波数特性を持つ位相進み遅れ回路を挿入する。位相進み回路による周波数補償はサーボ系を安定させるものである。サーボ系が安定であるためには、ナイキストの簡易安定判別法によると、一巡伝達関数(この場合には、G1G2G3である)のゲインが0dBとなる周波数ωc(交差周波数)において位相が−180度以上でなければならない。もし位相が180度遅れると発振してしまう。
従って交差周波数ωcにおける位相が−180度よりいくら進んでいるかが安定性の評価量となる。 そこで制御系では図22に示す様な周波数特性を持つ位相進み回路でωcでの位相を−180度より持ち上げて位相余裕を40〜50度持たせることによりサーボ系を安定化させる。位相すすみ補償回路のゲイン特性は=0.1にした場合、高域で20dBアップする。
位相進み補償回路を組み込んだ後の開ループ特性を図23に示す。この実施例では交差周波数を1.7kHzに選んでいる。
(実施例5)
図24は無偏光ビームスプリッタ2401を用いた場合の実施例である。無偏光ビームスプリッタを用いているため、液晶位相補償素子1405を用いている場合においても、これをビームスプリッタ2401と対物レンズ1411の間に挿入すると、球面収差は往路と復路の両方の光束に作用する。このため、検出される球面収差信号はディスク面上の球面収差に比例した値が得られるので、フィードバック制御回路は、増幅器1702、液晶駆動回路1704から構成される従来と同様の球面収差制御回路2402を用いることができる。
図25は半導体レーザから光分岐素子の間、および光分岐素子から光検出器の間など、光が片道しか通らない光路に球面収差を発生する可能性のあるレンズなどを配置しない場合の実施形態である。半導体レーザ101からの光を、偏光ビームスプリッタ1406を通して、コリメートレンズ102で平行光とし、液晶位相補償素子1405において球面収差を付加する。さらに対物レンズアクチュエータ104に搭載された、偏光性回折格子2501とλ/4板1407を透過し、対物レンズ1411により光ディスク108上に集光される。反射した光はλ/4板1407により入射時に対して直交する直線偏光となって偏光性回折格子2501により回折され、液晶位相補償素子1405を透過して、コリメートレンズ102により集光されながら、偏光ビームスプリッタ1406を反射して光検出器2502によって受光される。このようにするとレンズなどの球面収差を発生させる可能性のある光学部品は必ず往復とも透過することになるので、球面収差補償に際して液晶位相補償素子により加わる収差が片道のみであることを考慮した方法において、オフセットの発生を防ぐことができる。
図26はここで用いている偏光性回折格子2501のパターンを示す図である。光軸付近の光束と周辺部分の光束で、回折光に共に同じ大きさの45°方向への非点収差を発生させ、同時に光軸付近は左右、周辺部分は上下に回折光が分離するような格子パターンとなっている。
図27は光検出器2502とそこに入射する光束のパターン、および各信号の演算式を示す。中心部の受光部Aには偏光性回折格子2501で回折されない0次光の光線が入射する。このとき、光ディスク上のスポットが焦点を結ぶ時に、0次光は受光部Aに焦点を結ぶように光検出器2502の位置を調整しておく。このとき回折光は非点収差により集光されずに広がるが、図26の偏光性回折格子2501のパターンには集光/発散のレンズパワはないので、検出器上には最小錯乱円を形成する。そこでこれらの回折光をそれぞれ4分割光検出領域で受光して対角和の差をとる焦点検出の演算を行い、それぞれを加算することで焦点ずれ信号(AF)を得ることができる。ただし回折格子の非点収差は+1次回折光と−1次回折光で符号が反転するので、焦点ずれ信号の極性を考慮して加算している。45°方向の非点収差による最小錯乱円は平行光束での分布を実質的に90°回転した分布となるため、ディスクの案内溝による回折パターンが接線方向に現れている。図では回折パターンの極性を示すために、ややトラッキングずれのある状態を想定して、回折パターンの片側のみが暗くなった例を示している。ここで例えばディスクの案内溝のピッチが0.32μm、対物レンズのNAが0.85、光の波長が0.4μmとすると、スポット径(λ/NA=0.47μm)に比べてピッチが細かいため、光束の中心部に案内溝による回折パターンのない領域が存在する。そこで光軸付近の光束を案内溝による回折パターンの存在しない領域にとることにより、この領域においてのトラッキング信号演算を行うと、それがレンズシフト信号(LS)になる。これに適当な係数を乗じて、外側の光束のトラッキング信号から差し引くことにより(TR)、プッシュプル方式のトラッキング信号演算において問題となる、対物レンズシフトによるオフセットの問題を解決する。球面収差の検出は、すでに説明したように、外側光束の焦点ずれ信号と内側光束の焦点ずれ信号を求めて、それちの差をとる(SA)ことで得られる。
(実施例6)
図28は図25に示した実施形態において、液晶位相補償素子1405を、2次元アクチュエータ104に搭載した場合の実施形態である。図25の実施形態では、対物レンズ1411が液晶位相補償素子1405に独立に2次元アクチュエータ104によって駆動されるため、液晶位相補償素子1405によって加わる球面収差が、2次元アクチュエータ104による駆動量だけ、対物レンズ1411の光軸からずれる。光軸からΔだけ、ずれた球面収差は
Figure 2002021520
と表せるため、もともとの球面収差に加えて、近似的にΔに比例したコマ収差を生じる。このコマ収差が許容範囲内であればよいが、補償する球面収差量が大きいか、ずれΔが大きく、発生するコマ収差が許容範囲以上の場合には、図28に示したように、液晶素子を対物レンズ1411に搭載することにより、コマ収差の発生を抑えることができる。
(実施例7)
また、コマ収差の発生を抑える他の方法として、コマ収差補償機能つきの実施形態を図29に示す。ここでは液晶位相補償素子としては球面収差の補償と同時にコマ収差の補償も可能な液晶位相補償素子2901を用いる。対物レンズ1411がディスク108の偏心に伴って2次元アクチュエータ104により液晶素子2901の軸からずれた場合に発生するコマ収差、またはレンズシフトを光検出器2502の出力からコマ収差回路2902により演算して検出し、液晶位相補償素子2901のコマ収差駆動電極にフィードバックする。このとき光検出器2502は図27において説明したものを用いることができる。また液晶位相補償素子2901は、発散光が入射する場合の球面収差を勘案してコリメートレンズを設計しておくことにより、半導体レーザ101とビームスプリッタ2901の間に配置してもよい。または図24に示したような無偏光ビームスプリッタを用いる場合には、液晶位相補償素子2901は図の配置のまま、偏光性回折格子2501を無偏光性回折格子に置き換え、λ/4板1407を取り除けばよい。
ここでコマ収差と球面収差を同時に補償する液晶位相補償素子を図30に示す。このような素子は、たとえば特開平2001−84631に述べられている。図30(a)は素子の断面構造である。ガラス基板3001a、3001bの表面に透明電極3004a、3004bがパターニングされ、さらに絶縁膜3005a、3005b、配向膜3006a、3006bが積層され、液晶3003をはさんで、シール材3002で密封されている。電極3004bはシール材にパターニングした導電膜を介して基板3001aから配線可能とされている。図30(b)は球面収差補償用の透明電極3004a、図30(c)はコマ収差補償用の透明電極3004bの平面図である。それぞれ図30(d)、(e)に示すように収差のある波面3007a、3007bに対してセグメント状に位相シフトを加えて波面3008a、3008bのように収差を低減するために、入力電圧V1、V2、V3、V4に交流電圧を印加する。
