JPS62124277A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS62124277A
JPS62124277A JP26141685A JP26141685A JPS62124277A JP S62124277 A JPS62124277 A JP S62124277A JP 26141685 A JP26141685 A JP 26141685A JP 26141685 A JP26141685 A JP 26141685A JP S62124277 A JPS62124277 A JP S62124277A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
substrate
electrode
frequency voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26141685A
Other languages
Japanese (ja)
Inventor
Hirohiko Izumi
泉 宏比古
Akira Ishibashi
暁 石橋
Yasuaki Hayashi
林 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP26141685A priority Critical patent/JPS62124277A/en
Publication of JPS62124277A publication Critical patent/JPS62124277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To make high-speed deposition of films having good film quality and uniform film thickness distribution by impressing a high-frequency voltage to an electrode provided in a vacuum vessel to form plasma and providing a device for forming a magnetic field of a closed loop type onto the above-mentioned electrode. CONSTITUTION:The high-frequency voltage is impressed from a high-frequency power source 7 to a parallel flat plate type electrode 4 disposed to face the ground electrode 5 in a vacuum chamber 1 having an evacuation mechanism 3 to convert the reactive gas introduced from an introducing mechanism 2 to plasma, so that the thin film is formed on a substrate 10 mounted on the above-mentioned ground electrode 5 having a heating mechanism 11. The device consisting of a magnet 8 and magnetic plate 9 is provided on the high-frequency impressing electrode 4 of the plasma DVD device constituted in the above-menioned manner to form the magnetic field of a closed loop type, thus forming the high-density plasma. the thin film is thereby formed at a high speed on the surface of the substrate 10 on the ground electrode 5 positioned by a driving mechanism 13. The substrate 10 and the magnetic field are relatively scanned, by which the film having the good film quality and uniform film thickness distribution is easily formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ放電により原料ガスを分解してアモ
ルファス少すコン等の非晶質半導体や集積回路における
絶縁膜等を堆積するのに用いられ得るプラズマCVD装
置に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to decomposing raw material gas by plasma discharge and depositing amorphous semiconductors such as amorphous semiconductors and insulating films in integrated circuits. The present invention relates to a plasma CVD apparatus that can be used.

〔従来の技術〕[Conventional technology]

従来、大面積化が容易であること、薄膜化しやすいこと
およびp、n制御が可能であること等から、太陽電池や
イメージングデバイスとして重要な素材である水素化ア
モルファスシリコン(以下a−8i:Hと記載する)は
、通常プラス−r OVD ?4によって形成され、こ
の方法によるものの膜質が最も良いとされている。この
方法においては、シランガスを高周波グロー放電により
分解してa−8i :H膜を基板上に堆積させる。この
目的で従来用いられてきたプラズマCVD装置は、高周
波電圧を印加する陰極と、接地された陽極との平行平板
型電極によって構成されている。
Conventionally, hydrogenated amorphous silicon (hereinafter referred to as a-8i: H ) is usually plus-r OVD? 4, and it is said that the film quality produced by this method is the best. In this method, silane gas is decomposed by high frequency glow discharge to deposit an a-8i:H film on the substrate. A plasma CVD apparatus conventionally used for this purpose is composed of parallel plate electrodes including a cathode to which a high frequency voltage is applied and a grounded anode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このような構成のプラズマCVD装置では、
a−8i:Hの堆積速度は通常2〜J A/ see程
度である。そこで、この堆積速度を上げるために高周波
電力密度を増すと、プラズマ中で生成した活性種同士の
気相中での反応が優勢となシ、膜構造に不均一性が生じ
ることになる。また同時にプラズマ中で生成されるイオ
ン種の膜に対する入射のエネルギーが大きくなり、膜中
に欠陥が生じることになる。こうした理由から、一般に
電力密度の増加は膜質の低下につながるため、この方法
で堆積速度をこれ以上上げるのは困難である。
By the way, in a plasma CVD apparatus with such a configuration,
The deposition rate of a-8i:H is usually about 2 to JA/see. Therefore, if the radio frequency power density is increased in order to increase the deposition rate, the reaction between the active species generated in the plasma in the gas phase becomes dominant, resulting in non-uniformity in the film structure. At the same time, the energy of the ion species generated in the plasma that enters the film increases, causing defects in the film. For these reasons, it is difficult to further increase the deposition rate using this method, since an increase in power density generally leads to a decrease in film quality.

