JPS622704B2 - - Google Patents

Info

Publication number
JPS622704B2
JPS622704B2 JP14462879A JP14462879A JPS622704B2 JP S622704 B2 JPS622704 B2 JP S622704B2 JP 14462879 A JP14462879 A JP 14462879A JP 14462879 A JP14462879 A JP 14462879A JP S622704 B2 JPS622704 B2 JP S622704B2
Authority
JP
Japan
Prior art keywords
field effect
effect transistor
gate
mos
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14462879A
Other languages
Japanese (ja)
Other versions
JPS5667962A (en
Inventor
Tooru Kuwabara
Hisayoshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14462879A priority Critical patent/JPS5667962A/en
Publication of JPS5667962A publication Critical patent/JPS5667962A/en
Publication of JPS622704B2 publication Critical patent/JPS622704B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明はMOS形電界効果トランジスタにお
いて、その動作時および取扱い時のサージ電圧に
よるゲート破壊を阻止するためのゲート保護回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gate protection circuit for preventing gate breakdown due to surge voltage during operation and handling of a MOS field effect transistor.

一般にMOS形電界効果トランジスタでは、そ
のゲート電極下の絶縁層が薄く形成されているこ
とから、ゲート、ソース間に急峻なサージ電圧が
印加されると、この絶縁層に絶縁破壊を生じて動
作不能となる。そこで、従来はこの絶縁破壊を阻
止するために、第1図Aに示すゲート保護回路を
用い、これを同図B,Cに示すようにMOS形電
界効果トランジスタと共に、同一半導体基板に組
込むようにしている。すなわち、これらの第1図
AないしCにおいて、1は保護対象となるMOS
形電界効果トランジスタ、2は入力端子、3は前
記MOS形電界効果トランジスタ1のゲートと入
力端子2との間に接続された時定数遅延用抵抗、
4および5は前記入力端子2と電源の高電位側6
および低電位側7との間に接続されたゲート破壊
防止のためのクランプダイオードを示し、また8
は各々アルミ配線、9は絶縁層、10は高濃度N
型不純物拡散領域、11は高濃度P型不純物拡散
領域、12は低濃度P型不純物拡散領域、13は
低濃度N型の半導体基板である。
Generally, in a MOS field effect transistor, the insulating layer under the gate electrode is formed thinly, so if a steep surge voltage is applied between the gate and the source, this insulating layer will break down and become inoperable. becomes. Conventionally, in order to prevent this dielectric breakdown, a gate protection circuit as shown in Figure 1A was used, and this was incorporated into the same semiconductor substrate together with a MOS field effect transistor as shown in Figures B and C. There is. That is, in these figures A to C, 1 indicates the MOS to be protected.
2 is an input terminal; 3 is a time constant delay resistor connected between the gate of the MOS field effect transistor 1 and the input terminal 2;
4 and 5 are the input terminal 2 and the high potential side 6 of the power supply.
and a clamp diode connected between the low potential side 7 and the low potential side 7 to prevent gate destruction.
are aluminum wiring, 9 is an insulating layer, and 10 is a high concentration N
11 is a high concentration P type impurity diffusion region, 12 is a low concentration P type impurity diffusion region, and 13 is a low concentration N type semiconductor substrate.

こゝで、今、入力端子2に正もしくは負の急峻
なサージ電圧が印加された場合、クランプダイオ
ード4および5の時定数を、遅延用抵抗3および
MOS形電界効果トランジスタ1で定まる回路の
時定数より小さくしておくことにより、このクラ
ンプダイオード4,5が、MOS形電界効果トラ
ンジスタ1よりも先に動作して、このサージ電圧
がMOS形電界効果トランジスタ1のゲートに加
えられないようにし得るのである。
Now, if a steep positive or negative surge voltage is applied to the input terminal 2, the time constants of the clamp diodes 4 and 5 are changed by the delay resistors 3 and 5.
By making the time constant of the circuit smaller than that determined by the MOS type field effect transistor 1, the clamp diodes 4 and 5 operate before the MOS type field effect transistor 1, and this surge voltage is transferred to the MOS type field effect transistor. This allows it to be prevented from being applied to the gate of transistor 1.

しかし乍らこの従来構成においては、クランプ
ダイオード4,5の時定数を、MOS形電界効果
トランジスタ1および遅延用抵抗3の時定数より
も小さくしなければならず、回路パターン設計に
際してこれらの装置上でのサイズを十分に検討す
る必要があり、特に時定数遅延用抵抗3の大きさ
については、サージ破壊耐圧に大きく関係し、サ
イズの大きいほど有効であるが、一方ではMOS
形電界効果トランジスタの平常動作に支障をきた
すために、また高密度集積化のためにも、その大
きさに自ずから限界があつた。
However, in this conventional configuration, the time constants of the clamp diodes 4 and 5 must be made smaller than the time constants of the MOS field effect transistor 1 and the delay resistor 3. It is necessary to carefully consider the size of the time constant delay resistor 3. In particular, the size of the time constant delay resistor 3 is greatly related to the surge breakdown voltage, and the larger the size, the more effective it is.
There is a natural limit to the size of field-effect transistors because they interfere with the normal operation of field-effect transistors, and also because of high-density integration.