図31は図30の液晶に印加する電圧の駆動回路を示す。±V0の矩形波形の交流電圧3100と、その反転波形を、それぞれ球面収差用印加電圧、コマ収差用印加電圧の基準として、その振幅を球面収差信号とコマ収差信号により変調する。またV1とV2、V3とV4はそれぞれ基準電圧に対して、球面収差信号とコマ収差信号により、反対称的に振幅が増大または減少するようになっている。このようにすることにより、常に図30(d)、(e)に示したような補償波面を実現できる。
図30、31は球面収差とコマ収差を同時に補償するための液晶位相補償素子の実施形態であるが、球面収差のみを補償する場合には、コマ収差補償用の透明電極を分割のない一様な電極とし、駆動電圧としては接地レベルとするか、一定振幅の基準信号の反転波形とすればよい。
図32は対物レンズの有効光束系を1mm以下とし、半導体レーザ、球面収差付加機構、光分岐素子、対物レンズ、光検出器を一体とした実施形態である。半導体レーザチップ3201は光検出器基板3202上に実装されており、光検出器基板上にエッチングで形成された45°反射ミラーにより、半導体レーザ光が垂直に立ち上げられる。光検出器基板3202は支持基板3203上に固定されており、支持基板3203は、光ヘッド筐体3214に、半導体レーザチップ3201を密封するように接着されている。光ヘッド筐体3214はガラス、または、光が透過する位置に穴を形成した金属からなり、半導体レーザ光は光ヘッド筐体3214を透過して反射プリズム3205を反射し、凹レンズ3206、凸レンズ3207により平行光とされる。ここで凹レンズ3206は光路長を短くするために用いており、長さに余裕があれば凸レンズ3207だけでもよい。コリメートされた光は次に液晶位相補償素子3208、偏光性回折格子3209を透過し、λ/4板3210により直線偏光から円偏光に変換され、反射プリズム3211を反射して対物レンズ3212により光ディスク3213上に集光される。液晶位相補償素子3208は、シール材の大きさの関係から光束径に比べてサイズが大きくなっている。反射した光は対物レンズ3212、反射プリズム3211を経て、λ/4板3210で偏光が往路光束の偏光方向から90°回転した直線偏光となり、偏光性回折格子3209で回折され、液晶位相補償素子3208を透過し、光検出器基板3202上に集光される。光検出器基板3202からの信号線はボンディングワイヤにより信号端子3204から出力される。以上の光学系において対物レンズ3212における有効光束径を1mm以下とすることで、光学系全体が小型化され、全体を一体化してアクチュエータアーム3215に搭載することにより、トラッキング動作にともなう液晶位相補償素子3208の光軸ずれなどの影響がなくなる。さらに光ヘッドが小型薄型化できることで、光ディスク装置全体の小型化にも有効である。
対物レンズの有効光束径を1mm以下とするとき、対物レンズと光ディスクとの間隔、すなわちワーキングディスタンス(作動距離)が、どの程度確保できるかが問題となる。図33にNA0.85、ディスク基板厚0.1mm、基板屈折率1.62、対物レンズ屈折率1.8、単レンズの対物レンズの第1面曲率半径が光束径の1/2という条件において、有効径に対するワーキングディスタンスの計算結果を示す。ここでは松居吉哉「レンズ設計法」(共立出版、1989年、初版第7刷)に基づき、収差論から解析的に導かれた球面収差の値が極小となるレンズ厚において、ワーキングディスタンスを
Figure 2002021520
により求めた。ここでnはレンズ屈折率、tはレンズ厚、R1はレンズ第1面曲率半径、fは焦点距離、dはディスク基板厚、nsは基板屈折率である。第1面曲率半径が光束径の1/2という条件は、幾何学的にはレンズが成立するためのギリギリの条件であるが、実際上は非球面形状であるため、この近傍であればレンズは成立する。これにより、NA0.85、基板厚0.1mmであっても、有効径1mmでワーキングディスタンスが0.1mm程度は確保できることがわかる。これは図11に示した有効径3mmの2枚組レンズのワーキングディスタンス0.13mmとほぼ同等であり、十分実現可能である。
図34は光検出器基板3202上に半導体レーザチップ3201を一体としたレーザモジュールの実施形態である。半導体レーザチップ3201の端面から出射する発散光をエッチングにより形成した45°ミラー3401により、基板から垂直に立ち上げている。光検出器基板はシリコン基板を用いているため、45°ミラーは結晶軸方位を9.7°ずらしてカットした基板であれば、異方性エッチングにより45°の傾斜面が現れる。
図35は図34のレーザモジュールでの検出器パターンと信号演算方法を示す図、図36は偏光性回折格子3209のパターンである。図35にはハッチングで示した光検出領域に重ねて、デフォーカス時の検出光パターンも示している。青色半導体レーザを光源として用いる場合などに、光検出器の受光感度が低下して信号のS/N比が劣化する場合を考慮して、+1次回折光はすべて結線して1つの出力とし、RF信号出力としている。これによりアンプノイズの増大を抑えることができる。一方、−1次回折光のみから、なるべく少ない分割数で、球面収差信号(SA信号)やレンズシフト信号(LS信号)を求めるため、焦点誤差信号(AF信号)とSA信号は外側光束の上半分と内側光束の下半分を用いる。トラッキング誤差信号(TR信号)とLS信号は外側光束の下半分と内側光束の上半分をそれぞれ半径方向に分割して検出する。
(実施例8)
図37は図32の小型光ヘッド3701による小型光ディスク装置の実施形態である。図37(a)は平面図、(b)は側面図である。小型光ヘッド3701がアクチュエータアーム3215に取りつけられており、アクチュエータアーム3215は2次元アクチュエータ3707で光ヘッドの対物レンズの光軸方向と、光ディスク3702の半径方向に微動できるようになっている。さらにアクチュエータアーム3215と2次元アクチュエータ3707はカウンターバランス3705と共にスイングアーム3703に固定されており、スイングアーム3703はスイングモータ3704により小型光ヘッド3701を光ディスク3213の半径方向に駆動する。光ディスク3213はスピンドルモータ3702によって回転される。光ヘッドへの信号入出力は図示しないフレキシブルプラスチックケーブルにより制御回路3706へ結線されている。
(実施例9)
図38は光ディスクのトラックピッチがランドグルーブ方式のディスクなどより細かい、グルーブ記録方式、またはランド記録方式の場合の光ディスク装置実施形態である。記録可能な光ディスクではトラッキングのために一般に半径方向に周期的な案内溝が用いられる。案内溝によるトラッキング検出にはプッシュプル法が用いられるが、プッシュプル法ではトラッキング動作に伴い、光検出器上の光スポットが移動し、オフセットが発生する問題点がある。これを軽減するために、DVD−RAMなどでは対物レンズに偏光性回折格子を搭載し、光束を分割する線が光束に対して移動しないようにする方法などがとられていた。しかしこの方法は必ずしも完全ではなく、トラッキングに伴い、光束内で強度中心が移動することによるオフセットについては除去できない。これはプッシュプル信号の振幅が大きくとれるランドグルーブ方式の光ディスクでは問題とならなかったが、案内溝のピッチを狭くする必要のあるグルーブ記録方式、またはランド記録方式においてはプッシュプル信号の振幅が小さくなるため、相対的に強度分布ずれにより増大するオフセットが無視できなくなる。プッシュプルトラッキング方式のオフセットを低減する別の方式として、差動プッシュプル方式がある。これはディスク面上にサブスポットをメインスポットと1/2トラックずれて配置することで、検出器上で得られるメインスポットとサブスポットのプッシュプル信号の極性を反転させ、差動出力をとることにより、メインスポットとサブスポットの両方に同相で混入するオフセットを除去する方法である。これによればトラックピッチの細かいディスクにおいて相対的に増大する強度分布ずれによるオフセットも含めてキャンセルが可能である。図38ではこのような差動プッシュプル方式を用いた光ヘッドにおいて球面収差とレンズシフトを検出する実施形態を示す。
