JPS6112693Y2 - - Google Patents

Info

Publication number
JPS6112693Y2
JPS6112693Y2 JP1984185340U JP18534084U JPS6112693Y2 JP S6112693 Y2 JPS6112693 Y2 JP S6112693Y2 JP 1984185340 U JP1984185340 U JP 1984185340U JP 18534084 U JP18534084 U JP 18534084U JP S6112693 Y2 JPS6112693 Y2 JP S6112693Y2
Authority
JP
Japan
Prior art keywords
conductivity type
diffusion layer
gate
junction
well region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984185340U
Other languages
Japanese (ja)
Other versions
JPS60113653U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18534084U priority Critical patent/JPS60113653U/en
Publication of JPS60113653U publication Critical patent/JPS60113653U/en
Application granted granted Critical
Publication of JPS6112693Y2 publication Critical patent/JPS6112693Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔技術分野〕 本考案はMOS−IC(絶縁ゲート電界効果素子
集積回路)の外部電界に依る破壊防止に関するさ
らに詳しくは、外部接続端子と係合するゲートに
静電気等に依つて加わる高電圧に依るゲート膜の
絶縁破壊を防ぐことを主なる目的とし、さらに上
記保護対策をICに組込むことに依る製造保留り
の低下、加えて保護素子自体の破壊を防ぐことを
目的とする。
[Detailed Description of the Invention] [Technical Field] The present invention relates to preventing destruction of MOS-ICs (insulated gate field effect device integrated circuits) due to external electric fields. The main purpose is to prevent dielectric breakdown of the gate film due to the high voltage that is applied to the IC, and also to reduce manufacturing backlog by incorporating the above protection measures into the IC, as well as to prevent destruction of the protection element itself. shall be.

〔従来技術〕[Prior art]

一般に用いられるMOS素子の例は第1図に示
される構成である。第1図はPチヤネルMOS素
子の例であり、Nタイプ低濃度基板10にPタイ
プ高濃度拡散で作るソース12、およびドレイン
11とSio2等の薄い絶縁層15を介してAl等の金
属でできたゲート電極17で構成される。18は
酸化膜の穴を介し、ドレイン11と接続するドレ
イン電極であり、19はソース電極であつて上例
の場合Nタイプ高濃度拡散層13に依つて基板1
0とのオーミツクな接続な可能としている。16
は配線容量を減ずる目的等で形成された厚い絶縁
層である。上記素子においてはゲート電極17の
基板10に対する電位に依り、ドレイン11、ソ
ース12間の電流を制御できる。
An example of a commonly used MOS element has the configuration shown in FIG. Figure 1 shows an example of a P-channel MOS device, in which a source 12 made by high-concentration P-type diffusion is formed on an N-type low-concentration substrate 10, and a metal such as Al is connected to the drain 11 and a thin insulating layer 15 such as Sio2 . It is composed of the gate electrode 17 thus formed. 18 is a drain electrode connected to the drain 11 through a hole in the oxide film, and 19 is a source electrode, which in the above example is connected to the substrate 1 by the N type high concentration diffusion layer 13.
0 is possible. 16
is a thick insulating layer formed for the purpose of reducing wiring capacitance. In the above device, the current between the drain 11 and the source 12 can be controlled depending on the potential of the gate electrode 17 with respect to the substrate 10.

