JPH04343262A - Integrated circuit - Google Patents

Integrated circuit

Info

Publication number
JPH04343262A
JPH04343262A JP3115159A JP11515991A JPH04343262A JP H04343262 A JPH04343262 A JP H04343262A JP 3115159 A JP3115159 A JP 3115159A JP 11515991 A JP11515991 A JP 11515991A JP H04343262 A JPH04343262 A JP H04343262A
Authority
JP
Japan
Prior art keywords
nmos
input
power supply
drain
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3115159A
Other languages
Japanese (ja)
Inventor
Koichiro Okumura
奥村 孝一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3115159A priority Critical patent/JPH04343262A/en
Publication of JPH04343262A publication Critical patent/JPH04343262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide an integrated circuit provided with an electrostatic protective circuit where an input current is prevented from increasing in intensity even if the potential of input signals is larger than that of a power supply. CONSTITUTION:An input protective section is composed of NMOSs 301 and 302 provided with a thick gate film, an input section is composed of a PMOS 303 and an NMOS 306 both provided with a thick gate film, and an inner circuit containing a PMOS 305 and an NMOS 306 is composed of MOSFETs provided with a thin gate film. Even if an input voltage is higher than a power supply voltage, a current is prevented from flowing in through an input terminal. A thick gate film is used in a part to which a high input voltage is applied, and a thin gate film is used in an inner circuit which operates by a power supply of low voltage, whereby an integrated circuit high in dielectric breakdown strength and excellent in high speed operation can be realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は集積回路に関し、特に入
力保護装置を内蔵した集積回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to integrated circuits, and more particularly to integrated circuits incorporating input protection devices.

【0002】0002

【従来の技術】従来の集積回路は、図5に示すように、
ソースとゲートを第1の電源端子VDDに接続され、ド
レインを入力端子Iに接続されたPチャネルMOSFE
T(以下PMOSと略す)501及び、ドレインを入力
端子Iに、ゲートとソースを第2の電源端子VSSに接
続されたNチャネルMOSFET(以下NMOSと略す
)502から成る入力保護部と、VDDにソースが接続
され、入力端子Iにゲートが接続されたPMOS503
と、ドレインをPMOS503のドレインに、ゲートを
入力端子にソースをVSSに接続されたNMOS504
からなる入力部と、PMOS503のドレインがゲート
に接続されたPMOS505及びNMOS506を含む
複数のPMOS及びNMOSからなる内部回路を含んで
いる。PMOS501とNMOS502から成る入力保
護部は入力部のPMOS503とNMOS504を静電
気によるゲート絶縁膜破壊から保護するために設けられ
ており、VSSに対してプラスの高電圧が入力端子Iに
印加された場合にはNMOS502のドレイン接合にブ
レークダウンが生じ大量の正孔がシリコン基板中に注入
されるため、NMOS502のドレイン・基板・ソース
で構成される横型NPNバイポーラトランジスタが導通
して電荷をVSSに放電し、VDDに対してプラスの高
電圧が入力端子Iに印加された場合には、PMOS50
1のドレインとPMOS501の基体であるNウェルで
構成されるP−NダイオードからNウェルを通ってVD
Dに放電することによって入力部のPMOS503及び
NMOS504のゲート絶縁膜破壊を防止する。VSS
又はVDDに対してマイナスの高電圧が入力端子Iに印
加された場合には、NMOS502のドレインと基板に
よるN−Pダイオードから基板を通ってVSSに放電し
、入力部を保護する。入力部のPMOSFET503と
NMOSFET504はインバータ回路を構成し、通常
動作時に入力端子Iからの入力信号を波形整形し反転信
号として内部回路へ転送する。転送された反転信号は内
部回路のPMOS505及びNMOS506で構成され
るインバータ回路で再び反転され入力端子と同相の信号
に変換した後に内部回路中の複数のPMOS及びNMO
Sで構成された論理ゲート郡で論理演算に使用される。
[Prior Art] A conventional integrated circuit, as shown in FIG.
A P-channel MOSFE whose source and gate are connected to the first power supply terminal VDD and whose drain is connected to the input terminal I.
An input protection unit consisting of a T (hereinafter abbreviated as PMOS) 501 and an N-channel MOSFET (hereinafter abbreviated as NMOS) 502 whose drain is connected to the input terminal I and whose gate and source are connected to the second power supply terminal VSS, and to VDD. PMOS503 whose source is connected and whose gate is connected to input terminal I
and NMOS504 whose drain is connected to the drain of PMOS503, whose gate is connected to the input terminal and whose source is connected to VSS.
and an internal circuit made up of a plurality of PMOSs and NMOSs, including a PMOS 505 and an NMOS 506 in which the drain of the PMOS 503 is connected to the gate. The input protection section consisting of PMOS 501 and NMOS 502 is provided to protect the input section PMOS 503 and NMOS 504 from breakdown of the gate insulating film due to static electricity. Since breakdown occurs in the drain junction of the NMOS 502 and a large amount of holes are injected into the silicon substrate, the lateral NPN bipolar transistor consisting of the drain, substrate, and source of the NMOS 502 becomes conductive and discharges the charge to VSS. When a high voltage positive with respect to VDD is applied to input terminal I, PMOS50
VD is passed through the N-well from the P-N diode consisting of the drain of 1 and the N-well which is the base of PMOS501.
By discharging to D, breakdown of the gate insulating films of the PMOS 503 and NMOS 504 in the input section is prevented. VSS
Alternatively, when a high voltage negative with respect to VDD is applied to the input terminal I, it is discharged from the N-P diode formed by the drain of the NMOS 502 and the substrate to VSS through the substrate to protect the input section. PMOSFET 503 and NMOSFET 504 in the input section constitute an inverter circuit, which shapes the waveform of the input signal from input terminal I during normal operation and transfers it to the internal circuit as an inverted signal. The transferred inverted signal is inverted again by an inverter circuit consisting of PMOS 505 and NMOS 506 in the internal circuit, and converted into a signal in phase with the input terminal.
A group of logic gates consisting of S is used for logic operations.