図38において、半導体レーザ101を出射した光は、液晶位相補償素子2901、回折格子3801、偏光ビームスプリッタ1406を透過し、コリメートレンズ102で平行光とされている。回折格子3801においてはディスク面上でサブスポットを形成するために、図示しない回折光が発生している。コリメートビームはさらにλ/4板1407で円偏光に変換され、2次元アクチュエータ104に搭載された対物レンズ1411により光ディスク108上に集光される。反射光は同じλ/4板1407において、入射時と偏光方向が直交する直線偏光に変換され、偏光ビームスプリッタ1406を反射し、シリンドリカルレンズ111によって非点収差を与えられ、光検出器3802で受光される。光検出器3802からの出力信号から、焦点ずれ信号、トラッキング信号、球面収差信号、レンズシフト信号、RF信号を、それぞれAF回路113、TR回路114、SA回路115、Coma回路2902、RF回路で演算により検出し、RF信号以外は、2次元アクチュエータ104、液晶位相補償素子2901にフィードバックする。
図39は図38の回折格子3801に格子パターンである。破線で示す入射光束に対して、光軸近傍の中心部分の光は、光ディスクの略半径方向へ、周辺部分の光は略接線方向に回折されるように直線格子が直交方向に配置されている。
図40は図39の回折格子3801により光ディスク108上に形成される光スポットの概略形状と配置を示す図である。略接線方向に回折される周辺光は比較的小さいメインローブと周辺のサイドローブからなるスポット4002a、4002bとなる。このときそれぞれのサブスポットはメインスポット4001の両側にトラックピッチの1/2だけずれて配置されるように回折格子3801を調整しておく。略半径方向に回折される光軸近傍の光束は半径方向両側に離れて、案内溝の構造を解像できない大きいスポットを形成する。
図41は図38の光検出器3802の受光面パターンと検出光束の模式図、および信号演算方法を示す図である。検出される光束には案内溝による回折光が重なって干渉パターンを形成している。図ではTR信号演算の極性をわかりやすくするために、便宜的にディスク面上のメインスポットがややオフトラックした場合を想定して、この干渉パターンにアンバランスが生じた場合を示している。また検出器上の光束の分布はシリンドリカルレンズ111による非点収差の影響を受けた集光スポットの最小錯乱円の位置を示している。このため、光束の分布は平行光束における強度分布を90度回転した分布となっている。AF信号は4つの回折光4102a、4102b、4103a、4103bの出力を用いて、非点収差法により演算している。TR信号はメインスポット4101のプッシュプル信号と、4つの回折光のプッシュプル信号の和を、ゲイン係数G1により光量差を吸収する形で差をとって求めている。SA信号は外側光束4102a、4102bの焦点ずれ信号の和と、内側光束4103a、4103bの焦点ずれ信号の和の、差をとって求めている。RF信号はメインスポット4101の和から求める。LS信号は内側光束4103a、4103bのプッシュプル信号の和から求める。図に示す通り、内側光束にはディスク案内溝による回折光が重ならないように内外の光束の境界を選ぶことで、案内溝による外乱のない、レンズシフトによる強度分布のアンバランスだけを検出することができる。また内側光束にディスク案内溝による回折光が重ならず、外乱が発生しないために、内側光束によるスポットは外側光束と同じトラック上に配置する必要がなく、外側光束と分離して検出しやすく、対物レンズからの画角の小さい半径方向に配置できる。これらの信号演算を行なう上で、各受光領域からの出力信号をすべて単独で検出する必要はなく、常に同極性で加減算する出力どうしを光検出器基板上であらかじめ結線しておくことにより、出力信号線数を10本に抑えることができる。また本実施形態においては焦点ずれ信号をサブスポットから得ているが、この理由はRF信号を得るときの外部演算での信号線数をなるべく減らすためである。受光面からの出力を光電流の段階で行なう場合には加算アンプのノイズが混入しないが、別々に出力させた信号を加算アンプを用いて加減算するときには、あらかじめそれぞれの出力信号を電流電圧変換しておく必要があり、それぞれにアンプノイズが混入する。メインスポット4101から焦点ずれ信号を得るためにはメインスポットの受光領域を2分割でなく、4分割とする必要があり、アンプノイズが2倍になる。これが許容範囲内となるような信号のS/N比が確保できる場合には、焦点制御の精度や安定性の点から、0次光からAF信号を得る方が望ましい。
このようなトラッキング制御に伴うトラッキング信号のオフセットの問題は、半導体レーザや光検出器に対して、対物レンズの位置が相対的に移動することによって発生する。したがって図32で述べた半導体レーザ、光検出器、対物レンズが一体となって駆動される光ヘッドに場合には、このような問題点は発生しない。
(実施例10)
本発明の他の実施例として図38の実施形態の回折格子3801を検出光学系に配置する実施形態を図42に示す。回折格子4201は検出光学系に配置されているため、光ディスク108上にはメインスポットのみが形成される。検出光学系に入射する光は図39と同じパターンの回折格子4201によって回折され、回折光において内側光束と外側光束が分離される。
図43に光検出器4202の受光パターンを示す。光束の分離は検出光学系において行なわれているため、メインスポットとサブスポットの干渉パターンは同じである。このため差動プッシュプル法は使えないため、トラッキング信号のオフセットはLS信号を定数ゲイン倍してメインスポット4301のプッシュプル信号から差し引くことによって補償する。
(実施例11)
またさらに他の実施形態として、図38の実施形態における別の光検出器パターンを図44に示す。ここでは回折格子3801には従来の差動プッシュプル方式に用いられる分割のない、直線格子を用い、光ディスク上にメインスポットの両側に1/2トラックずれて2つのサブスポットを配置する。これにより光検出器上には案内溝による干渉パターンが反転した3つのスポット4401、4402a、4402bが形成されている。焦点ずれ信号はサブスポット4402a、4402bを用いて通常の非点収差法の焦点検出の演算を行ない、トラッキング信号としても、通常の差動プッシュプル方式の演算を行なう。レンズシフトは極性の反転した2つのプッシュプル信号の和により求められる。しかし本発明で述べた光束の内側と外側の分離を行なっていないため、球面収差の検出が困難である。そこでプッシュプル信号のデフォーカス特性から球面収差を検出する。
図45はNA0.85、波長0.405μm、トラックピッチ0.32μmにおけるプッシュプル信号のデフォーカス特性の計算結果である。球面収差の大きさを変えるとピークの位置がずれることがわかる。そこでこれを利用してジャストフォーカス位置から焦点を前後に動かした場合のプッシュプル信号の振幅を求め、その差を求めることにより球面収差に比例した信号を得ることができる。
図46は上記のようにして求めた球面収差信号である。焦点ずれの量を±0.25μm、±0.5μm、±0.75μmと変えて、プッシュプル信号振幅差を求めることにより、球面収差に比例した信号が得られることがわかる。しかしこの方法では定常的に球面収差信号が得られないため、多層ディスクなどで、層間のジャンプを行なったときに、記録再生の前に球面収差を学習して同じ層の中で定常的に一定値で球面収差を補償する場合に用いることができる。またこの方法では球面収差のみならず非点収差でも同様に信号が得られてしまうため、非点収差の変化しない層間ジャンプによる球面収差の変化分のみの検出に有効である。
(実施例12)
