JPH0532908B2 - - Google Patents

Info

Publication number
JPH0532908B2
JPH0532908B2 JP58034157A JP3415783A JPH0532908B2 JP H0532908 B2 JPH0532908 B2 JP H0532908B2 JP 58034157 A JP58034157 A JP 58034157A JP 3415783 A JP3415783 A JP 3415783A JP H0532908 B2 JPH0532908 B2 JP H0532908B2
Authority
JP
Japan
Prior art keywords
voltage
type
channel mos
breakdown voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58034157A
Other languages
Japanese (ja)
Other versions
JPS59158546A (en
Inventor
Masaharu Taniguchi
Yukio Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58034157A priority Critical patent/JPS59158546A/en
Publication of JPS59158546A publication Critical patent/JPS59158546A/en
Publication of JPH0532908B2 publication Critical patent/JPH0532908B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は相補形MOS集積回路装置(CMOS
IC)に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a complementary MOS integrated circuit device (CMOS
IC).

〔従来技術〕[Prior art]

CMOS ICは消費電力が少なく、動作電源電圧
範囲が広いなどの利点をもつているので、近年急
速に広く用いられるようになつた。第1図は
CMOS回路の最小単位を示す回路図で、第2図
はこの回路構成を実際に実現したCMOS ICの従
来例を示す断面図である。図において、Aはpチ
ヤネルMOSトランジスタ(p−MOST)、Bは
nチヤネルMOSトランジスタ(n−MOST)で
ある。第2図において、1はn-形半導体基板、
2はn−MOST Bを形成するためのp-形アイラ
ンド、3はp−MOST Aのソース、4は同じく
ドレイン、5はn−MOST Bのソース、6は同
じくドレインで、7は電源端子VSSへの接続のた
めのp+ ンタクト層でガードリング層を兼ね
ている。8は電源端子VDDへの接続のためのn+
コンタクト層である。通常、第1図に示すよう
に、p−MOST Aのソース3は電源端子VDDに、
n−MOST Bのソース5は電源端子VSSに接続
され、両MOST A,Bのゲートは共通に入力端
子INに接続され、両MOST A,Bのドレイン
4,6は共通に出力端子OUTに接続される。
CMOS ICs have advantages such as low power consumption and a wide operating power supply voltage range, so they have rapidly become widely used in recent years. Figure 1 is
This is a circuit diagram showing the minimum unit of a CMOS circuit, and FIG. 2 is a sectional view showing a conventional example of a CMOS IC that actually realizes this circuit configuration. In the figure, A is a p-channel MOS transistor (p-MOST), and B is an n-channel MOS transistor (n-MOST). In Fig. 2, 1 is an n - type semiconductor substrate;
2 is a p - type island for forming n-MOST B, 3 is the source of p-MOST A, 4 is also the drain, 5 is the source of n-MOST B, 6 is also the drain, and 7 is the power supply terminal V. It is a p + contact layer for connecting to the SS and also serves as a guard ring layer. 8 is an n + type contact layer for connection to the power supply terminal VDD . Normally, as shown in Figure 1, the source 3 of p-MOST A is connected to the power supply terminal V DD ,
The source 5 of n-MOST B is connected to the power supply terminal V SS , the gates of both MOST A and B are commonly connected to the input terminal IN, and the drains 4 and 6 of both MOST A and B are commonly connected to the output terminal OUT. Connected.

さて、MOSTの耐圧はジヤンクシヨン耐圧と
ゲート電圧とによつて決まり、ゲート酸化膜の膜
厚は通常p−MOSTとn−MOSTとで同一であ
るので、第1図の構成では、ジヤンクシヨン耐圧
の低いn−MOSTのソース・ドレイン間耐圧が
CMOS回路の耐圧となる。
Now, the breakdown voltage of a MOST is determined by the junction breakdown voltage and the gate voltage, and the thickness of the gate oxide film is usually the same for p-MOST and n-MOST. The source-drain breakdown voltage of n-MOST is
This is the withstand voltage of the CMOS circuit.