一方、シランに代わってジシランやトリシランを原料ガ
スとして用い、堆積速度を上げる試みもなされているが
、これらのガスは非常に危険であるため、取り扱いが面
倒な上、排ガス処理や万一のガス漏れ事故に細心の注意
を払う必要があるだけでなく、これらガスは非常に高価
である上、純度の点でも問題があり、量産装置への使用
は不適当な点が多い。
On the other hand, attempts have been made to increase the deposition rate by using disilane or trisilane as a raw material gas instead of silane, but these gases are extremely dangerous and difficult to handle, and they are difficult to handle in exhaust gas treatment or in the event of an emergency. In addition to the need to pay close attention to leakage accidents, these gases are extremely expensive and have problems with their purity, making them often unsuitable for use in mass production equipment.

従って、本発明の目的は、磁場回路を導入して高密度プ
ラズマ領域を形成し、膜の高速堆積を可能にすると共に
良好な膜質および均一な膜厚分布を得ることのできるプ
ラズマCVD装置を提供することにある。
Therefore, an object of the present invention is to provide a plasma CVD apparatus that can introduce a magnetic field circuit to form a high-density plasma region, enable high-speed film deposition, and obtain good film quality and uniform film thickness distribution. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明によれば。 In order to achieve the above objects, according to the present invention.

真空容器内に設けた平行平板型電極に高周波電圧を印加
し、真空容器内に導入した反応ガスをプラズマ化するこ
とにより、加熱機構を備えた支持装置に装着した基板上
に薄膜を形成するようにしたプラズマCVD装置におい
て、高周波電圧の印加される電極上に閉ループ型の磁界
を形成する装置を設けたことを特徴としている。
A thin film is formed on a substrate mounted on a support device equipped with a heating mechanism by applying a high-frequency voltage to parallel plate electrodes installed in a vacuum container and turning the reactant gas introduced into the vacuum container into plasma. The plasma CVD apparatus is characterized in that a device for forming a closed-loop magnetic field is provided on the electrode to which a high-frequency voltage is applied.

基板は、閉ループ型の磁界形成装置で形成された磁界に
よυ形成される高密度プラズマ領域から距離を置いて位
置決めされ得る。
The substrate may be positioned at a distance from the high density plasma region formed by the magnetic field formed by the closed loop magnetic field forming device.

また、本発明の別の特徴によれば、本プラズマCvD装
置には、閉ループ型の磁界形成装置で形成された磁界を
走査して上記磁界により形成される高密度プラズマ領域
を上記基板上で走査する走査装置が設けられる。
According to another feature of the present invention, the present plasma CvD apparatus includes scanning a magnetic field formed by a closed-loop magnetic field forming device to scan a high-density plasma region formed by the magnetic field on the substrate. A scanning device is provided.

さらに、本発明のなお別の特徴によれば、本プラズマO
VD装置には、上記基板を上記高密度プラズマ領域に対
して走査させる走査装置が設けられる。
Furthermore, according to yet another feature of the invention, the plasma O
The VD apparatus is provided with a scanning device that scans the substrate with respect to the high-density plasma region.

