JPS642243B2 - - Google Patents

Info

Publication number
JPS642243B2
JPS642243B2 JP14275080A JP14275080A JPS642243B2 JP S642243 B2 JPS642243 B2 JP S642243B2 JP 14275080 A JP14275080 A JP 14275080A JP 14275080 A JP14275080 A JP 14275080A JP S642243 B2 JPS642243 B2 JP S642243B2
Authority
JP
Japan
Prior art keywords
filter
signal
digital filter
order
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14275080A
Other languages
English (en)
Other versions
JPS5765918A (en
Inventor
Masao Kasuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP14275080A priority Critical patent/JPS5765918A/ja
Priority to US06/311,095 priority patent/US4472785A/en
Publication of JPS5765918A publication Critical patent/JPS5765918A/ja
Publication of JPS642243B2 publication Critical patent/JPS642243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0283Filters characterised by the filter structure
    • H03H17/0286Combinations of filter structures
    • H03H17/0288Recursive, non-recursive, ladder, lattice structures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/04Recursive filters
    • H03H17/0416Recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】 本発明は標本化周波数変換器に係り、補間器と
間引き器との間に設けられる低減フイルタを所定
の構成とすることにより、簡単な回路構成で、し
かも高品質に標本化周波数を変換し得る標本化周
波数変換器を提供することを目的とする。
所定の標本化周波数で動作する機器からの信号
を、これとは異なつた標本化周波数で標本化され
たデイジタル信号を記録再生するための機器で記
録するためには、記録再生機器の標本化周波数に
等しくするための標本化周波数変換器を必要とす
る。第1図は一般的な標本化周波数変換器の一列
のブロツク系統図を示す。同図中、1は入力端子
で、これより入来した第1の標本化周波数1で標
本化された信号xo(ただし、n=nT、T;標本化
時間、n;整数)は、補間器2に供給され、ここ
でその間にL−1個の零点が挿入されて次式で表
わされる信号woL+iとなる。
WoL+i=xo(i=0) 0(i=1、2、……、L−1) (1) これにより、補間器2の出力信号woL+iの周波
数スペクトラムは、第2図に示す如く、斜線部分
(これは入力信号xoの周波数スペクトラムである)
が折り返されてL1/2まで分布したもの(すなわ ち同図に実線で示す部分)になる。
しかして、補間器2の出力信号woL+iが後述の
間引き器4によりM個毎に取り出されて、標本化
周波数2(ここでは12とする)で標本化され
た信号とされるためには、第2図に斜線で示すス
ペクトラム部分以外の周波数1/2以上のスペクト ラム部分を除去する必要があり、このため低域フ
イルタ(低域通過形デイジタルフイルタ)3によ
り上記斜線部分以外のスペクトラム部分が除去さ
れる。
低域フイルタ3より取り出された信号は間引き
器4によりM個毎にサンプルされて取り出され、
第2の標本化周波数2で標本化された信号voとさ
れて出力端子5へ出力される。ここで、 21=L/M (2) である。
このようにして、標本化周波数が1から2に変
換されるが、出力端子5より出力される標本化周
波数2で標本化された信号voは低減フイルタ3の
次数をN、低域フイルタ3のインパルスレスポン
スをhnとしたときに、次式で表わされる。
voN-1m=0 hn・wo-n (3) (3)式からわかるように、信号voは低域フイルタ
3の性能により決定される。従つて、低域フイル
タ3の設計には、折り返し歪がなく、遅延歪もな
く、しかも構成が容易なデイジタルフイルタであ
ることが要求される。
しかるに、低域フイルタ3には従来より有限イ
ンパルスレスポンス(FIR)デイジタルフイルタ
が用いられていたが、現在の技術では極めて多く
の次数を必要としていた。例えば、L/M=8/7の場 合は、1000次以上のフイルタ次数が必要であつ
た。しかして、フイルタ次数が多くなると、演算
誤差が発生し易くなり、また遅延歪も発生し易
く、また装置も大型化するという欠点があつた。
また変換比L/Mが1007/1001というように、小さな値
に なると、所定特性の低域フイルタを実現できなく
なる場合があつた。
本発明は上記諸欠点を除去したものであり、第
3図以下の図面と共にその一実施例につき説明す
る。
第3図は本発明装置の要部の一実施例のブロツ
ク系統図を示す。本実施例は、第1図と略同様の
構成であるが、低域フイルタ3の代りに第3図に
6で示す構成の低域フイルタを用いた点に特徴を
有する。第3図において、入力端子7には前記補
間器2よりの信号woL+iが入来し、低域フイルタ
6に供給される。低域フイルタ6はFIRデイジタ
ルフイルタ8と無限インパルスレスポンス
(IIR)デイジタルフイルタ9とが夫々縦続接続
された構成とされている。
FIRデイジタルフイルタ8は通常、非巡回形デ
イジタルフイルタであり、その差分方程式は yoN-1i=0 ai・xo-i (4) ただし、(4)式中、Nはフイルタ次数、aiは係数
である。このFIRデイジタルフイルタ8の周波数
特性は第4図に破線で示す如く、通過域の端が
周波数F′pで第1の標本化周波数1の半分の周波
1/2よりも低く、かつ、減衰域の端の周波数を F′sとして1/2よりもやや高いものに選定された低 域通過特性となる。
次にIIRデイジタルフイルタ9は本出願人が先
