JPS63291039A - 2次の非線形光学素子 - Google Patents

2次の非線形光学素子

Info

Publication number
JPS63291039A
JPS63291039A JP12644487A JP12644487A JPS63291039A JP S63291039 A JPS63291039 A JP S63291039A JP 12644487 A JP12644487 A JP 12644487A JP 12644487 A JP12644487 A JP 12644487A JP S63291039 A JPS63291039 A JP S63291039A
Authority
JP
Japan
Prior art keywords
nonlinear optical
group
optical element
compd
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12644487A
Other languages
English (en)
Inventor
Masaru Matsuoka
賢 松岡
Teijiro Kitao
北尾 悌次郎
Takafumi Uemiya
崇文 上宮
Hiroshi Shimizu
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12644487A priority Critical patent/JPS63291039A/ja
Publication of JPS63291039A publication Critical patent/JPS63291039A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は2次の非線形光学素子に関する。さらに詳細に
は、アントラキノン系化合物よりなる2次の非線形光学
素子に関する。
〈従来技術及び発明か解決しようとする問題点〉非線形
光学効果は、媒質に光が入射したとき、その光の電場の
2乗以上の高次の項に比例する分極が生じる現象であり
、レーザ光等の強電界下では非線形光学効果が顕著に現
れる。この非線形光学効果により、第2高調波発生、カ
ー効果、光双安定などが可能となり、特に光の電場の2
乗に比例して起る2次非線形光学効果は光波長変換素子
、光変調素子等の非線形光学素子としてオプトエレクト
ロニクス分野の発展を約束する素子への応用が可能であ
るため多くの注目を集めている。
それらの素子を構成する材料は、現在のところKH2P
O2などの一部の無機材料が実用されているにすぎない
。しかし、それら無機材料の非線形光学定数は小さく、
それゆえ素子の動作には極めて高い電圧、または極めて
強い光強度が必要であった。このため、非線形光学定数
の大きい材料への要求は極めて強く、様々な材料探索か
なされてきた。無機材料においては、ニオブ酸リチウム
(LiNbO3)が最も大きい非線形光学定数を有して
いるが、ニオブ酸リチウムは強いレーザ光を照射すると
部分的に屈折率の変化を生じ、ま7た光で容易に損傷す
る欠点を有しており未だ実用化されていない。
近年になって、無機系材料に比べて有機系材料の方がは
るかに高い非線形光学特性を有することが見出だされ、
例えば、2−メチル−4−ニトロアニリン(MNA)に
代表されるように、π電子系を有すると共に分子内に電
子供与性基と電子吸引性基とを有し、極めて大きい非線
形光学定数を有する材料が注目されている。しかし、2
次の非線形光学効果を得るためには、結晶構造が反転対
称中心を持たないことが必要であり、さらに結晶内の分
子が一方向に並んだ構造が理想的であるか、2次の非線
形光学定数β(以下、非線形光学定数βと称する)が分
子状態でMNAに比べて大きい化合物、即ち、より大き
い永久双極子モーメントまたより大きいπ電子系を有す
る化合物の結晶構造を制御することは極めて困難であり
、今までMNAより高い2次非線形光学効果を有する有
機系化合物の報告例はほとんどなく、従って、MNAを
用いた非線形光学素子より高効率の非線形光学素子は知
られていない。
< [4的〉 本発明は上記問題点に鑑みてなされたものであり、高い
非線形光学効果を有する有機系非線形光学材料を用いた
2次の非線形光学素子を提供することを目的とする。
く問題点を解決するための手段および作用〉本発明の2
次の非線形光学素子は、下記一般式[11で表されるア
ントラキノン系化合物の結晶からなることを特徴とする
[式中、R1、R2、R3、R4、R5、R6、R7お
よびR6は有機性置換基をそれぞれ示す。
ただし、R1、R2、R3、R4、R5、R6、R7お
よびR8の少なくとも1つは、置換基を有することのあ
るアミノ基であるものとする。]有機非線形光学材料に
おいて、非線形光学定数βを大きくするには、光の電場
により分極が生ずる際に、分子内の電子移動がスムーズ
に進行することが必要とされるが、本発明は上記の構成
よりなり、一般式(1)で表される化゛合物は、アント
ラキノン骨格のα位またはβ位に電子供与性基である置
換基を有することのあるアミノ基を有し、電子遷移に伴
なってキノン環部分へ電子が大きく移動する分子内電荷
移動型化合物であるので、分子レベルでの非線形光学定
数βが大きく、顕著な非線形光学効果を有する非線形光
学素子とすることができる。また、アントラキノン系化
合物は、シアニン系色素などに比べ格段に化学的安定性
に優れており、良好な安定性を有する非線形光学素子を
得ることができる。
なお、一般式(1)で表される化合物において、R1が