図50は図32の小型光ヘッドの実施形態における、レーザモジュールの他の実施形態である。偏光回折格子3209として、図51に示す偏光回折格子5101を用い、光束の内側と外側で同じ非点収差を光ディスクの半径方向に対して45°方向に与えるとともに内側と外側の光束が光検出器上の異なる受光領域に入射させる。光検出器上の光スポット5001a、5001b、5002a、5002bは+1次回折光(5001a、5002a)と−1次回折光(5001b、5002b)は符号の異なる非点収差が加わると同時に、光ディスク上のスポットが焦点を結ぶときに、非点収差による最小錯乱円が形成されるようになっている。このため光ディスクの案内溝による干渉パターンは+1次光と−1次光で逆向きに90°回転している。光検出領域は+1次回折光は内側、外側とも一様な1つの受光領域で受光し、光検出器上で結線されてRF信号として出力される。−1次回折光は内側と外側でそれぞれ4分割光検出領域で受光され、それぞれの非点収差法による焦点ずれ信号の和を、AF信号、差をSA信号とする。またTR信号は外側光束のプッシュプル信号から、内側光束のプッシュプル信号によるLS信号を定数ゲイン倍して差し引くことにより得られる。これにより対物レンズがレーザモジュールと一体となっていない場合のレンズシフトのオフセットを補償することが可能である。ただし図32の実施形態においてはこれらが一体となっているため、実質的につねにLS信号は0となり、このような演算は行なっても行なわなくても違いはない。このような演算を行なう場合に、モニタ出力を含めて出力信号線数は10本となる。
基板厚誤差でディスク面上の光スポットに球面収差が発生するときに、すでに述べたように液晶位相補償素子を用いてディスクに向かう光束においてのみ球面収差を補償すると、光検出器に戻る光束においては球面収差が残留する。図52は焦点ずれ信号において、この影響を計算した結果である。焦点検出方式は非点収差法、対物レンズNA0.85、光源波長405nm、対物レンズ有効光束径4mm、検出系集光レンズ焦点距離20mm、焦点ひきこみ範囲±3μmの場合を想定している。検出系においてのみ基板厚ずれの球面収差を±1.5λ(基板厚ずれ約±11μm相当)の範囲で与えると、焦点位置が約±0.7μm程度ずれることがわかった。これは無視できない量である。このとき球面収差量に対する合焦位置(デフォーカス0)の焦点ずれ信号の関係を図53に示す。これを見るとほとんど比例関係にあることがわかる。
そこで図54に示すような光ディスク装置を構成し、球面収差信号に比例したオフセットを焦点ずれ信号に与える。光学系の構成は一例として図17の光ディスク装置をもとにしたが、基板厚ずれの球面収差が往路光束においてのみ補償され、検出光束に残留する構成に対してはすべて有効である。ここではまず、光検出器1421からの出力から、演算回路5401、5402を用いてそれぞれ内側光束の焦点ずれ信号と外側光束の焦点ずれ信号を求める。それらの差信号を差動増幅器5403で求めるとこれが検出器上の球面収差を反映した球面収差信号となる。この出力から片道光路の球面収差を補償する構成は図17と同様である。一方、内側光束の焦点ずれ信号と外側光束の焦点ずれ信号の和信号を加算器5404で求め、この信号から、検出器上の球面収差信号を増幅器5405により定数倍し、差動増幅器5406から差し引くことにより焦点ずれ信号を求め、これによりレンズアクチュエータ1410を駆動する。以上の回路構成においては、実効的にAF回路113とSA回路115が入り組んだ構成となっている。
上記のような演算は、実効的に焦点ずれ信号において、内側光束の焦点ずれ信号と外側光束の焦点ずれ信号の加算のゲイン配分を変えることと等価である。球面収差信号は
Figure 2002021520
であるから、球面収差信号を差し引くときの球面収差信号の増幅ゲインをkとしたとき、この場合の焦点ずれ信号は
Figure 2002021520
で与えられる。すなわち、内側光束の焦点ずれ信号と外側光束の焦点ずれ信号の加算のゲインを変えていることと等価となる。
図55は図53から、球面収差量の1.5倍を焦点ずれ信号から差し引いた結果である。焦点ずれ信号のオフセットは十分小さく抑えられている。
以上のように、本発明により、精度よく、容易かつ安価に光ディスク装置における球面収差を検出でき、これを球面収差補償機構にフィードバックすることで、集光スポットの品質を高く維持でき、安定に高密度の光ディスクの記録再生を行うことができる。
産業上の利用可能性
本願は、情報の光記録再生に適用できる。
【図面の簡単な説明】
図1は、本発明による光ディスク装置の基本的な実施形態、
図2は、図1の実施形態における光分離ホログラム109のパターンの概略図、
図3は、図1の実施形態における光検出器112の受光面パターンと回路演算方法、
図4は、球面収差の検出原理を説明する図、
図5は、球面収差による本発明の分離光束焦点ずれ信号シミュレーション、
図6は、本発明による球面収差信号シミュレーション、
図7は、球面収差による従来例の分離光束焦点ずれ信号シミュレーション、
図8は、従来例による球面収差信号シミュレーション、
図9は、本発明による球面収差信号シミュレーション、
図10は、従来例を用いた2枚レンズ計算例のモデル、
図11は、従来例の2枚レンズ形状、
図12は、2枚レンズ間隔による球面収差の変化、
図13は、2つの光分岐素子が一体となった場合の実施形態、
図14は、本発明による他の実施形態、
図15は、図14の回折格子を説明する図、
図16は、図14の光検出器を説明する図、
図17は、図14の球面収差補償系を説明する図、
図18は、球面収差補償機構が入射光の収差量を補償する実施形態、
図19は、上記実施形態の制御ブロック図、
図20は、上記実施形態における球面収差補正回路の回路図、
図21は、制御系の部分における伝達周波数特性、
図22は、位相進み補償回路の周波数特性、
図23は、制御系の開ループ伝達関数特性、
図24は、無偏光ビームスプリッタを用いる場合の実施形態、
図25は、片道光路での球面収差の発生を抑えた実施形態、
図26は、図25の実施形態における偏光性回折格子パターン、
図27は、図25の実施形態における検出器パターンと信号演算方法、
図28は、液晶位相補償素子をアクチュエータに搭載する実施形態、
図29は、コマ収差補償機能つきの実施形態、
図30は、液晶位相補償素子の構造図、
図31は、液晶駆動回路、
図32は、小型光ヘッドの実施形態、
図33は、対物レンズのワーキングディスタンスと有効径の関係、
図34は、レーザモジュール斜視図、
図35は、レーザモジュール検出器パターンと信号演算方法、
図36は、小型光ヘッド用偏光性回折格子パターン、
図37は、小型光ヘッドによる光ディスク装置の実施形態、
図38は、トラックピッチの細かいディスクでの本発明の実施形態、
図39は、図38の実施形態における回折格子パターン図、
図40は、図38の実施形態における光ディスク上スポット配置概略図、
図41は、図38の実施形態における光検出器受光パターンと信号演算方法、
図42は、図38の実施形態の回折格子を検出光学系に配置する実施形態、
図43は、図42の実施形態における光検出器受光パターンと信号演算方法、
図44は、図38の実施形態における他の検出方式における光検出器受光パターンと信号演算方法、
図45は、球面収差がある場合のプッシュプル信号のデフォーカス特性、
図46は、フォーカスオフセットを加えたときのプッシュプル信号差による球面収差信号の計算結果、
図47は、制御補償系のブロック図、
図48は、低域フィルタを挿入した制御補償系のブロック図、
図49は、片道光路にのみの球面収差を補償する制御系実施形態のブロック図、
図50は、図32の実施形態に用いるレーザモジュールの他の実施形態、
図51は、図50の実施形態において用いる回折格子パターン、
図52は、基板厚ずれに起因する検出器上球面収差による焦点ずれ信号計算結果、
図53は、図52における球面収差に対する焦点ずれ信号オフセット量、
図54は、片道の球面収差のみを補正する場合の焦点ずれ信号オフセットを補償する光ディスク装置の実施形態
図55は、球面収差が残留する場合の焦点ずれ信号オフセットを補償したあとの焦点ずれ信号計算結果、
を示す図である。

Claims (21)