に特願昭55−23672号(特開昭56−120211号)に
て提案したデイジタル等化器を用い得、その周波
数特性は第4図中、実線で示す如く、通過域の
端が周波数Fpにあり、減衰域の端が周波数1/2よ りわずかに低い周波数Fs(Fs>Fp)にあるように
する。ここで、上記提案になるデイジタル等化器
は、次のように構成したものである。
インピーダンスZ(s)、共振角周波数ω0、共
振の尖鋭度Qなどが Z(s)=s/C/(s−s1)(s−s1)(s=jω) ω0=1/√ Q=ω0CR s1=−ω0/2Q+jω0√1−(12)2 1 =−ω0/2Q−jω0√1−(1−(12)2 で与えられる共振回路を分母子に拡大してラプラ
ス変換形の伝達関数H(s)を (ただし、si1i1は極、si2i2は零点、Nはデイ
ジタルフイルタの次数) si1=−(ri1、θi1)cosθi1+j(ri1、θi1)s
inθi1 i1=−(ri1、θi1)cosθi1−j(ri1、θi1
sinθi1 si2=−(ri2、θi2)cosθi2+j(ri2、θi2)s
inθi2 i2=−(ri2、θi2)cosθi2−j(ri2、θi2
sinθi2 なる式で定義し、これより整合z変換により得た Hz(z-1)=N/2i=1 Ai01+Ai1z-1+Ai2z-2/i+Bi1z-1+Bi2z-2 ただし Ai0=|1+Bi1zL -1+Bi2zL -2/1+Ai1zL -1+Ai2zL -2
zL=ejNT (ωN:規格化角周波数、T:入力デイジタル信
号の標本化時間) Ai1=−2Aicosφzi Ai2=Ai 2 Bi1=−2Bicosφpi Bi2=Bi 2 Bi=exp{−(ri1、θi1)・T・cosθi1} Ai=exp{−(ri2、θi2)・T・cosθi2} φpi=(ri1、θi1)Tsinθi1 φzi=(ri2、θi2)Tsinθi2 なる式で規定されるデイジタルフイルタの伝達関
数Hz(z-1)を意図する角周波数ω1、ω2(ω1<ω2
との間の領域で減衰する振幅周波数特性を得ると
きはs平面における上記極si1i1、零点si2i2
式中の(ri1、θi1)、(ri2、θi2)を該角周波数
ω1、ω2に置換し、かつ、前記Nが偶数のときは
θi1、θi2を共にπ/4、Nが奇数のときは一対の極と
零点はs平面の実軸上に位置させるように規定し
て得、上記角周波数ω1、ω2との間の領域で増強
する振幅周波数特性を得るときは前記極si1i1
零点si2i2との式中に該角周波数ω1、ω2を代入
して規定して構成したことを特徴とするデイジタ
ル等化器である。
すなわち、このデイジタル等化器において第8
図にAで示す高域周波数減衰特性を有する場合
は、前記si1i1、si2i2の式中のf(ri1、θi1
)、
f(ri2、θi2)を夫々同図に示す角周波数ω1、ω2
置き換え、Nが偶数の場合はθi1=θi2=π/4、
Nが奇数の場合は一対の極と零点はs平面の実軸
上に配置する。一方、第8図にBで示す高域周波
数増強特性を有するデイジタル等化器の場合は、
前記式における極と零点にω1、ω2なる角周波数
を代入することによりその具体的係数が得られ
る。
帯域減衰特性、帯域増強特性を有する上記提案
になるデイジタル等化器の具体的な係数の求め方
につき説明するに、連続領域における情報との対
応関係から 帯域減衰特性 θi2=COS-1(1/2QZ) 帯域減衰特性 θi1=COS-1(1/2Qp) の両方でQを定義できる。次に中心角周波数は前
記si1i1、si2i2の式において f(ri1、θi1)=f(ri2、θi2)=ω0 とおくことにより規定できる。またレベルLの規
定方法は次式で定義できる。
なお、Q<0.5の場合は s2=−Lcosθi1・ω0+ω0√(i12−12 =−Lcosθi1・ω0−ω0√(i12−1 なる式で規定できる。そして、上記提案になるデ
イジタル等化器は少なくともQ、中心周波数f0
レベルLのうちの1つを可変できるよう規定して
構成したものである。
なお、上記の提案になるデイジタル等化器にお
いて、上記θi1を89.5゜、θi2を89.9゜とすると、通過
域直線位相の部分が多くなることが確められた。
ところで、IIRデイジタルフイルタ9は一般に
巡回形デイジタルフイルタであり、その差分方程
式は次式で示される。
po=a0×xo+a1×xo-1+a2xo-2−b1po-1−b2po-2
(5) ただし、(5)式中、poは時刻nTにおける出力デ
イジタル信号、Xnは時刻nTにおける入力デイジ
タル信号、a0〜a2、b1、b2は夫々係数である。
しかし、このままでは前記LとMの整数比が多
くなつた場合、IIRデイジタルフイルタ9の設計
に際しては、1つのpoに対して間引きする前の値
をすべて計算を行なわなければならないので極め
て煩雑である。
そこで、本実施例では次のようにして設計す
る。まず、IIRデイジタルフイルタ9のz領域で
の伝達関数H(z-1)として H(z-1)=a01+a1z-1+a2z-2/1+b1z-1+b2z-2(
6) なる式中のz-1をz-kで置き換える。ただし、Mが
2の倍数であるとすると 2K=M (7) (6)式を変形して H(z-k)=a01+a1z-K+a2z-2K/1+b1z-K+b2z-2
K
(8) となる。これを差分方程式に書き改めると次式が
得られる。
po=a0xo+a1xo-k+a2xo-2k−b1po-k−b2po-2k (9) この(9)式は単位遅延素子をz-k(ただし、K=
M/2)とし、伝達関数H(z-1)が H(z-1)=a0+a1z-k+a2z-2k/1+b1Z-k+b2z-2k(9
a) なる式で表わされる双二次形のIIRデイジタルフ
イルタの差分方程式を示す。
この双二次形のIIRデイジタルフイルタ9の構
成は第9図に示す如くになる。この構成は前記本
出願人の提案になるデイジタル等化器と同様の構
成であるが、遅延器13,14,22及び23の
各遅延時間がデイジタル等化器ではz-1(すなわち
1標本化時間)であつたのに対し、本実施例では
z-k(すなわち、標本化時間のK倍)である点が異
なる。
第9図において、入力端子11に入力されたデ
イジタル信号はレジスタ12に保持された後、縦
続接続されている遅延器13及び14に順次印加
され、夫々前記サンプリング周期TのK倍の時間
遅延される。また一方、上記レジスタ12、遅延
器13,14の出力デイジタル信号はカウンタ1
5の出力の制御の下に順次時分割的に乗算器16
に印加され、ここでランダム・アクセス・メモリ
(RAM)19よりのデイジタル量で記憶されて
いる係数a0、a1、a2と順次乗算された後、更に加
算器20によりレジスタ21よりの信号と加算さ
れて出力端子24より出力される一方、レジスタ
21により保持される。
上記の出力デイジタル信号(時刻nTでpo)は