また、PチヤネルMOS素子とチヤネルMOS素
子を組合せたCMOS回路(相補型MOS回路)は
マイクロアンペア単位の消費電力に依る論理回路
を可能にするものとして多くの目的の集積回路で
実現されつつあるが基本的な構成は第2図に示す
ように例えばNタイプの低濃度基板30中にPタ
イプの低濃度層31を形成し、32,33は各各
NチヤネルMOS素子のソース・ドレイン、3
6,37はPチヤネルMOS素子のドレイン・ソ
ースであつて、各々のドレイン33,36は電極
44に依り接続されてCMOS素子の出力端とな
り、各々のゲート42,43も共通電位で駆動さ
れる入力端となる。P層34およびN層38は素
子間の結合を防ぎ、かつ各々の基板へ電位を与え
る目的の高濃度拡散層でガードリング、またはス
トツパと呼ばれる。45,46は各々ソースおよ
び基板の電極であつて、極45はマイナス、極4
6はプラス電位を与えられる。40はゲート膜、
41は絶縁膜である。上記で明らかなようにC−
MOS素子の耐圧はゲート膜40の絶縁耐圧、P
層31、N層30の2つのタイプの基板およびド
レイン33とP層31、ドレイン36とN層30
の各々の逆接合の耐圧の総てを総合した耐圧とし
て考えられる。
In addition, CMOS circuits (complementary MOS circuits) that combine P-channel MOS elements and channel MOS elements are being realized in integrated circuits for many purposes as they enable logic circuits that consume power in microamperes. The basic structure is as shown in FIG. 2, for example, a P type low concentration layer 31 is formed in an N type low concentration substrate 30, 32 and 33 are the source and drain of each N channel MOS element, and 3
Reference numerals 6 and 37 are the drain and source of the P-channel MOS device, and the drains 33 and 36 of each are connected by an electrode 44 to serve as the output terminal of the CMOS device, and the gates 42 and 43 of each are also driven by a common potential. This is the input end. The P layer 34 and the N layer 38 are high concentration diffusion layers called guard rings or stoppers for the purpose of preventing coupling between elements and applying potential to each substrate. 45 and 46 are source and substrate electrodes, respectively, where pole 45 is negative and pole 4 is negative.
6 is given a positive potential. 40 is a gate film;
41 is an insulating film. As is clear from the above, C-
The breakdown voltage of the MOS element is the dielectric breakdown voltage of the gate film 40, P
Two types of substrates: layer 31, N layer 30 and drain 33 and P layer 31, drain 36 and N layer 30
It can be considered as the combined breakdown voltage of all the breakdown voltages of each reverse junction.

上記耐圧のうち、静電気のような比較的エネル
ギー密度の小さい外部電界に依る破壊に対しては
逆バイヤス接合の絶縁破壊は一定の電圧で生じ、
ある程度までは永久破壊とならず、加えられた電
位を除くと正常に復帰する性質を持ち、これを接
合の一次破壊と呼ぶが、ゲート絶縁膜の絶縁破壊
はしばしばゲート電極とゲート下部基板等との短
絡を生じ、素子の永久破壊となる。このためゲー
ト部に加わる電荷を吸収してゲートに加わる電位
をゲート絶縁耐圧以下におさえる目的のためにゲ
ートクランプダイオードと呼ばれる保護機構が加
えられる。
Of the above breakdown voltages, dielectric breakdown of a reverse bias junction occurs at a constant voltage for breakdown caused by an external electric field with relatively low energy density, such as static electricity.
To a certain extent, it does not cause permanent breakdown and returns to normal when the applied potential is removed. This is called primary breakdown of the junction, but dielectric breakdown of the gate insulating film often occurs when the gate electrode and the gate lower substrate, etc. This will cause a short circuit, resulting in permanent damage to the device. For this reason, a protection mechanism called a gate clamp diode is added for the purpose of absorbing the charge applied to the gate portion and suppressing the potential applied to the gate below the gate dielectric breakdown voltage.

