JPS62238371A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS62238371A
JPS62238371A JP8008186A JP8008186A JPS62238371A JP S62238371 A JPS62238371 A JP S62238371A JP 8008186 A JP8008186 A JP 8008186A JP 8008186 A JP8008186 A JP 8008186A JP S62238371 A JPS62238371 A JP S62238371A
Authority
JP
Japan
Prior art keywords
magnetic field
electrode
plasma
recess groove
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8008186A
Other languages
Japanese (ja)
Other versions
JPH0249386B2 (en
Inventor
Hirohiko Izumi
泉 宏比古
Akira Ishibashi
暁 石橋
Yasuaki Hayashi
林 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP8008186A priority Critical patent/JPH0249386B2/en
Publication of JPS62238371A publication Critical patent/JPS62238371A/en
Publication of JPH0249386B2 publication Critical patent/JPH0249386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Abstract

PURPOSE:To increase the deposition velocity of a film without deteriorating film quality by forming a recess groove on the surface of an electrode impressed with high-frequency voltage and forming a magnetic field orthogonally crossing to a high-frequency electric field in the recess groove and also directly feeding reaction gas. CONSTITUTION:The inside of a vacuum vessel 1 is adjusted to required gas composition, the flow rate of gas and pressure by means of both a feed mechanism 15 for reaction gas and an exhaust device 2 and high-frequency voltage is impressed to a high frequency impressing electrode 4 to generate glow discharge between it and a grounded electrode 5. At this time, electrons generated in plasma are trapped by a magnetic field orthogonally crossing to a high-frequency electric field which is formed by a magnetic field formation device 12 in a recess groove 11 of the electrode 4 and a plasma region high in electron density is formed in the recess groove 11. Further since reaction gas is directly fed to the inside of the recess groove 11 by a feed mechanism 15, the decomposition efficiency of reaction gas due to plasma is enhanced and a film is high-speedily formed in the part on a base plate 8 wherein the part is opposed to the recess groove 11. Further the distance of the base plate 8 for the plasma region in the recess groove 11 is freely adjusted by transferring the grounded electrode 5 by means of a positioning device 13.

Description

【発明の詳細な説明】 (M東上の利用分野) 本発明は、プラズマ放電により原料ガスと分解してアモ
ルファスシリコン等の非晶質半導1本や1!積回路にお
ける層間絶縁膜やノゼツシベーション膜等の形成に通用
さn、るプラズマCVD装置に関する。
Detailed Description of the Invention (Field of Application of M Tojo) The present invention decomposes a raw material gas by plasma discharge to produce an amorphous semiconductor such as amorphous silicon or 1! The present invention relates to a plasma CVD apparatus that is commonly used for forming interlayer insulating films, nosescivation films, etc. in integrated circuits.

(従来の技術) 従来、  a −Si(アモルファスシリコン)膜やパ
ッジ4−ジョン膜の堆積に用いらnてきたゾ5、i?マ
CVD装置は、ガス導入機構と排気機構によって内部全
所望のガス組成、流電及び圧力に調整し得る真空容器内
に平行平板電極金膜け。
(Prior Art) Conventionally, a method has been used to deposit an a-Si (amorphous silicon) film or a padding film. The MCVD device consists of a parallel plate electrode gold film placed inside a vacuum vessel which can be adjusted to the desired gas composition, current and pressure by a gas introduction mechanism and an exhaust mechanism.

この電極に高周波電力を印加して反応ガス金グラズマ化
する構成全備え、膜が形成される基板に真空容器内の適
当な支持装置に装着さn7て所望の@度に加熱さ1−1
その表面にプラズマ化さ部分解さr、たガス棟が堆積す
る。
This electrode is fully equipped with a configuration for applying high-frequency power to the reaction gas to form a gold glaze, and the substrate on which the film is to be formed is mounted on a suitable support device in a vacuum container and heated to a desired degree.
On its surface, a gas ridge that has been turned into plasma and partially decomposed is deposited.

(発明が解決しようとする問題点) このような従来のプラズマCVD装置においては、通常
の場合、基板に膜が堆積する速!fは通常1〜3λ/5
lIcであり、産業上この堆積速度の向上が望士几てい
る。
(Problems to be Solved by the Invention) In such a conventional plasma CVD apparatus, normally, a film is deposited on a substrate at a very high speed. f is usually 1 to 3λ/5
1Ic, and this improvement in the deposition rate is of great interest in industry.