【0003】0003

【発明が解決しようとする課題】この従来の集積回路に
おいては入力端子Iに入力される信号のハイレベルが集
積回路の電源電圧より大きい場合には、入力端子側から
集積回路に電流が流れてしまい消費電力が非常に大きく
なってしまうという問題点があった。例えば図5におい
て入力端子Iに入力される信号が0Vから5Vの振幅を
もち、集積回路の電源端子VDDが3.3V,VSSが
0Vの時には、入力信号が5Vになった時には入力端子
Iに接続されたPMOS501のドレイン(P型)とP
MOS501の基体であるNウェル(N型)で形成され
たPN接合ダイオードに5−3.3=1.7Vの順方向
のバイアスがかかり、入力端子IからVDDに向って電
流が流れてしまう。この為に、デザインルールの微細化
に伴う電源電圧の低下の過程において異なる電源電圧を
もつ集積回路の入出力を接続する場合には大きな障害と
なる。
[Problem to be Solved by the Invention] In this conventional integrated circuit, when the high level of the signal input to the input terminal I is higher than the power supply voltage of the integrated circuit, current flows from the input terminal side to the integrated circuit. However, there is a problem in that the power consumption becomes extremely large. For example, in FIG. 5, when the signal input to the input terminal I has an amplitude of 0V to 5V, and the power supply terminal VDD of the integrated circuit is 3.3V and VSS is 0V, when the input signal reaches 5V, the input terminal I The drain (P type) of the connected PMOS501 and P
A forward bias of 5-3.3=1.7V is applied to a PN junction diode formed of an N-well (N-type) that is the base of the MOS 501, and a current flows from the input terminal I toward VDD. This poses a major problem when connecting inputs and outputs of integrated circuits having different power supply voltages in the process of decreasing power supply voltages due to miniaturization of design rules.