遅延器22及び23に順次印加されて前記サンプ
リング周期TのK倍の時間遅延され、上記遅延器
14の出力選択後次に遅延器22そして遅延器2
3より順次時分割的に出力され、上記と同様に乗
算器16、加算器20を経て出力端子24より出
力される。この結果、出力端子24より時刻nT
では前記(9)式で表わされるデイジタル信号poが出
力され、後段のDA変換回路(図示せず)により
デイジタル−アナログ変換されて所定の周波数特
性が付与されたアナログ信号として取り出され
る。
ここで、上記RAM19は入力端子17よりの
制御信号により制御される中央処理装置(CPU)
18の出力信号により、前記した如くQ、レベル
Lなどを所望の値に可変するためにその読み出し
アドレスが変更され、所定の値の係数が読み出さ
れる。
第5図は(9)式で表わされるIIRデイジタルフイ
ルタ9の周波数特性の一例を示し、同図にaで示
す如く折り返しが発生するが、第4図にで示す
周波数特性が得られる。
しかも、(9)式は見掛け上、フイルタ次数は2次
であるが、(7)式よりMはKの2倍であるから実際
には(9)式を2倍することとなり、よつて実質上
IIRデイジタルフイルタ9の次数はMの値の如何
に拘らず(ただし、Mは2の倍数である)4次で
あり、これにより次数が大幅に低減されることに
なる。例えば、Mが526のとき、通常のIIRデイ
ジタルフイルタでは式(8)の分母の演算、すなわち
巡回項が526×2次となるが、本実施例によれば
M/2毎のサンプル値を入出力とするIIRデイジタ
ルフイルタ9のフイルタ次数は4次で良いことに
なる。
なお、第5図にaで示す折り返しのある周波数
領域は、FIRデイジタルフイルタ8の減衰周波数
領域にあるので、十分大なる減衰量をとることに
より、折り返しによる影響は除去できる。従つ
て、本実施例によれば、入力端子7に入来した信
号は低域フイルタ6により第6図に示す如き周波
数特性が付与されて、第2図に斜線で示す部分の
スペクトラムのみを有する信号とされて第3図に
示す出力端子10より出力される。
本出願人の実験結果によれば、M=2、L=
1、1=47.25kHz、2=94.5kHz、Fp=20kHz、Fs
=22kHzの場合、従来のFIRデイジタルフイルタ
を低域フイルタ3として用いた場合は、次数が
224次で、第7図に実線で示す如き周波数特性が
得られるのに対し、本実施例によればFIRデイジ
タルフイルタ8の次数は51次、IIRデイジタルフ
イルタ9の次数は4次で、低域フイルタ6の次数
は計55次と極めて低く、これにより第7図に破線
で示す如き所望の周波数特性が得られる。この場
合、(9)式中の係数a0〜a2、b1、b2は夫々 a0=0.8259233 a1=−1.978136 a2=0.9994894 b1=−1.980045 b2=0.9976816 である。また、FIRデイジタルフイルタ8のフイ
ルタ次数は51次であり、そのインパルスレスポン
スは次の如くになる。ここで、(9)式中のaiはai
H(i)である。
H(1)=0.29722860E −5=H(51) H(2)=0.68821300E −4=H(50) H(3)=0.24645380E −3=H(49) H(4)=0.32557170E −3=H(48) H(5)=−0.10708640E −3=H(47) H(6)=−0.91904700E −3=H(46) H(7)=−0.91756040E −3=H(45) H(8)=0.84177960E −3=H(44) H(9)=0.27545770E −2=H(43) H(10)=0.13450910E −2=H(42) H(11)=−0.36163680E −2=H(41) H(12)=−0.59536470E −2=H(40) H(13)=0.38218610E −3=H(39) H(14)=0.10232020E −1=H(38) H(15)=0.88977400E −2=H(37) H(16)=−0.81775670E −2=H(36) H(17)=−0.21448790E −1=H(35) H(18)=−0.64911810E −2=H(34) H(19)=0.27803460E −1=H(33) H(20)=0.35338160E −1=H(32) H(21)=−0.12793650E −1=H(31) H(22)=−0.71780800E −1=H(30) H(23)=−0.47199580E −1=H(29) H(24)=0.10264440E 0=H(28) H(25)=0.29608790E 0=H(27) H(26)=0.38523240E 0=H(26) なお、第7図中、従来例では23kHzで−81dB、
24kHzで−84dBの減衰量が得られるのに対し、本
実施例では破線で示す如く23kHzで−70dB、24k
Hzで−105dBの減衰量が得られた。
ところで、以上の説明ではMの値は2の倍数と
して説明したが、Mが2の倍数でないときには(7)
式は 3K=M、又は2K=2M (10) となる。ここで、3K=Mの場合のIIRデイジタル
フイルタ9の差分方程式は po=a0xo+a1xo-M+a2xo-2M+a3xo-3M−b1po-M−b2po-2
M
−b3po-3M(11) となる。これは単位遅延素子をz-M/3とし、伝達
関数H(z-1)が H(z-1)=a0+a1z-k+a2z-2k+a3z-3k/1+b1z-k+b
2z-2k+b3z-3k(11a) なる式で表わされる双三次形のIIRデイジタルフ
イルタを示す。
この3K=Mの場合の(11a)式の伝達関数をも
つIIRデイジタルフイルタのフイルタ次数は
(11a)式の分母が3次、分子が3次で計6次で
あり、また換言すると(9)式のものを3倍するので
(M/3毎のサンプル値を入出力とするので)、6
次となる。2K=2Mの場合はIIRデイジタルフイ
ルタ9は4次で構成できる。
なお、上記の実施例では標本化周波数12
関係が12としたが、12の場合は、低域フ
イルタ6により2/2以上の周波数成分を除去する 必要がある。これは、間引き器4で発生する2/2 以上の不要な折り返し周波数成分を予め除去して
おくためである。また、FIR、IIRの各フイルタ
8,9は夫々2以上を縦続に接続して同様の特性
を得るようにしてもよい。
上述の如く、本発明になる標本化周波数変換器
は、第1の標本化周波数1で標本化された第1の
信号が供給され、その標本化時間毎にL−1個
(ただし、L=M21Mは2以上の正の整数)の零 点を挿入する補間器と少なくとも1以上の有限イ
ンパルスレスポンスデイジタルフイルタと少なく
とも1以上の無限インパルスレスポンスデイジタ
ルフイルタとが夫々縦続接続され、かつ無限イン
パルスレスポンスとされてなり、上記補間器の出
力信号中の/2(は12のときは112