堆積速度の同上のために11に極の高周波醒カ密度を上
げると、基板表面に入射するイオンの入射エネルギーが
大きくなり堆積した膜に欠陥音生じ、また気相中で活性
種同士の反応が活発にな9、膜講造に不均一・を生ずる
ことに、なっで好1しくない。
In order to increase the deposition rate, increasing the radio frequency power density of the pole to 11 increases the incident energy of ions incident on the substrate surface, causing defect noise in the deposited film, and also causing reactions between active species in the gas phase. 9. It is not a good idea to cause unevenness in the membrane structure.

一方、分解し易いジシランガスやトリシランガス、フッ
化シランガス等を反応ガスとしで用いることにより堆積
速度を同上させることも考えらn、るが、こnらのガス
はシランガスに比べて扱いを慎重に行なう必要がある上
、一般に良好な膜質は得らn、ない。
On the other hand, it is also possible to increase the deposition rate by using easily decomposed disilane gas, trisilane gas, fluorinated silane gas, etc. as a reaction gas, but these gases should be handled more carefully than silane gas. Moreover, good film quality is generally not obtained.

本発明は、膜質を低下させることなく模の堆積速!fを
同上させ得るプラズマOV’D装置を提供することを目
的とするものである。
The present invention improves the deposition rate of the pattern without deteriorating the film quality! It is an object of the present invention to provide a plasma OV'D device that can increase f.

(問題点を解決するための手段) 上記目的全達成するために、本発明にょnば、真空容器
内に設けた平行平板11L極に高周波電圧を印加し、真
空容器内に導入した反応ガスをプラズマ化することによ
り、加熱機Wt備えた支持装置に装着した基板上に薄膜
を形成するようにしたプラズマCVD装置において、高
周波′電圧の印加さ几るw、像の表面に凹溝を形成し、
核凹溝内に高周波電界に直交する磁界を形成する磁界形
成装置を設け、更に該凹溝内に反応ガスを百受供給する
供給機構を設けるようにした。
(Means for Solving the Problems) In order to achieve all of the above objects, the present invention applies a high frequency voltage to the parallel plate 11L pole provided in the vacuum container, and the reaction gas introduced into the vacuum container is In a plasma CVD apparatus that forms a thin film on a substrate mounted on a support device equipped with a heating device by turning it into plasma, a groove is formed on the surface of the image when a high-frequency voltage is applied. ,
A magnetic field forming device for forming a magnetic field perpendicular to the high-frequency electric field is provided in the nuclear groove, and a supply mechanism for supplying a reactive gas to the groove is further provided.

この構成に於て、高周波電界と直交する磁界によf)集
中さ扛たプラズマ領域に対し、距fa装置いて基板を位
置決めする位置決め装置が設けら几る。
In this configuration, a positioning device for positioning the substrate using a distance fa device is not provided with respect to the plasma region concentrated by the magnetic field orthogonal to the high frequency electric field.

″また本発明の別の特徴によ1ば、平行平板電極と基板
と磁界形成装置のうちの少なくとも1つを移動させる移
動装置が設けら几る。
According to another feature of the present invention, a moving device is provided for moving at least one of the parallel plate electrodes, the substrate, and the magnetic field forming device.

(作 用) 前記のように構成した本発明のfe置は、高周波電圧の
印加さn、る′電極の表面に凹I’ll ft形成し、
そこに磁界形成装置で電界と直交する磁界を発生させる
ので、該凹溝内には磁界により空間の電子が取り込ま几
、電子密度の極めて高いプラズマが形成される。この電
子密度の高いプラズマ中では、ガス橿と電子の衝突頻度
が大きくなり反応ガスの分解が促進さfl、1シかも反
応ガスは供給機構により直接凹溝内に供給さ几るのでそ
の拡散希釈化が小さく、従って反応ガスの分解効率が高
まる、 そのため凹溝内では膜形成に寄与する活性種の濃度が高
まり、基板の該凹溝に対向した部分に於ける膜の堆積速
度が大きく向上する。
(Function) In the FE device of the present invention configured as described above, a concave portion is formed on the surface of the electrode to which a high frequency voltage is applied.
Since a magnetic field perpendicular to the electric field is generated there by a magnetic field generating device, electrons in the space are drawn into the groove by the magnetic field, and plasma with extremely high electron density is formed. In this plasma with high electron density, the frequency of collisions between the gas rod and the electrons increases, promoting the decomposition of the reaction gas.The reaction gas is directly supplied into the groove by the supply mechanism, so it is diffused and diluted. Therefore, the concentration of active species that contribute to film formation increases within the groove, and the deposition rate of the film on the portion of the substrate facing the groove increases greatly. .

