JPS59191371A - Complementary type metal oxide semiconductor field-effect device - Google Patents

Complementary type metal oxide semiconductor field-effect device

Info

Publication number
JPS59191371A
JPS59191371A JP58065824A JP6582483A JPS59191371A JP S59191371 A JPS59191371 A JP S59191371A JP 58065824 A JP58065824 A JP 58065824A JP 6582483 A JP6582483 A JP 6582483A JP S59191371 A JPS59191371 A JP S59191371A
Authority
JP
Japan
Prior art keywords
diode
resistance
drain
diodes
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58065824A
Other languages
Japanese (ja)
Other versions
JPH0313754B2 (en
Inventor
Kazumichi Aoki
青木 一道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58065824A priority Critical patent/JPS59191371A/en
Publication of JPS59191371A publication Critical patent/JPS59191371A/en
Publication of JPH0313754B2 publication Critical patent/JPH0313754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Abstract

PURPOSE:To improve electrostatic stress resistance, and to enhance latch-up resistance by forming a protective diode having reverse dielectric resistance lower than dielectric resistance between a source and a drain in a Si gate CMOSIC by minutely fine processing. CONSTITUTION:When positive and negative stresses to a power supply terminal VDD are applied, electrostatic energy is discharged through diodes D1 and D6, and sufficient breakdown resistance is ensured. Diodes D2 and D7 also discharge electrostatic energy regarding stresses to a power supply terminal VSS. The prevention of a latch-up phenomenon is attained by setting the dielectric resistance of diodes D8, D9 to values higher than dielectric resistance between a source and a drain in an internal MOSFET and by the action of a diode D12. When overvoltage is applied between power supplies, overvoltage is clamped by the action of a diode D5, dielectric resistance thereof is set to a value lower than dielectric resistance between the source and the drain in the internal MOSFET.

Description

【発明の詳細な説明】 本発明はMO8集積回路、特に相補型MO8(0MO8
)構造を有する外積回路の保護装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to MO8 integrated circuits, particularly complementary MO8 (0MO8) integrated circuits.
) structure for an outer product circuit.

MO8集積回路の入力端子は通常MOSトランジスタの
ゲート電極に接続されておシ、静電気による高電圧から
ゲート酸化膜を保護するため各種の保護回路が実用化さ
れている。特に、CMO8集積回路の場合には、静電気
による影響のみならず、寄生PNPN効果によるラッチ
アップ現象に対する考慮が必要である。すなわち、出力
端子(もしくは電源端子)に異常な電位が加わることに
よってN型基板とPウェルとの間の接合に順方向電流が
流れ、この電流がPチャンネルMO8FETのドレイy
−基板−pウェルーNチャンネルMO8FETのドレイ
ンで寄生的に構成されるPNPNサイリスタをトリガー
してしまう現象である。
The input terminal of an MO8 integrated circuit is usually connected to the gate electrode of a MOS transistor, and various protection circuits have been put into practical use to protect the gate oxide film from high voltage caused by static electricity. In particular, in the case of a CMO8 integrated circuit, it is necessary to consider not only the effects of static electricity but also the latch-up phenomenon caused by parasitic PNPN effects. In other words, when an abnormal potential is applied to the output terminal (or power supply terminal), a forward current flows through the junction between the N-type substrate and the P-well, and this current flows through the drain y of the P-channel MO8FET.
- Substrate - P-well - This is a phenomenon that triggers the PNPN thyristor parasitically constructed at the drain of the N-channel MO8FET.

以下に、近年の微細加工技術の進展を背景とする集積密
度の向上に、性能および機能の多様化の動向において、
従来の保護回路のもつ問題点を示し、同時に本発明のよ
り具体的な目的を述べる。
Below, we will discuss the trends in performance and function diversification as well as improvements in integration density against the background of recent advances in microfabrication technology.
Problems with conventional protection circuits will be shown, and at the same time, more specific objectives of the present invention will be described.