〔作 用〕[For production]

このように構成することによって、本発明の装置におい
ては、磁界形成装置で発生された閉ループ型の磁界によ
りプラズマは集中されて高密度プラズマ領域を形成し、
これにより原料ガスの分解が大幅に促進され、その結果
/ OA / sec以上の堆積速度が得られる。一方
5反応ガスの分解が促進されることによって、原料ガス
の使用効率も大幅に向上する。
With this configuration, in the device of the present invention, the plasma is concentrated by the closed-loop magnetic field generated by the magnetic field forming device to form a high-density plasma region,
This greatly accelerates the decomposition of the source gas, resulting in a deposition rate of /OA/sec or higher. On the other hand, by promoting the decomposition of the 5 reaction gases, the efficiency of using the raw material gases is also greatly improved.

また、基板を、閉ループ型の磁界形成装置で形成された
磁界により形成される高密度プラズマ領域から距離を置
いて位置決めするか、あるいは走査装置を設けて磁界を
走査して上記磁界により形成される高密度プラズマ領域
を上記基板上で走査するか、上記基板を上記高密度プラ
ズマ領域に対して走査することにより、膜厚分布の均一
化が得られる。
In addition, the substrate may be positioned at a distance from the high-density plasma region formed by the magnetic field formed by a closed-loop magnetic field forming device, or a scanning device may be provided to scan the magnetic field so that the substrate is formed by the magnetic field. A uniform film thickness distribution can be obtained by scanning a high-density plasma region over the substrate or by scanning the substrate with respect to the high-density plasma region.

〔実施例〕〔Example〕

以下添附図面を参照して本発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図には本発明によるプラズマCVD装置の一実施例
を概略的に示し% lは真空室で反応ガス導入機構コと
排気機構3とを備えている。真空室l内には高周波印加
電極弘と接地電極!とが対向して配置されており、高周
波印加電極≠はマツチング回路6を介して高周波電源7
に接続されている。
FIG. 1 schematically shows an embodiment of a plasma CVD apparatus according to the present invention, and %l is a vacuum chamber equipped with a reaction gas introduction mechanism and an exhaust mechanism. Inside the vacuum chamber is a high frequency application electrode and a ground electrode! are arranged facing each other, and the high frequency application electrode≠ is connected to the high frequency power source 7 via the matching circuit 6.
It is connected to the.

高周波印加電極μ内には図示したように電極の半径方向
に閉ループ型磁界を発生する磁石tが組み込まれ、この
磁石rの裏側には磁気回路を形成する磁性板りが取り付
けられてお夛、これらの構成要素は閉ループ型の磁界形
成装置を構成している。
As shown in the figure, a magnet t that generates a closed-loop magnetic field in the radial direction of the electrode is installed inside the high-frequency application electrode μ, and a magnetic plate forming a magnetic circuit is attached to the back side of the magnet r. These components constitute a closed-loop magnetic field forming device.

接地電極jは基板10を支持する支持装置を成している
。またこの接地電極5には装着された基板10を所望の
温度に加熱する加熱機構/Iが組み込まれ、この加熱機
構//は加熱用電源12によって付勢さnる。基板IO
の装着および取外しは適当な手段によって行なわれ得る
。さらに図示実施例では、基板10上の膜厚分布を改善
するために、基板ioが磁石tで発生された閉ループ型
磁界により形成された高密度プラズマ領域から離れて位
置するように駆動機構/3により基板10の位置を移動
できる。
The ground electrode j constitutes a support device that supports the substrate 10. Further, a heating mechanism /I for heating the attached substrate 10 to a desired temperature is incorporated in the ground electrode 5, and this heating mechanism // is energized by a heating power source 12. Board IO
Attachment and removal may be performed by any suitable means. Furthermore, in the illustrated embodiment, in order to improve the film thickness distribution on the substrate 10, the driving mechanism/3 The position of the substrate 10 can be moved by.