更に平行平板電極と基板と磁界形成装置のうちの少なく
とも1つを移動装置で移動することにより、基板面全電
子密度の高いプラズマ領域で走査することが出来、基板
に均一な分布で膜を堆積させることが出来る。
Furthermore, by moving at least one of the parallel plate electrodes, the substrate, and the magnetic field forming device using a moving device, it is possible to scan the plasma region with a high total electron density on the substrate surface, depositing a film with a uniform distribution on the substrate. I can do it.

(実施例) 本発明の実施例を図面に基づき説明すると、第1図に於
て、符号(1)は真空容器、(2)は該真空容器(1)
内を真空に排気する排気装置を示す。該真空容器(1)
内には、高周波印加電極(4)と接地電極(5)とで構
成された平行平板電極が設けらn1該高周波印加電極(
4) Kはマツチング回路(6)ヲ介して高周波電源(
7)が接続される。該接地電極(5)は基板(8)の支
持装置を兼ねその内部には該基板(8)全加熱する加熱
機構(9)が設けられる。00は加熱電源である。
(Example) An example of the present invention will be described based on the drawings. In FIG. 1, reference numeral (1) is a vacuum container, and (2) is the vacuum container (1).
This shows an exhaust device that evacuates the inside. The vacuum container (1)
A parallel plate electrode consisting of a high frequency application electrode (4) and a ground electrode (5) is provided inside the high frequency application electrode (n1).
4) K is connected to the high frequency power supply (
7) is connected. The ground electrode (5) also serves as a support device for the substrate (8), and a heating mechanism (9) for completely heating the substrate (8) is provided therein. 00 is a heating power source.

こうした構成は、従来のプラズマCVD装置と同様であ
るが5本発明のものでハ、高周波印加電極(4)の表面
即ち接地電極(5)への対同面に環状その他の凹溝qB
を形成するようにし、該凹溝l′lll内に高周波電界
に直交する磁界全形成するための永久礎石等から成る磁
界形成装置a2を設け、史に該凹溝回内に直接反応ガス
を供給する供給機g(19を設けるようにした。該供給
機得顛は図示の例で(グ真空容器(1)の外部のガス源
(至)から高周波印7111電極(4)内を通って凹!
 Qll内へ開口する配管にてm戊した。また磁界形成
袋#、(財)は、高周波印加1!極(4)内に設けるよ
うにしたが、こnに限らず例えば核?JE極(4)の外
部後方に設けるようにしてもよい。
This configuration is similar to that of a conventional plasma CVD apparatus, but in the present invention, there is an annular or other concave groove qB on the surface of the high frequency application electrode (4), that is, on the same surface as the ground electrode (5).
A magnetic field forming device a2 consisting of a permanent foundation stone or the like is installed to form a magnetic field orthogonal to the high-frequency electric field within the groove l'llll, and a reactive gas is directly supplied into the groove. In the illustrated example, the feeder g (19) is provided with a gas source (g) external to the vacuum vessel (1) passing through the high frequency mark 7111 electrode (4) and recessed. !
A hole was made in the pipe opening into the Qll. In addition, magnetic field forming bag #, (Foundation) has high frequency application 1! Although it was arranged to be provided within the pole (4), it is not limited to this, but for example, the nucleus? It may be provided outside and rearward of the JE pole (4).

この第1図示の装置の作動は次の通りである。The operation of this first illustrated device is as follows.

