JPS6360547B2 - - Google Patents

Info

Publication number
JPS6360547B2
JPS6360547B2 JP55077736A JP7773680A JPS6360547B2 JP S6360547 B2 JPS6360547 B2 JP S6360547B2 JP 55077736 A JP55077736 A JP 55077736A JP 7773680 A JP7773680 A JP 7773680A JP S6360547 B2 JPS6360547 B2 JP S6360547B2
Authority
JP
Japan
Prior art keywords
mos
fet
type
breakdown voltage
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55077736A
Other languages
Japanese (ja)
Other versions
JPS574151A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7773680A priority Critical patent/JPS574151A/en
Publication of JPS574151A publication Critical patent/JPS574151A/en
Publication of JPS6360547B2 publication Critical patent/JPS6360547B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、MOS型集積回路デバイスに係り、
さらに詳しくは、該集積回路デバイスの各端子に
印加される過電圧から回路デバイスを保護するよ
うにしたMOS型集積回路デバイスに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a MOS type integrated circuit device,
More particularly, the present invention relates to a MOS type integrated circuit device that protects the circuit device from overvoltage applied to each terminal of the integrated circuit device.

MOS型集積回路(以下MOS・ICと略す)は、
入力端子にMOS・FETが接続され、構成してあ
るがこのMOS・FETのゲートには極めて薄いシ
リコン酸化膜が使用されている。そこで、入力端
子に印加される過電圧により前記シリコン酸化膜
が絶縁破壊するのを防止するために、第1図に示
すようにダイオード、抵抗から成る保護回路を接
続している。第1図において、11は入力端子、
12は電源端子、13は接地端子、14a,14
bはゲート端子を共通にして直列接続した2個の
MOS・FETである。また、15は入力端子に直
列接続した入力保護抵抗、16はMOS・FETの
ゲートとソース間に挿入した入力保護ダイオード
でこれらは入力端子11に印加される過電圧から
MOS・FETを保護するために設けてある。18
a,18bは前述のMOS・FET14a,14b
と同様に電源と接地間に接続した最終段の
MOS・FETで、これら、MOSFET14a,1
4bと18a,18bとの間(端子AとBの間)
には複数のMOS・FETが形成されている。19
はこのMOS型集積回路デバイスの出力端子であ
る。
MOS type integrated circuit (hereinafter abbreviated as MOS/IC) is
A MOS/FET is connected to the input terminal, and an extremely thin silicon oxide film is used for the gate of this MOS/FET. Therefore, in order to prevent dielectric breakdown of the silicon oxide film due to overvoltage applied to the input terminal, a protection circuit consisting of a diode and a resistor is connected as shown in FIG. In FIG. 1, 11 is an input terminal;
12 is a power terminal, 13 is a ground terminal, 14a, 14
b is two pieces connected in series with a common gate terminal.
It is MOS/FET. Also, 15 is an input protection resistor connected in series to the input terminal, 16 is an input protection diode inserted between the gate and source of the MOS/FET, and these are protected from overvoltage applied to the input terminal 11.
It is provided to protect the MOS/FET. 18
a, 18b are the aforementioned MOS/FETs 14a, 14b
Similarly, the final stage connected between the power supply and ground
With MOS/FET, these are MOSFET14a, 1
Between 4b and 18a, 18b (between terminals A and B)
Multiple MOS/FETs are formed in the . 19
is the output terminal of this MOS type integrated circuit device.

第1図に示すように、入力端子11に印加され
る過電圧対策としては保護回路が備えてあるもの
の、出力端子19および電源端子12に接続され
るMOS・FETのゲート酸化膜には保護回路は特
に設けられていない。また、これらMOSFETの
ソースおよびドレイン電極とシリコン基板との間
には、寄生的なp+nおよびn+p接合(破線で示す
寄生ダイオード17)が形成されるが、この寄生
ダイオードの耐電圧は何ら管理されることなく製
造されているため、その耐電圧はゲートシリコン
酸化膜の絶縁破壊電圧より大きい場合があり、出
力端子19や電源端子12に前記した降伏電圧以
下の小さなサージ電圧が印加してもMOS・FET
14a,14bや18a,18bのゲートシリコ
ン酸化膜を絶縁破壊に至らしめる。市場における
MOS・ICの不良の過半数数は、入力端子12に
接続されたMOS・FET以外のゲートシリコン酸
化膜の絶縁破壊によるものである。
As shown in FIG. 1, although a protection circuit is provided as a countermeasure against overvoltage applied to the input terminal 11, the gate oxide film of the MOS/FET connected to the output terminal 19 and the power supply terminal 12 is not equipped with a protection circuit. Not specifically provided. Additionally, parasitic p + n and n + p junctions (parasitic diodes 17 shown by broken lines) are formed between the source and drain electrodes of these MOSFETs and the silicon substrate, but the withstand voltage of these parasitic diodes is Because it is manufactured without any control, its withstand voltage may be higher than the dielectric breakdown voltage of the gate silicon oxide film, and a small surge voltage below the breakdown voltage mentioned above may be applied to the output terminal 19 and power supply terminal 12. Even MOS/FET
This causes dielectric breakdown of the gate silicon oxide films 14a, 14b and 18a, 18b. in the market
The majority of defects in MOS/ICs are due to dielectric breakdown of gate silicon oxide films other than MOS/FETs connected to input terminal 12.