ときは2)以上の周波数成分を減衰せしめるフイ
ルタ回路と、フイルタ回路の出力信号をM個毎に
取り出して第2の標本化周波数2で標本化された
第2の信号を出力する間引き器とより構成したた
め、上記フイルタ回路のフイルタ次数を従来に比
し低いものにでき、特に上記無限インパルスレス
ポンスデイジタルフイルタのフイルタ次数は、上
記Mの値の如何にかかわらず4次又は6次とする
ことができ、従つてフイルタ次数を大幅に低減で
きることから、従来に比し演算誤差の発生の割合
を大幅に低減でき、また装置も従来に比し小型化
でき、更にフイルタ回路の通過域は直線位相であ
り遅延歪を除去できる等の特長を有するものであ
る。
【図面の簡単な説明】
第1図は一般的な標本化周波数変換器の一例を
示すブロツク系統図、第2図は第1図の一部の出
力信号の周波数スペクトラムを示す図、第3図は
本発明になる標本化周波数変換器の要部の一実施
例を示すブロツク系統図、第4図は第3図の動作
説明用フイルタ特性図、第5図は第3図中のIIR
デイジタルフイルタの一例のフイルタ特性図、第
6図A,Bは夫々第3図の総合周波数特性、位相
特性の一例を示す図、第7図は本発明と従来のフ
イルタ特性の具体例を対比して示す図、第8図は
本出願人が先に提案したデイジタル等化器の振幅
周波数特性の一例を示す図、第9図は本発明の要
部をなすIIRデイジタルフイルタの一実施例のブ
ロツク図である。 1,7……入力端子、2……補間器、3,6…
…低域フイルタ、4……間引き器、5,10……
出力端子、8……有限インパルスレスポンス
(FIR)デイジタルフイルタ、9……無限インパ
ルスレスポンス(IIR)デイジタルフイルタ。