まず、A’2容器(1)内に、シランガスの反応ガスを
供給機構OQを介して供給すると共に排気装置(3)を
作動させて容器内を所望のガス組成、ガス流量及び圧力
に調節し、その後、高周波印加′電極(4)に高周波電
圧を印加してこnと接地電極(5)との間にグロー放電
を発生させる。
First, a reaction gas of silane gas is supplied into the A'2 container (1) via the supply mechanism OQ, and the exhaust device (3) is operated to adjust the inside of the container to the desired gas composition, gas flow rate, and pressure. After that, a high frequency voltage is applied to the high frequency application electrode (4) to generate a glow discharge between the high frequency application electrode (4) and the ground electrode (5).

この時、プラズマ中で生成した電子に、高周波印加電極
(4)の凹溝(11)内で磁界形成装置(転)により形
成された高周波電界と直交する磁界で捕えらn、該凹′
#I#αυ内に極めて′電子密度の高いプラズマ領域が
形成される。
At this time, the electrons generated in the plasma are captured by a magnetic field perpendicular to the high-frequency electric field formed by the magnetic field forming device (roller) within the groove (11) of the high-frequency application electrode (4), and the groove (11) of the high-frequency application electrode (4) is
A plasma region with extremely high electron density is formed within #I#αυ.

また該凹溝αυ内に反応ガスが直後供給さl、るのでプ
ラズマによる反応ガスの分解効率が間まり、接地電極(
5)の基板(8)上の校門溝(l刀と対口する部分には
高速で膜が形成さ几る6具体的には、該高周波印加を極
(4)への投入電力が従来のものと同様であっても、膜
の堆積速度金数倍の10λ/禦となし得る。
In addition, since the reaction gas is immediately supplied into the groove αυ, the decomposition efficiency of the reaction gas by the plasma is reduced, and the ground electrode (
5) A film is formed at high speed on the gate groove (the part facing the sword) on the substrate (8).6 Specifically, the power input to the pole (4) of the high frequency application is Even if the film deposition rate is similar to the above, the film deposition rate can be set to 10λ/λ, which is several times as high as gold.

尚、凹溝αυ内のプラズマ領域に対し、基板(8)に距
離を置いて設置されるが、その距離は麻1図示の例でに
位置決め装置α3により接地電極(5)を移動させて自
在に調節出来るようにした。
The substrate (8) is installed at a distance from the plasma region in the groove αυ, but the distance can be changed freely by moving the ground electrode (5) using the positioning device α3 in the example shown in Fig.1. It can be adjusted to.

第2図の実施例は、本発明の別の特徴金示すもので、こ
nに於ては、高周波印加電極(4)全磁界形成装置四と
共に旋回移動させる電動機等の移動装置α→に連結し、
凹#Q】)への反応ガスの供給機構OQを移動装置04
を挿通して設け、OVDの処理中に基板(8)の面が移
動する凹m01)内のプラズマ領域により走査さ几、該
基板(3)上に形成さ几る薄膜の膜厚分布が均一化さ几
るようにした。
The embodiment shown in FIG. 2 shows another feature of the present invention, in which the high frequency application electrode (4) is connected to a moving device α→ such as an electric motor for rotating the entire magnetic field forming device 4. death,
Device 04 for moving the reaction gas supply mechanism OQ to concave #Q])
The surface of the substrate (8) is scanned by the plasma region in the concave (m01) in which it moves during the OVD process, so that the thickness distribution of the thin film formed on the substrate (3) is uniform. I tried to hide it.

該移a装宵(14’rは、第3図示のように、高周波印
加電極(4)内に回転自在に設けた磁界形成装置(2)
と連結してこnに旋回移動を与えるか、或は$4図示の
ように接地t ffl (5)に連結して基板(8)を
高周波印加′直後(4)のプラズマ領域に対して旋回移
動させることも可能で同時に接地K 祢(5)に位置決
め装+iα3を設けて基板(8)とプラズマ領域との距
@を調節することも出来る。
The transfer device (14'r is a magnetic field forming device (2) rotatably provided in the high frequency application electrode (4) as shown in the third diagram).
or, as shown in the figure, connect it to the ground tffl (5) to rotate the substrate (8) relative to the plasma region (4) immediately after applying the high frequency. At the same time, it is also possible to adjust the distance between the substrate (8) and the plasma region by providing a positioning device +iα3 on the ground plane (5).

尚1図示してはないが、電極(41(5)、基板(8)
及び磁界形成装置(121のうちの2つ以上を同時に移
動させるようにしてもよい。
1 Although not shown, the electrode (41 (5), substrate (8)
and a magnetic field forming device (two or more of the magnetic field forming devices (121) may be moved simultaneously.