本発明は前述従来技術の欠点に鑑み、MOS・
ICの全ての端子いずれに過電圧が印加された場
合でも、そのMOS型集積回路デバイスを絶縁破
壊から防止することにある。
In view of the drawbacks of the prior art described above, the present invention
The purpose is to prevent dielectric breakdown of the MOS type integrated circuit device even if an overvoltage is applied to any of the terminals of the IC.

本発明のMOS・ICは、前記の従来のMOSICの
性能を維持し、チツプサイズも同一でありなが
ら、MOS・ICの入力端子はもちろん電源端子お
よび出力端子の各端子に過電圧が印加されたとき
の該デバイスの破壊強度を大きくしたことが特徴
である。これをもう少し詳しく述べるp+nあるい
はn+p接合の降伏電圧はその高比抵抗側の不純物
濃度により決定されることは周知の事である。出
力あるいは電源端子に接続されたすべてのMOS
FETのソース及びドレイン電極とこの電極と極
性が反対のシリコン基板の間で形成される寄生的
なp+nあるいはn+p接合の降伏電圧(VBj)を該
MOS・FETのゲートシリコン酸化膜の絶縁破壊
電圧(Vox)よりも低く設定し、ドレインあるい
はソース電圧に隣接するチヤネル部分以外の高比
抵抗側シリコン基板表面付近の領域の不純物濃度
を、上記設定した接合の降伏電圧(VBj<Vox)
を実現する値に、イオン注入、拡散等により不純
物をドープして作る。このようにして得られた
MOS・ICは、電源あるいは出力端子に過電圧が
印加されたとき、上記MOS・FETのドレインあ
るいはソース電極と異極性のシリコン基板との間
に形成されたp+nあるいはn+p接合が定電圧素子
として動作し、そのゲートシリコン酸化膜にはこ
れらの接合部の降伏電圧しか印加されない。これ
によつてMOS・FETすなわち、MOS・ICを過電
圧から保護したものである。
The MOS/IC of the present invention maintains the performance of the conventional MOSIC described above and has the same chip size. The device is characterized by increased breaking strength. To explain this in more detail, it is well known that the breakdown voltage of a p + n or n + p junction is determined by the impurity concentration on the high resistivity side. All MOS connected to output or power supply terminals
Determines the breakdown voltage (V B j) of the parasitic p + n or n + p junction formed between the source and drain electrodes of the FET and the silicon substrate with opposite polarity.
It is set lower than the dielectric breakdown voltage (Vox) of the gate silicon oxide film of the MOS/FET, and the impurity concentration in the region near the silicon substrate surface on the high resistivity side other than the channel part adjacent to the drain or source voltage is set as above. Junction breakdown voltage (V B j<Vox)
It is made by doping impurities by ion implantation, diffusion, etc. to a value that achieves this. obtained in this way
When an overvoltage is applied to the power supply or output terminal of a MOS/IC, the p + n or n + p junction formed between the drain or source electrode of the MOS/FET and a silicon substrate of different polarity maintains a constant voltage. It operates as a device, and only the breakdown voltage of these junctions is applied to its gate silicon oxide film. This protects the MOS/FET, that is, the MOS/IC from overvoltage.

以下、第2図〜第4図に従つて本発明の一実施
例を詳述する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 2 to 4.