  1. 半導体レーザと、その光を光ディスク上に集光する対物レンズと、光学系において集光される光の焦点位置を可変にする可変焦点機構と、前記光学系において集光される光に可変の球面収差を付加する球面収差付加機構と、前記光ディスクからの反射光を前記光学系から分岐する第1の光分岐素子と、分岐された反射光を集光するレンズと、前記レンズにより集光された光を受光して電気信号に変換する受光素子とを有し、分岐される反射光をさらに光軸付近の第1の光束と周辺部の第2光束に分離して前記受光素子に集光されるように分岐させる第2の光分岐素子を、前記光の光束中に付加したことを特徴とする光ヘッド。
  2. 前記第1、第2の光分岐素子が一体となっていることを特徴と
  3. 前記一体となった光分岐素子が偏光性回折格子であることを特徴とする第2項に記載の光ヘッド。
  4. 第1の光分岐素子は偏光性光分岐素子であり、第1の光分岐素子と対物レンズとの間にλ/4板を有し、前記球面収差付加機構は液晶素子であり、前記液晶素子は半導体レーザと第1の光分岐素子の間に配置されていることを特徴とする第1項に記載の光ヘッド。
  5. 前記第1の光分岐素子は無偏光性光分岐素子であり、前記球面収差付加機構は液晶素子であり、前記液晶素子は第1の光分岐素子と対物レンズとの間に配置されていることを特徴とする第1項に記載の光ヘッド。
  6. 前記第1の光分岐素子と前記光検出器との間に、球面収差を発生する光学素子が配置されていないことを特徴とする第1項乃至第5項何れかに記載の光ヘッド。
  7. 対物レンズと球面収差付加機構が一体として固定されていることを特徴とする第1項乃至第6項何れかに記載の光ヘッド。
  8. 対物レンズの有効光束径を1mm以下とし、半導体レーザ、球面収差補償機構、第1、第2の光分岐素子、対物レンズ、光検出器が一体として固定され、可変焦点機構に搭載されていることを特徴とする第7項に記載の光ヘッド。
  9. コマ収差付加機構を付加したことを特徴とする第1項乃至第6項何れかに記載の光ヘッド。
  10. 前記半導体レーザが、前記光検出器の作製されている基板上に設置されていることを特徴とする第1項乃至第9項何れかに記載の光ヘッド。
  11. 前記第2の光分岐素子は回折格子であって、前記半導体レーザと前記対物レンズの間に配置され、前記対物レンズに向かう光束において作用し、周辺部光束の±1次回折光は略接線方向に回折され、0次光の両側に、光ディスク上の半径方向の案内溝またはピット列の周期の1/2だけ実質的にずれて配置されており、光軸付近の光束の±1次回折光は略半径方向に回折されていることを特徴とする第1項乃至第10項何れかに記載の光ヘッド。
  12. 前記第2の光分岐素子は回折格子であって、光軸付近の光束と周辺部分の光束を分離すると同時に、回折光に非点収差を与えるパターンを有することを特徴とする第1項乃至第10項何れかに記載の光ヘッド。
  13. 半導体レーザと、その光を光ディスク上に集光する対物レンズと、光学系において集光される光の焦点位置を可変にする可変焦点機構と、前記光学系において集光される光に可変の球面収差を付加する球面収差付加機構と、前記光ディスクからの反射光を前記光学系から分岐する第1の光分岐素子と、分岐された反射光を集光するレンズと、前記レンズにより集光された光を受光して電気信号に変換する受光素子により構成され、分岐される反射光をさらに光軸付近の第1の光束と周辺部の第2光束に分離して前記受光素子に集光されるように分岐させる第2の光分岐素子を、前記光の光束中に付加した光ヘッドと、
    前記受光素子からの電気信号から、再生信号と焦点ずれ信号を得る演算回路と、
    前記第1の光束と前記第2の光束の各々についてそれぞれ第1、第2の焦点ずれ信号を検出して、実質的にそれらの差信号により前記球面収差付加機構を制御し、和信号により前記可変焦点機構を制御することを特徴とする光ディスク装置。
  14. 前記球面収差付加機構が出射光には収差を付加せず、入射光に収差を付加し、前記それぞれ第1、第2の焦点ずれ信号を検出して、実質的にそれらの差信号から得られる球面収差誤差を前記球面収差付加機構にフィードバックさせる構成において、ディスク面上での球面収差がゼロとなるようにフィードバック系を構成することを特徴とする第13項記載の光ディスク装置。
  15. 電気的に球面収差付加機構を駆動する駆動信号を球面収差誤差を増幅する系にフィードバックするループを設けたことを特徴とする第14項に記載の光ディスク装置。
  16. 前記球面収差誤差に適当な係数を乗じて、前記可変焦点機構の駆動信号に付加して、前記可変焦点機構を駆動することを特徴とする第14項または第15項に記載の光ディスク装置。
  17. 前記対物レンズを光ディスクの半径方向に駆動するトラッキング制御機構を付加した光ヘッドと、前記受光素子からの電気信号から、再生信号と焦点ずれ信号とトラッキング誤差信号を得る演算回路と、コマ収差付加機構とを有し、前記第1の光束と前記第2の光束の各々についてそれぞれ第1、第2の焦点ずれ信号を検出して、実質的にそれらの差信号により前記球面収差付加機構を制御し、和信号により前記可変焦点機構を制御し、前記トラッキング誤差信号によりトラッキング制御機構を制御し、トラッキング制御時の対物レンズの移動量を検出する手段を有し、前記移動量に応じてコマ収差付加機構を駆動することを特徴とする第13項記載の光ディスク装置。
  18. 前記光ヘッドに、前記第1の光束を光ディスク接線方向の直径で分割して独立に検出する手段を有し、前記対物レンズの移動量の検出手段が、分割して検出された前記第1の光束の2つの検出光量の差を演算することで検出されることを特徴とする第17項に記載の光ディスク装置。
  19. 前記対物レンズを光ディスクの半径方向に駆動するトラッキング制御機構を付加した光ヘッドと、前記受光素子からの電気信号から、再生信号と焦点ずれ信号とトラッキング誤差信号を得る演算回路と、コマ収差付加機構とを有し、前記第1の光束と前記第2の光束の各々についてそれぞれ第1、第2の焦点ずれ信号を検出して、実質的にそれらの差信号により前記球面収差付加機構を制御し、和信号により前記可変焦点機構を制御し、前記トラッキング誤差信号によりトラッキング制御機構を制御し、光ディスク上の集光スポットのコマ収差を検出する手段を有し、前記検出信号に応じて前記コマ収差付加機構を駆動することを特徴とする第13項記載の光ディスク装置。
  20. 前記第2の光分岐素子は回折格子であって、前記半導体レーザと前記対物レンズの間に配置され、前記対物レンズに向かう光束において作用し、周辺部光束の±1次回折光は略接線方向に回折され、0次光の両側に、光ディスク上の半径方向の案内溝またはピット列の周期の1/2だけ実質的にずれて配置されており、光軸付近の光束の±1次回折光は略半径方向に回折され、
    前記光ヘッドは、前記対物レンズを光ディスクの半径方向に駆動するトラッキング制御機構有し、
    前記光ディスク装置は、前記受光素子からの電気信号から、再生信号と焦点ずれ信号とトラッキング誤差信号を得る演算回路を有し、
    前記回折格子で回折される光軸付近の前記第1の光束と、周辺部の前記第2の光束の各々についてそれぞれ第1、第2の焦点ずれ信号を検出して、実質的にそれらの差信号により前記球面収差付加機構を制御し、和信号により前記可変焦点機構を制御し、前記第1の光束と前記第2の光束、および回折格子により回折されない光束、の各々についてそれぞれ第1、第2、第3のトラッキング誤差信号を検出して、実質的に第1、第2のトラッキング信号の和信号と、第3のトラッキング信号との差信号により、トラッキング制御機構を制御することを特徴とする第13項記載の光ディスク装置。
  21. 半導体レーザと、その光を案内溝を有する光ディスク上に集光する光学系と、反射した光束を光検出器に分岐する光分岐素子と、反射光を検出する光検出器と、球面収差制御機構と、制御回路を有し、前記光検出器の出力から焦点ずれ信号とトラッキング信号を検出してレンズアクチュエータにフィードバックする手段とし、前記光ディスク上の記録層に焦点制御を開始したのちに、焦点位置を合焦位置から前後に動かし、前記トラッキング信号の振幅の変化から球面収差を検出して球面収差制御機構を駆動する手段を有することを特徴とする光ディスク装置。