(発明の効果) 以上のように1本発明のプラズマOV Di[は、高周
波印加’+[&の表面に凹溝を形成し、そこに磁界形成
装置により高周波電界と直交する磁界が生ずるようにし
、更に該凹溝内には反応ガスが供給機構により供給さ几
るようにしたので、校門溝内に電子密度の高いプラズマ
領域が形成されるところへ反応ガスを供給してその分解
効率を高めることが出来、対口する基板上に大電力や特
殊なガスを使用せずに高速で薄膜を形成することが可能
になり、しかも良質の薄膜を得ることが出来る。、また
移@袋償により電極、基板、磁界形成装置のうちの少な
くとも1つを移動装置により移動するようにしたので、
プラズマ領域で基板を走査し、均一な膜厚分布の薄膜を
形成出来る等の効果がある。
(Effects of the Invention) As described above, in the plasma OV Di[ of the present invention, a concave groove is formed on the surface of the high-frequency application '+[&, and a magnetic field orthogonal to the high-frequency electric field is generated there by a magnetic field forming device. Furthermore, since the reactant gas is supplied into the groove by the supply mechanism, the reactant gas is supplied to the area where a plasma region with high electron density is formed in the groove, thereby increasing the decomposition efficiency. This makes it possible to form a thin film on the opposing substrate at high speed without using large amounts of power or special gas, and it is also possible to obtain a high-quality thin film. , Also, since at least one of the electrode, the substrate, and the magnetic field forming device is moved by the moving device by the transfer@bag compensation,
It has the advantage of being able to scan the substrate in the plasma region and form a thin film with a uniform thickness distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は不発明の実施例の概略の断面線図で
ある。 (1)・・・真空容器    (4) (5)・・・平
行平板を極(8)・・・基板      (9)・・・
加熱機構(11)・・・凹Tj!#       (6
)・・・磁界形成袋[實凹・・・位置決め装置  0尋
・・・移動装置09・・・反応ガス供給機構
1 to 4 are schematic cross-sectional diagrams of an embodiment of the invention. (1)...Vacuum vessel (4) (5)...Parallel plate as pole (8)...Substrate (9)...
Heating mechanism (11)...Concave Tj! # (6
)...Magnetic field forming bag [actually concave...Positioning device 0 fathom...Movement device 09...Reactant gas supply mechanism

Claims (1)

【特許請求の範囲】 1、真空容器内に設けた平行平板型電極に高周波電圧を
印加し、真空容器内に導入した反応ガスをプラズマ化す
ることにより、加熱機構を備えた支持装置に装着した基
板上に薄膜を形成するようにしたプラズマCVD装置に
おいて、高周波電圧の印加される電極の表面に凹溝を形
成し、該凹溝内に高周波電界に直交する磁界を形成する
磁界形成装置を設け、更に該凹溝内に反応ガスを直接供
給する供給機構を設けたことを特徴とするプラズマCV
D:装置。 2、高周波電界に直交する磁界により集中されたプラズ
マ領域に対し、距離を置いて基板を位置決めする位置決
め装置を設けたことを特徴とする特許請求の範囲第1項
に記載のプラズマCVD装置。 3、真空容器内に設けた平行平板型電極に高周波電圧を
印加し、真空容器内に導入した反応ガスをプラズマ化す
ることにより、加熱機構を備えた支持装置に装着した基
板上に薄膜を形成するようにしたプラズマCVD装置に
おいて、高周波電圧の印加される電極の表面に凹溝を形
成し、該凹溝内に高周波電界に直交する磁界を形成する
磁界形成装置を設け、更に該凹溝内に反応ガスを直接供
給する供給機構を設けるようにし、平行平板電極と基板
と磁界形成装置のうちの少なくとも1つを移動させる移
動装置を設けることを特徴とするプラズマCVD装置。
[Claims] 1. A high-frequency voltage is applied to a parallel plate type electrode provided in a vacuum container, and the reaction gas introduced into the vacuum container is turned into plasma, thereby being attached to a support device equipped with a heating mechanism. In a plasma CVD apparatus configured to form a thin film on a substrate, a groove is formed on the surface of an electrode to which a high frequency voltage is applied, and a magnetic field forming device is provided for forming a magnetic field perpendicular to the high frequency electric field in the groove. , further comprising a supply mechanism for directly supplying a reaction gas into the groove.
D: Device. 2. The plasma CVD apparatus according to claim 1, further comprising a positioning device for positioning the substrate at a distance with respect to a plasma region concentrated by a magnetic field orthogonal to the high-frequency electric field. 3. A thin film is formed on a substrate mounted on a support device equipped with a heating mechanism by applying a high frequency voltage to parallel plate electrodes installed in a vacuum container and turning the reactive gas introduced into the vacuum container into plasma. In the plasma CVD apparatus, a groove is formed on the surface of the electrode to which a high-frequency voltage is applied, a magnetic field forming device for forming a magnetic field perpendicular to the high-frequency electric field is provided in the groove, and 1. A plasma CVD apparatus, characterized in that a supply mechanism for directly supplying a reactive gas is provided, and a moving device is provided for moving at least one of a parallel plate electrode, a substrate, and a magnetic field forming device.
JP8008186A 1986-04-09 1986-04-09 PURAZUMACVD SOCHI Expired - Lifetime JPH0249386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8008186A JPH0249386B2 (en) 1986-04-09 1986-04-09 PURAZUMACVD SOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8008186A JPH0249386B2 (en) 1986-04-09 1986-04-09 PURAZUMACVD SOCHI