Claims (1)

  1. 【特許請求の範囲】 1 第1の標本化周波数f1で標本化された第1の
    信号を第2の標本化周波数f2で標本化された第2
    の信号に変換する標本化周波数変換器において、 上記第1の信号が供給され、その標本化時間毎
    にL−1個(ただし、L=Mf2/f1、Mは2以上
    の正の整数)の零点を挿入する補間器と、 少なくとも1以上の有限インパルスレスポンス
    デイジタルフイルタと少なくとも1以上の無限イ
    ンパルスレスポンスデイジタルフイルタとが夫々
    縦続接続され、かつ、該無限インパルスレスポン
    スデイジタルフイルタは単位遅延素子をZ-M/2
    し、伝達関数H(z-1)が H(z-1)=a0+a1z-k+a2z-2k/1+b1z-k+b2z-2
    k
    (ただし、a0、a1、a2、b1、b2は係数、k=M/
    2) なる式で表わされるフイルタ次数が4次の双二次
    形のデイジタルフイルタか、又は単位遅延素子を
    z-M/3とし、伝達関数H(z-1)が H(z-1)=a0+a1z-k+a2z-2k+a3z-3k/1+b1z-k+b
    2z-2k+b3z-3k (ただし、a0〜a3、b1〜b3は係数、k=M/3) なる式で表わされるフイルタ次数が6次の双三次
    形のデイジタルフイルタとされてなり、該補間器
    の出力信号中のf/2(fはf1<f2のときはf1、f1
    >f2のときはf2)以上の周波数成分を減衰せしめ
    るフイルタ回路と、 該フイルタ回路の出力信号をM個毎に取り出し
    て上記第2の信号を出力する間引き器とより構成
    したことを特徴とする標本化周波数変換器。
JP14275080A 1980-10-13 1980-10-13 Sampling frequency converter Granted JPS5765918A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14275080A JPS5765918A (en) 1980-10-13 1980-10-13 Sampling frequency converter
US06/311,095 US4472785A (en) 1980-10-13 1981-10-13 Sampling frequency converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14275080A JPS5765918A (en) 1980-10-13 1980-10-13 Sampling frequency converter