置換基を有することのあるアミノ基である化合物は、R
2が置換基を有することのあるアミノ基である化合物よ
りも電荷移動量が大きくなり、非線形光学定数βを大き
くする上で好ましい。さらに、非線形光学定数βを大き
くするには、R5からR8の内の少なくとも1つの基は
電子吸引性基であることが望ましい。
また、一般式(I)で表される化合物において、R1、
R2、R3、R4、R5、R6、R7およびR8のいず
れかが水酸基である化合物は、水素結合により結晶構造
を制御できるのでより好ましい。
以下、この発明の詳細な説明する。
上記一般式(1)で表される化合物において、R1、R
2、R3、R4、R5、R6、R7およびR8は有機性
置換基を示し、そのうちの少なくとも1つは置換基を有
することのあるアミノ基であり、置換基を有することの
あるアミノ基としては、例えば、アミノ基;メチルアミ
ノ、ジメチルアミノ、エチルアミノ、ジエチルアミノ、
プロピルアミノ、ブチルアミノ、ヘキシルアミノ、オク
チルアミノなどのアルキルアミノ基;ベンジルアミノ、
ベンズヒドリル、トリチルアミノなどのアラルキルアミ
ノ基;フェニルアミノ、ジフェニルアミノなどのアリー
ルアミノ基;1−ピロリジニル、1−イミダゾリジニル
、1−ピラゾリジニル、1−ピペラジニル、ピペリジノ
、モルホリノなどの飽和複素環式基等が挙げられる。
また、上記有機性置換基としては、例えば、水素原子;
メチル、エチル、プロピル、ブチル、イソブチル、第三
級ブチル、ペンチル、ヘキシル、オクチル等のアルキル
基;メトキシ、エトキシ、プロポキシ、イソプロポキシ
、ブトキシ、第三級ブトキシ、ペンチルオキシ、ヘキシ
ルオキシ等のアルコキシ基;ホルミル、アセチル、プロ
ピオニル、ブチリル、ペンタノイル、ヘキサノイル、オ
クタノイル、ベンゾイル等のアシル基;カルバモイル、
メチルカルバモイル、ジメチルカルバモイル、エチルカ
ルバモイル、プロピルカルバモイル、ヘキシルカルバモ
イル、ラウリルカルバモイル、ベンジルカルバモイル、
フェニルカルバモイル等の置換基を有していてもよいカ
ルバモイル基;カルボキシ基;メトキシカルボニル、エ
トキシカルボニル、プロポキシカルボニル、ペンチルオ
キシスルホニル、ヘキシルオキシカルボニルなどのアル
コキシカルボニル基、フェノキジルカルボニル、p−ニ
トロフェニルオキシカルボニルなどの置換基を有してい
てもよいアリールオキシカルボニル、ベンジルオキシカ
ルボニル、ベンズヒドリルオキシカルボニルなどのアラ
ルキルオキシカルボニル等のエステル化されたカルボキ
シ基;メタンスルホニル、エタンスルホニル、プロパン
スルホニル、ブタンスルホニル、トリフルオロメタンス
ルホニル、2,2.2−トリフルオロエタンスルホニル
等のハロゲン原子を有していてもよいアルカンスルホニ
ル基;ホルムアミド、アセトアミド、プロピオンアミド
、ブチリルアミノ、ヘキサノイルアミノ、ベンゾイルア
ミノ等のアシルアミノ基;メルカプト基;メチルチオ、
エチルチオ、プロピルチオ、ブチルチオ、オクチルチオ
等のアルキルチオ基;ベンジルチオ、フェニルチオ、p
−フェニルチオ等の置換基を有していてもよいアラルキ
ルチオまたはアリールチオ基;水酸基;シアノ基;ニト
ロ基;ニトロソ基;スルホ基;メトキシスルホニル、エ
トキシスルホニル、プロポキシスルホニル、ブトキシス
ルホニル、ペンチルオキシスルホニル、ヘキシルオキシ
スルホニル、オクチルオキシスルホニルなどのアルコキ
シスルホニル、フェノキシスルホニル、p−シアノフェ
ノキシスルホニルなどの置換基を有していてもよいフェ
ノキシスルホニル等のエステル化されたスルホ基;スル
ファモイル、メチルスルファモイル、エチルスルファモ
イル、フェニルスルファモイル、ベンジルスルファモイ
ルなどの置換基を有していてもよいスルファモイル基:
テトラメチルアンモニオ、エチルトリメチルアンモニオ
等の第4級アンモニウム基;スルフィノ基;クロロ、ブ
ロモ、フルオロ、ヨード等のハロゲン基;メチロール、
2−ヒドロキシエチル、3−ヒドロキシプロピルなど一
般式−(CI+2 )  −OH(nは自然数)で示さ
れる基;チオカルボキシ基等の有機性置換基が例示でき
る。これらの有機性置換基は、水素結合可能な置換基が
好ましく、また、置換基か大きくなると結晶性が悪くな
り、素子化が困難となるので、できるだけコンパクトな
置換基が好ましい。
非線形光学定数βを大きくするためには、光の電場によ
り分極が生ずる際、スムーズに電子が移動することが必
要であり、一般式[11で表される化合物において、R
1またはR2が置換基を有することのあるアミノ基であ
る場合、R5、R6、R7およびR8の少なくとも1つ
は電子吸引性基であることがより好ましい。電子吸引性
基としては、例えば、ニトロ基、シアノ基、ハロゲン原
子を有していてもよいスルホニル基、アシル基、カルボ
キシ基、エステル化されたカルボギシ基、置換基を有し
ていてもよいカルバモイル基、スルホ基、エステル化さ
れたスルホ基、置換基を有していてもよいスルファモイ
ル基等種々の基が選択できる。
この発明の2次の非線形光学素子は種々の形態をとるこ
とができ、またその製造も種々の方法にて行なうことが
可能であり、例えば、真空蒸着、分子線エピタキシー等
の気相成長法、一般式(1)で表される化合物を含有す
る溶液の溶媒を蒸発させたり、または過飽和溶液から結
晶を析出させる液相成長法、一般式(11で表される化
合物を溶融し、種子結晶と接触させた後引き上げたり、
融液を温度勾配を有する加熱炉中で結晶化させる融液固