従来、各種の保護装置が実用化されているが、集@度の
向上に伴い、ゲート酸化膜厚およびトランジスタを構成
する不純物層の厚さが著しく減少し、保護装置の重要性
が増大している。たとえば、微細加工プロセスによる入
力保護装置は、保護装置を構成する不純物層が浅いため
、入力保護装置自体の静電気による破壊が問題となる。
Conventionally, various protection devices have been put into practical use, but with the improvement in density, the thickness of gate oxide films and the thickness of impurity layers that make up transistors have decreased significantly, and the importance of protection devices has increased. There is. For example, in an input protection device manufactured by a microfabrication process, since the impurity layer constituting the protection device is shallow, damage to the input protection device itself due to static electricity becomes a problem.

またMO8集積回路の出力端子は通常MOSトランジス
タのドレインに接続されるため、従来は特別な採種をし
なくとも実用上充分な静電気破壊耐量が確保されていた
が、微細加工の進展によシ、出力ドレイン接合の破壊1
直が低下し、特別な考慮が必要となった。
In addition, since the output terminal of an MO8 integrated circuit is usually connected to the drain of a MOS transistor, it used to be possible to ensure sufficient electrostatic breakdown resistance for practical use without any special seeding, but with advances in microfabrication, Destruction of output drain junction 1
The stability was reduced and special consideration was required.

本発明の第1の目的は、この様な微細加工プロセスによ
多形成される集積回路の入力および出力の保護装置を実
現することにある。
A first object of the present invention is to realize an input and output protection device for an integrated circuit formed by such a microfabrication process.

一般に静電破壊に対する保護装置は、高抵抗とダイオー
ド又はトランジスタの組合せによシ構成される。第1図
に従来の入力保護回路の例を示す。
Generally, protection devices against electrostatic discharge damage are constructed from a combination of high resistance and diodes or transistors. FIG. 1 shows an example of a conventional input protection circuit.

第1図の回路では、抵抗只の抵抗値は通常1〜2Ωが用
いられ、静電ストレスを緩和すると同時に入力に過電圧
が印加された場合の入力電流の制限がはかられている。
In the circuit shown in FIG. 1, the resistance value of the resistor is usually 1 to 2 Ω, which is intended to alleviate electrostatic stress and at the same time limit the input current when an overvoltage is applied to the input.

抵抗Rの出力側には電源VDDとVS3との間にそれぞ
れ逆方向接続されたダイオードD、、 、 D7.が接
続されている。しかし、この様な方式、すなわち高抵抗
を用いる入力保護は今日のICの多様な用途、性能の上
で充分なものではない。
On the output side of the resistor R, there are diodes D, , , D7, connected in opposite directions between the power supplies VDD and VS3, respectively. is connected. However, this type of input protection using high resistance is not sufficient for the various uses and performances of today's ICs.

第1の問題は、最近実用化の途にある高速CMOSロジ
ックICへの応用である。高速CMOSロジックの特に
ゲート品種においては、入力系路に挿入される高抵抗に
よる入力信号の時間的遅れが、IC全体の遅延の数10
%に達し、大きな損失となる。第2の問題は、前述の出
力に対する保護としては、高抵抗値を用いること自体が
できない点である。すなわち、高抵抗値によって出力電
圧の損失が生じ、実際に得られる出力電圧が低下してい
た。このため、ICの性能が大きくそこなわれる。
The first problem is the application to high-speed CMOS logic ICs, which are currently in the process of being put into practical use. In high-speed CMOS logic, especially gate types, the time delay of the input signal due to the high resistance inserted in the input path is several tens of times the delay of the entire IC.
%, resulting in a large loss. The second problem is that a high resistance value cannot be used as protection against the above-mentioned output. In other words, a high resistance value causes a loss in output voltage, resulting in a decrease in the actually obtained output voltage. As a result, the performance of the IC is greatly impaired.

本発明の第2の目的は、入力に対する保護にも、出力に
対する保護にも適用でき、また高速CMOSロジックへ
の応用も可能な高抵抗を用いない保護装置を実用化する
ことである。この点は、新しいLSIの製造システムと
して注目を集めているゲートアレイ方式においては保護
装置は配線前の基板にあらかじめ形成されており、さら
に入力と出力に割シ当てられる端子が決まっていないた
め、入力と出力の保護装置を同一の構成とすることが都
合が良い。
A second object of the present invention is to put into practical use a protection device that does not use high resistance and can be applied to both input protection and output protection, and can also be applied to high-speed CMOS logic. In this respect, in the gate array method, which is attracting attention as a new LSI manufacturing system, the protection device is pre-formed on the board before wiring, and furthermore, the terminals assigned to inputs and outputs are not determined. It is advantageous for the input and output protection devices to have the same configuration.