Publications (2)

Publication Number Publication Date
JPS5765918A JPS5765918A (en) 1982-04-21
JPS642243B2 true JPS642243B2 (ja) 1989-01-17

Family

ID=15322706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14275080A Granted JPS5765918A (en) 1980-10-13 1980-10-13 Sampling frequency converter

Country Status (1)

Country Link
JP (1) JPS5765918A (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0181953B1 (de) * 1984-11-16 1991-03-20 Deutsche ITT Industries GmbH Interpolator für Digitalsignale
JPH0640616B2 (ja) * 1985-09-27 1994-05-25 松下電器産業株式会社 デイジタルフイルタ−周波数特性変換装置
JPS63126310A (ja) * 1986-11-17 1988-05-30 Matsushita Electric Ind Co Ltd 音質調整装置
JPS63126311A (ja) * 1986-11-17 1988-05-30 Matsushita Electric Ind Co Ltd 音質調整装置
US4782324A (en) * 1987-05-06 1988-11-01 Genrad, Inc. Digital signal synthesizer
JPH01175309A (ja) * 1987-12-29 1989-07-11 Sony Corp ディジタル信号処理装置
JPH0250507A (ja) * 1988-08-10 1990-02-20 Kyocera Corp サンプリング周波数変換器
JPH07192398A (ja) * 1993-12-27 1995-07-28 Sharp Corp 再生波形等化回路
US7528745B2 (en) * 2006-02-15 2009-05-05 Qualcomm Incorporated Digital domain sampling rate converter
JP2010130185A (ja) * 2008-11-26 2010-06-10 Fujitsu Ltd サンプリングレート変換回路
JP5215925B2 (ja) * 2009-04-15 2013-06-19 キヤノン株式会社 音声処理装置および音声処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547488B2 (ja) * 1973-12-07 1980-12-01
NL179620C (nl) * 1975-05-29 1986-10-01 Philips Nv Niet-recursief, interpolerend, digitaal filter.

Also Published As

Publication number Publication date
JPS5765918A (en) 1982-04-21

Similar Documents

Publication Publication Date Title
US4472785A (en) Sampling frequency converter
Mintzer Filters for distortion-free two-band multirate filter banks
US6137349A (en) Filter combination for sampling rate conversion
JP2986745B2 (ja) 複合位相濾波器とこれを用いたタイミング誤差補償装置及びその方法
JP5638787B2 (ja) サブバンド信号処理
JPS642243B2 (ja)
US5745581A (en) Tracking filter for periodic signals
US5717618A (en) Method for digital interpolation
JPH0759186A (ja) 音響信号の線形歪補償方法及びその装置
DE69133522T2 (de) Apparatur zur Wiedergabe von Audio-digitalen PCM-Signalen
Dutta Roy et al. Fir notch filter design: a review
JPS6051017A (ja) アナログ信号の解析及び検索方法及び装置
KR0178003B1 (ko) 부밴드 디지탈 필터 뱅크 설계방법
GB2180114A (en) Digital filters
JPH0119292B2 (ja)
Johansson et al. A class of complementary IIR filters
JPH0732343B2 (ja) 非同期標本化周波数変換方式
JP2002300007A (ja) サンプリング周波数変換装置
JP3279649B2 (ja) 帯域分割符号化用フィルタ装置
Toyoshima et al. A new class of 2‐D digital filters composed of all‐pass subfilters
JP2001518273A (ja) 時間離散フィルタ
JP2629705B2 (ja) 音質調整装置
KR0113717Y1 (ko) 주파수 왜곡 보상장치
JPH10163813A (ja) 周波数帯域分割装置および合成装置
Xi-Ren et al. An approach to the design of IIR Hilbert transformers