この発明は従来のこのような不都合を接合形電
界効果トランジスタを用いることによつて改善し
たものであり、以下、この発明の一実施例につ
き、第2図AないしCを参照して詳細に説明す
る。
This invention improves these conventional disadvantages by using a junction field effect transistor.Hereinafter, one embodiment of this invention will be explained in detail with reference to FIGS. 2A to 2C. do.

第2図Aはこの実施例によるMOS形電界効果
トランジスタのゲート保護回路を、また同図B,
Cはその基板構成を各々に示している。これらの
第2図AないしCにおいて、前記第1図Aないし
Cと同一符号は同一または相当部分を表わしてお
り、この実施例では前記時定数遅延用抵抗3に代
えて接合形電界効果トランジスタ14を用い、こ
の接合形電界効果トランジスタ14のソースを前
記入力端子2に、ゲートを前記電源の高電位側6
に、ドレインを前記MOS形電界効果トランジス
タ1のゲートに各々接続させ、かつ前記ゲートが
パターンの構造上から高電位になることから、こ
のゲートをソース側から直流的にカツトするため
にコンデンサ15を挿入させ、また前記と同様に
クランプダイオード4,5の接続をなし、さらに
これらを同一半導体基板13に形成させたもので
ある。
FIG. 2A shows the gate protection circuit of the MOS field effect transistor according to this embodiment, and FIG.
C indicates the structure of each substrate. In these FIGS. 2A to C, the same reference numerals as in FIGS. 1A to C represent the same or corresponding parts, and in this embodiment, the time constant delay resistor 3 is replaced by a junction field effect transistor 14 The source of this junction field effect transistor 14 is connected to the input terminal 2, and the gate is connected to the high potential side 6 of the power source.
In addition, the drains are connected to the gates of the MOS field effect transistors 1, and since the gates are at a high potential due to the structure of the pattern, a capacitor 15 is connected to cut the gates from the source side in a DC manner. In addition, the clamp diodes 4 and 5 are connected in the same manner as described above, and furthermore, these are formed on the same semiconductor substrate 13.

従つてこの実施例の構成では、負パルスのサー
ジ電圧が入力端子2に印加された場合は、前記従
来の回路と同様の動作がなされるが、正パルスの
サージ電圧が印加された場合は、接合形電界効果
トランジスタ14のゲート直下のP-領域には、
抵抗成分のために正パルスのサージ電圧が遅れて
加えられ、そのn+領域、p-領域間はサージ電圧
が印加された瞬間逆バイアスされることになつて
この領域6―1に空乏層を生じ、ソース、ドレイ
ン間のp-領域を完全な遮断領域に追い込み、
MOS形電界効果トランジスタ1のゲートへのサ
ージ電圧印加を阻止することができる。そして一
方、平常時はこのp-領域が導通状態にあるため
に、入力信号はある抵抗成分を経て、このMOS
形電界効果トランジスタ1のゲートに伝えられる
のである。
Therefore, in the configuration of this embodiment, when a negative pulse surge voltage is applied to the input terminal 2, the same operation as the conventional circuit described above is performed, but when a positive pulse surge voltage is applied, In the P - region directly under the gate of the junction field effect transistor 14,
Due to the resistance component, the positive pulse surge voltage is applied with a delay, and the area between the n + region and the p - region is reverse biased at the moment the surge voltage is applied, creating a depletion layer in this region 6-1. occurs, forcing the p - region between the source and drain into a complete cutoff region,
Application of a surge voltage to the gate of the MOS field effect transistor 1 can be prevented. On the other hand, since this p - region is in a conductive state during normal times, the input signal passes through a certain resistance component to this MOS.
It is transmitted to the gate of the field effect transistor 1.

なお前記実施例はn-、すなわち低濃度N型半
導体基板を用いた場合について説明したが、低濃
度P型半導体基板を用いた場合にも、全く同様の
作用、効果を得られることは勿論である。
Although the above embodiments have been explained using an n - , that is, a low concentration N type semiconductor substrate, it goes without saying that exactly the same operation and effect can be obtained when a low concentration P type semiconductor substrate is used. be.