第3図、第4図、第5図は各々、CMOS素子に
おけるゲートクランプダイオードの働きを示す模
式図である。第3図において78はクランプダイ
オードの構成例を示し、63はCMOS素子の共通
ゲート、80はゲート浮遊容量であり、Pチヤネ
ルおよびNチヤネルMOS素子61,62の共通
ドレイン64は出力端となる。70は2つの基板
の接合を示すダイオードであり、65は両基板間
の容量である。第3図に示すように、電源71が
スイツチ72に依り、切放されている場合、電源
73,74で示される一方または双方の電位がプ
ラス端子75、マイナス端子77、ゲート端子7
6の間に加わつた場合、ダイオード66,67,
69は電源73,74に対し、全て順接合となる
ため上記電源に依る電位はダイオード66,6
7,69に依り吸収され、ゲート63へはほとん
ど電位は加わらない。低抗68はゲート容量80
と相まつてゲート63に加わる電位を吸収する時
定数を与えられており、一般にはダイオード6
6,69を形成する際に拡散層の抵抗を用いて構
成される。
FIG. 3, FIG. 4, and FIG. 5 are schematic diagrams each showing the function of a gate clamp diode in a CMOS device. In FIG. 3, 78 shows a configuration example of a clamp diode, 63 is a common gate of the CMOS element, 80 is a gate stray capacitance, and the common drain 64 of the P-channel and N-channel MOS elements 61 and 62 becomes an output end. 70 is a diode indicating a junction between two substrates, and 65 is a capacitance between both substrates. As shown in FIG. 3, when the power supply 71 is turned off by the switch 72, the potential of one or both of the power supplies 73 and 74 is changed to the positive terminal 75, the negative terminal 77, and the gate terminal 7.
6, the diodes 66, 67,
69 is a forward junction with respect to the power supplies 73 and 74, so the potential depending on the power supply is the same as that of the diodes 66 and 6.
7 and 69, and almost no potential is applied to the gate 63. Low resistance 68 has gate capacity 80
In addition, the diode 63 is given a time constant to absorb the potential applied to the gate 63.
6 and 69 using the resistance of the diffusion layer.

第4図は、第3図における場合から電源111
をスイツチ112に依り回路に接続した場合であ
り、電源113,114に依つて端子115,1
16,117に加わる電位を第3図の場合と逆に
した場合である。電源114が電源111より高
電位となつた場合にはダイオード109が、また
電源113が電源111より高電位となつた場合
にはダイオード107が各々順接合となつて電源
114,113の電荷を電源111で吸収するの
を助け、その結果ゲート103へはほぼ電源11
1以上の電位は加わらない。電源111はCMOS
素子の耐圧を加慮したシステム電源であり、また
電源113,114は静電気に依る様な容量の小
さな電源であれば、上記の結果から素子は充分に
保護される。
FIG. 4 shows the power supply 111 from the case in FIG.
is connected to the circuit by the switch 112, and the terminals 115 and 1 are connected by the power supplies 113 and 114.
This is a case where the potentials applied to terminals 16 and 117 are reversed from those in FIG. When the power source 114 has a higher potential than the power source 111, the diode 109 becomes a forward junction, and when the power source 113 has a higher potential than the power source 111, the diode 107 becomes a forward junction to transfer the charges of the power sources 114 and 113 to the power source. 111, and as a result, the power supply 11 to the gate 103 is almost
A potential of 1 or more is not applied. Power supply 111 is CMOS
If the system power supply takes into account the withstand voltage of the element, and the power supplies 113 and 114 are power supplies with small capacity such as those based on static electricity, the element will be sufficiently protected from the above results.

第5図は第4図に示す場合からシステムの電源
141をスイツチ142で切離した場合である。
この時、電源143,144に依り、端子14
5,146,147に加わる電位はダイオード1
40で示される基板間の逆耐圧またはダイオード
136,137の直列または一方の逆耐圧に達す
るまでゲート133の電位を持上げる。
FIG. 5 shows a case where the power supply 141 of the system is disconnected by a switch 142 from the case shown in FIG.
At this time, depending on the power supplies 143 and 144, the terminal 14
The potential applied to 5, 146, 147 is diode 1
The potential of the gate 133 is raised until it reaches the reverse breakdown voltage between the substrates indicated by 40 or the reverse breakdown voltage of one or both of the diodes 136 and 137 in series.