【0004】0004

【課題を解決するための手段】本発明の集積回路は、第
1の電源端子と第2の電源端子と入力端子と第1の電源
端子にドレインが接続され、第2の電源端子にゲートが
接続され入力端子にソースが接続された第1のNMOS
と入力端子にドレインが接続され第2の電源端子にゲー
トとソースが接続された第2のNMOSからなる入力保
護部と、第1の電源端子にソースが接続され、入力端子
にゲートが接続された第1のPMOSと、第1のPMO
Sのドレインにドレインが接続され、入力端子にゲート
が接続され、第2の電源端子にソースが接続された第3
のNMOSからなる入力部と、第1のPMOSのドレイ
ンに接続された信号線を入力とし、複数のPMOS及び
NMOSからなる内部回路を備えている。
[Means for Solving the Problems] The integrated circuit of the present invention has a drain connected to a first power terminal, a second power terminal, an input terminal, and the first power terminal, and a gate connected to the second power terminal. a first NMOS connected and having a source connected to an input terminal;
and an input protection unit consisting of a second NMOS whose drain is connected to the input terminal and whose gate and source are connected to the second power supply terminal, and whose source is connected to the first power supply terminal and whose gate is connected to the input terminal. the first PMOS and the first PMO
A third circuit whose drain is connected to the drain of S, whose gate is connected to the input terminal, and whose source is connected to the second power supply terminal.
The input section includes an input section consisting of an NMOS, and a signal line connected to the drain of the first PMOS as input, and an internal circuit consisting of a plurality of PMOS and NMOS.

【0005】[0005]