第3図に、第1図の入力端子INの電位をVSS
したときのVDD端子とVSS端子間の電圧・電流特
性の一例を示す。この条件ではp−MOST Aは
完全にON状態にあり、n−MOST Bのソー
ス・ドレイン間に電圧やかかつている。第3図の
X点がn−MOST Bのソース・ドレイン間耐圧
(BVDS)であり、この状態で電流を流すと図に示
すようにY点に振り込む。
FIG. 3 shows an example of the voltage/current characteristics between the V DD and V SS terminals when the potential of the input terminal IN in FIG. 1 is set to V SS . Under this condition, p-MOST A is completely turned on, and a voltage is present between the source and drain of n-MOST B. Point X in FIG. 3 is the source-drain breakdown voltage (BV DS ) of n-MOST B, and when current is applied in this state, it is transferred to point Y as shown in the figure.

第2図において、n−MOST Bには、11で
示す寄生のラテラルnpnトランジスタが存在して
おり、そのベース・エミツタ間は抵抗12で接続
されている。従つて、そのコレクタ・エミツタ間
の耐圧はBVCERとなり、ほぼ、n+・p-間の耐圧に
近い。従つて、電流値が低い領域では、前に述べ
たジヤンクシヨン耐圧にゲート電界が加わる表面
部分(MOS部分)での耐圧BVSDの方が低いの
で、それによつてソース・ドレイン間の耐圧がき
まる(X点)。しかしながら、X点でアバランシ
エが起こると、寄生npnトランジスタ11のベー
ス領域にどんどん電子が注入されるので、寄生
npnトランジスタ11の耐圧はBVCEOに低下する。
この点が第3図のY点である。
In FIG. 2, the n-MOST B includes a parasitic lateral npn transistor 11 whose base and emitter are connected through a resistor 12. Therefore, the breakdown voltage between its collector and emitter is BV CER , which is almost the breakdown voltage between n + and p - . Therefore, in the region where the current value is low, the breakdown voltage BV SD at the surface area (MOS part) where the gate electric field is applied is lower than the junction breakdown voltage mentioned above, and this determines the breakdown voltage between the source and drain ( X point). However, when avalanche occurs at point X, more and more electrons are injected into the base region of the parasitic npn transistor 11.
The breakdown voltage of the npn transistor 11 decreases to BV CEO .
This point is point Y in FIG.

以上説明したように、所定のCMOS回路の電
源耐圧は、振り込み現象があり、定常電源電圧と
して、第3図のY点に相当する電圧以上の電圧を
印加していると、サージなどによつて、第3図の
X点に相当する電圧を越えることがあると、振り
込み現象によつて、素子の電源耐圧がY点に相当
する電圧まで下り、素子が破壊するという問題が
あつた。また、ソース・ドレイン間がアバランシ
エ・ブレークダウンすると、ゲート中に電子や正
孔が注入され素子が劣化するという問題があつ
た。
As explained above, the power supply breakdown voltage of a given CMOS circuit has a transfer phenomenon, and if a voltage higher than the voltage corresponding to point Y in Figure 3 is applied as a steady power supply voltage, it may be affected by surges etc. If the voltage exceeds the voltage corresponding to point X in FIG. 3, there is a problem in that due to the transfer phenomenon, the power supply voltage withstand voltage of the device drops to the voltage corresponding to point Y, resulting in destruction of the device. Furthermore, when avalanche breakdown occurs between the source and the drain, electrons and holes are injected into the gate, causing the device to deteriorate.

〔発明の概要〕[Summary of the invention]

この発明は以上のような点に鑑みてなされたも
ので、n-(p-)形基板上に作るp(n)−MOSTのバ
ルクを高(低)電位に接続するためのn+(p+)形
拡散域とp-(n-)形アイランド上に作るn(p)−
MOSTのバルクを低(高)電位に接続するため
のp+(n+)形拡散域とを接触させてツエナーダイ
オードを形成させ、このツエナー電圧をn(p)−
MOSTのソース・ドレイン耐圧(低電流域にお
ける)より低くして、振り込み現象をなくして、
実質的に電源耐圧の大きいCMOS ICを提供する
ものである。
This invention was made in view of the above points , and it is an n + ( p + ) type diffusion region and n(p)− created on p - (n - ) type island
A Zener diode is formed by contacting the bulk of the MOST with a p + (n + ) type diffusion region for connecting to a low (high) potential, and this Zener voltage is
Lower the source/drain breakdown voltage (in the low current range) of MOST to eliminate the transfer phenomenon.
This provides a CMOS IC with substantially high power supply voltage.