次にCMO8構造をもつICに重要な、ラッチアップに
対する保護において、従来の保護思想は満足できるもの
ではなかった。一般にCMO8ICのラッチアップには
3つのモードが知られている。
Next, with respect to protection against latch-up, which is important for ICs having a CMO8 structure, conventional protection ideas have not been satisfactory. Generally, three modes are known for latch-up of CMO8IC.

第1は出力端子からのトリガによるもの、第3は電源間
に高電圧のノイズパルスが印加される場合である。従来
の保護思想は、第1のモードに対しては、出力のPチャ
ネルトランジスタブロックとNチャネルトランジスタブ
ロックを分離し、NチャネルトランジスタブロックのP
ウェルとN壓基板およびPチャネルトランジスタのソー
スで構成されるPNP寄生トランジスタの寛流垢巾率を
低下させることであった。このためにPチャネルシトラ
ンジスタブロックとNチャネルトランジスタブロックの
間隔を拡げ平面的に分離する方法とか、間隔を実効的に
広げるために両ブロック間に電源電位に固定され九P+
領域あるいは1−領域を設置し、またその深さを制御す
るなどの多くの工夫が公知である。しかしながら結局の
ところ工程が複雑になったり、ペレット面積が大きくな
る等の欠点がある。また高抵抗を用いることは避けるべ
きものである。
The first case is due to a trigger from the output terminal, and the third case is when a high voltage noise pulse is applied between the power supplies. The conventional protection concept for the first mode is to separate the output P-channel transistor block and N-channel transistor block, and to
The objective was to reduce the current clearance rate of a PNP parasitic transistor consisting of a well, an N-type substrate, and a source of a P-channel transistor. For this purpose, there are methods to increase the distance between the P-channel transistor block and the N-channel transistor block and separate them in a plane, and to effectively widen the distance between the two blocks, the power supply potential is fixed to 9P+.
Many techniques are known, such as setting a region or one-region and controlling its depth. However, there are drawbacks such as the process becomes complicated and the pellet area becomes large. Also, use of high resistance should be avoided.

第2のモードに対し、現在検討されている対策は、エピ
タキシャル基板あるいけ埋込み層の導入によるシリーズ
抵抗の低減とか、極めて細い溝による分離であるが、こ
れらも原価が割高とならざるを得す、安価に信頼性の高
いICを提供することができなし1゜ 従って、本発明の第3の目的は、保護装置の適切な構成
によシ、内部回路に依存せずラッチアップ耐量を確保す
ることである。
Countermeasures currently being considered for the second mode include reducing the series resistance by introducing a buried layer in the epitaxial substrate, and separating by extremely thin grooves, but these also have to be expensive. Therefore, the third object of the present invention is to ensure latch-up resistance without depending on the internal circuit by appropriately configuring the protection device. That's true.

本発明の特徴は、入力端子と電源端子間に内部のMOS
)ランリスタのソース・ドレイン間耐圧より逆方向耐圧
の低い第1の保護ダイオードを挿入することおよび出力
端子および電源端子間I/c2棟の異なる特性を有する
ダイオードを並列に接続することとであり、2種のダイ
オードを内部のMOSトランジスタのソース・ドレイン
間耐圧よシ低い耐圧を有するダイオードと、よシ高耐圧
のダイオードとすることである。
The feature of the present invention is that an internal MOS is connected between the input terminal and the power supply terminal.
) Inserting a first protection diode with a reverse breakdown voltage lower than the source-drain breakdown voltage of the Lanristor, and connecting in parallel diodes with different characteristics for the two I/C blocks between the output terminal and the power supply terminal, The two types of diodes are one having a lower breakdown voltage than the source-drain breakdown voltage of the internal MOS transistor and the other having a higher breakdown voltage.