【実施例】次に本発明について図面を参照して説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0006】図1は本発明の一実施例を示す回路図であ
り、第1の電源端子VDDにドレインが接続され、ゲー
トが第2の電源端子VSSに接続され、ソースが入力端
子Iに接続された第1のNMOS101と、ドレインが
入力端子Iに接続され、ゲートとソースがVSSに接続
された第2のNMOS102で構成される入力保護部と
、ソースがVDDに接続され、ゲートが入力端子Iに接
続された第1のPMOS103と、PMOS103のド
レインにドレインが接続され、ゲートが入力端子Iに接
続され、ソースがVSSに接続された第3のNMOS1
04からなら入力部と、PMOS103のドレインと接
続された信号線がゲートに供給されたPMOS105及
びNMOS106を含み、複数のNMOS及びPMOS
からなる内部回路で構成されている。静電気等で過大な
電圧が印加された場合、VSSに対してプラスの電圧に
はNMOS102のドレイン接合がブレークダウンして
基板に正孔が注入されNMOS102のドレイン・基板
・ソースをエミッタ・ベース・コレクタとするNPNト
ランジスタを通して電荷を放電することは図5の従来例
と同一であるが、VDDに対してプラスが印加された場
合には、本実施例では、NMOS101のソース接合が
ブレークダウンしてソース・基板・ドレインのNPNト
ランジスタを導通させることにより電荷をVDDに放電
する。この場合にVSSの電位はフローティングとなっ
ているがNMOS101の電荷放電能力はVSSに対し
てプラスを印加した場合のNMOS102(ゲートはV
SSに接続されているので0V)の電荷放電能力と同等
であること見いだし本発明に至った。VSS又はVDD
に対してマイナスの高電圧が印加された場合にはNMO
S101のソース接合及びNMOS102のドレイン接
合を通じてVSSへ放電することにより入力部のPMO
S103及びNMOS104のゲート絶縁膜の破壊を防
止する。入力部のPMOS103及びNMOS104又
、内部回路のPMOS105及びNMOS106の働き
は第5図の従来例におけるPMOS503及びNMOS
504又内部回路のPMOS505及びNMOS506
の働きと同一である。本実施例においては、入力端子I
への入力信号電圧がVDD−VSS間の電位差より大き
い場合、例えば入力信号が5VでありVDDが3.3V
,VSSが0Vの場合においても、NMOS101及び
NMOS102はいずれもゲートが0Vとなっているの
で非導通であり、また入力端子につながる接合はNMO
S101のソース接合、NMOS102のドレイン接合
共にP型基板上にN型拡散層の構造であり、N型領域に
5V印加の逆方向バイアス状態となるため、入力端子か
ら流れ込む電流が無いという利点が生じる。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which a drain is connected to a first power supply terminal VDD, a gate is connected to a second power supply terminal VSS, and a source is connected to an input terminal I. an input protection unit consisting of a first NMOS 101 whose drain is connected to the input terminal I, a second NMOS 102 whose gate and source are connected to VSS, whose source is connected to VDD, and whose gate is connected to the input terminal A first PMOS 103 connected to I, and a third NMOS 1 whose drain is connected to the drain of PMOS 103, whose gate is connected to the input terminal I, and whose source is connected to VSS.
If it is from 04, it includes an input section, PMOS105 and NMOS106 whose gate is supplied with a signal line connected to the drain of PMOS103, and multiple NMOS and PMOS
It consists of an internal circuit consisting of. When an excessive voltage is applied due to static electricity, etc., the drain junction of NMOS 102 breaks down and holes are injected into the substrate due to a positive voltage with respect to VSS, and the drain, substrate, and source of NMOS 102 are connected to the emitter, base, and collector. Discharging the charge through the NPN transistor is the same as in the conventional example shown in FIG. - Discharge the charge to VDD by turning on the NPN transistor on the substrate and drain. In this case, the potential of VSS is floating, but the charge discharging ability of NMOS101 is different from that of NMOS102 (gate is VSS) when a positive voltage is applied to VSS.
Since it is connected to SS, it was found that the charge discharging ability is equivalent to that of 0V), leading to the present invention. VSS or VDD
When a negative high voltage is applied to NMO
The input PMO is discharged to VSS through the source junction of S101 and the drain junction of NMOS102.
This prevents destruction of the gate insulating films of S103 and NMOS104. The functions of the PMOS 103 and NMOS 104 in the input section and the PMOS 105 and NMOS 106 in the internal circuit are similar to those of the PMOS 503 and NMOS in the conventional example shown in FIG.
504 and internal circuit PMOS505 and NMOS506
The function is the same as that of In this embodiment, the input terminal I
If the input signal voltage is greater than the potential difference between VDD and VSS, for example, the input signal is 5V and VDD is 3.3V.
, even when VSS is 0V, both NMOS101 and NMOS102 are non-conductive because their gates are at 0V, and the junction connected to the input terminal is NMOS
Both the source junction of S101 and the drain junction of NMOS102 have the structure of an N-type diffusion layer on a P-type substrate, and because they are in a reverse bias state with 5V applied to the N-type region, there is an advantage that no current flows from the input terminal. .

【0007】図2(a)は第1図の実施例の回路をP型
の基板上に2層のメタル配線を用いて集積回路とした場
合の平面図であり、図2(b)は図2(a)におけるA
A′に沿った継面図である。図2(a)及び(b)にお
いて、200はP型のシリコン基板、201はNウェル
、202はN型拡散層、203はP型拡散層、204は
ポリシリコン、205は第1メタル、206は第2メタ
ル、207はN型又はP型の拡散層と第1メタル間のコ
ンタクトホール、208はポリシリコンと第1メタル間
のコンタクトホール、209は第1メタルと第2メタル
間のスルーホール、210は絶縁膜を示す。PMOSの
ソース・ドレイン領域と同程度の濃い不純物濃度をもつ
電荷収集用P型拡散層203aを入力保護部のNMOS
101のソース近傍とNMOS102のドレイン近傍に
設けメタル層を用いてVSS端子に接続することによっ
てNMOS101のソース接合およびNMOS102の
ドレイン接合ダイオードのP型基板側の低不純物濃度に
よる直列抵抗を最小限におさえ、入力端子IにVDD又
はVSSに対してマイナスの高電圧が印加された時にN
MOS101のソース接合及びNMOS102のドレイ
ン接合を通じてP型基板に注入された電荷を速やかにV
SSに放電することができるため、保護能力が向上する
FIG. 2(a) is a plan view of the circuit of the embodiment shown in FIG. 1 formed into an integrated circuit using two layers of metal wiring on a P-type substrate, and FIG. 2(b) is a plan view of the circuit of the embodiment shown in FIG. A in 2(a)
It is a joint view along A'. 2A and 2B, 200 is a P-type silicon substrate, 201 is an N-well, 202 is an N-type diffusion layer, 203 is a P-type diffusion layer, 204 is polysilicon, 205 is a first metal, 206 is the second metal, 207 is the contact hole between the N-type or P-type diffusion layer and the first metal, 208 is the contact hole between the polysilicon and the first metal, and 209 is the through hole between the first metal and the second metal. , 210 indicates an insulating film. The P-type diffusion layer 203a for charge collection, which has the same high impurity concentration as the source/drain region of the PMOS, is used as the input protection part of the NMOS.
By connecting to the VSS terminal using a metal layer provided near the source of NMOS 101 and near the drain of NMOS 102, the series resistance due to the low impurity concentration on the P-type substrate side of the source junction of NMOS 101 and the drain junction diode of NMOS 102 is minimized. , when a high voltage negative with respect to VDD or VSS is applied to input terminal I, N
Charges injected into the P-type substrate through the source junction of MOS 101 and the drain junction of NMOS 102 are quickly converted to V.
Since it can be discharged to SS, the protection ability is improved.

【0008】図3は本発明の第2の実施例の回路図であ
る。図3のNMOS301,NMOS302,PMOS
303,NMOS304,PMOS305,NMOS3
06はそれぞれ図1のNMOS101,NMOS102
,PMOS103,NMOS104,PMOS105,
NMOS106に対応するが、本第2実施例においては
、入力保護部のNMOS301とNMOS302及び入
力部のPMOS303とNMOS304のゲート絶縁膜
厚がPMOS305,NMOS306を含む内部回路を
構成するPMOS及びNMOSのゲート絶縁膜厚より厚
い点が異なっている。一般にMOSFETのコンダクタ
ンスはゲート絶縁膜厚の逆数に比例して大きくなるため
、内部回路のゲート絶縁膜厚は薄いほど高速動作が可能
となるので望ましいが、一方、ゲート絶縁膜が長時間に
渡って絶縁性を維持するためにはゲート絶縁膜中の電界
を3〜4MV/cm以下に押さえる必要があることが知
られており、ゲート絶縁膜厚が厚い方が絶縁性の維持の
上では望ましい。
FIG. 3 is a circuit diagram of a second embodiment of the present invention. NMOS301, NMOS302, PMOS in Figure 3
303, NMOS304, PMOS305, NMOS3
06 are NMOS101 and NMOS102 in Fig. 1, respectively.
, PMOS103, NMOS104, PMOS105,
However, in the second embodiment, the gate insulation film thickness of NMOS 301 and NMOS 302 in the input protection section and PMOS 303 and NMOS 304 in the input section is the same as that of the PMOS and NMOS forming the internal circuit including PMOS 305 and NMOS 306. The difference is that it is thicker than the film. Generally, the conductance of a MOSFET increases in proportion to the reciprocal of the gate insulating film thickness, so the thinner the gate insulating film of the internal circuit is, the better it can operate at high speed. It is known that in order to maintain insulating properties, it is necessary to suppress the electric field in the gate insulating film to 3 to 4 MV/cm or less, and a thicker gate insulating film is desirable in terms of maintaining insulating properties.

【0009】従って、集積回路に供給される電源電圧よ
り入力端子Iに供給される入力信号のハイレベルが高い
時には、図3の第2実施例に示すように、入力端子に接
続されるNMOS301,NMOS302,PMOS3
03,NMOS304のゲート絶縁膜を厚く、内部回路
を構成するPMOS305,NMOS306を含む複数
のPMOS及びNMOSのゲート絶縁膜を薄くすること
が高速動作が可能で長期信頼性の良い集積回路を実現す
る上で適切である。例えばVDD=3.3V,VSS=
0Vで入力端子のハイレベルが5Vの場合では、NMO
S301,NMOS302,PMOS303,NMOS
304のゲート絶縁膜厚は15nm程度とし、PMOS
305,NMOS306を含む内部回路のPMOS及び
NMOSのゲート絶縁膜厚は10nm程度が適当である
Therefore, when the high level of the input signal supplied to the input terminal I is higher than the power supply voltage supplied to the integrated circuit, as shown in the second embodiment of FIG. NMOS302, PMOS3
03. Thickening the gate insulating film of NMOS 304 and thinning the gate insulating films of multiple PMOS and NMOS including PMOS 305 and NMOS 306 that make up the internal circuit can realize an integrated circuit that can operate at high speed and has good long-term reliability. is appropriate. For example, VDD=3.3V, VSS=
When the high level of the input terminal is 5V at 0V, NMO
S301, NMOS302, PMOS303, NMOS
The gate insulating film thickness of 304 is about 15 nm, and PMOS
Appropriately, the gate insulating film thickness of the PMOS and NMOS of the internal circuit including the NMOS 305 and NMOS 306 is about 10 nm.

【0010】図4(a)及び(b)はそれぞれゲート絶
縁膜厚の異なるNMOSの断面図を示しており、401
はP型シリコン基板、402a及び402bはゲート絶
縁膜、403はポリシリコンゲート電極、404はN型
拡散領域、405は絶縁膜である。図4(a)のゲート
絶縁膜の厚いNMOSと図4(b)のゲート絶縁膜の薄
いNMOSを同一基板401上に作り分けるには、まず
ゲート絶縁膜402aを基板401上全面に渡って熱酸
化等で所定の膜厚に形成した後に、ゲート絶縁膜厚の厚
いNMOS(a)の予定領域をフォトレジストで被い、
ゲート絶縁膜の薄いNMOS(b)の予定領域の絶縁膜
(シリコン酸化膜)をフッ酸等で除去する。次にフォト
レジストを除去した後に、基板全面に渡ってゲート絶縁
膜を熱酸化等でゲート絶縁膜の薄いNMOS(b)に合
わせた厚さ分形成する。その後は通常の製造工程を通す
ことによりゲート絶縁膜厚の異なるNMOSを形成する
ことができる。PMOSについてもNMOSのゲート絶
縁膜形成と同時に同一の方法を適用することによりゲー
ト絶縁膜厚の異なるPMOSを作成できることは明らか
である。
FIGS. 4(a) and 4(b) respectively show cross-sectional views of NMOSs with different gate insulating film thicknesses.
is a P-type silicon substrate, 402a and 402b are gate insulating films, 403 is a polysilicon gate electrode, 404 is an N-type diffusion region, and 405 is an insulating film. In order to separate the NMOS with a thick gate insulating film in FIG. 4(a) and the NMOS with a thin gate insulating film in FIG. 4(b) on the same substrate 401, first heat the gate insulating film 402a over the entire surface of the substrate 401. After forming the film to a predetermined thickness by oxidation, etc., cover the planned region of NMOS (a) with a thick gate insulating film with photoresist,
The insulating film (silicon oxide film) in the intended area of the NMOS (b) with a thin gate insulating film is removed using hydrofluoric acid or the like. Next, after removing the photoresist, a gate insulating film is formed over the entire surface of the substrate by thermal oxidation or the like to a thickness matching the thin NMOS (b) of the gate insulating film. Thereafter, NMOSs having different gate insulating film thicknesses can be formed by going through normal manufacturing steps. It is clear that PMOSs having different gate insulating film thicknesses can be created by applying the same method to the PMOS gate insulating film at the same time as forming the NMOS gate insulating film.