一般にCMOSを構成する場合には、ゲート耐圧
は50〜100V、ドレインまたは基板間の耐圧(接
合の逆耐圧)は数V〜40V程度となる場合が多
く、この数値を見る限りにおいては、ゲート端子
がゲート破壊電圧に達する前にジヤングシヨン一
次破壊に依り放電され、ゲートは保護し得るとい
えるが、実際には第1の問題点として端子14
5,146,147にインパルス状態の電位が加
わつた場合、抵抗138、容量150の時定数回
路での吸収が充分でなく、また基板間のダイオー
ド140の逆接合の一次破壊は基板容量135に
依つて時期を遅らされるため、この間にゲート端
子がゲート破壊電圧を越してゲート133が絶縁
破壊を生ずることがある。
Generally, when configuring CMOS, the gate breakdown voltage is 50 to 100V, and the drain or substrate breakdown voltage (reverse breakdown voltage of the junction) is often about several volts to 40V. It can be said that the gate can be protected because it is discharged due to the primary breakdown of the junction before it reaches the gate breakdown voltage, but in reality, the first problem is that the terminal 14
5, 146, and 147, the absorption in the time constant circuit of the resistor 138 and capacitor 150 is insufficient, and the primary breakdown of the reverse junction of the diode 140 between the substrates depends on the substrate capacitor 135. Since the timing is delayed, the gate terminal may exceed the gate breakdown voltage during this time, causing dielectric breakdown of the gate 133.

また、第2の問題点としてゲート端子146に
加わる電荷が相当に大きい場合、端子に近い逆接
合、即ちダイオード139またはダイオード14
0が一次破壊を過ぎ、永久的な破壊である二次破
壊をしばしば生ずことがある。
As a second problem, if the charge applied to the gate terminal 146 is considerably large, the reverse junction near the terminal, that is, the diode 139 or the diode 14
0 passes the primary destruction and often causes secondary destruction, which is permanent destruction.

〔目 的〕〔the purpose〕

本考案は上記二点を同時に改善するものであ
る。第一にゲート耐圧と逆接合耐圧が比較的接近
している時にインパルス状の外部電位に依り生ず
るゲート破壊に対しては先ず逆接合耐圧を使用電
圧に対し支障無い範囲でゲート耐圧に比べ充分に
低くすることである。次いで、例えば端子146
から加わつた電位が実際にゲート133に加わる
までに動作に支障無い範囲の時間遅れ回路を例え
ば抵抗138、容量150で挿入することであ
る。実際には第5図における保護ダイオード13
9および基板間耐圧を代表するダイオード140
の耐圧をゲート耐圧に比べおおむね5分の1以下
に制御することに依つて通常のIC組立工程中に
加わる静電界に対し充分な効果が得られることが
実験に依り知られた。
The present invention aims to improve the above two points at the same time. First, in order to prevent gate breakdown caused by an impulse-like external potential when the gate withstand voltage and reverse junction withstand voltage are relatively close to each other, the reverse junction withstand voltage must be sufficiently compared to the gate withstand voltage within a range that does not cause any problems with the operating voltage. It is to make it lower. Then, for example, terminal 146
The method is to insert a time delay circuit, for example, a resistor 138 and a capacitor 150, within a range that does not hinder operation until the potential applied from the gate 133 is actually applied to the gate 133. Actually, the protection diode 13 in FIG.
9 and a diode 140 representing the board-to-board breakdown voltage.
It has been found through experiments that by controlling the breakdown voltage of the gate to approximately one-fifth or less of the gate breakdown voltage, a sufficient effect can be obtained against the electrostatic field applied during the normal IC assembly process.

前述のごとくMOS素子の逆接合の耐圧は第2
図における、(1)ドレインのN層33とP基板31
間、(2)P層のドレイン36とN基板30間および
(3)P基板31とN基板30の間の耐圧で代表され
る。逆接合の一次破壊は接合へ加わる逆電界によ
り生ずる空乏層の巾に対する電位勾配が半導体の
対質に依り定まる絶縁破壊強度(単位長さあたり
の電界強度で示される)を越した場合に起きるが
仕事量の差から同じ電位差に対しては低濃度拡散
層の空乏層の拡がり方が高濃度拡散層の空乏層の
拡がり方より大きくなる。
As mentioned above, the breakdown voltage of the reverse junction of the MOS device is the second
In the figure, (1) drain N layer 33 and P substrate 31
(2) between the drain 36 of the P layer and the N substrate 30;
(3) This is represented by the breakdown voltage between the P substrate 31 and the N substrate 30. Primary breakdown of a reverse junction occurs when the potential gradient across the width of the depletion layer caused by a reverse electric field applied to the junction exceeds the dielectric breakdown strength (expressed as the electric field strength per unit length) determined by the semiconductor's counterpart material. Due to the difference in quantity, for the same potential difference, the depletion layer in the low concentration diffusion layer expands more than the depletion layer in the high concentration diffusion layer.