化法等を用いて結晶を作製することができる。
〈実施例〉 以下、実施例を示す添附図面に基づいて詳細に説明する
第1図は、本発明の2次の非線形光学素子の一実施例で
あり、光波長変換素子としての光導波路型波長変換素子
の概略図を示し、前記一般式(I)で表される2次の非
線形光学効果を有する化合物の結晶(以下、非線形媒質
と称する)からなるコア(1)か、ガラス等の2次の非
線形光学効果を示さない媒質(以下、等方性媒質と称す
る)からなるクラッド(2)で被覆された構造を有し、
同図中、一点鎖線は入射された光の基本波を、二点鎖線
は第2高調波を示す。レーザ光等の光はレンズ等で集光
され、上記光波長変換素子の一端面からコア(1)に入
射される。コア(1)を形成する非線形媒質は大き02
次の非線形光学効果を示すので、コア(1)の他端面よ
り出射される光は基本波と第2高調波を含み、プリズム
、フィルタ等の分光手段により分離することにより第2
高調波が取り出される。
また、光変調素子としても従来から用いられている形態
のデバイスとすることができる。第2図は、その−例と
して、横型動作の先導波路型光変調素子の概略図を示し
、等方性媒質よりなる基板(3)中に、非線形媒質から
なる導波路(4)が設けられ、さらに2つの電極(5)
が該導波路(4)を介しかつ長さ 13一 方向に沿って対向する位置に設けられ、該電極(5)間
に電圧を印加することにより電界か形成される。
上記素子において、導波路(4)の長さ方向の一端から
入射された光が導波路(4)を通過し他端面から出射さ
れる際、導波路(4)を構成する非線形媒質の屈折率が
変化すると出射される光の位相も変化する。
非線形媒質の屈折率は印加電圧により変化するので、電
極(5)間の印加電圧を変化させることにより、出射光
の位相変調を行なうことができる。
なお、本発明の2次非線形光学素子は上記実施例に限定
されるものではなく、種々の形態が可能であり、例えば
、光波長変換素子としては、非線形媒質単体を素子とし
て用いることかでき、また等方性媒質よりなる基板」二
に非線形媒質よりなる光導波路を形成し第2高調波を採
り出す構成等でもよ<  [J、 Zyss、 J、 
Mo1eaular Electronicsl、 2
5 (1985)など参照]、また光変調素子としては
、縦型動作の光導波路型光変調素子でもよく、また結晶
自体に直接電圧を印加する形態とすることもできる。な
お、光変調素子においては、非線形媒質の対称性、結晶
軸の方向等により、位相変調を効率よく行なうための電
界印加方向が異なるので、それらに基づき電極の構成を
適宜変更するのがよい。
以下、具体例に基づいて、本発明をより詳細に説明する
具体例 下記第1表に示される各試料を乳鉢にてすりつぶし、こ
れを2枚のプレパラートガラス間に挾み、YAGレーザ
(Quauta−Ray社、DCR−2)の1,06μ
mの光(100mJ/8ns pulse)を試料粉末
に照射し、放射される第2高調波(SHG、0.53μ
m)を目視にて観察した。
その結果を第1表に示す。
(以下余白) = 15− 一  16 − なお、第1表中、SHG活性の欄において、「○」はM
NA程度またはそれ以上のSHG活性を、「Δ」は尿素
以上のSHG活性を示す。
また、非線形定数βは、各化合物の電子状態を、Par
iser−Parr−Pople (PPP)法[例え
ば^、 Martin。
Acta、 Chimiea、 Academiae 
SeientlaruIIIHungari−cae、
 84.259. (1975)参照]を用いて計算し
、これをもとに下記式より計算した[J、 L、 0u
dar、 J、、 Chern、、 Phys、、 6
7、446 (1977)参照]。
2+n    [v2−(21ω) 2 ][v 2−
(+1ω)2][e:電子の電荷、”f+−h/ 2π
(hはブランク定数)、m:電子の質量、w:基底状態
と励起状態のエネルギーの差、1ω:入射光エネルギー
、r:振動子強度、Δμ =基底状態と励起状態の永久
極子モーe メントの差] なお、MNAと4−N、N−ジメチルアミノ−4゛−二
トロスチルベン(DANS)のPPP法により求めた非
線形光学定数βの値を下記第2表に示す。得られた値は
、」、L、0udarら[J、 L。
0udar、 J、、 Chem、、 Phys、、 
67、446 (1977)]による実測値をもとに、
前記非線形光学定数βを算出する式を用いて計算した文
献値と極めてよく一致しており、PPP法を用いて非線
形光学定数βを算出することの妥当性が示される。
第2表 〈発明の効果〉 以上のように、この発明の2次の非線形光学素子によれ
ば、電子吸引性基であるカルボニル基をHするアントラ
キノン環に電子供与性基である置喚基を有することのあ
るアミノ基が結合した構造6)らなる化合物を用いてお
り、光の電場により分碩が生ずる際の電子移動が速やか
に起こり、非線形光学定数βが大きいので、顕著な非線
形光学素子を示す2次の非線形光学素子が得られ、光強
度の弱いレーザ光でも高強度の第2高調波を分離でき、
また少ない電圧変化でも電気光学効果を効率よく発現で
きるという特有の効果を奏する。
【図面の簡単な説明】
第1図は、本発明の2次の非線形光学素子の一実施例と
しての光波長変換素子の概略図、第2図は、他の実施例
としての光変調素子の概略図を示す。 (1)・・・・・・コア      (2)・・・・・
・クラッド(3)・・・・・・基板      (4)
・・・・・・導波路(5)・・・・・・電極 特許出願人  住友電気工業株式会社 第1図 イ 第2図

Claims (1)

  1. 【特許請求の範囲】 1、一般式〔 I 〕 ▲数式、化学式、表等があります▼〔 I 〕 [式中、R^1、R^2、R^3、R^4、R^5、R
    ^6、R^7およびR^8は有機性置換基をそれぞれ示
    す。ただし、R^1、R^2、R^3、R^4、R^5
    、R^6、R^7およびR^8の少なくとも1つは、置
    換基を有することのある アミノ基であるものとする] で表わされるアントラキノン系化合物の結 晶からなることを特徴とする2次の非線形 光学素子。 2、一般式〔 I 〕で表される化合物において、R^1
    が置換基を有することのあるアミノ 基である特許請求の範囲第1項記載の2 次の非線形光学素子。 3、一般式〔 I 〕で表される化合物において、R^1
    およびR^4が置換基を有することのあるアミノ基であ
    る上記特許請求の範囲 第2項記載の2次の非線形光学素子。 4、一般式〔 I 〕で表される化合物において、R^2
    が置換基を有することのあるアミノ 基である特許請求の範囲第1項記載の2 次の非線形光学素子。 5、一般式〔 I 〕で表される化合物において、R^5
    、R^6、R^7またはR^8がカルボキシ基またはエ
    ステル化されたカルボキシ 基である上記特許請求の範囲第1項から 第4項のいずれかに記載の2次の非線形 光学素子。 6、一般式〔 I 〕で表される化合物において、R^1
    、R^2、R^3、R^4、R^5、R^6、R^7お
    よびR^8の少なくとも1つが水酸基である上記特許請
    求の範囲第1項から 第5項のいずれかに記載の2次の非線形 光学素子。
JP12644487A 1987-05-22 1987-05-22 2次の非線形光学素子 Pending JPS63291039A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12644487A JPS63291039A (ja) 1987-05-22 1987-05-22 2次の非線形光学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12644487A JPS63291039A (ja) 1987-05-22 1987-05-22 2次の非線形光学素子

Publications (1)

Publication Number Publication Date
JPS63291039A true JPS63291039A (ja) 1988-11-28

Family

ID=14935363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12644487A Pending JPS63291039A (ja) 1987-05-22 1987-05-22 2次の非線形光学素子

Country Status (1)

Country Link
JP (1) JPS63291039A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018601A1 (en) * 1993-02-05 1994-08-18 Sumitomo Electric Industries, Ltd. Third-order nonlinear optical material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018601A1 (en) * 1993-02-05 1994-08-18 Sumitomo Electric Industries, Ltd. Third-order nonlinear optical material
US5679808A (en) * 1993-02-05 1997-10-21 Sumitomo Electric Industries, Ltd. Tertiary non-linear optical material

Similar Documents

Publication Publication Date Title
Bosshard et al. Second-order nonlinear optical organic materials: recent developments
JPS63291039A (ja) 2次の非線形光学素子
US5272218A (en) Polymeric compositions for nonlinear optics
US5220451A (en) Second-order nonlinear optical device
JPH04277724A (ja) 有機非線形光学材料
JPS63261233A (ja) 2次の非線形光学材料
US5406406A (en) Molecular crystal and wavelength conversion devices using the same
US5383050A (en) Organic nonlinear optical material
JPS63221327A (ja) 2次の非線形光学素子
JP2540584B2 (ja) 2次の非線形光学材料とそれを用いた非線形光学素子
JP2539834B2 (ja) 非線形光学素子
JPH01193815A (ja) 2次の有機非線形光学材料
JPH01243038A (ja) 非線形光学材料
JP2539849B2 (ja) 非線形光学材料とそれを用いた非線形光学素子
JP2539850B2 (ja) 非線形光学材料とそれを用いた非線形光学素子
JPH025032A (ja) 波長変換素子およびその製造方法
JPH01101523A (ja) 非線形光学材料とそれを用いた非線形光学素子
JPH01229235A (ja) 有機非線形光学材料とそれを用いた非線形光学素子
JPH03279928A (ja) 波長変換素子
EP0357783B1 (en) Secondary non-linear optical material and non-linear optical element prepared therefrom
JPH01229234A (ja) 有機非線形光学材料とそれを用いた非線形光学素子
JPH036537A (ja) 有機非線形光学材料とそれを用いた非線形光学素子
JPH01274121A (ja) 光非線形材料
Wada et al. Quadratic Nonlinear Optical Properties of Diva Crystal
JPH01101522A (ja) 非線形光学材料とそれを用いた非線形光学素子