以下に図面を参照し本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第2図は本発明による第1の実施例で、CMOSインバ
ータに適用した場合である。図において、Qlはインバ
ータを構成するPチャネルトランジスタ、Q2HNチャ
ネルトランジスタ、Di、D2゜D3.D4.D5は逆
方向耐圧がトランジスタのソース・ドレイン間耐圧よシ
低いダイオード特に逆方向でレイクダウン領域で安定し
た導電が可能である意味でツェナーダイオードの記号を
用いたまだ、D6.D7.D8.D9.Dloは逆方向
耐圧がトランジスタのソース・ドレイン間耐圧よシ高9
ダイオード、Dll、Dl2.D131dCMO8構造
に寄生するダイオードである。
FIG. 2 shows a first embodiment of the present invention, which is applied to a CMOS inverter. In the figure, Ql is a P channel transistor constituting an inverter, Q2HN channel transistor, Di, D2°D3 . D4. D5 is a diode whose reverse breakdown voltage is lower than the source-drain breakdown voltage of a transistor.The symbol of Zener diode is used to mean that stable conduction is possible in the breakdown region, especially in the reverse direction.D6. D7. D8. D9. Dlo has a reverse breakdown voltage that is higher than the source-drain breakdown voltage of the transistor9.
Diode, Dll, Dl2. D131dThis is a diode parasitic to the CMO8 structure.

まず静電破壊に対する上記ダイメートの効果を示す。C
MOS  インバータの入力端子Aに印加される静電破
壊が問題となるのは、次の4つのケースを典捜的なモデ
ルとすることができる。印加される電圧が正又は負、接
地されると考えられる電源端子がVDD又はVSSで他
方は開放状態である場・合の組合せである。これらをそ
れぞれ対VDD正。
First, we will show the effect of the above-mentioned Dimate on electrostatic discharge damage. C
The following four cases can be considered as standard models in which electrostatic discharge damage applied to the input terminal A of a MOS inverter becomes a problem. This is a combination in which the applied voltage is positive or negative, the power supply terminal considered to be grounded is VDD or VSS, and the other is in an open state. These are respectively vs. VDD positive.

対■DD負、対VSS正、対VSS負と略記することと
する。尚電源端子VDDおよびVSSがいづれも接地又
は電源電位を与えられている時には、入力端子Aの静電
荷はダイオードDI、D6又はダイオードD2.D7の
いづれか順方向バイアスとなる方を介して放電されるの
で問題はない。
They will be abbreviated as vs. DD negative, vs. VSS positive, and vs. VSS negative. Note that when power supply terminals VDD and VSS are both grounded or supplied with a power supply potential, the static charge at input terminal A is transferred to diodes DI, D6 or diode D2. There is no problem because the discharge is carried out through whichever of D7 is forward biased.

まず、対VDD正の静電荷が存在する場合、VDD側に
接続されたダイオードD1およびD6が順方向となシ、
これらのダイオードを介して静電エネルギーの放出が行
なわれ実用上充分な破壊耐量が確保される。次に対VD
D負の静電荷が存在する場合はダイオードD1およびD
6が逆バイアスされるが、ダイオードD6の逆方向耐圧
が低いため、ダイオードD6を通して静電荷が流れる。
First, if there is a positive static charge with respect to VDD, the diodes D1 and D6 connected to the VDD side are in the forward direction.
Electrostatic energy is discharged through these diodes, and a practically sufficient breakdown strength is ensured. Next vs. VD
D If a negative electrostatic charge is present, the diodes D1 and D
6 is reverse biased, but since the reverse breakdown voltage of the diode D6 is low, static charges flow through the diode D6.

ダイオードD6を逆方向ブレイクダウン領域で安定した
導電が可能なダイオードとすることによシ、この時の破
壊耐量を向上させることができる。ダイオードD6の耐
圧としては、ゲート酸化膜の絶縁破壊耐力〜7 X 1
0’V/crrLを考慮する必要があるが、数10OA
以上のゲート酸化膜に対しては内部のMOS)ランリス
タのソース・ドレイン間耐圧よシ低くしておくと問題な
い。特に後述のラッチアップ耐量向上のためには内部の
MOS)ランリスタのソース・ドレイン間耐圧よシ低く
しておく必要があり、製造上も同じ構成にするとゲート
アレイ製品等のように保護ダイオードを入力保護として
も出力保護としても使いたい場合に有利である。
By making the diode D6 a diode capable of stable conduction in the reverse breakdown region, the breakdown resistance at this time can be improved. The breakdown voltage of the diode D6 is the dielectric breakdown strength of the gate oxide film ~7 x 1
It is necessary to consider 0'V/crrL, but several tens of OA
For the above gate oxide film, there is no problem if the breakdown voltage between the source and drain of the internal MOS (Run Lister) is made lower than that. In particular, in order to improve the latch-up resistance (described later), it is necessary to lower the withstand voltage between the source and drain of the internal MOS (MOS) runlister, and if the same configuration is used in manufacturing, a protection diode will be input as in gate array products. This is advantageous when you want to use it both as protection and as output protection.

この点従来の′入力保護装置においては、ダイオードの
順方向’lで保護していたので、ダイオードD6に相当
する逆方向特性が考慧されたダイオードが存在しないた
め特に負ストレスに対する耐量が劣っていた。
In this regard, in conventional input protection devices, protection was provided by the forward direction of the diode, and as there was no diode that was designed with reverse characteristics equivalent to diode D6, the ability to withstand negative stress was particularly poor. Ta.

以上VDDに対する正、負ストレスが印加された場合を
説明したが、対V8SストレスについてもダイオードD
2.D7が前述のDl、D6と同様の役割を果す。また
出力側の保護回路についても同様の効果があることはい
うまでもない。尚、静電破壊防止のためだけの場合、特
に入力保護に対してはダイオードDI 、 D7  は
あえて必要はない。ただ設けておくと、入力保護として
も利用でき、出力保護としても利用できるのでゲートア
レイ製品に便利である。
The case where positive and negative stresses are applied to VDD has been explained above, but the diode D
2. D7 plays the same role as Dl and D6 described above. It goes without saying that the output side protection circuit also has a similar effect. It should be noted that the diodes DI and D7 are not necessary for the purpose of preventing electrostatic discharge damage, especially for input protection. However, if provided, it can be used as input protection and output protection, which is convenient for gate array products.

次にラッチアップ現象を制限する効果について述べる。Next, the effect of limiting the latch-up phenomenon will be described.

たとえば出力端子YK電源電圧以上の過電圧が印加され
る場合、ダイオードD3.D8および寄生ダイオードD
12が順方向にバイアスされて電流が流れる。出力側に
ラッチアップが誘起される原因は、出力トランジスタに
寄生するダイオードD12に大′亀流が流れることによ
る。しかし本発明によるダイオードD8 、 D9  
の耐圧は内部のソース・ドレイン間耐圧よシ高く、いい
かえればPN接合のビルトインポテンシャルが低く順方
向電圧が寄生ダイオードD12.D13よυ低く設計さ
れてお9、出力端子よシ流入する電流が比較的小さい時
は、電流はすべてダイオードD8を通ってVDDに放出
されラッチアップを起こさない。電流が大きくなりダイ
オードD8のシリーズ抵抗のため、寄生ダイオードD1
2にも電流が流れはじめると通常の場合と同様にラッチ
アップに至ると考えられるがダイオードD8のバイパス
効果によりラッチアップ耐電流は大巾に向上する。すな
わち、耐圧の低いダイオードD3 、 D4  のみの
場合には高不純物濃度の接合で形成されるが、この時順
方向電圧は高くなる。従って、順方向バイアス時にダイ
オードD8.D9がないと電流はダイオードD3.D4
ではなく寄生ダイオードDI 2 、 Di3を通して
流れてしまう。この点耐圧の高いダイオードD8.D9
の順方向電圧は寄生ダイオードD12゜Di3の順方向
電圧よシ低く、順方向バイアス時有効にラッチアップを
防止できる。
For example, when an overvoltage higher than the output terminal YK power supply voltage is applied, the diode D3. D8 and parasitic diode D
12 is forward biased and current flows. The reason why latch-up is induced on the output side is that a large current flows through the diode D12 parasitic to the output transistor. However, the diodes D8, D9 according to the invention
The breakdown voltage of D12. It is designed to be lower than D139, and when the current flowing into the output terminal is relatively small, all the current is discharged to VDD through diode D8 and no latch-up occurs. As the current increases and due to the series resistance of diode D8, parasitic diode D1
When current begins to flow through the diode D8, it is thought that latch-up will occur as in the normal case, but the latch-up withstand current is greatly improved due to the bypass effect of the diode D8. That is, in the case of only diodes D3 and D4 having a low breakdown voltage, a junction with a high impurity concentration is formed, but in this case, the forward voltage becomes high. Therefore, when forward biased, diode D8. Without D9, the current flows through diode D3. D4
Instead, it flows through the parasitic diodes DI 2 and Di3. In this respect, the diode D8. has a high withstand voltage. D9
The forward voltage of the parasitic diode D12°Di3 is lower than that of the parasitic diode D12°Di3, and latch-up can be effectively prevented during forward bias.