従来は接合の耐圧を部分的に低下させるために
は例えば、第2図におけるN層のドレイン33
と、P層のストツパ34、またP層のドレイン3
6とN層のストツパ38の間隔を意識的に近づけ
るとに依り、空乏層の拡がりを制限して耐圧を下
げる方法を採つていた。しかし、この方法に依れ
ばP層のマスクとN層のマスクの間の相互位置決
めの誤差、またP層、N層のパターンの誤差等に
依つて間隔が定まらず、従つて得られる耐圧もバ
ラつく結果となり、充分な効果が期待できない。
Conventionally, in order to partially lower the breakdown voltage of the junction, for example, the drain 33 of the N layer in FIG.
, the stopper 34 of the P layer, and the drain 3 of the P layer
In this method, the distance between the stopper 38 of the N layer and the stopper 38 of the N layer is intentionally made closer to limit the expansion of the depletion layer, thereby lowering the withstand voltage. However, with this method, the spacing is not fixed due to errors in mutual positioning between the P-layer mask and the N-layer mask, and errors in the patterns of the P and N layers, and therefore the withstand voltage that can be obtained also decreases. The results will vary, and a sufficient effect cannot be expected.

本考案はこの点をも解決するものであつて、対
象となるドレイン等の周囲の基板濃度を制御して
正確にかつ安定した接合の逆耐圧を得るものであ
る。
The present invention solves this problem by controlling the concentration of the substrate around the target drain, etc., to obtain an accurate and stable reverse breakdown voltage of the junction.

〔実施例〕〔Example〕

第6図、第7図は本考案の原理に依り構成され
る逆接合における空乏層が拡がりの様相を示す。
基板全体の濃度は総合的な耐圧、素子のスレツシ
ユホールド等の諸特性から定められるが逆耐圧の
低下を要するドレイン等の接合の周辺の基板濃度
をイオン打込、不純物酸化膜に依る低濃度拡散等
の方法で増加させ、接合の逆耐圧を下げるもので
ある。第6図はドレインの周辺の基板濃度の増加
の比較的小さい場合、第7図は基板濃度の増加の
比較的大きい場合であり、201,211はイオ
ン打込等に依る濃度増加の範囲、200,210
は各々Pタイプのドレイン拡散層、205,21
5はNタイプ基板であり、曲線203,213は
各各の場合の濃度曲線を示し、上方がPタイプ、
下方がNタイプの拡散がなされていることを示し
ている。また202,212は上記逆接合に生ず
る空乏層の幅を模式的に示すが前述のように高濃
度拡散中ほど空乏層は広がりにくいから基板濃度
増加の小さい場合の空乏層202に比べ増加の大
きい場合の空乏層212の方が拡がりが小さくな
つて、接合の逆耐圧も小さくなる。
FIGS. 6 and 7 show the expansion of the depletion layer in the reverse junction constructed according to the principle of the present invention.
The concentration of the entire substrate is determined based on various characteristics such as the overall breakdown voltage and the threshold of the element, but the substrate concentration around junctions such as drains that require a reduction in reverse breakdown voltage is reduced by ion implantation and impurity oxide films. It is increased by methods such as diffusion to lower the reverse breakdown voltage of the junction. Figure 6 shows the case where the increase in substrate concentration around the drain is relatively small, and Figure 7 shows the case where the increase in substrate concentration is relatively large. 201 and 211 are the range of concentration increase due to ion implantation, etc. ,210
are P-type drain diffusion layers, 205 and 21, respectively.
5 is an N type substrate, curves 203 and 213 show concentration curves for each case, and the upper one is the P type;
The lower part shows N type diffusion. Further, 202 and 212 schematically show the width of the depletion layer generated in the above-mentioned reverse junction, but as mentioned above, the depletion layer is difficult to spread during high concentration diffusion, so the increase is larger than the depletion layer 202 when the substrate concentration increase is small. In this case, the depletion layer 212 has a smaller spread and the reverse breakdown voltage of the junction is also smaller.