Publications (2)

Publication Number Publication Date
JPS62238371A true JPS62238371A (en) 1987-10-19
JPH0249386B2 JPH0249386B2 (en) 1990-10-30

Family

ID=13708269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8008186A Expired - Lifetime JPH0249386B2 (en) 1986-04-09 1986-04-09 PURAZUMACVD SOCHI

Country Status (1)

Country Link
JP (1) JPH0249386B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279761A (en) * 1988-05-06 1989-11-10 Fujitsu Ltd Thin film-forming equipment
JPH024976A (en) * 1988-06-23 1990-01-09 Fujitsu Ltd Thin film formation
JPH02142120A (en) * 1988-11-22 1990-05-31 Tokyo Electron Ltd Plasma treatment equipment
JP2001181848A (en) * 1999-12-20 2001-07-03 Anelva Corp Plasma treatment equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279761A (en) * 1988-05-06 1989-11-10 Fujitsu Ltd Thin film-forming equipment
JPH024976A (en) * 1988-06-23 1990-01-09 Fujitsu Ltd Thin film formation
JPH02142120A (en) * 1988-11-22 1990-05-31 Tokyo Electron Ltd Plasma treatment equipment
JP2001181848A (en) * 1999-12-20 2001-07-03 Anelva Corp Plasma treatment equipment
JP4601104B2 (en) * 1999-12-20 2010-12-22 キヤノンアネルバ株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JPH0249386B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
US4612207A (en) Apparatus and process for the fabrication of large area thin film multilayers
US5099790A (en) Microwave plasma chemical vapor deposition apparatus
JPH05275345A (en) Plasma cvd method and its device
EP0849811A3 (en) Apparatus for forming non-single-crystal semiconductor thin film, method for forming non-single-crystal semiconductor thin film, and method for producing photovoltaic device
JP2970654B1 (en) Thin film forming equipment
JP2000223421A (en) Film growth method and its device
JPS62203328A (en) Plasma cvd apparatus
JPS62238371A (en) Plasma cvd device
JPH0142125B2 (en)
US5718769A (en) Plasma processing apparatus
JP3144165B2 (en) Thin film generator
JPH0420985B2 (en)
JPH0249385B2 (en) PURAZUMACVD SOCHI
JPH0620038B2 (en) Plasma gas phase reactor
JPH1022279A (en) Inductive coupled plasma cvd device
JPH0622204B2 (en) Plasma CVD equipment
KR920002169B1 (en) Plasma discharge deposition process and a suitable apparatus therefor
JPS62205618A (en) Plasma cvd unit
JP2676091B2 (en) How to make a thin film
JPS62209821A (en) Plasma cvd apparatus
JPS62124277A (en) Plasma cvd device
JPH02294482A (en) Thin film forming device
JPS62177180A (en) Surface treatment
JPH0639708B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JP2934466B2 (en) Plasma CVD equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees