JPH0639708B2 - Thin film manufacturing method and thin film manufacturing apparatus - Google Patents

Thin film manufacturing method and thin film manufacturing apparatus

Info

Publication number
JPH0639708B2
JPH0639708B2 JP62281652A JP28165287A JPH0639708B2 JP H0639708 B2 JPH0639708 B2 JP H0639708B2 JP 62281652 A JP62281652 A JP 62281652A JP 28165287 A JP28165287 A JP 28165287A JP H0639708 B2 JPH0639708 B2 JP H0639708B2
Authority
JP
Japan
Prior art keywords
vacuum chamber
substrate
thin film
cylindrical
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62281652A
Other languages
Japanese (ja)
Other versions
JPH01123071A (en
Inventor
淳 児玉
信 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62281652A priority Critical patent/JPH0639708B2/en
Publication of JPH01123071A publication Critical patent/JPH01123071A/en
Publication of JPH0639708B2 publication Critical patent/JPH0639708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Description

【発明の詳細な説明】 〔概要〕 基板の表面にアモルファスSi膜を形成する、薄膜製造
方法及び薄膜製造装置に関し、 原料ガスの歩留まりが高く,製造性が良好で、且つ成膜
速度が速い薄膜の製造方法,及び薄膜製造装置を提供す
ることを目的とし、 真空チャンバー内に珪素を含む原料ガスを投入し、高周
波プラズマCVD法により基板の表面に、アモルファス
Si膜を形成するにあたり該真空チャンバーを低圧にし
て、該真空チャンバー内の原料ガスに、水素ラジカルを
供給し、該基板の表面にアモルファスSi膜を形成する
ようにする。また、低圧真空チャンバー内に、高周波電
源に繋がる電極板と基板とを対向させ、該真空チャンバ
ー内に珪素を含む原料ガスを投入し、高周波プラズマC
VD法により、該基板の表面にアモルファスSi膜を形
成する製造装置において、該真空チャンバー外に設けた
水素ラジカル発生装置と、該水素ラジカル発生装置を該
真空チャンバーに連結する水素ラジカル供給管とを設け
た構成とする。
The present invention relates to a thin film manufacturing method and a thin film manufacturing apparatus for forming an amorphous Si film on a surface of a substrate, which has a high yield of raw material gas, good manufacturability, and a high film forming rate. In order to provide a manufacturing method and a thin film manufacturing apparatus, a raw material gas containing silicon is introduced into a vacuum chamber, and the vacuum chamber is used to form an amorphous Si film on the surface of a substrate by a high frequency plasma CVD method. At low pressure, hydrogen radicals are supplied to the source gas in the vacuum chamber to form an amorphous Si film on the surface of the substrate. In addition, an electrode plate connected to a high frequency power source and a substrate are opposed to each other in a low pressure vacuum chamber, a source gas containing silicon is introduced into the vacuum chamber, and high frequency plasma C
In a manufacturing apparatus for forming an amorphous Si film on the surface of the substrate by the VD method, a hydrogen radical generator provided outside the vacuum chamber and a hydrogen radical supply pipe connecting the hydrogen radical generator to the vacuum chamber are provided. The configuration is provided.

〔産業上の利用分野〕[Industrial application field]

本発明は、基板の表面にアモルファスSi膜を形成す
る、薄膜製造方法及び薄膜製造装置に関する。
The present invention relates to a thin film manufacturing method and a thin film manufacturing apparatus for forming an amorphous Si film on a surface of a substrate.

電子写真式プリンタ等に用いる感光体として、セレン系
感光体よりも機械的強度が大きく、且つ無公害な水素化
アモルファスSiを主成分とする感光体が、近年は提供
されつつある。
In recent years, as a photoconductor used in an electrophotographic printer or the like, a photoconductor containing hydrogenated amorphous Si as a main component, which has a mechanical strength higher than that of a selenium-based photoconductor and is non-polluting, is being provided.

このようなアモルファスSi膜は、高周波プラズマCV
D法(高周波プラズマ化学気相堆積法)により、基板の
表面に形成している。
Such an amorphous Si film is a high frequency plasma CV.
It is formed on the surface of the substrate by the D method (high-frequency plasma chemical vapor deposition method).