【0011】尚、第1実施例である図1の回路構成及び
第2実施例である図2の回路構成のいずれの場合でも、
入力端子Iと入力保護用NMOS101,102あるい
はNMOS301,302の接続点との間に、抵抗を挿
入することにより、静電気によるパルス状電圧のピーク
電圧を実効的に低減できるため、保護能力を強化できる
ので高速性を損わない範囲の値のN型拡散層抵抗を設け
ることは有効である。
[0011] In both the circuit configuration of the first embodiment shown in FIG. 1 and the circuit configuration of the second embodiment shown in FIG.
By inserting a resistor between the input terminal I and the connection point of the input protection NMOS 101, 102 or NMOS 301, 302, the peak voltage of the pulsed voltage due to static electricity can be effectively reduced, so the protection ability can be strengthened. Therefore, it is effective to provide an N-type diffusion layer resistance with a value within a range that does not impair high speed performance.

【0012】0012

【発明の効果】以上説明したように、本発明は、入力保
護部をゲートをVSSに接続したNMOSで構成してい
るため、入力端子の入力信号のハイレベルが集積回路の
電源電圧より大きい場合においても、入力端子から集積
回路側へ電流が流れ込まないという効果を有する。更に
入力保護部及び入力部のMOSFETのゲート絶縁膜厚
を内部回路のMOSFETのゲート絶縁膜厚より厚くす
ることにより長期信頼性が良好でかつ高速性に優れた集
積回路を提供することができる。
[Effects of the Invention] As explained above, in the present invention, since the input protection section is composed of an NMOS whose gate is connected to VSS, when the high level of the input signal at the input terminal is higher than the power supply voltage of the integrated circuit, This also has the effect that no current flows from the input terminal to the integrated circuit side. Further, by making the gate insulating film thickness of the MOSFET in the input protection section and the input section thicker than that of the MOSFET in the internal circuit, an integrated circuit with good long-term reliability and excellent high speed can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の回路図である。FIG. 1 is a circuit diagram of an embodiment of the present invention.

【図2】図1の回路を実現した集積回路であり、(a)
な平面図、(b)は(a)のAA′に沿った断面図であ
る。
[Figure 2] An integrated circuit that realizes the circuit in Figure 1, (a)
(b) is a cross-sectional view taken along line AA' in (a).

【図3】本発明の別の実施例の回路図である。FIG. 3 is a circuit diagram of another embodiment of the invention.

【図4】NMOSの断面図であり、(a)はゲート絶縁
膜が厚いものを示し(b)は薄いものを示す。
FIG. 4 is a cross-sectional view of an NMOS, in which (a) shows one with a thick gate insulating film and (b) shows one with a thin gate insulating film.