上記の原理に依り、ドレイン等の接合の逆耐圧
を任意にかつ正確に定めることが可能である。
Based on the above principle, it is possible to arbitrarily and accurately determine the reverse breakdown voltage of a junction such as a drain.

第8図は本考案をCMOS集積回路に応用した実
施例であり、N基板230、およびP基板231
に構成され、236,237,243はPチヤン
ルトランジスタのドレイン・ソース・ゲート電極
であり、233,232,242はNチヤネルト
ランジスタのドレイン・ソース・ゲート電極であ
る。Nタイプ拡散層249はP基板231との間
にダイオードを構成し、ゲート保護ダイオードと
して第3図のダイオード67に相当する。拡散層
249の周辺に低濃度のPタイプ拡散層251を
イオン打込等で構成し、ゲート保護ダイオード2
49−231の耐圧を制御している。Pタイプ拡
散層250はガードリングであり、拡散層249
の耐圧に影響を与えない様に充分間隔を取られ
る。電極248は一方はトランジスタのゲート電
極に接続し、他方は入力端子へ接続する。同様に
第3図のダイオード69,66のようにN基板に
構成されるダイオードも任意に耐圧で得られるま
た、基板231,230間の耐圧も同様にして制
御可能であり、基板周辺のガードリング234,
238の間に低濃度拡散層252をイオン打込等
で拡散して制御される。
FIG. 8 shows an embodiment in which the present invention is applied to a CMOS integrated circuit, in which an N substrate 230 and a P substrate 231
236, 237, and 243 are the drain, source, and gate electrodes of the P channel transistor, and 233, 232, and 242 are the drain, source, and gate electrodes of the N channel transistor. The N type diffusion layer 249 constitutes a diode between it and the P substrate 231, and corresponds to the diode 67 in FIG. 3 as a gate protection diode. A low concentration P type diffusion layer 251 is formed around the diffusion layer 249 by ion implantation, etc., and the gate protection diode 2
The withstand voltage of 49-231 is controlled. The P type diffusion layer 250 is a guard ring, and the diffusion layer 249
Sufficient spacing is provided so as not to affect the withstand pressure of the Electrodes 248 are connected on one side to the gate electrode of the transistor and on the other side to the input terminal. Similarly, diodes configured on N substrates such as diodes 69 and 66 in FIG. 234,
During the period 238, the low concentration diffusion layer 252 is diffused by ion implantation or the like.