〔従来の技術〕[Conventional technology]

第4図は従来の薄膜製造装置の構成図であって、真空チ
ャンバー1内に、平板状の電極板2と接地板3とを対向
して配置し、接地板3の電極板2側の表面には、薄膜10
0を形成する基板5を、密着して取付けるよう構成して
ある。
FIG. 4 is a configuration diagram of a conventional thin-film manufacturing apparatus, in which a flat electrode plate 2 and a ground plate 3 are arranged to face each other in a vacuum chamber 1, and the surface of the ground plate 3 on the electrode plate 2 side is arranged. A thin film 10
The substrate 5 forming 0 is closely attached.

基板5は、石英ガラス,Siウェハ,アルミニウム等よ
りなる平板である。
The substrate 5 is a flat plate made of quartz glass, Si wafer, aluminum or the like.

接地板3の裏面には、ヒーター6を配設して、ヒーター
電源6Aより給電して、基板5を所望の温度(例えば250
℃)に加熱している。
A heater 6 is provided on the back surface of the ground plate 3, and power is supplied from a heater power source 6A to heat the substrate 5 to a desired temperature (for example, 250
(° C).

さらに、接地板3の裏面側の真空チャンバー1の側壁に
排気管を設け、真空ポンプ8により真空チャンバー1内
を所望の真空度、例えば高圧(3Torr〜6Torr)から低圧
(0.05Torr〜0.2Torr)の間の所望の圧力に、調整できる
ように構成してある。
Further, an exhaust pipe is provided on the side wall of the vacuum chamber 1 on the back surface side of the ground plate 3, and the vacuum pump 8 has a desired degree of vacuum in the vacuum chamber 1, for example, from high pressure (3 Torr to 6 Torr) to low pressure.
The pressure is adjusted to a desired pressure between (0.05 Torr and 0.2 Torr).

真空チャンバー1外に設置した高周波電源4を電極板2
に接続して、高周波電源4から、所望の高周波(例えば
13.56MHz)を電極板2に印加するようになっている。
The high frequency power source 4 installed outside the vacuum chamber 1 is connected to the electrode plate 2
To a desired high frequency (for example, from the high frequency power source 4).
13.56 MHz) is applied to the electrode plate 2.

真空チャンバー1に通ずるように原料ガス供給管7を設
け、電極板2と基板5との間に原料ガス10を供給するよ
うにしてある。
A raw material gas supply pipe 7 is provided so as to communicate with the vacuum chamber 1, and a raw material gas 10 is supplied between the electrode plate 2 and the substrate 5.

したがって、原料ガス供給管7から珪素を含む原料ガス
10,即ち、ジシラン(Si2H6),モノシラン(SiH4)等を供
給し、電極板2に高周波を印加すると、電極板2と基板
5との間で原料ガス10がプラズマ化し、基板5の表面に
アモルファスSiが堆積して、所望の薄膜100,即ちア
モルファスSi膜が形成される。
Therefore, the source gas containing silicon from the source gas supply pipe 7
10, that is, when disilane (Si 2 H 6 ), monosilane (SiH 4 ) or the like is supplied and a high frequency is applied to the electrode plate 2, the source gas 10 is turned into plasma between the electrode plate 2 and the substrate 5, and the substrate 5 Amorphous Si is deposited on the surface of, to form a desired thin film 100, that is, an amorphous Si film.

上述のような薄膜製造装置を用いて、基板の表面に薄膜
を形成するには、高圧下で実施する場合と、低圧下で実
施する場合の2通りがある。
There are two methods for forming a thin film on the surface of a substrate using the above-described thin film manufacturing apparatus, that is, high pressure and low pressure.