JP2002525650A 2000-09-06 2001-08-29 光ヘッドおよび光ディスク装置 Expired - Lifetime JP4085812B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000274989 2000-09-06
JP2000274989 2000-09-06
PCT/JP2001/007422 WO2002021520A1 (fr) 2000-09-06 2001-08-29 Tête optique et dispositif à disque optique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007179196A Division JP4462298B2 (ja) 2000-09-06 2007-07-09 光ヘッドおよび光ディスク装置

Publications (2)

Publication Number Publication Date
JPWO2002021520A1 true JPWO2002021520A1 (ja) 2004-01-15
JP4085812B2 JP4085812B2 (ja) 2008-05-14

Family

ID=18760678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002525650A Expired - Lifetime JP4085812B2 (ja) 2000-09-06 2001-08-29 光ヘッドおよび光ディスク装置

Country Status (3)

Country Link
US (2) US7012875B2 (ja)
JP (1) JP4085812B2 (ja)
WO (1) WO2002021520A1 (ja)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304762A (ja) 2001-04-10 2002-10-18 Nec Corp 光ヘッド装置および光学式情報記録再生装置
JP2009259387A (ja) * 2001-05-29 2009-11-05 Nec Corp 光ヘッド装置および光学式情報記録または再生装置
CN1328723C (zh) * 2001-06-29 2007-07-25 松下电器产业株式会社 光盘原盘曝光装置和光盘原盘曝光方法以及针孔机构
JP3977038B2 (ja) 2001-08-27 2007-09-19 株式会社半導体エネルギー研究所 レーザ照射装置およびレーザ照射方法
JP2003172873A (ja) * 2001-09-28 2003-06-20 Olympus Optical Co Ltd 補正データ作成方法及び撮像装置
JP3904893B2 (ja) * 2001-11-06 2007-04-11 シャープ株式会社 光ピックアップ装置
DE60321414D1 (de) * 2002-02-27 2008-07-17 Ricoh Kk Optischer Abtastkopf für verschiedene Wellenlängen
US20040022163A1 (en) * 2002-07-31 2004-02-05 Kyle Nakamura Optical disc system using counter-rotating optical read/write assembly
JP2004281026A (ja) * 2002-08-23 2004-10-07 Matsushita Electric Ind Co Ltd 光ピックアップヘッド装置及び光情報装置及び光情報再生方法
JP2004146031A (ja) * 2002-08-28 2004-05-20 Sharp Corp 半導体レーザ装置および光ピックアップ装置
US7405114B2 (en) * 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
JP2004152446A (ja) * 2002-10-31 2004-05-27 Samsung Electro Mech Co Ltd 光ピックアップ装置及び液晶素子
DE10300810A1 (de) * 2003-01-10 2004-07-22 Deutsche Thomson-Brandt Gmbh Gerät zum Lesen und/oder Beschreiben optischer Aufzeichnungsträger
US20050254367A1 (en) * 2004-05-13 2005-11-17 Volk Steven B Microminiature optical disc drive with wireless capability
JP4086069B2 (ja) * 2003-04-25 2008-05-14 日本電気株式会社 光ヘッド装置及び光学式情報記録再生装置
EP1489604A1 (en) * 2003-06-19 2004-12-22 Deutsche Thomson-Brandt Gmbh Method for detecting spherical aberration
JP4171378B2 (ja) * 2003-09-04 2008-10-22 株式会社日立製作所 記録用光ディスクの球面収差補正方法,光ディスク記録再生方法及び光ディスク装置
CN101354897A (zh) * 2003-09-18 2009-01-28 皇家飞利浦电子股份有限公司 用于移动至少一个光点的系统
US7729226B2 (en) * 2003-10-06 2010-06-01 Ricoh Company, Ltd. Wavefront aberration compensation element, optical pickup, and optical disk apparatus
KR100513734B1 (ko) 2003-11-04 2005-09-08 삼성전자주식회사 박형 광픽업
EP1553574A1 (en) * 2004-01-08 2005-07-13 Deutsche Thomson-Brandt Gmbh Method for determining spherical aberration
EP1564729B1 (en) * 2004-02-17 2007-06-20 Matsushita Electric Industrial Co., Ltd. Optical-disk drive device
JP3984970B2 (ja) * 2004-04-01 2007-10-03 株式会社日立メディアエレクトロニクス 光ディスク装置、情報再生方法または記録方法
EP1742210A4 (en) * 2004-04-28 2008-07-02 Pioneer Corp ABERRATION CORRECTOR, ABERRATION CORRECTION PROCESS, OPTICAL DEVICE
WO2005117003A1 (ja) * 2004-05-27 2005-12-08 Mitsubishi Denki Kabushiki Kaisha 光ヘッド装置及び光ディスク装置
JP2008513920A (ja) * 2004-09-16 2008-05-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光学走査装置
JP2006172600A (ja) * 2004-12-15 2006-06-29 Hitachi Ltd 3次元情報記録方法及び再生方法