このように構成した図示装置の動作において、まず、真
空室/内に反応ガス導入機構λにより反応ガスを導入し
、この反応ガス導入機構コと排気機構3とにより所望の
ガス組成、ガス流量および圧力に調節し、その後、高周
波印加電極≠に高周波電圧を印加してこの高周波印加電
極≠と接地電極jとの間にグロー放電を発生させる。こ
の時、プラズマ中で生成した電子は磁石tで形成されて
いる高周波印加電極≠の半径方向に並んだ閉ループ型磁
界で捕えられ、この部分における電子密度が極めて高く
なる。その結果、図示したように高密度プラズマ領域が
形成され、反応ガスの分解が促進され、 / OA /
 see以上の高速で膜の堆積が行なわれ得る。この場
合、電力密度は通常のプラズマCVD装置と同程度であ
るため、膜に対する入射イオンのエネルギは大きくなる
ことはない。また、電子密度が極めて高くなっているた
めに、活性種同士の反応で気相中に生成される成長核も
電子衝撃のために成長が抑制され、従って、膜中の構造
に不均一性を与えることはなく、膜質の低下は生じない
In the operation of the illustrated apparatus configured as described above, first, a reactive gas is introduced into the vacuum chamber by the reactive gas introducing mechanism λ, and the desired gas composition, gas flow rate, and After that, a high frequency voltage is applied to the high frequency application electrode≠ to generate a glow discharge between the high frequency application electrode≠ and the ground electrode j. At this time, the electrons generated in the plasma are captured by the closed loop magnetic field arranged in the radial direction of the high frequency application electrode formed by the magnet t, and the electron density in this part becomes extremely high. As a result, a high-density plasma region is formed as shown in the figure, promoting the decomposition of the reactant gas, /OA/
Film deposition can be performed at higher speeds than see. In this case, since the power density is comparable to that of a normal plasma CVD apparatus, the energy of ions incident on the film does not increase. In addition, because the electron density is extremely high, the growth of growth nuclei generated in the gas phase due to reactions between active species is suppressed due to electron bombardment, resulting in non-uniformity in the structure within the film. There is no deterioration in film quality.

第2図には第1図の装置を用いて行なった成膜例を従来
の方法による成膜速度と対比して例示する。このグラフ
からも分るように図示装置では電力密度が小さいにもか
かわらず、大きな成膜速度が得られることが認められる
FIG. 2 shows an example of film formation performed using the apparatus shown in FIG. 1, in comparison with the film formation speed according to the conventional method. As can be seen from this graph, it is recognized that a high film formation rate can be obtained in the illustrated apparatus despite the low power density.

第3図〜第!図には種々の走査装置を用いて膜厚分布の
均一化をはかるようにした本発明の別の異なる実施例を
示し、これらの図面において第1図と対応した部分は同
一符号で示す。
Figure 3 ~ No. 3! The figures show other different embodiments of the present invention in which a uniform film thickness distribution is achieved using various scanning devices, and in these drawings, parts corresponding to those in FIG. 1 are designated by the same reference numerals.

第3図の実施例では駆動装置14Aによって高周波印加
電極≠を回転するように構成されている。
In the embodiment shown in FIG. 3, the high frequency application electrode is rotated by a drive device 14A.

第参図の実施例では駆動装置/!によって高周波印加電
極μ内の磁石tだけを回転するように構成されている。
In the embodiment shown in Figure 1, the drive device/! The structure is such that only the magnet t within the high-frequency application electrode μ is rotated by the high-frequency application electrode μ.

また第5図に示す実施例では駆動装置/乙によって基板
ioを接地電極jごと回転するように構成さnている。
Further, in the embodiment shown in FIG. 5, the substrate io is rotated together with the ground electrode j by a driving device/B.

