JPS6328873A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS6328873A
JPS6328873A JP17084486A JP17084486A JPS6328873A JP S6328873 A JPS6328873 A JP S6328873A JP 17084486 A JP17084486 A JP 17084486A JP 17084486 A JP17084486 A JP 17084486A JP S6328873 A JPS6328873 A JP S6328873A
Authority
JP
Japan
Prior art keywords
magnetic field
electrode
parallel
forming device
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17084486A
Other languages
Japanese (ja)
Inventor
Akira Ishibashi
暁 石橋
Hirohiko Izumi
泉 宏比古
Yasuaki Hayashi
林 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP17084486A priority Critical patent/JPS6328873A/en
Publication of JPS6328873A publication Critical patent/JPS6328873A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To promote the decomposition of a gaseous reactant and to increase the film forming rate by providing a parallel magnetic field forming device on a parallel flat plate electrode furnished in a vessel to form a magnetic field parallel to the electrode surface, and further allowing an electron supply means to cooperate to form a wide plasma region of high density. CONSTITUTION:The parallel magnetic field forming device 15 is provided on the parallel flat plate electrode 4 furnished with a closed-loop magnetic field forming device 12 in the vacuum vessel 1. The device 15 consists of one magnetic pole 15a protruding from the electrode 4 and the other magnetic pole 15b surrounding the outer periphery of the pole 15a, and a parallel magnetic field 14 is formed on the surface of the electrode 4. Consequently, the parallel magnetic field 14 is added to a closed-loop magnetic field 11 in front of the electrode 4, and a plasma region of high density is widely formed. The electron supply device 13 is allowed to cooperate, and the plasma region and the electron density are increased. As a result, the decomposition of the gaseous reactant is promoted, and the film forming rate on the substrate 10 is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば、シランガスをプラズマ放電により分
解して水素化アモルファスシリコンの薄膜を形成すべく
適用されるプラズマCVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma CVD apparatus that is applied to, for example, decompose silane gas by plasma discharge to form a thin film of hydrogenated amorphous silicon.

(従来の技術) 本願出願人は、先にこの種装置として、例えば特願昭6
1−38197に見られるように、真空容器内に設けた
平行平板型電極に、高周波電圧を印加して該容器内に導
入した反応ガスをプラズマ化することにより、加熱機構
を備えた支持装置に装着した基板上に薄膜を形成するよ
うにした式のものにおいて、該電極上に、閉ループ型の
磁界を形成する開ループ磁界形成装置を設けると共に、
該容器内に電子を供給する電子供給装置を設け、かくて
該磁界形成装置と該電子供給装置とは電子密度の高いプ
ラズマ領域を形成すべく有効に作用し、これによれば、
該反応ガスはその分解を大幅に促進されて薄膜の堆積速
度が大幅に増大されるようにした式のものを提案した。
(Prior Art) The applicant of the present application has previously proposed a device of this type, for example, in the patent application filed in 1983.
1-38197, a support device equipped with a heating mechanism is developed by applying a high frequency voltage to a parallel plate type electrode provided in a vacuum container and converting the reaction gas introduced into the container into plasma. In a type in which a thin film is formed on a mounted substrate, an open-loop magnetic field forming device for forming a closed-loop magnetic field is provided on the electrode, and
An electron supply device for supplying electrons is provided in the container, and the magnetic field forming device and the electron supply device thus work effectively to form a plasma region with high electron density.
A formula was proposed in which the decomposition of the reaction gas is greatly accelerated and the deposition rate of the thin film is greatly increased.

(発明が解決しようとする問題点) 然し乍ら、この場合、該閉ループ型の磁界に、別個の磁
界を加えて、その機能を更に向上すべき要求が存する。
(Problems to be Solved by the Invention) However, in this case, there is a need to add a separate magnetic field to the closed-loop magnetic field to further improve its functionality.

(問題点を解決するための手段) 本発明はか)る要求に適合する装置を得ることをその目
的としたもので、真空容器内に設けた平行平板型電極に
、高周波電圧を印加して、該容器内に導入した反応ガス
をプラズマ化することにより、加熱機構を備えた支持装
置に装着した基板上に、薄膜を作るようにし、更に該電
極上に閉ループ型の磁界を形成する開ループ磁界形成装
置と、該容器内に電子を供給する電子供給装置とを設け
るものにおいて、該電極上に電極面と略平行する平行型
の磁界を形成する平行磁界形成装置を設けて成る。
(Means for Solving the Problems) The present invention is aimed at obtaining a device that meets the above requirements, and involves applying a high-frequency voltage to parallel plate electrodes provided in a vacuum container. , by converting the reaction gas introduced into the container into plasma, a thin film is formed on the substrate mounted on a support device equipped with a heating mechanism, and an open-loop magnetic field is formed on the electrode. In a device that includes a magnetic field forming device and an electron supply device that supplies electrons into the container, a parallel magnetic field forming device that forms a parallel magnetic field substantially parallel to the electrode surface is provided on the electrode.

さらに第2発明によれば、上記のものにおいて膜厚分布
を均一化すべく移動H置を備えるようにした。
Furthermore, according to the second aspect of the present invention, the above-mentioned device is provided with a moving H position in order to make the film thickness distribution uniform.

(実施例) 本発明の実施例を別紙図面に付説明する。(Example) Embodiments of the present invention will be described with reference to attached drawings.

図面で(1)は真空容器を示し、該容器(1)はシラン
ガスその他の反応ガスを導入すべきガス導入機構(2)
と、内部を適宜の真空度に排気すべき排気機構(3)と
を備える。該容器(1)内には、n周波印加電圧を印加
される平行平板型電極(4)を備ええるもので、図示の
ものでは、該Z Fi (4)を外部の高周波電源(5
)にマツチング回路(6)を介して連なる図面で下側の
陰極作用の放電電極に構成させると共に、その上側にこ
れに対向させて、陽極作用の接地された電極(7′)を
備える。更に該接地電極(7)は加熱機構(8)を備え
た支持装置(9)に兼用されて、これに所定の基板0G
を装着させるもので、該加熱機構(8)は外部の電源(
8a)に連なる電熱式のヒータから構成されるようにし
た。
In the drawing, (1) indicates a vacuum container, and the container (1) has a gas introduction mechanism (2) into which silane gas and other reactive gases are to be introduced.
and an exhaust mechanism (3) for evacuating the inside to an appropriate degree of vacuum. The container (1) is equipped with a parallel plate type electrode (4) to which an n-frequency applied voltage is applied, and in the case shown, the Z Fi (4) is connected to an external high frequency power source (5).
) is connected via a matching circuit (6) to the lower cathode-functioning discharge electrode in the drawing, and an anodic-functioning grounded electrode (7') is provided on the upper side of the discharge electrode in opposition thereto. Further, the ground electrode (7) is also used as a support device (9) equipped with a heating mechanism (8), and a predetermined substrate 0G is attached to this.
The heating mechanism (8) is connected to an external power source (
8a) is composed of an electric heater connected to 8a).

更に課電1!i (4)には、その前面に半径方向の閉
ループ型の磁界(+1)を形成すべき閉ループ磁界形成
装置ミツを備えるもので、該’1aiazは内周の環状
の一方の磁極(12a )と、その外周の環状の他方の
電極(12b )を該電極(4)内に埋設する型式とし
、更に該容器(1)内に電子を供給する電子供給装置1
13を備えるもので、該装置■は該容器(1)内にのび
るフィラメント(13a )を有する型式とし、かくて
、該磁界a′Dは該電極(4)の前面に生ずるプラズマ
中の電子を捕えるため、その部分に電子密度の高いプラ
ズマ領[Xが眠りられると共に、該領域Xは該電子供給
装置(13による電子の供給により電子密度を更に増大
された状態となり、該電taXにおいて、反応ガスの分
解が促進されて、基板aO上における薄膜の形成速度が
向上されるようにした。
Plus 1 charge! i (4) is equipped with a closed-loop magnetic field forming device for forming a radial closed-loop magnetic field (+1) on its front surface, and the '1aiaz is connected to one of the annular magnetic poles (12a) on the inner periphery. , the other annular electrode (12b) on the outer periphery is buried in the electrode (4), and an electron supply device 1 that supplies electrons into the container (1).
13, said apparatus (1) is of the type having a filament (13a) extending into said container (1), and said magnetic field a'D thus attracts electrons in the plasma generated in front of said electrode (4). In order to capture the electrons, the plasma region [X with high electron density is put to sleep in that part, and the region The decomposition of the gas is promoted and the rate of formation of a thin film on the substrate aO is increased.

以上は先に提案したものと特に異ならないが、本発明に
よれば、該電極(4)上にその電極面と略平行する平行
型の磁界a@を形成すべき平行磁界形成装置aSを備え
るもので、該装置(151は、該電極(4)から前方に
突出する一方の磁極(Is a )と、その外周を囲繞
する他方の磁極(15b)とから成り、かくて、該磁界
(Φは前記した磁界(11)と略同様プラズマ中の電子
を捕えて電子密度の高いプラズマ領[Xを形成すべく作
用し、該領域Xは同じく反応ガスの分解を更に促進し、
成膜速度を更に向上すべく機能する。
Although the above is not particularly different from what was proposed earlier, according to the present invention, a parallel magnetic field forming device aS is provided to form a parallel magnetic field a@ substantially parallel to the electrode surface on the electrode (4). The device (151) consists of one magnetic pole (Isa) protruding forward from the electrode (4) and the other magnetic pole (15b) surrounding the outer periphery of the magnetic pole (Isa), and thus the magnetic field (Φ substantially similar to the magnetic field (11) described above, acts to capture electrons in the plasma and form a plasma region [X with high electron density, and this region X also further promotes the decomposition of the reactant gas,
It functions to further improve the film formation rate.

以上を要約するに、前記した平行磁界形成装置(IsI
は、前記した閉ループ磁界成形装置(121と協動して
電極(4)の前面に、広範囲に亘り高密度のプラズマ領
[Xを形成すべく作用すると共に、電子供給装置03と
の協動により、該領域Xは更にその電子密度を増大され
、かくて基板(IG上に導かれる反応ガスは該領域にお
いて分解を促進されて該基板(’IG上の成膜速度を増
大すべく救能する。
To summarize the above, the parallel magnetic field forming device (IsI
acts in cooperation with the closed-loop magnetic field shaping device (121) to form a wide-ranging, high-density plasma region [X] in front of the electrode (4), and in cooperation with the electron supply device 03, , the region .

尚この場合、該基板0G上の膜厚分布を均一化すべく、
該基板(10は該領域Xとの間に適宜の間隔を存せしめ
るが好ましく、図示のものでは、該基板○Oをその背面
の支持装置(5)を兼ねる接地電極(1)と共にその背
側の伸縮自在の移動装置(16a )により前後に移動
自在とした。
In this case, in order to make the film thickness distribution on the substrate 0G uniform,
It is preferable to leave an appropriate distance between the substrate (10 and the region The telescopic moving device (16a) allows for free movement back and forth.

該膜厚分布を均一化する手段は、これに限ることなく、
例えば第2図乃至第4図示のようにすることが出来る。
The means for making the film thickness distribution uniform is not limited to this, but
For example, it can be as shown in FIGS. 2 to 4.

即ち、第2図示のものでは閉ループ磁界形成装置■を、
これを埋設する放電電極(4)と共にその背側のモータ
その他の移動装M (16b )により回転させて、該
基板(IGとの間に相対的な回転走査を与えるようにし
、更に第3図示のものでは該平行磁界形成装置(+51
をその下側のモータその他の移動装置(16C)で回転
させて、該基板(10との間に相対的な回転走査を与え
るようにし、更に第4図示のものでは、基板OG側をそ
の背側のモータその他の移動装置(16d )で回転さ
せて、開磁界形成装置(+21 (151との間に相対
的な回転走査を与えるようにした。
That is, in the second diagram, the closed loop magnetic field forming device (■) is
This is rotated together with the buried discharge electrode (4) by a motor or other moving device M (16b) on the back side thereof, so as to give relative rotational scanning between it and the substrate (IG), and further, as shown in the third figure. The parallel magnetic field forming device (+51
is rotated by a motor or other moving device (16C) on the lower side to give relative rotational scanning to the substrate (10), and in the case shown in the fourth figure, the substrate OG side is It was rotated by a motor or other moving device (16d) on the side to give a relative rotational scan between the open magnetic field forming device (+21 (151)).

(発明の効果) このように、本発明によるときは、ff1li上に閉ル
ープ型の磁界を形成する閉ループ磁界形成装置と、真空
容器内に電子を供給する電子供給装置とを備える式のも
のにおいて、更に該電極上に電極面と略平行する平行型
の磁界を形成する平行磁界形成装置を備えるもので、該
電極上には平行磁界形成装置による平行型の磁界が追加
されて、高密度のプラズマ領域を広範囲に亘り確実に得
ることが出来、全体として反応ガスの分解その他の化学
反応を大きく促進して薄膜の形成速度を大きく向上させ
得られ、その構成は、該平行磁界形成装置を追加すれば
足りて比較的簡単である等の効果を有する。
(Effects of the Invention) As described above, according to the present invention, in a type including a closed-loop magnetic field forming device that forms a closed-loop magnetic field on ff1li and an electron supply device that supplies electrons into a vacuum container, Furthermore, it is equipped with a parallel magnetic field forming device that forms a parallel magnetic field approximately parallel to the electrode surface on the electrode, and a parallel magnetic field by the parallel magnetic field forming device is added on the electrode to generate a high-density plasma. The area can be reliably obtained over a wide range, and as a whole, the decomposition of the reaction gas and other chemical reactions can be greatly promoted, and the formation speed of the thin film can be greatly improved. It has the advantage of being relatively simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の1例の説明線図、第2図乃至第4
図はその変形例の説明線図である。 (1)・・・真空容器 (4)・・・放電電極 (5)・・−高周波電源 (7)・・・接地電極 (8)・・・加熱機構 (9)・・・支持装置 aO・・・基板 Gつ・・・閑ループ型磁界 Q’2)・・・閉ループ磁界形成装置 03・・・電子供給装置 0@・・・平行型磁界 (+51−・・平行磁界形成装置 (163) 〜(16d ) ・・・移動装置X・・・
高密度プラズマ領域 外2名− @2図
FIG. 1 is an explanatory diagram of one example of the device of the present invention, and FIGS.
The figure is an explanatory diagram of a modification thereof. (1)...Vacuum container (4)...Discharge electrode (5)...-High frequency power source (7)...Ground electrode (8)...Heating mechanism (9)...Support device aO. ...G substrates...Silent loop magnetic field Q'2)...Closed loop magnetic field forming device 03...Electron supply device 0@...Parallel magnetic field (+51-...Parallel magnetic field forming device (163) ~(16d)...Movement device X...
Two people outside the high-density plasma region - @Figure 2

Claims (1)

【特許請求の範囲】 1、真空容器内に設けた平行平板型電極に、高周波電圧
を印加して、該容器内に導入した反応ガスをプラズマ化
することにより、加熱機構を備えた支持装置に装着した
基板上に、薄膜を作るようにし、更に該電極上に閉ルー
プ型の磁界を形成する閉ループ磁界形成装置と該容器内
に電子を供給する電子供給装置とを設けるものにおいて
、該電極上に電極面と略平行する平行型の磁界を形成す
る平行磁界形成装置を設けて成るプラズマCVD装置。 2、真空容器内に設けた平行平板型電極に、高周波電圧
を印加して、該容器内に導入した反応ガスをプラズマ化
することにより、加熱機構を備えた支持装置に装着した
基板上に、薄膜を作るようにし、更に該電極上に閉ルー
プ型の磁界を形成する閉ループ磁界形成装置と、該容器
内に電子を供給する電子供給装置とを設けるものにおい
て、該電極上に電極面と略平行する平行型の磁界を形成
する平行磁界形成装置を設け、更に該基板に対し、該閉
ループ磁界形成装置と、該平行磁界形成装置との少なく
とも一方を相対的に移動する移動装置を備えて成るプラ
ズマCVD装置。
[Claims] 1. A support device equipped with a heating mechanism is produced by applying a high frequency voltage to a parallel plate type electrode provided in a vacuum container and converting the reaction gas introduced into the container into plasma. A thin film is formed on the mounted substrate, and a closed-loop magnetic field forming device for forming a closed-loop magnetic field on the electrode and an electron supplying device for supplying electrons into the container are provided. A plasma CVD apparatus comprising a parallel magnetic field forming device that forms a parallel magnetic field substantially parallel to an electrode surface. 2. By applying a high frequency voltage to the parallel plate type electrodes provided in the vacuum container and turning the reaction gas introduced into the container into plasma, a substrate mounted on a support device equipped with a heating mechanism is heated. A thin film is formed on the electrode, and a closed-loop magnetic field forming device for forming a closed-loop magnetic field on the electrode, and an electron supplying device for supplying electrons into the container are provided. a parallel magnetic field forming device that forms a parallel magnetic field, and a moving device that moves at least one of the closed loop magnetic field forming device and the parallel magnetic field forming device relative to the substrate. CVD equipment.
JP17084486A 1986-07-22 1986-07-22 Plasma cvd device Pending JPS6328873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17084486A JPS6328873A (en) 1986-07-22 1986-07-22 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17084486A JPS6328873A (en) 1986-07-22 1986-07-22 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS6328873A true JPS6328873A (en) 1988-02-06

Family

ID=15912374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17084486A Pending JPS6328873A (en) 1986-07-22 1986-07-22 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS6328873A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435172A (en) * 1977-08-24 1979-03-15 Anelva Corp Chemical reactor using electric discharge
JPS5756036A (en) * 1980-09-20 1982-04-03 Mitsubishi Electric Corp Plasma chemical vapor phase reactor
JPS5996261A (en) * 1982-11-22 1984-06-02 Agency Of Ind Science & Technol Thin film forming device
JPS60190562A (en) * 1984-03-08 1985-09-28 Tdk Corp Method and device for forming thin film
JPS619577A (en) * 1984-06-25 1986-01-17 Nec Corp Plasma chemical vapor phase growing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435172A (en) * 1977-08-24 1979-03-15 Anelva Corp Chemical reactor using electric discharge
JPS5756036A (en) * 1980-09-20 1982-04-03 Mitsubishi Electric Corp Plasma chemical vapor phase reactor
JPS5996261A (en) * 1982-11-22 1984-06-02 Agency Of Ind Science & Technol Thin film forming device
JPS60190562A (en) * 1984-03-08 1985-09-28 Tdk Corp Method and device for forming thin film
JPS619577A (en) * 1984-06-25 1986-01-17 Nec Corp Plasma chemical vapor phase growing method

Similar Documents

Publication Publication Date Title
JPS6417870A (en) Manufacture of carbon
JPS62102827A (en) Production of metallic or ceramic fine grain
JPS5963732A (en) Thin film forming device
US20120222617A1 (en) Plasma system and method of producing a functional coating
JPS6328873A (en) Plasma cvd device
JPS62203328A (en) Plasma cvd apparatus
JPH0420984B2 (en)
JPH0420985B2 (en)
JPS6328872A (en) Plasma cvd device
JP2590112B2 (en) Microwave plasma processing equipment
JPS57161057A (en) Chemical vapor phase growth device using plasma
JPH0257476B2 (en)
JP3152548B2 (en) High frequency induction plasma deposition equipment
JPS62238371A (en) Plasma cvd device
US20070110644A1 (en) System for manufacturing a fullerene derivative and method for manufacturing
JPS63235480A (en) Device for microwave plasma cvd
JP2738433B2 (en) Reactive plasma beam deposition equipment
JP2805506B2 (en) Diamond film synthesizer by microwave plasma CVD
JP3276415B2 (en) Method and apparatus for forming ceramic film
JPS6016419A (en) Plasma cvd processing apparatus
JPS6383271A (en) Production of diamond-like carbon film
JPH01298174A (en) Formation of thin film using ion cyclotron resonance and device therefor
JPS62238370A (en) Device for cvd by plasma
JP2715277B2 (en) Thin film forming equipment
JPH02214701A (en) Plasma polymerization reactor