次に電源間に過電圧が印加された場合の効果について述
べる。この場合に重要な保護装置は、本発明によるダイ
オードD5である。ダイオードD5の耐圧は内部トラン
ジスタのソース・ドレイン間耐圧よシ低く、又ICの使
用電源電圧より高く設定されなければならない。
Next, we will discuss the effect when overvoltage is applied between power supplies. An important protection device in this case is the diode D5 according to the invention. The breakdown voltage of the diode D5 must be set lower than the source-drain breakdown voltage of the internal transistor and higher than the power supply voltage used by the IC.

今日の4μルール又は3μルールにおいて設計されたS
iゲー)0MO8ICのPチャネルトランジスタおよび
Nチャネルトランジスタの耐圧は通常15〜20Ve度
であり、Nチャネルトランジスタに大きな電流を流しだ
場合のサスティン電圧は10〜12V程度である。また
IC使用時の電源電圧として1d5Vが通常用いられる
ので、ダイオードD5の耐圧は6v〜IOVの範囲に設
定するのが望ましい。このクランプダイオードD5によ
シ、電源間の過電圧はダイオードD5の耐圧でクランプ
され、内部のどのトランジスタもブレイクダウンに至ら
ず、ラッチアップが防止される。
S designed in today's 4μ rule or 3μ rule
The breakdown voltage of the P-channel transistor and N-channel transistor of i-game) 0 MO8 IC is usually 15 to 20 Ve degrees, and the sustain voltage when a large current is passed through the N-channel transistor is about 10 to 12V. Further, since 1d5V is normally used as the power supply voltage when using an IC, it is desirable to set the withstand voltage of the diode D5 in the range of 6V to IOV. This clamp diode D5 clamps the overvoltage between the power supplies to the withstand voltage of the diode D5, preventing any internal transistor from breaking down and preventing latch-up.

尚、ダイオードD10!−tラッチアップ防t[Idそ
れほど有効でなく、なくても良いが、ゲートアレイ製品
等保護装置の用途が定まらないものにあっては設けてお
く方が便利である。
In addition, diode D10! -t Latch-up prevention t[Id Although it is not so effective and may not be necessary, it is convenient to provide it for products such as gate array products where the use of the protection device is uncertain.

以上の低耐圧のダイオードDI、I)2.D3.D4゜
D5はS!ゲートCA40SICの通常の工種1で容易
に形成フ”ることかできる。SiゲートCMO8ICの
通常の工程に従いPウェルを形成后、P原子をたとえば
エネルギー50に’evでドーズ量4X101a儂 〜
2 X 10”cm−2をイオン注入し、引きつづき1
150℃1時間の熱処理を行なう。以後は通常の工程に
よ、9CMO8ICを形成する。この時、上記の条件に
よって形成されたN型不純物層とPチャネルトランジス
タのソースおよびドレインと同時罠形成されるP1型不
純物層とによって実現されるPN接合は本発明に関する
低耐圧ダイオードの要件を満たず。この時のPN接合付
近のN型不純物dKは2 X 1017cm、−”であ
る。
Low breakdown voltage diode DI, I) 2. D3. D4゜D5 is S! It can be easily formed using the usual process 1 for gate CA40SIC.After forming the P well according to the usual process for Si gate CMO8IC, P atoms are heated to an energy of 50'EV at a dose of 4X101a~.
Ion implantation of 2 x 10”cm-2 followed by 1
Heat treatment is performed at 150° C. for 1 hour. Thereafter, 9CMO8IC is formed by normal steps. At this time, the PN junction realized by the N-type impurity layer formed under the above conditions and the P1-type impurity layer formed simultaneously with the source and drain of the P-channel transistor satisfies the requirements for a low voltage diode according to the present invention. figure. At this time, the N-type impurity dK near the PN junction is 2 x 1017 cm, -''.