このように基板上の膜厚分布を改善するための手段とし
て磁石で形成される閉ループ型の磁界を基板上で走査す
るが、逆に上記磁界に対して基板を走査する走査装置が
設けられ、上記磁界で形成される高密度プラズマ領域を
上記基板上で走査するようにされ得る。
In this way, as a means to improve the film thickness distribution on the substrate, a closed-loop magnetic field formed by a magnet is scanned over the substrate, but conversely, a scanning device is provided that scans the substrate against the magnetic field. A high density plasma region formed by the magnetic field may be scanned over the substrate.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明によれば、磁界形成装
置で発生された閉ループ型の磁界によりプラズマを集中
させて高密度プラズマ領域を形成し、これにより原料ガ
スの分解が大幅に促進されるように構成しているので、
危険で高価なガスを使用せずに、高速成膜が可能となり
、原料ガスの利用効率も向上する。また大電力を必要と
しないため膜質の低下を防止できしかも膜厚分布を均一
化することができる。従って、プラズマCVD装置の生
産性を大幅に向上させることができる。
As described above, according to the present invention, a closed-loop magnetic field generated by a magnetic field forming device concentrates plasma to form a high-density plasma region, which greatly accelerates the decomposition of source gas. Since it is configured like this,
High-speed film formation is possible without using dangerous and expensive gases, and raw material gas utilization efficiency is also improved. Further, since a large amount of electric power is not required, deterioration in film quality can be prevented and the film thickness distribution can be made uniform. Therefore, the productivity of the plasma CVD apparatus can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のプラズマCVD装置を示す
概略線図、第2図は第1図の装置を用いて行なった成膜
例を示すグラフ、第3図〜第j図は本発明の別の異なる
実施例を示す概略図でおり0図中、l:臭突室%コニ反
応ガス導入機構、3:排気機構、≠:高周波印加電極、
j:接地電極、乙:マツチング回路、7:高周波電源、
t:磁石、り:磁性板、10:基板、//:加熱機構、
/2:加熱用電源% /3:回転機構、/≠、lよ、1
6:駆動装置。
Fig. 1 is a schematic diagram showing a plasma CVD apparatus according to an embodiment of the present invention, Fig. 2 is a graph showing an example of film formation performed using the apparatus shown in Fig. 1, and Figs. This is a schematic diagram showing another different embodiment of the invention, in which 1: odor chamber% reaction gas introduction mechanism, 3: exhaust mechanism, ≠: high frequency application electrode,
j: Ground electrode, B: Matching circuit, 7: High frequency power supply,
t: magnet, ri: magnetic plate, 10: substrate, //: heating mechanism,
/2: Heating power supply % /3: Rotating mechanism, /≠, l, 1
6: Drive device.

Claims (1)