以上詳述したようにこの発明によるときは、
MOS形電界効果トランジスタのゲート保護回路
に、接合形電界効果トランジスタを用いることに
より、特に正パルスのサージ電圧に対しては確実
に、また負パルスのサージ電圧に対しても十分
に、そのゲートの絶縁破壊を阻止できる特長を有
するものである。
As detailed above, according to this invention,
By using a junction field effect transistor in the gate protection circuit of a MOS field effect transistor, the gate can be protected particularly against positive pulse surge voltages and sufficiently against negative pulse surge voltages. It has the feature of preventing dielectric breakdown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,B,Cは従来例によるMOS形電界
効果トランジスタのゲート保護回路の各々回路
図、模式的に表わした上面図、断面図であり、ま
た第2図A,B,Cはこの発明の一実施例による
MOS形電界効果トランジスタのゲート保護回路
の各々回路図、模式的に表わした上面図、断面図
である。 1……MOS形電界効果トランジスタ、2……
入力端子、4,5……クランプダイオード、6,
7……電源の高電位側、低電位側、14……接合
形電界効果トランジスタ、15……コンデンサ。
Figures 1A, B, and C are a circuit diagram, a schematic top view, and a sectional view, respectively, of a conventional gate protection circuit for a MOS field effect transistor, and Figures 2A, B, and C are respectively a circuit diagram, a schematic top view, and a sectional view of a conventional gate protection circuit for a MOS field effect transistor. According to one embodiment of the invention
1A and 1B are a circuit diagram, a schematic top view, and a cross-sectional view, respectively, of a gate protection circuit of a MOS field effect transistor. 1...MOS type field effect transistor, 2...
Input terminal, 4, 5...clamp diode, 6,
7... High potential side, low potential side of power supply, 14... Junction field effect transistor, 15... Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 接合形電界効果トランジスタのソースを入力
端子、ゲートを電源の高電位側、ドレインを
MOS形電界効果トランジスタのゲートに各々接
続し、かつ前記接合形電界効果トランジスタのソ
ースとゲートとをコンデンサを介して接続すると
共に、前記入力端子と電源の高電位側および低電
位側との間に各々クランプダイオードを接続した
ことを特徴とするMOS形電界効果トランジスタ
のゲート保護回路。
1 The source of the junction field effect transistor is the input terminal, the gate is the high potential side of the power supply, and the drain is the input terminal.
are connected to the gates of the MOS field effect transistors, and the source and gate of the junction field effect transistor are connected via a capacitor, and between the input terminal and the high potential side and the low potential side of the power supply. A gate protection circuit for MOS type field effect transistors, characterized in that each clamp diode is connected.
JP14462879A 1979-11-07 1979-11-07 Gate protection circuit of mos field effect transistor Granted JPS5667962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14462879A JPS5667962A (en) 1979-11-07 1979-11-07 Gate protection circuit of mos field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14462879A JPS5667962A (en) 1979-11-07 1979-11-07 Gate protection circuit of mos field effect transistor

Publications (2)

Publication Number Publication Date
JPS5667962A JPS5667962A (en) 1981-06-08
JPS622704B2 true JPS622704B2 (en) 1987-01-21

Family

ID=15366453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14462879A Granted JPS5667962A (en) 1979-11-07 1979-11-07 Gate protection circuit of mos field effect transistor

Country Status (1)

Country Link
JP (1) JPS5667962A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3586268T2 (en) * 1984-05-03 1993-02-25 Digital Equipment Corp INPUT PROTECTIVE ARRANGEMENT FOR VLSI CIRCUIT ARRANGEMENTS.
JPS6161468A (en) * 1984-08-31 1986-03-29 Seiko Epson Corp Static electricity protecting circuit
JPS6187357A (en) * 1984-09-18 1986-05-02 Sanyo Electric Co Ltd Semiconductor integrated circuit device
US6191633B1 (en) 1997-09-12 2001-02-20 Nec Corporation Semiconductor integrated circuit with protection circuit against electrostatic discharge

Also Published As

Publication number Publication date
JPS5667962A (en) 1981-06-08

Similar Documents

Publication Publication Date Title
US4086642A (en) Protective circuit and device for metal-oxide-semiconductor field effect transistor and method for fabricating the device
JPH0151070B2 (en)
US4609931A (en) Input protection MOS semiconductor device with zener breakdown mechanism
US4733285A (en) Semiconductor device with input and/or output protective circuit
US4514646A (en) Semiconductor integrated circuit device including a protective resistor arrangement for output transistors
US5811845A (en) Semiconductor apparatus and horizontal register for solid-state image pickup apparatus with protection circuit for bypassing an excess signal
US5710452A (en) Semiconductor device having electrostatic breakdown protection circuit
JPS6146986B2 (en)
US5227327A (en) Method for making high impedance pull-up and pull-down input protection resistors for active integrated circuits
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
JPS622704B2 (en)
US4922316A (en) Infant protection device
JPS5980973A (en) Gate protective circuit
JP2753191B2 (en) Semiconductor device
JPS6269660A (en) Electrostatic protective circuit
JPH0379874B2 (en)
JPS6360547B2 (en)
US5121179A (en) Higher impedance pull-up and pull-down input protection resistors for MIS transistor integrated circuits
JPS58161375A (en) Input protection circuit of insulation gate type field effect semiconductor integrated circuit
JPS58122695A (en) Input overvoltage protection circuit
US5432369A (en) Input/output protection circuit
JPH04206961A (en) Semiconductor device
JPS6328500B2 (en)
JPH0532908B2 (en)
JP2585633B2 (en) Semiconductor device