第2の問題点である保護ダイオードの接合の二
次破壊に関しては上記接合の二次破壊は静電界に
依る電荷の接合の一次破壊に依り、部分的に集中
して生ずるために高い電流密度の電流が接合の一
部分に集中するためであることが知られ、故にこ
れを防ぐことは電流密度を下げること、即ち接合
の一次破壊を比較的広い部分で生ぜしむることに
依つて可能となる。一般に接合の全ての部分に於
いて、均一に一次破壊を生じさせることは事実上
不可能であるが、本考案に依るように基板濃度を
増加させて濃度勾配を急にした場合、接合部分の
異常拡散等に依る電界集中は少なくなり、加えて
接合の逆耐圧が低くなり、また接合に達するまで
のインピーダンスが下がるために急速に立上る電
位に対して広い範囲での接合の一次破壊が生じ、
接合の部分的な二次破壊を防ぐことが可能となる 〔効 果〕 上述の如く本考案は、第2導電型拡散領域と第
1導電型半導体基板の接合部分にはガードリング
用高濃度拡散層を設けかつ該ガードリング用高濃
度拡散層近傍の半導体基板表面に低濃度拡散層を
設けたから、様々な形状の配線パターンや、静電
気によつて生ずる電圧波形により入力端子部の逆
接合だけでは十分な静電吸収がなかつたとして
も、完全な電圧吸収を図ることができる効果を有
するまた、本願考案のガードリング及びゲート保
護ダイオードを形成する拡散層の形成をマスク作
成時に予め拡散距離を設定し、ソース・ドレイン
拡散層等の工程と同一工程で形成できるので、工
程を増やす必要がないという効果も有する。
Regarding the second problem, the secondary breakdown of the junction of the protection diode, the secondary breakdown of the junction is due to the primary breakdown of the junction of charges caused by the electrostatic field, and because it occurs locally concentrated, the high current density It is known that this is due to the current being concentrated in a portion of the junction, and this can therefore be prevented by lowering the current density, that is, by causing the primary breakdown of the junction to occur over a relatively wide area. Generally, it is virtually impossible to uniformly cause primary failure in all parts of the bond, but when the concentration gradient is made steeper by increasing the substrate concentration as in the present invention, Electric field concentration due to abnormal diffusion, etc. is reduced, and in addition, the reverse withstand voltage of the junction is lowered, and the impedance up to the junction is lowered, causing primary breakdown of the junction over a wide range due to the rapidly rising potential. ,
[Effect] As mentioned above, in the present invention, a high-concentration diffusion layer for a guard ring is formed at the junction between the second conductivity type diffusion region and the first conductivity type semiconductor substrate. layer and a low concentration diffusion layer on the surface of the semiconductor substrate in the vicinity of the high concentration diffusion layer for the guard ring, it is difficult to connect the input terminal by just reverse bonding due to wiring patterns of various shapes and voltage waveforms caused by static electricity. Even if there is not sufficient electrostatic absorption, complete voltage absorption can be achieved.Also, the diffusion distance is set in advance when creating the mask to form the diffusion layer that forms the guard ring and gate protection diode of the present invention. However, since it can be formed in the same process as that for source/drain diffusion layers, etc., it also has the effect that there is no need to increase the number of processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMOS素子の構成を示す概略断面図。
第2図はCMOS素子の構成を示す概略断面図。第
3図〜第5図はゲート保護ダイオードの働きを示
す等価回路図の例。第6図、第7図は拡散の濃度
勾配の差による空乏層の拡がりを示す模式図であ
り、202,212は空乏層の幅を示す。第8図
は本考案の実施例を示すCMOS素子の概略の断面
図。
FIG. 1 is a schematic cross-sectional view showing the configuration of a MOS element.
FIG. 2 is a schematic cross-sectional view showing the configuration of a CMOS element. FIGS. 3 to 5 are examples of equivalent circuit diagrams showing the function of gate protection diodes. 6 and 7 are schematic diagrams showing the expansion of the depletion layer due to the difference in concentration gradient of diffusion, and 202 and 212 indicate the width of the depletion layer. FIG. 8 is a schematic cross-sectional view of a CMOS device showing an embodiment of the present invention.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1導電型の半導体基板、前記第1導電型の半
導体基板内に形成された第2導電型のウエル領
域、前記第1導電型の半導体基板及び前記第2導
電型のウエル領域にそれぞれ形成されたトランジ
スタからなる半導体集積回路において、前記第1
導電型の半導体基板と前記第2導電型のウエル領
域の接合部分の近傍には、第1導電型の第1のガ
ードリング用高濃度拡散層と第2導電型の第2の
ガードリング用高濃度拡散層が形成されており、
前記第2導電型のウエル領域内には、前記第2導
電型のウエル領域とゲート保護ダイオードを形成
する第1導電型の拡散層、及び前記第1導電型の
拡散層の近傍に位置する第2導電型の第3のガー
ドリング用高濃度拡散層が形成されており、前記
第1及び第2のガードリング用高濃度拡散層間の
前記第1導電型の半導体基板表面には、第1導電
型の浅い低濃度拡散層が形成されており、前記第
1導電型の拡散層の周辺の前記第2導電型のウエ
ル領域表面には、第2導電型の浅い低濃度拡散層
が形成されていることを特徴とする半導体集積回
路。
a first conductivity type semiconductor substrate, a second conductivity type well region formed in the first conductivity type semiconductor substrate, and a second conductivity type well region formed in the first conductivity type semiconductor substrate and the second conductivity type well region, respectively. In the semiconductor integrated circuit comprising a transistor, the first
In the vicinity of the junction between the conductive type semiconductor substrate and the second conductive type well region, a first conductive type high concentration diffusion layer for a first guard ring and a second conductive type high concentration diffusion layer for a second guard ring are provided. A concentration diffusion layer is formed,
The second conductivity type well region includes a first conductivity type diffusion layer forming the second conductivity type well region and a gate protection diode, and a first conductivity type diffusion layer located near the first conductivity type diffusion layer. A second conductive type third guard ring high concentration diffusion layer is formed, and the first conductivity type semiconductor substrate surface between the first and second guard ring high concentration diffusion layers is formed with a first conductive type. A shallow low concentration diffusion layer is formed, and a shallow low concentration diffusion layer of a second conductivity type is formed on the surface of the second conductivity type well region around the first conductivity type diffusion layer. A semiconductor integrated circuit characterized by:
JP18534084U 1984-12-06 1984-12-06 semiconductor integrated circuit Granted JPS60113653U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18534084U JPS60113653U (en) 1984-12-06 1984-12-06 semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18534084U JPS60113653U (en) 1984-12-06 1984-12-06 semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS60113653U JPS60113653U (en) 1985-08-01
JPS6112693Y2 true JPS6112693Y2 (en) 1986-04-19