【特許請求の範囲】 1、真空容器内に設けた平行平板型電極に高周波電圧を
印加し、真空容器内に導入した反応ガスをプラズマ化す
ることにより、加熱機構を備えた支持装置に装着した基
板上に薄膜を形成するようにしたプラズマCVD装置に
おいて、高周波電圧の印加される電極上に閉ループ型の
磁界を形成する装置を設けたことを特徴とするプラズマ
CVD装置。 2、閉ループ型の磁界形成装置で形成された磁界により
形成される高密度プラズマ領域から距離を置いて基板を
位置決めした特許請求の範囲第1項に記載のプラズマC
VD装置。 3、真空容器内に設けた平行平板型電極に高周波電圧を
印加し、真空容器内に導入した反応ガスをプラズマ化す
ることにより、加熱機構を備えた支持装置に装着した基
板上に薄膜を形成するようにしたプラズマCVD装置に
おいて、高周波電圧の印加される電極上に閉ループ型の
磁界を形成する装置を設け、また上記磁界を走査して上
記磁界により形成される高密度プラズマ領域を上記基板
上で走査する走査装置を設けたことを特徴とするプラズ
マCVD装置。 4、真空容器内に設けた平行平板型電極に高周波電圧を
印加し、真空容器内に導入した反応ガスをプラズマ化す
ることにより、加熱機構を備えた支持装置に装着した基
板上に薄膜を形成するようにしたプラズマCVD装置に
おいて、高周波電圧の印加される電極上に閉ループ型の
磁界を形成する装置を設け、また上記基板を上記磁界に
よつて形成される高密度プラズマ領域に対して走査する
走査装置を設けたことを特徴とするプラズマCVD装置
[Claims] 1. A high-frequency voltage is applied to a parallel plate type electrode provided in a vacuum container, and the reaction gas introduced into the vacuum container is turned into plasma, thereby being attached to a support device equipped with a heating mechanism. A plasma CVD apparatus for forming a thin film on a substrate, characterized in that a device for forming a closed-loop magnetic field is provided on an electrode to which a high-frequency voltage is applied. 2. The plasma C according to claim 1, wherein the substrate is positioned at a distance from a high-density plasma region formed by a magnetic field formed by a closed-loop magnetic field forming device.
VD device. 3. A thin film is formed on a substrate mounted on a support device equipped with a heating mechanism by applying a high frequency voltage to parallel plate electrodes installed in a vacuum container and turning the reactive gas introduced into the vacuum container into plasma. In the plasma CVD apparatus, a device for forming a closed-loop magnetic field is provided on an electrode to which a high-frequency voltage is applied, and the magnetic field is scanned to generate a high-density plasma region formed by the magnetic field on the substrate. 1. A plasma CVD apparatus characterized by being provided with a scanning device that performs scanning. 4. A thin film is formed on a substrate mounted on a support device equipped with a heating mechanism by applying a high frequency voltage to parallel plate electrodes installed in a vacuum container and turning the reactive gas introduced into the vacuum container into plasma. In the plasma CVD apparatus, a device for forming a closed-loop magnetic field is provided on an electrode to which a high-frequency voltage is applied, and the substrate is scanned with respect to a high-density plasma region formed by the magnetic field. A plasma CVD apparatus characterized by being provided with a scanning device.
JP26141685A 1985-11-22 1985-11-22 Plasma cvd device Pending JPS62124277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26141685A JPS62124277A (en) 1985-11-22 1985-11-22 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26141685A JPS62124277A (en) 1985-11-22 1985-11-22 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS62124277A true JPS62124277A (en) 1987-06-05

Family

ID=17361566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26141685A Pending JPS62124277A (en) 1985-11-22 1985-11-22 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS62124277A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435172A (en) * 1977-08-24 1979-03-15 Anelva Corp Chemical reactor using electric discharge
JPS5756036A (en) * 1980-09-20 1982-04-03 Mitsubishi Electric Corp Plasma chemical vapor phase reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435172A (en) * 1977-08-24 1979-03-15 Anelva Corp Chemical reactor using electric discharge
JPS5756036A (en) * 1980-09-20 1982-04-03 Mitsubishi Electric Corp Plasma chemical vapor phase reactor

Similar Documents

Publication Publication Date Title
JPH0622205B2 (en) Plasma CVD equipment
JP2970654B1 (en) Thin film forming equipment
JP3227949B2 (en) Plasma processing method and apparatus
JPS62124277A (en) Plasma cvd device
JP2626339B2 (en) Thin film forming equipment
JP3144165B2 (en) Thin film generator
JPH0249386B2 (en) PURAZUMACVD SOCHI
JPH0249385B2 (en) PURAZUMACVD SOCHI
JPS62209821A (en) Plasma cvd apparatus
JP2823611B2 (en) Plasma CVD equipment
JPS62205618A (en) Plasma cvd unit
JP3019563B2 (en) Plasma CVD method and apparatus
JPH0622204B2 (en) Plasma CVD equipment
JPH09125243A (en) Thin film forming device
JPH06280030A (en) Thin film forming device
JPH031377B2 (en)
JP2687468B2 (en) Thin film forming equipment
JPS62203327A (en) Plasma cvd apparatus
JP2865258B2 (en) Plasma CVD equipment
JPH09153486A (en) Plasma processing method and device
JPH05160045A (en) Plasma cvd method and device
JPS62177180A (en) Surface treatment
JPH01298174A (en) Formation of thin film using ion cyclotron resonance and device therefor
JPS619577A (en) Plasma chemical vapor phase growing method
JPH0614478Y2 (en) Thin film forming equipment