以上説明したように、本発明による入力保護装置は微細
加工プロセスによる8iゲ一トCMO8ICの静電スト
レス耐量の向上、ラッチアップ耐量の向上に有用であり
、しかも1工程を追加するだけで容易に形成される利点
をもつ、したがって安価で信頼性の窩いICを提供する
ことができる。
As explained above, the input protection device according to the present invention is useful for improving the electrostatic stress resistance and latch-up resistance of 8i gate CMO8IC through microfabrication process, and can be easily achieved by adding one process. It is therefore possible to provide an inexpensive and reliable cavity IC having the advantage of being formed.

なお、実施例において最も単純なCMO8インバータを
例としたが、内部回路がいかに複雑かつ大規模な回路で
あっても本発明による効果があることはいうまでもない
Although the simplest CMO8 inverter is used as an example in the embodiment, it goes without saying that the effects of the present invention can be obtained no matter how complex and large-scale the internal circuit is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の入力保護装置の回路図である、第2図は
本発明による入力保護回路を示す回路図である。 Ql・・・・・・インバータを構成するPチャネルトラ
ンジスタ、Q2・・・・・・インバータを構成するNチ
ャネルトランジスタ、Di 、 D2 、 D3 、 
D4 、 D5・・・・・・低耐圧のダイオード、D6
.D7.D8.D9.Dlo・・・・・・高耐圧のダイ
オード、Dll、Di2.Di3・・・・・・CMOS
構造に寄生するダイオード。
FIG. 1 is a circuit diagram of a conventional input protection device, and FIG. 2 is a circuit diagram showing an input protection circuit according to the present invention. Ql... P-channel transistor forming the inverter, Q2... N-channel transistor forming the inverter, Di, D2, D3,
D4, D5...Low breakdown voltage diode, D6
.. D7. D8. D9. Dlo...High voltage diode, Dll, Di2. Di3...CMOS
A diode parasitic to the structure.

Claims (1)

【特許請求の範囲】 1)使用されるMO8電界効果トランジスリスソース・
ドレイン間耐圧よシも低い逆方向耐圧をもつダイオード
を保護装置として用いたことを特徴とする相補型MO8
電界効実装置。 2)前記保護装置は入力を保護するのに使用される特許
請求の範囲第1項記載の相補型MO8電界効実装置。 3)前記保護ダイオードは前記ダイオードと並列に前記
MO8電界効果トランジスタのソース・ドレイン間耐圧
より高い逆方向耐圧をもつダイオードを接続してなる特
許請求の範囲第1項記載の相補型MO8t界効実装置。 4)前記保瞼ダイオードは出力を保護するのに使用され
る特許請求の範囲第1項記載の相補型MO8電界効実装
置。
[Claims] 1) MO8 field effect transistor source used
Complementary MO8 characterized in that a diode with a reverse breakdown voltage that is lower than the drain-to-drain breakdown voltage is used as a protection device.
Field effect device. 2) A complementary MO8 field effect device according to claim 1, wherein said protection device is used to protect an input. 3) The complementary MO8t field effect transistor according to claim 1, wherein the protection diode is a diode having a reverse breakdown voltage higher than the source-drain breakdown voltage of the MO8 field effect transistor connected in parallel with the diode. Device. 4) The complementary MO8 field effect device of claim 1, wherein the eyelid protection diode is used to protect the output.
JP58065824A 1983-04-14 1983-04-14 Complementary type metal oxide semiconductor field-effect device Granted JPS59191371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58065824A JPS59191371A (en) 1983-04-14 1983-04-14 Complementary type metal oxide semiconductor field-effect device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58065824A JPS59191371A (en) 1983-04-14 1983-04-14 Complementary type metal oxide semiconductor field-effect device

Publications (2)

Publication Number Publication Date
JPS59191371A true JPS59191371A (en) 1984-10-30
JPH0313754B2 JPH0313754B2 (en) 1991-02-25

Family

ID=13298157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58065824A Granted JPS59191371A (en) 1983-04-14 1983-04-14 Complementary type metal oxide semiconductor field-effect device

Country Status (1)

Country Link
JP (1) JPS59191371A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150072A (en) * 1988-11-30 1990-06-08 Fuji Electric Co Ltd Semiconductor device using input protecting circuit
EP0637843A1 (en) * 1993-08-06 1995-02-08 STMicroelectronics S.A. Integrated circuit protection against electrostatic discharges
US5936288A (en) * 1997-07-08 1999-08-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device and low breakdown voltage zener diode
JP2020080500A (en) * 2018-11-14 2020-05-28 ローム株式会社 Driver circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607375A (en) * 2012-03-22 2012-07-25 王建 Radial play measuring device for bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147187A (en) * 1975-06-12 1976-12-17 Fujitsu Ltd Semiconductor device
JPS5491067A (en) * 1977-12-28 1979-07-19 Nec Corp Input protective circuit
JPS574151A (en) * 1980-06-11 1982-01-09 Hitachi Ltd Mos integrated circuit device
JPS58162054A (en) * 1982-03-19 1983-09-26 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS58197870A (en) * 1982-05-14 1983-11-17 Hitachi Ltd Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147187A (en) * 1975-06-12 1976-12-17 Fujitsu Ltd Semiconductor device
JPS5491067A (en) * 1977-12-28 1979-07-19 Nec Corp Input protective circuit
JPS574151A (en) * 1980-06-11 1982-01-09 Hitachi Ltd Mos integrated circuit device
JPS58162054A (en) * 1982-03-19 1983-09-26 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS58197870A (en) * 1982-05-14 1983-11-17 Hitachi Ltd Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150072A (en) * 1988-11-30 1990-06-08 Fuji Electric Co Ltd Semiconductor device using input protecting circuit
EP0637843A1 (en) * 1993-08-06 1995-02-08 STMicroelectronics S.A. Integrated circuit protection against electrostatic discharges
FR2708788A1 (en) * 1993-08-06 1995-02-10 Sgs Thomson Microelectronics Protection of an integrated circuit against electrostatic overloads.
US5515225A (en) * 1993-08-06 1996-05-07 Sgs-Thomson Microelectronics S.A. Integrated circuit protected against electrostatic overvoltages
US5936288A (en) * 1997-07-08 1999-08-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device and low breakdown voltage zener diode
JP2020080500A (en) * 2018-11-14 2020-05-28 ローム株式会社 Driver circuit

Also Published As

Publication number Publication date
JPH0313754B2 (en) 1991-02-25

Similar Documents

Publication Publication Date Title
US5811857A (en) Silicon-on-insulator body-coupled gated diode for electrostatic discharge (ESD) and analog applications
EP0009782A1 (en) CMOS Semiconductor device
JP2878587B2 (en) Semiconductor device
US20170302066A1 (en) Integrated circuit electrostatic discharge protection
JPH06314773A (en) Semiconductor device
JP3061260B2 (en) Static electricity protection circuit
US5412527A (en) Electrostatic discharge protection circuit
US6323523B1 (en) N-type structure for n-type pull-up and down I/O protection circuit
TW548823B (en) ESD protection device coupled between a first high power line and a second high power line
US6317306B1 (en) Electrostatic discharge protection circuit
JPH0740050B2 (en) Voltage detection circuit
JPS59191371A (en) Complementary type metal oxide semiconductor field-effect device
JP2783191B2 (en) Semiconductor device protection circuit
KR960039345A (en) Input protection circuit and manufacturing method of semiconductor integrated circuit
US6808998B2 (en) Method for elimination of parasitic bipolar action in silicon on insulator (SOI) dynamic logic circuits
JPS6143468A (en) Protective circuit
JPS626347B2 (en)
US6121794A (en) High and low voltage compatible CMOS buffer
US20030205759A1 (en) Reduction of parasitic bipolar leakage current in silicon on insulator devices
JPH05267586A (en) Output protection network
JPS6085623A (en) Cmos integrated circuit device
JP2002100739A (en) Semiconductor device
JPH04343262A (en) Integrated circuit
JPH0449671A (en) Semiconductor device
KR20020013124A (en) Elector static discharge protection circuit