【図5】従来の集積回路の回路図である。FIG. 5 is a circuit diagram of a conventional integrated circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1の電源端子と第2の電源端子と入
力端子と前記第1の電源端子にドレインが接続され、前
記第2の電源端子にゲートが接続され、前記入力端子に
ソースが接続された第1のNチャネルMOSFETと、
前記入力端子にドレインが接続され、前記第2の電源端
子にゲートとソースが接続された第2のNチャネルMO
SFETと、前記第1の電源端子にソースが接続され、
前記入力端子にゲートが接続された第1のPチャネルM
OSFETと、前記第1のPチャネルMOSFETのド
レインにドレインが接続され、前記入力端子にゲートが
接続され、前記第2の電源端子にソースが接続された第
3のNチャネルMOSFETと、前記第1のPチャネル
MOSFETのドレインに接続された信号線を入力とす
る複数のPチャネルMOSFET及びNチャネルMOS
FETからなる内部回路を備えることを特徴とする集積
回路。
1. A first power supply terminal, a second power supply terminal, an input terminal, a drain connected to the first power supply terminal, a gate connected to the second power supply terminal, and a source connected to the input terminal. a first N-channel MOSFET connected;
a second N-channel MO whose drain is connected to the input terminal, and whose gate and source are connected to the second power supply terminal;
A source is connected to the SFET and the first power supply terminal,
a first P channel M whose gate is connected to the input terminal;
a third N-channel MOSFET whose drain is connected to the drain of the first P-channel MOSFET, whose gate is connected to the input terminal, and whose source is connected to the second power supply terminal; Multiple P-channel MOSFETs and N-channel MOS whose input is the signal line connected to the drain of the P-channel MOSFET.
An integrated circuit characterized by comprising an internal circuit consisting of a FET.
【請求項2】  請求項1記載の集積回路において、前
記第1,第2,第3のNチャネルMOSFET及び前記
第1のPチャネルMOSFETのゲート絶縁膜厚が内部
回路を構成するNチャネルMOSFET及びPチャネル
MOSFETのゲート絶縁膜厚より厚いことを特徴とす
る集積回路。
2. The integrated circuit according to claim 1, wherein gate insulating film thicknesses of the first, second, and third N-channel MOSFETs and the first P-channel MOSFET are the same as those of the N-channel MOSFETs and the first P-channel MOSFETs constituting the internal circuit. An integrated circuit characterized by being thicker than a gate insulating film of a P-channel MOSFET.
JP3115159A 1991-05-21 1991-05-21 Integrated circuit Pending JPH04343262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3115159A JPH04343262A (en) 1991-05-21 1991-05-21 Integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3115159A JPH04343262A (en) 1991-05-21 1991-05-21 Integrated circuit

Publications (1)

Publication Number Publication Date
JPH04343262A true JPH04343262A (en) 1992-11-30

Family

ID=14655795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3115159A Pending JPH04343262A (en) 1991-05-21 1991-05-21 Integrated circuit

Country Status (1)

Country Link
JP (1) JPH04343262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153891A (en) * 1996-04-08 2010-07-08 Renesas Electronics Corp Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153891A (en) * 1996-04-08 2010-07-08 Renesas Electronics Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US5903420A (en) Electrostatic discharge protecting circuit having a plurality of current paths in both directions
KR100302535B1 (en) SOI type semiconductor device and bias voltage generator with variable threshold voltage
US5811857A (en) Silicon-on-insulator body-coupled gated diode for electrostatic discharge (ESD) and analog applications
US5751042A (en) Internal ESD protection circuit for semiconductor devices
JP3386042B2 (en) Semiconductor device
JP2633746B2 (en) Semiconductor device
JP2710113B2 (en) Integrated circuits using complementary circuit technology
JPH08222643A (en) Input protective circuit for semiconductor device
EP0538752B1 (en) Semiconductor input protective device against external surge voltage
JP3320872B2 (en) CMOS integrated circuit device
US20030043517A1 (en) Electro-static discharge protecting circuit
JPH0555251A (en) Mos transistor
US6624479B2 (en) Semiconductor device having a protective circuit
JP2001291836A (en) Semiconductor device for protection against static electricity
JPS63244874A (en) Input protective circuit
JPH04343262A (en) Integrated circuit
KR100212610B1 (en) Input protection circuit and method of fabricating semiconductor integrated circuit
JP2737629B2 (en) Semiconductor device having output circuit of CMOS configuration
JPH02238668A (en) Semiconductor device
KR19980043416A (en) ESD protection circuit
JP3114338B2 (en) Semiconductor protection device
JPS6112693Y2 (en)
JP3439624B2 (en) CMOS integrated circuit protection circuit and CMOS integrated circuit having protection function
JPS59158546A (en) Complementary type metal oxide semiconductor integrated circuit device
JPS5814573A (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000704