KR100754517B1 (ko) * 2005-01-20 2007-09-03 삼성전자주식회사 회절소자 및 이를 포함하는 광픽업장치
KR100657947B1 (ko) * 2005-02-02 2006-12-14 삼성전자주식회사 높은 감도와 분해능을 갖는 전계 재생헤드(프로브) 및 그구동 방법
JP2007012191A (ja) * 2005-06-30 2007-01-18 Toshiba Corp 光ヘッド装置および光ディスク装置
KR100660879B1 (ko) * 2005-09-13 2006-12-26 삼성전자주식회사 기록 광 신호 제어 장치 및 방법
WO2007092785A2 (en) * 2006-02-02 2007-08-16 Otsi Holdings Llc Optical tape media, marking, systems, and apparatus and process for producing thereof
US7764433B2 (en) * 2006-05-18 2010-07-27 The Regents Of The University Of California Method and system for correcting optical aberrations, including widefield imaging applications
JP2008059681A (ja) * 2006-08-31 2008-03-13 Funai Electric Co Ltd 光ピックアップ装置
JP4357518B2 (ja) * 2006-10-18 2009-11-04 株式会社日立メディアエレクトロニクス 光学ヘッド及びそれを備える光ディスク装置
US7567495B2 (en) * 2006-10-18 2009-07-28 Hitachi Media Electronics Co., Ltd. Optical pickup apparatus and optical disc apparatus using same
JP5099014B2 (ja) * 2006-11-16 2012-12-12 日本電気株式会社 光ヘッド装置および光学式情報記録再生装置
EP1942500B1 (en) * 2007-01-08 2010-06-30 Samsung Electronics Co., Ltd. Optical pickup including unit to remove crosstalk in multi-layered disk, and optical recording and/or reproducing apparatus including the optical pickup
JP5002465B2 (ja) * 2007-01-18 2012-08-15 パナソニック株式会社 光学ヘッド、光ディスク装置、コンピュータ、光ディスクプレーヤおよび光ディスクレコーダ
KR20080076649A (ko) * 2007-02-16 2008-08-20 삼성전자주식회사 광 픽업과 이를 갖는 디스크장치
JP2008276860A (ja) * 2007-04-27 2008-11-13 Hitachi Media Electoronics Co Ltd 光ピックアップ装置及び光ディスクドライブ
US8107329B1 (en) * 2007-07-05 2012-01-31 Marvell International Ltd. Optical storage system having differential phase detector
KR20090043883A (ko) * 2007-10-30 2009-05-07 삼성전자주식회사 광픽업 및 이를 채용한 광정보저장매체 시스템
US8081553B2 (en) * 2007-12-14 2011-12-20 Sanyo Electric Co., Ltd. Optical pickup apparatus
JP2009223937A (ja) * 2008-03-14 2009-10-01 Ricoh Co Ltd 光ピックアップおよびこれを用いる光情報処理装置
US8194521B2 (en) 2008-09-01 2012-06-05 Panasonic Corporation Optical disc device, video reproducing apparatus, server, car navigation system using the optical disc device, integrated circuit and recording/reproducing method
JP4605483B2 (ja) * 2008-12-16 2011-01-05 ソニー株式会社 光集積素子、光検出方法、光ピックアップ及び光ディスク装置
JP2011118997A (ja) * 2009-12-04 2011-06-16 Sony Corp ピックアップ装置、光記録再生装置及び記録再生方法
JP2012089198A (ja) * 2010-10-19 2012-05-10 Sony Corp 記録装置、制御方法
JP2012104179A (ja) * 2010-11-09 2012-05-31 Funai Electric Co Ltd 光ピックアップ
JP5695410B2 (ja) * 2010-12-20 2015-04-08 株式会社ミツトヨ 角度検出装置およびその偏心量推定方法
JP2013073659A (ja) * 2011-09-29 2013-04-22 Sanyo Electric Co Ltd 光ピックアップ装置
US10134438B2 (en) 2013-06-28 2018-11-20 Sony Corporation Optical medium reproduction apparatus and method of reproducing optical medium
WO2015022767A1 (ja) 2013-08-14 2015-02-19 ソニー株式会社 光媒体再生装置および光媒体再生方法
JP6167918B2 (ja) * 2013-08-14 2017-07-26 ソニー株式会社 光媒体再生装置および光媒体再生方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220940A (ja) * 1983-05-20 1985-11-05 Hitachi Ltd 異物自動検査装置
JPH01269240A (ja) * 1988-04-20 1989-10-26 Csk Corp 光記録装置
JPH0758559B2 (ja) * 1988-09-02 1995-06-21 シャープ株式会社 光ピックアップ装置
JP2975466B2 (ja) * 1991-11-18 1999-11-10 パイオニア株式会社 光学式情報再生装置
JP2532818B2 (ja) * 1993-02-01 1996-09-11 松下電器産業株式会社 対物レンズおよび光ヘッド装置
JP3161891B2 (ja) * 1993-11-16 2001-04-25 松下電器産業株式会社 ディスクチルト検出装置およびディスクチルト補正装置
JPH0863749A (ja) * 1994-08-26 1996-03-08 Nippon Conlux Co Ltd 光学的情報記録装置および方法
US5648950A (en) * 1994-10-25 1997-07-15 Kabushiki Kaisha Sankyo Seiki Seisakusho Hologram integrated with a beam splitter to separate a plurality of polarized reflected light beams
US5754513A (en) * 1995-04-28 1998-05-19 Konica Corporation Information pick-up apparatus and optical disk apparatus
US5835471A (en) * 1995-06-12 1998-11-10 Canon Kabushiki Kaisha Optical information recording and/or reproducing apparatus
JP3443226B2 (ja) * 1995-08-31 2003-09-02 パイオニア株式会社 光ピックアップ
EP0762398B1 (en) * 1995-08-31 2003-05-07 SANYO ELECTRIC Co., Ltd. Optical disk recording/reproducing apparatus recording/reproducing information to/from optical disks according to different standards
US5717678A (en) * 1995-11-16 1998-02-10 Ricoh Company, Ltd. Optical pickup device for accessing each of optical disks of different types
JPH09180240A (ja) * 1995-12-21 1997-07-11 Hitachi Ltd 光ヘッド
US5652744A (en) * 1996-02-08 1997-07-29 Industrial Technology Research Institute Single surface diffractive element for optical pickup heads
US6069860A (en) * 1996-11-20 2000-05-30 Matsushita Electric Industrial Co., Ltd. Optical head with objective lens having different numerical apertures to minimize light aberration with respect to optical disks of different thicknesses
JPH11110768A (ja) * 1997-09-30 1999-04-23 Sony Corp 光ピックアップ装置
DE69838745T2 (de) * 1997-10-06 2008-10-30 Koninklijke Philips Electronics N.V. Detektionssystem der sphärischen aberration und dieses verwendende optische vorrichtung
JPH11195229A (ja) 1997-12-26 1999-07-21 Sony Corp 光ディスク装置及び球面収差補正方法
JP2000011388A (ja) * 1998-06-19 2000-01-14 Sony Corp 光情報記録再生装置および光情報記録再生方法
JP2000040237A (ja) 1998-07-17 2000-02-08 Sony Corp 光記録再生装置及び光記録再生方法
JP3574747B2 (ja) 1998-08-05 2004-10-06 パイオニア株式会社 光ピックアップ、情報再生装置及び情報記録装置
EP0984440A3 (en) * 1998-09-04 2000-05-24 Matsushita Electric Industrial Co., Ltd. Aberration detection device and optical information recording and reproducing apparatus
JP2000132849A (ja) * 1998-10-27 2000-05-12 Matsushita Electric Ind Co Ltd 光ヘッド装置
JP2000215505A (ja) * 1999-01-27 2000-08-04 Citizen Watch Co Ltd 光学装置
NL1015136C2 (nl) * 1999-05-10 2006-05-18 Sharp Kk Optische opname/weergaveinrichting.
JP3384393B2 (ja) * 1999-12-15 2003-03-10 日本電気株式会社 光ヘッド装置及び光学式情報記録再生装置並びにラジアルチルト検出方法
JP2002358677A (ja) * 2001-05-28 2002-12-13 Hitachi Ltd 光ヘッド及び光ディスク装置

Also Published As

Publication number Publication date
JP4085812B2 (ja) 2008-05-14
US7283439B2 (en) 2007-10-16
US20030053393A1 (en) 2003-03-20
US20060056276A1 (en) 2006-03-16
WO2002021520A1 (fr) 2002-03-14
US7012875B2 (en) 2006-03-14

Similar Documents

Publication Publication Date Title
JP4085812B2 (ja) 光ヘッドおよび光ディスク装置
US7542382B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
JP4151313B2 (ja) 光再生装置
CN101471100B (zh) 光拾取器装置和光盘装置
US20020159378A1 (en) Optical pickup apparatus and optimal light spot focusing method
KR100717020B1 (ko) 기록층의 두께 변화에 따른 구면 수차를 탐지하고 보상하는광픽업 장치
JP2001307349A (ja) 光ディスク装置
JP2010528399A (ja) ホログラム素子、これを具備する互換型光ピックアップ及びこれを採用した光情報記録媒体システム
JP4781601B2 (ja) 光ピックアップ装置およびその製造方法
JP2002367197A (ja) 光ディスク装置及び光ディスク装置の制御方法
JP5378120B2 (ja) 光ピックアップ装置及びそれを用いた光ディスク装置
JP4462298B2 (ja) 光ヘッドおよび光ディスク装置
JP2012238367A (ja) 光学ヘッド、光学ドライブ装置
JP3658092B2 (ja) 光ピックアップヘッド装置、光情報処理装置及び光ピックアップヘッド装置の組立調整方法
JP2009110639A (ja) 波面収差検査装置、光ピックアップ組立調整装置、レンズ評価装置、レンズ組立装置、対物レンズアクチュエータ組立調整装置、光ピックアップ、光ディスクドライブ、および、光情報記録再生装置
WO2010131406A1 (ja) 光ヘッド装置、ホログラム素子、光集積素子、光情報処理装置および信号検出方法
JP2009123339A (ja) 光ピックアップ装置およびその製造方法
JP5542459B2 (ja) 光ピックアップ装置及びそれを用いた光ディスク装置
KR20080017690A (ko) 광 픽업
JP2004071126A (ja) 光ピックアップ装置
JPWO2008023567A1 (ja) 光ヘッド装置及び回折素子と光情報装置とコンピュータとディスクプレーヤとカーナビゲーションシステムと光ディスクレコーダと車両
KR20110016271A (ko) 광픽업장치
JPH1027378A (ja) 光ピックアップ装置、及び半導体レーザのapc回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5