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明の一実施例の構造を示す断面
図で、第2図の従来例と同等部分は同一符号で示
し、その説明は省略する。
FIG. 4 is a cross-sectional view showing the structure of an embodiment of the present invention. Portions equivalent to those of the conventional example shown in FIG. 2 are designated by the same reference numerals, and their explanation will be omitted.

第4図において、8aはp−MOST Aのバル
クを高電位電源端子VDDに接続するための、従来
例における8に対応するn+コンタクト層である
が、この実施例では、このn+形コンタクト層8
aは、n−MOST Bのバルクを低電位電源端子
VSSに接続するためのp+形コンタクト層7と接す
るように形成されており、両者間に形成されるツ
エナーダイオード13のツエナー電圧を、n−
MOSTのソース・ドレイン間のアバランシエ耐
圧(第3図のX点)より低くしておくと、アバラ
ンシエ・ブレークダウンが発生しないので、従来
例で述べた寄生npnトランジスタ11のBVCEO
電源耐圧が振り込むことはなく、実質上の
CMOS回路の電源耐圧を上げることができる。
In FIG. 4, 8a is an n + contact layer corresponding to 8 in the conventional example for connecting the bulk of p-MOST A to the high potential power supply terminal V DD , but in this embodiment, this n + type contact layer 8
a connects the bulk of n-MOST B to the low potential power supply terminal
It is formed so as to be in contact with the p + type contact layer 7 for connection to V SS , and the Zener voltage of the Zener diode 13 formed between the two is
If the avalanche breakdown voltage is set lower than the MOST source-drain avalanche breakdown voltage (point X in Figure 3), avalanche breakdown will not occur, so the power supply breakdown voltage will be transferred to the BV CEO of the parasitic npn transistor 11 mentioned in the conventional example. There is no actual
It is possible to increase the power supply voltage of CMOS circuits.

上記実施例ではn形基板にp-形アイランドを
形成した場合を示したが、P形基板にn-形アイ
ランドを形成した場合についても、同様にこの発
明は適用できる。
Although the above embodiment shows a case where a p - type island is formed on an n type substrate, the present invention can be similarly applied to a case where an n - type island is formed on a p type substrate.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明になるCMOS
ICではp−MOSTのバルクを高電位点に接続す
るためのn+形領域と、n−MOSTのバルクを低
電位点に接続するためのp+形領域とを接触させ、
そのツエナー電圧をMOSTのソース・ドレイン
耐圧より低くなるようにしたので、実質上の電源
耐圧を大きくすることができ、MOSTの劣化を
防止できる。
As detailed above, the CMOS according to this invention
In the IC, an n + type region for connecting the bulk of the p-MOST to a high potential point and a p + type region for connecting the bulk of the n-MOST to a low potential point are brought into contact,
Since the Zener voltage is set to be lower than the source/drain breakdown voltage of the MOST, the actual power supply breakdown voltage can be increased and deterioration of the MOST can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCMOS回路の最小単位を示す回路図、
第2図はこの回路構成を実際に実現したCMOS
ICの従来例を示す断面図、第3図はこの従来例
におけるVVDD−VSS間の電圧・電流特性を示す
図、第4図はこの発明の一実施例の構造を示す断
面図である。 図において、1はn-形基板、2はp-形アイラ
ンド、7はp+形領域、8aはn+形領域、13は
ツエナーダイオード、Aはp−MOST、Bはn
−MOSTである。なお、図中同一符号は同一ま
たは相当部分を示す。
Figure 1 is a circuit diagram showing the minimum unit of a CMOS circuit.
Figure 2 shows a CMOS that actually realizes this circuit configuration.
FIG. 3 is a cross-sectional view showing a conventional example of an IC, FIG. 3 is a diagram showing voltage/current characteristics between VV DD and V SS in this conventional example, and FIG. 4 is a cross-sectional view showing the structure of an embodiment of the present invention. . In the figure, 1 is an n - type substrate, 2 is a p - type island, 7 is a p + type region, 8a is an n + type region, 13 is a Zener diode, A is a p-MOST, and B is an n
-MOST. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 n-(またはp-)形の半導体基板上に形成され
たp(またはn)チヤネルMOSトランジスタと、
上記半導体基板内のp-(またはn-)形アイランド
に形成されたn(またはp)チヤネルMOSトラン
ジスタとを直列に接続されてなるものにおいて、
上記p(またはn)チヤネルMOSトランジスタの
バルクを高(または低)電位点に接続するための
n+(またはp+)形領域と、上記n(またはp)チ
ヤネルMOSトランジスタのバルクを低(または
高)電位点に接続するためのp+(またはn+)形領
域とを互いに接するように形成してツエナーダイ
オードを構成せしめ、当該ツエナーダイオードの
ツエナー電圧を上記n(またはp)チヤネルMOS
トランジスタのソース・ドレイン間耐圧より低く
なるようにしたことを特徴とする相補形MOS集
積回路装置。
1 a p ( or n) channel MOS transistor formed on an n - (or p - ) type semiconductor substrate;
In the semiconductor substrate connected in series with an n (or p) channel MOS transistor formed on a p - (or n - ) type island in the semiconductor substrate,
For connecting the bulk of the above p (or n) channel MOS transistor to the high (or low) potential point
An n + (or p + ) type region and a p + (or n + ) type region for connecting the bulk of the n (or p) channel MOS transistor to a low (or high) potential point are in contact with each other. The Zener voltage of the Zener diode is controlled by the n (or p) channel MOS.
A complementary MOS integrated circuit device characterized by having a source-drain breakdown voltage lower than that of a transistor.
JP58034157A 1983-02-28 1983-02-28 Complementary type metal oxide semiconductor integrated circuit device Granted JPS59158546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58034157A JPS59158546A (en) 1983-02-28 1983-02-28 Complementary type metal oxide semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58034157A JPS59158546A (en) 1983-02-28 1983-02-28 Complementary type metal oxide semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS59158546A JPS59158546A (en) 1984-09-08
JPH0532908B2 true JPH0532908B2 (en) 1993-05-18