第2図はMOS・ICのチツプ断面構造を示すも
ので、第3図はその等価回路を示すものである。
第2図において、28はn-のシリコン基板を示
し、この基板28にはn+、p+並びにp-の不純
物が拡散してある。すなわち、24aは基板28
のp-形領域29に、24bはn-領域に拡散処理
したMOS・FETを示し、22は夫々の
MOSFETのソース電極、23はドレイン電極、
21は夫々の電極に接合したAl配線、25a,
26bはゲートシリコン酸化膜、26a,26b
はチヤネルを示しこの場合は2チヤネルを示して
いる。また、27a,27b,27cは高比抵抗
側ドープ領域(n形領域)を示し、この高比抵抗
側ドープ領域27a〜27cの不純物濃度を本発
明においては適宜選定し、MOS・IC24a,2
4bのシリコン酸化膜の絶縁破壊電圧より低い降
伏電圧を有するダイオードとして機能させてい
る。これを第3図の等価回路により説明する。
Figure 2 shows the cross-sectional structure of a MOS/IC chip, and Figure 3 shows its equivalent circuit.
In FIG. 2, reference numeral 28 denotes an n - silicon substrate, into which n + , p + and p - impurities are diffused. That is, 24a is the substrate 28
In the p - type region 29, 24b shows the MOS/FET diffused in the n -type region, and 22 shows the respective MOS/FETs.
MOSFET source electrode, 23 is drain electrode,
21 is an Al wiring connected to each electrode, 25a,
26b is a gate silicon oxide film, 26a, 26b
indicates a channel, and in this case indicates 2 channels. Further, 27a, 27b, and 27c indicate high resistivity side doped regions (n-type regions), and in the present invention, the impurity concentrations of these high resistivity side doped regions 27a to 27c are appropriately selected.
It functions as a diode having a breakdown voltage lower than the dielectric breakdown voltage of the silicon oxide film 4b. This will be explained using the equivalent circuit shown in FIG.

第3図において、第1図と同一符号を付してあ
るものは同一のものを示すものであるが、同実施
例においては、第1図の破壊で示す寄生的なダイ
オード17を、実際に出力端子19並びに電源端
子12に印加された過電圧からMOS・FET14
a,14bを保護することのできる降伏電圧を有
するダイオード37a〜37cとして機能を果す
ようにしてある。すなわち、電源端子12および
出力端子19に接続された全てのMOS・FET2
4a,24bのソース電極22あるいはドレイン
電極23と異極性のシリコン基板28とのp+n接
合、およびp-形領域とのn+p接合による寄生ダイ
オードの耐圧VBjを、このMOS・ICに使用され
るゲートシリコン酸化膜25a,25bの絶縁破
壊電圧Voxより低目に設定する。この設定した接
合の降伏電圧を与える高比抵抗側の不純物濃度
Ntを第4図より求める。すなわち、MOS・FET
のソース電極22あるいはドレイン電極23と隣
接するチヤネル部26a,26bを除いた異極性
の領域27の不純物濃度を第4図に示すNtの値
にする。この結果、上記ソース電極22あるいは
ドレイン電極23を高濃度側領域としたシリコン
酸化膜の絶縁破壊電圧Voxより低い降伏電圧VB
を有するダイオード37a〜37cが得られる。
In FIG. 3, the same reference numerals as in FIG. MOS/FET 14 from overvoltage applied to output terminal 19 and power supply terminal 12.
The diodes 37a to 37c have a breakdown voltage capable of protecting the diodes 37a and 14b. In other words, all MOS/FET2 connected to the power supply terminal 12 and the output terminal 19
The withstand voltage V B j of the parasitic diode due to the p + n junction between the source electrode 22 or drain electrode 23 of 4a, 24b and the silicon substrate 28 of different polarity, and the n + p junction with the p - type region is determined by this MOS IC. The dielectric breakdown voltage Vox is set lower than the dielectric breakdown voltage Vox of the gate silicon oxide films 25a and 25b used for the gate silicon oxide films 25a and 25b. Impurity concentration on the high resistivity side that gives the breakdown voltage of this set junction
Find Nt from Figure 4. In other words, MOS・FET
The impurity concentration of the region 27 of different polarity excluding the channel portions 26a and 26b adjacent to the source electrode 22 or the drain electrode 23 is set to the value Nt shown in FIG. As a result, the breakdown voltage V
Diodes 37a to 37c having the following values are obtained.

したがつて、このようにして得られたMOSIC
は、電源端子12あるいは出力端子19に過電圧
が印加されたとき、上記MOS・FET24a,2
4bのドレイン電極23、ソース電極22と異極
性のシリコン基板28並びにp-領域29との間
に形成されたp+nあるいはn+p接合で成る保護ダ
イオード37a〜37cが定電圧素子として動作
し、その結果、MOS・FET24a,24bのゲ
ートシリコン酸化膜には、これらの接合部の降伏
電圧しか印加されず、MOS・FETすなわち
MOS・ICは入力端子11より印加される過電圧
はもちろん、出力端子19並びに電源端子12か
らの過電圧からも保護される。
Therefore, the MOSIC obtained in this way
When an overvoltage is applied to the power supply terminal 12 or the output terminal 19, the MOS/FETs 24a, 2
Protection diodes 37a to 37c, which are p + n or n + p junctions, formed between the drain electrode 23 and source electrode 22 of 4b, the silicon substrate 28 of different polarity, and the p - region 29 operate as constant voltage elements. As a result, only the breakdown voltage of these junctions is applied to the gate silicon oxide films of the MOS/FETs 24a and 24b, and the MOS/FETs, that is,
The MOS IC is protected not only from overvoltage applied from the input terminal 11 but also from overvoltage from the output terminal 19 and the power supply terminal 12.

なお、上記の不純物濃度を第4図のNt値とす
る領域(ダイオード形成27)はMOS・FETの
チヤネル部26の領域とは異なる部位にあり、
MOS・FETの特性を害することはない。
Note that the region (diode formation 27) where the above impurity concentration has the Nt value in FIG.
It does not harm the characteristics of MOS/FET.

上述の実施例からも明らかなように本発明によ
れば、従来のMOS・ICの性能を維持し、かつチ
ツプサイズを大きくすることなく、MOS・ICの
各端子に過電圧が印加されたときの該デバイスの
破壊強度を大きくとることができ、過電圧印加に
よるMOS・FETのゲートシリコン酸化膜の絶縁
破壊を確実に防止できる。
As is clear from the above-mentioned embodiments, the present invention maintains the performance of conventional MOS/IC and eliminates the problem when overvoltage is applied to each terminal of MOS/IC without increasing the chip size. The breakdown strength of the device can be increased, and dielectric breakdown of the gate silicon oxide film of MOS/FET due to overvoltage application can be reliably prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMOS・ICの入力端子に接続さ
れたMOS・FETのゲートシリコン酸化膜の保護
回路を示す図、第2図は本発明によるMOS・IC
のチツプ断面構造を示す図であつて、第3図は第
2図の等価回路、第4図はp+nおよびn+p接合の
高比抵抗側の不純物濃度とその降伏電圧の関係を
示す図である。 11……入力端子、12……電源端子、13…
…接地端子、14a,14b,18a,18b,
24a,24b……MOS・FET、15……入力
保護抵抗、16……入力保護ダイオード、19…
…出力端子、20……Al配線、22……ソース
電極、23……ドレイン電極、25a,25b…
…ゲートシリコン酸化膜、26a,26b……
FETのチヤネル部、27a〜27c……高比抵
抗側ドープ領域、28……シリコン基板、29…
…p-形領域(ウエル)37a〜37c……電源、
出力端子用の保護ダイオード。
Figure 1 shows a protection circuit for the gate silicon oxide film of a MOS/FET connected to the input terminal of a conventional MOS/IC, and Figure 2 shows a MOS/IC according to the present invention.
Fig. 3 shows the equivalent circuit of Fig. 2, and Fig. 4 shows the relationship between the impurity concentration on the high resistivity side of the p + n and n + p junctions and their breakdown voltage. It is a diagram. 11...Input terminal, 12...Power terminal, 13...
...Ground terminal, 14a, 14b, 18a, 18b,
24a, 24b...MOS/FET, 15...Input protection resistor, 16...Input protection diode, 19...
...output terminal, 20...Al wiring, 22...source electrode, 23...drain electrode, 25a, 25b...
...Gate silicon oxide film, 26a, 26b...
FET channel portion, 27a to 27c...high resistivity side doped region, 28...silicon substrate, 29...
...p - shaped area (well) 37a to 37c...power supply,
Protection diode for output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 MOS型集積回路デバイスの電源端子および
出力端子に接続される全てのMOS・FETのドレ
イン電極およびソース電極のp+形あるいはn+
領域の不純物濃度と、これら両電極とは逆極性
で、前記MOS・FETのチヤネル部を含まない電
極近傍のn形あるいはp形領域の不純物濃度とに
よつて決まるp+nあるいはn+p接合の降伏電圧を、
前記、MOS・FETのゲートシリコン酸化膜の絶
縁破壊電圧より低く設定し、n形あるいは、p形
領域の不純物濃度をその設定した降伏電圧を実現
できる不純物濃度とし、前記MOS型集積回路デ
バイスの出力端子および電源端子に接続される全
てのMOS・FETのゲート酸化膜に対し、過電圧
保護がなされるようにしたことを特徴とする
MOS型集積回路デバイス。
1 The impurity concentration of the p + type or n + type region of the drain electrode and source electrode of all MOS/FETs connected to the power supply terminal and output terminal of the MOS type integrated circuit device, and the polarity of these two electrodes are opposite, The breakdown voltage of the p + n or n + p junction, which is determined by the impurity concentration of the n-type or p - type region near the electrode that does not include the channel part of the MOS/FET, is
The output of the MOS type integrated circuit device is set lower than the dielectric breakdown voltage of the gate silicon oxide film of the MOS/FET, and the impurity concentration of the n-type or p-type region is set to an impurity concentration that can realize the set breakdown voltage. It is characterized by overvoltage protection for the gate oxide films of all MOS/FETs connected to terminals and power supply terminals.
MOS type integrated circuit device.
JP7773680A 1980-06-11 1980-06-11 Mos integrated circuit device Granted JPS574151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7773680A JPS574151A (en) 1980-06-11 1980-06-11 Mos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7773680A JPS574151A (en) 1980-06-11 1980-06-11 Mos integrated circuit device

Publications (2)

Publication Number Publication Date
JPS574151A JPS574151A (en) 1982-01-09
JPS6360547B2 true JPS6360547B2 (en) 1988-11-24

Family

ID=13642186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7773680A Granted JPS574151A (en) 1980-06-11 1980-06-11 Mos integrated circuit device

Country Status (1)

Country Link
JP (1) JPS574151A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159363A (en) * 1982-03-17 1983-09-21 Nec Corp Input/output protecting device for semiconductor integrated circuit
JPS5969957A (en) * 1982-10-15 1984-04-20 Nec Corp Protective device for output
JPS59191371A (en) * 1983-04-14 1984-10-30 Nec Corp Complementary type metal oxide semiconductor field-effect device
JPS6010767A (en) * 1983-06-30 1985-01-19 Fujitsu Ltd Semiconductor device
JP2508826B2 (en) * 1987-11-24 1996-06-19 日本電気株式会社 Semiconductor device
JP2009099679A (en) * 2007-10-15 2009-05-07 Mitsumi Electric Co Ltd Mos transistor, and semiconductor integrated circuit device using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132065A (en) * 1979-04-02 1980-10-14 Sharp Corp Cmos circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132065A (en) * 1979-04-02 1980-10-14 Sharp Corp Cmos circuit

Also Published As

Publication number Publication date
JPS574151A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
US4893157A (en) Semiconductor device
US4492974A (en) DMOS With gate protection diode formed over base region
US5786616A (en) Semiconductor integrated circuit having an SOI structure, provided with a protective circuit
US4609931A (en) Input protection MOS semiconductor device with zener breakdown mechanism
KR910005468A (en) Semiconductor integrated circuit device
EP0622849A1 (en) A monolithic integrated structure of an electronic device having a predetermined unidirectional conduction threshold
US4261004A (en) Semiconductor device
US6075276A (en) ESD protection device using Zener diodes
US4189739A (en) Semiconductor overload protection structure
EP0538752B1 (en) Semiconductor input protective device against external surge voltage
US4972247A (en) High energy event protection for semiconductor devices
US20020070408A1 (en) Electrostatic discharge protection for mosfets
JPS6360547B2 (en)
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
US4922316A (en) Infant protection device
JPS63137478A (en) Manufacture of semiconductor device having protective circuit
JPH07263633A (en) Static electricity-proof discharge protector of semiconductor device
JPH06177662A (en) Input output protection circuit
JPS622704B2 (en)
JPH06151716A (en) Semiconductor integrated circuit device
JPS6115593B2 (en)
JPH0430194B2 (en)
KR970011377B1 (en) Bipolar transistor
KR100240684B1 (en) Esd protection circuit of semiconductor device
JPS6015338Y2 (en) semiconductor equipment