高圧で行う場合は、真空チャンバー内の圧力を比較的高
圧(3Torr〜6Torr)にして、数百Wの大きい高周波電源パ
ワーを電極板2に印加し、基板5の表面に薄膜100を形
成させる。この形成手段は、膜の生成速度が(10〜20)Å
/秒と速くて、所望の膜厚の薄膜を短時間に形成するこ
とできるという利点がある。
In the case of high pressure, the pressure in the vacuum chamber is set to a relatively high pressure (3 Torr to 6 Torr) and a high frequency power source power of several hundred W is applied to the electrode plate 2 to form the thin film 100 on the surface of the substrate 5. This forming means has a film formation rate of (10 to 20) Å
There is an advantage that a thin film having a desired film thickness can be formed in a short time at a high speed of / sec.

低圧で行う場合は、真空チャンバー内の圧力を低圧(0.0
5Torr〜0.2Torr)にして、基板5の表面に薄膜100を形成
する。この形成手段は、低圧にしたことにより原料ガス
が不要な粉末化することがなくて、製造性が向上し、ま
た膜の欠陥も少ないという利点がある。
When performing at low pressure, the pressure in the vacuum chamber should be low (0.0
5 Torr to 0.2 Torr), and the thin film 100 is formed on the surface of the substrate 5. This forming means has the advantages that the raw material gas is not pulverized unnecessarily due to the low pressure, the manufacturability is improved, and there are few defects in the film.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上記従来の薄膜製造装置を用い、高圧で膜
形成した場合には、原料ガスの一部は、(Sin Hm)の粉末
となり、アモルファスSi膜とならない。この粉末が電
極板に付着し、電極性能が低下し成膜が困難になるとい
う問題点と、毎回電極を清浄にしなければならないとい
う製造性が悪い問題点とがある。
However, when a film is formed at a high pressure using the above conventional thin film manufacturing apparatus, a part of the raw material gas becomes powder of (Si n H m ), and does not become an amorphous Si film. This powder adheres to the electrode plate, which deteriorates the electrode performance and makes film formation difficult, and there is a problem in that the electrode must be cleaned every time and the productivity is poor.

一方、低圧で膜形成した場合は、膜の生成速度が((3〜
6)Å/秒と遅くて、所望の膜厚の薄膜を形成するのに長
時間を要するという問題点があった。
On the other hand, when the film is formed at a low pressure, the film formation rate is ((3 ~
6) There is a problem that it takes a long time to form a thin film having a desired film thickness, which is as slow as Å / sec.

本発明はこのような点に鑑みて創作されたもので、原料
ガスの歩留まりが高く,製造性が良好で、且つ成膜速度
が速い薄膜の製造方法,及び薄膜製造装置を提供するこ
とを目的としている。
The present invention has been made in view of the above points, and an object thereof is to provide a thin film manufacturing method and a thin film manufacturing apparatus which have a high yield of a raw material gas, good manufacturability, and a high film forming rate. I am trying.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために本発明は、真空チャンバ
ー内に珪素を含む原料ガスを投入し、高周波プラズマC
VD法により基板の表面に、アモルファスSi膜を形成
するにあたり、該真空チャンバーを(0.05〜0.2)Torrの
低圧状態に保持し、該真空チャンバー内の原料ガスに、
水素ラジカルを供給して、基板の表面にアモルファスS
i膜を形成する。
In order to solve the above-mentioned problems, the present invention introduces a raw material gas containing silicon into a vacuum chamber, and a high frequency plasma C
When forming an amorphous Si film on the surface of the substrate by the VD method, the vacuum chamber is kept at a low pressure of (0.05 to 0.2) Torr, and the raw material gas in the vacuum chamber is changed to
Amorphous S is supplied to the surface of the substrate by supplying hydrogen radicals.
An i film is formed.

その薄膜製造装置は、第1図に例示したように、低圧真
空チャンバー1内に、高周波電源4に繋がる電極板12と
基板5とを対向させ、真空チャンバー1内に珪素を含む
原料ガス10を、原料ガス供給管7,電極板12の中空部を
介して投入するよう構成する。
As shown in FIG. 1, the thin-film manufacturing apparatus is configured such that an electrode plate 12 connected to a high frequency power source 4 and a substrate 5 face each other in a low pressure vacuum chamber 1 and a source gas 10 containing silicon is supplied in the vacuum chamber 1. The raw material gas supply pipe 7 and the electrode plate 12 are introduced through the hollow portions.

一方、水素ラジカル発生装置20を真空チャンバー1の外
に設け、水素ラジカル供給管25を介して、水素ラジカル
41を真空チャンバー1内に供給するよう構成する。
On the other hand, the hydrogen radical generator 20 is provided outside the vacuum chamber 1, and the hydrogen radical is supplied via the hydrogen radical supply pipe 25.
41 is configured to be supplied into the vacuum chamber 1.

また、第2図に例示したように、電極板を一対の半円筒
形電極120として、対向して配設した半円筒形電極120の
中心に、円筒形基板50を装着するよう構成する。さらに
また、第3図に例示したように、電極板を円筒形電極12
0Aとして、円筒形電極120Aの中心に、円筒形基板50を装
着するよう構成する。
Further, as illustrated in FIG. 2, the electrode plates are used as a pair of semi-cylindrical electrodes 120, and the cylindrical substrate 50 is mounted at the center of the semi-cylindrical electrodes 120 arranged facing each other. Furthermore, as illustrated in FIG. 3, the electrode plate is a cylindrical electrode 12
As 0A, the cylindrical substrate 50 is attached to the center of the cylindrical electrode 120A.

〔作用〕[Action]

上記本発明の薄膜製造方法によれば、真空チャンバー内
を低圧にしたことにより、原料ガスの不要粉末化が阻止
されるので、製造性が向上し、さらに不要粉末が膜に付
着しないので、膜質が向上する。
According to the above-described thin film manufacturing method of the present invention, by reducing the pressure in the vacuum chamber, unnecessary powderization of the raw material gas is prevented, so that the manufacturability is improved and the unnecessary powder does not adhere to the film. Is improved.

また一方では、水素ラジカル41を原料ガスの高周波プラ
ズマ中へ供給しているので、水素ラジカルが、原料ガス
の分解効率を高め、活性種の量を増加させるので、成膜
速度が速くなる。
On the other hand, since the hydrogen radicals 41 are supplied into the high-frequency plasma of the source gas, the hydrogen radicals increase the decomposition efficiency of the source gas and increase the amount of active species, so that the film formation rate becomes faster.

さらにまた、電極を半円筒形にして、対向して設置した
一対の半円筒形電極120内に、基板を装着するようにし
たことにより、円筒形基板の外周面に、アモルファスS
i膜を均一に形成することができる。
Furthermore, by making the electrodes semi-cylindrical and mounting the substrates in a pair of semi-cylindrical electrodes 120 installed facing each other, amorphous S is formed on the outer peripheral surface of the cylindrical substrate.
The i film can be formed uniformly.

〔実施例〕〔Example〕

以下図を参照しながら、本発明を具体的に説明する。な
お、全図を通じて同一符号は同一対象物を示す。
The present invention will be specifically described below with reference to the drawings. The same reference numerals denote the same objects throughout the drawings.

第1図は本発明の薄膜製造装置の一実施例の構成図、第
2図は本発明の薄膜製造装置の他の実施例の構成図、第
3図は本発明の薄膜製造装置のさらに他の実施例の構成
図である。
FIG. 1 is a block diagram of one embodiment of the thin film manufacturing apparatus of the present invention, FIG. 2 is a block diagram of another embodiment of the thin film manufacturing apparatus of the present invention, and FIG. 3 is still another of the thin film manufacturing apparatus of the present invention. It is a block diagram of the Example of.

第1図において、真空チャンバー1内に、平板状で内部
が中空の電極板12と、接地板3とを対向して配置し、接
地板3の電極板12側の表面には、薄膜100を形成する石
英ガラス,Siウェハ,アルミニウム等よりなる平板の
基板5を、密着して取付けるよう構成してある。
In FIG. 1, a flat plate-shaped hollow electrode plate 12 and a ground plate 3 are arranged to face each other in a vacuum chamber 1, and a thin film 100 is placed on the surface of the ground plate 3 on the electrode plate 12 side. The flat plate substrate 5 made of quartz glass, Si wafer, aluminum or the like to be formed is configured to be closely attached.

電極板12の基板5に対向する面に、多数のガス噴出孔を
配設し、原料ガス供給管7の先端を電極板12の中空部に
接続して、このガス噴出孔から、基板5方向に原料ガス
10を放出させている。
A large number of gas ejection holes are arranged on the surface of the electrode plate 12 facing the substrate 5, and the tip of the raw material gas supply pipe 7 is connected to the hollow portion of the electrode plate 12, and the gas ejection holes extend in the direction of the substrate 5. Raw gas
Has released 10.

また、真空チャンバー1外に設けた高周波電源4を電極
板12に接続して、例えば13.56MHzの高周波を、電極板1
2に印加している。
In addition, the high frequency power source 4 provided outside the vacuum chamber 1 is connected to the electrode plate 12, and a high frequency of 13.56 MHz, for example, is applied to the electrode plate 1.
Applied to 2.

接地板3の裏面には、ヒーター6を配設して、ヒーター
電源6Aより給電して、基板5を所望の温度(例えば250
℃)に加熱できるようになっている。
A heater 6 is provided on the back surface of the ground plate 3, and power is supplied from a heater power source 6A to heat the substrate 5 to a desired temperature (for example, 250
℃) can be heated.

さらに、接地板3の裏面側の真空チャンバー1の側壁に
排気管を設け、メカニカルブースター8A及びロータリー
ポンプ8Bを連結して、真空チャンバー1内を0.05Torr〜
0.2Torrの低圧にするとともに、未反応ガスを真空チャ
ンバー1の外に排出している。
Further, an exhaust pipe is provided on the side wall of the vacuum chamber 1 on the back side of the ground plate 3, the mechanical booster 8A and the rotary pump 8B are connected, and the inside of the vacuum chamber 1 is adjusted to 0.05 Torr.
The pressure is reduced to 0.2 Torr and the unreacted gas is discharged to the outside of the vacuum chamber 1.

真空チャンバー1の外に水素ラジカル発生装置20を設
け、石英管よりなる水素ラジカル供給管25で、水素ラジ
カル発生装置20と、真空チャンバー1とを連結してい
る。
A hydrogen radical generator 20 is provided outside the vacuum chamber 1, and a hydrogen radical supply pipe 25 made of a quartz tube connects the hydrogen radical generator 20 and the vacuum chamber 1.

水素ラジカル発生装置20は、端末に水素ガス供給口43を
設けた石英管の外周に、マイクロ波発振器21より導波管
22を介して、2.45 G Hzのマイクロ波を付与するよう構
成してある。水素ガス供給口43から水素ガス40を水素ラ
ジカル発生装置20に投入すると、水素ガス40がマイクロ
波により分解して水素ラジカル41となる。
The hydrogen radical generation device 20 includes a waveguide from a microwave oscillator 21 on the outer circumference of a quartz tube provided with a hydrogen gas supply port 43 at a terminal.
It is configured to give a microwave of 2.45 GHz via 22. When the hydrogen gas 40 is introduced into the hydrogen radical generator 20 from the hydrogen gas supply port 43, the hydrogen gas 40 is decomposed by the microwaves to become the hydrogen radicals 41.

したがって、水素ラジカル発生装置20で発生した水素ラ
ジカル41は、真空チャンバー1内に引き込まれ、電極板
12と基板5の間のプラズマ化されたジシラン(Si2H6),
モノシラン(SiH4)等の原料ガス10に反応し、原料ガス10
の分解効率を高める。
Therefore, the hydrogen radicals 41 generated by the hydrogen radical generator 20 are drawn into the vacuum chamber 1 and the electrode plate
Plasmalized disilane (Si 2 H 6 ) between 12 and the substrate 5,
Reacts with source gas 10 such as monosilane (SiH 4 )
Increase the decomposition efficiency of.