Family

ID=12406364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58034157A Granted JPS59158546A (en) 1983-02-28 1983-02-28 Complementary type metal oxide semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS59158546A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122153A (en) * 1987-11-05 1989-05-15 Fuji Electric Co Ltd Cmos semiconductor circuit device
JP2508826B2 (en) * 1987-11-24 1996-06-19 日本電気株式会社 Semiconductor device
DE68910445T2 (en) * 1988-09-01 1994-02-24 Fujitsu Ltd Integrated semiconductor circuit.
JP2011176163A (en) * 2010-02-25 2011-09-08 Panasonic Corp Nonvolatile semiconductor storage device

Also Published As

Publication number Publication date
JPS59158546A (en) 1984-09-08

Similar Documents

Publication Publication Date Title
US4139880A (en) CMOS polarity reversal circuit
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
US5963409A (en) Input/output electrostatic discharge protection circuit for an integrated circuit (IC)
JP2959528B2 (en) Protection circuit
US5349227A (en) Semiconductor input protective device against external surge voltage
US4689653A (en) Complementary MOS integrated circuit including lock-up prevention parasitic transistors
US5504361A (en) Polarity-reversal protection for integrated electronic circuits in CMOS technology
JPH07193195A (en) Cmos integrated circuit device
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
JPS5980973A (en) Gate protective circuit
JP2602974B2 (en) CMOS semiconductor integrated circuit device
JPH0532908B2 (en)
JPS58222573A (en) Semiconductor integrated circuit device
JPH0665224B2 (en) Semiconductor integrated circuit device
JPH05267586A (en) Output protection network
JPS6233752B2 (en)
JP3274561B2 (en) Semiconductor integrated circuit
JP4368014B2 (en) Schmidt circuit
JPH0817206B2 (en) Semiconductor device
JPH04239763A (en) Output buffer
JPH0669429A (en) Semiconductor circuit
US5432369A (en) Input/output protection circuit
JP3108125B2 (en) Semiconductor integrated circuit
JPS61208863A (en) Cmos semiconductor device
JPS649737B2 (en)