Family

ID=30742813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18534084U Granted JPS60113653U (en) 1984-12-06 1984-12-06 semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60113653U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486962B2 (en) * 2009-04-28 2014-05-07 株式会社メガチップス Semiconductor integrated circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123287U (en) * 1973-02-20 1974-10-22

Also Published As

Publication number Publication date
JPS60113653U (en) 1985-08-01

Similar Documents

Publication Publication Date Title
JP4401500B2 (en) Semiconductor device and method for reducing parasitic bipolar effect in electrostatic discharge
KR100220385B1 (en) Electrostatic electricity protection device
US4994886A (en) Composite MOS transistor and application to a free-wheel diode
US6236087B1 (en) SCR cell for electrical overstress protection of electronic circuits
EP0535536B1 (en) Depletion controlled isolation stage
EP0143157B1 (en) Charge pumping circuit for a substrate voltage generator
US5751042A (en) Internal ESD protection circuit for semiconductor devices
JPS6278869A (en) Esd protecting device
US4609931A (en) Input protection MOS semiconductor device with zener breakdown mechanism
JP2710113B2 (en) Integrated circuits using complementary circuit technology
EP0892436B1 (en) Electrostatic protection structure for MOS circuits
KR19980071441A (en) Electrostatic Discharge Protection Circuit
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JPH07193195A (en) Cmos integrated circuit device
US4868621A (en) Input protection circuit
JPS6112693Y2 (en)
US6707653B2 (en) Semiconductor controlled rectifier for use in electrostatic discharge protection circuit
CN111725206B (en) PMOS triggered SCR device, manufacturing method of SCR device and SCR electrostatic protection circuit
JPH02238668A (en) Semiconductor device
JPS63137478A (en) Manufacture of semiconductor device having protective circuit
KR0172231B1 (en) Electrostatic protection circuit for semiconductor device
KR19980043416A (en) ESD protection circuit
JP3114338B2 (en) Semiconductor protection device
JP2002176347A (en) Overcurrent limiting semiconductor device
JPS62279675A (en) Protective circuit for semiconductor integrated circuit