上述の薄膜製造装置を用い、 基板5の温度 …250℃、 真空チャンバーの圧力 …0.07Torr、 高周波電源出力 …100W、 マイクロ波発振器出力 …150W、 Si2H6の供給量…30cm3/分、 水素ガスの供給量 …20cm3/分、 で、石英ガラス,Siウェハの基板 に、成膜速度が20
Å/秒で、アモルファスSi膜を形成することができ
た。
Using the thin film manufacturing apparatus described above, the temperature of the substrate 5 ... 250 ° C., the pressure of the vacuum chamber ... 0.07 Torr, the high frequency power output ... 100 W, the microwave oscillator output ... 150 W, the Si 2 H 6 supply rate ... 30 cm 3 / min, The supply rate of hydrogen gas is 20 cm 3 / min, and the deposition rate is 20 on quartz glass and Si wafer substrates.
An amorphous Si film could be formed at Å / sec.

この成膜速度は、従来の低圧法による高周波プラズマC
VD法の2〜4倍の速度である。
This film formation rate is high frequency plasma C by the conventional low pressure method.
It is 2 to 4 times as fast as the VD method.

第2図の薄膜製造装置は、真空チャンバー1をドラム缶
形にして真空チャンバー1内に、半円筒形に形成した一
対の半円筒形電極120を対向して配設してある。また、
一方の半円筒形電極120の内部を中空にして、内面側壁
に多数のガス噴出孔を配設してある。
In the thin film manufacturing apparatus shown in FIG. 2, a pair of semi-cylindrical electrodes 120 formed in a semi-cylindrical shape are arranged to face each other in the vacuum chamber 1 by forming the vacuum chamber 1 into a drum can shape. Also,
The inside of one semi-cylindrical electrode 120 is hollow, and a large number of gas ejection holes are arranged on the inner side wall.

そして、原料ガス供給管7の先端を半円筒形電極120の
中空部に接続して、このガス噴出孔から、中心方向に向
かって、原料ガス10を放出させている。一対の半円筒形
電極120の中心部に、円筒形基板50を装着するようにな
っている。そして、円筒形基板50の中空孔内に棒状のヒ
ーター60を挿入して、円筒形基板50を所望の温度に加熱
するように構成してある。
Then, the tip of the raw material gas supply pipe 7 is connected to the hollow portion of the semi-cylindrical electrode 120, and the raw material gas 10 is discharged from this gas ejection hole toward the center. The cylindrical substrate 50 is mounted on the center of the pair of semi-cylindrical electrodes 120. Then, a rod-shaped heater 60 is inserted into the hollow hole of the cylindrical substrate 50 to heat the cylindrical substrate 50 to a desired temperature.

一方水素ラジカル発生装置20に繋がる水素ラジカル供給
管25Aは、一対の半円筒形電極120が構成する中空部に開
口させてある。
On the other hand, the hydrogen radical supply pipe 25A connected to the hydrogen radical generator 20 is opened in the hollow portion formed by the pair of semi-cylindrical electrodes 120.

したがって、水素ラジカル発生装置20で発生した水素ラ
ジカル41は、水素ラジカル供給管25Aを介して、一対の
半円筒形電極120の間に引き込まれ、プラズマ化された
原料ガス10に反応する。よって、円筒形基板50の外周面
に均一に、かつ速い成膜速度で、アモルファスSi膜を
形成することができる。
Therefore, the hydrogen radicals 41 generated in the hydrogen radical generator 20 are drawn between the pair of semi-cylindrical electrodes 120 via the hydrogen radical supply pipe 25A and react with the raw material gas 10 which is made into plasma. Therefore, the amorphous Si film can be uniformly formed on the outer peripheral surface of the cylindrical substrate 50 at a high film forming rate.

第3図の薄膜製造装置は、第2図に示す製造装置の電極
部分を変えたものである。即ち、真空チャンバー1内
に、対向して配設した一対の半円筒形電極120に替え
て、円筒形電極120Aを配設したものである。
The thin film manufacturing apparatus shown in FIG. 3 is obtained by changing the electrode portion of the manufacturing apparatus shown in FIG. That is, a cylindrical electrode 120A is provided in the vacuum chamber 1 instead of the pair of semi-cylindrical electrodes 120 that are provided so as to face each other.

この円筒形電極120Aは、内部を中空にして、内面側壁に
多数のガス噴出孔を配設してある。
The cylindrical electrode 120A has a hollow interior and has a large number of gas ejection holes provided on the inner side wall.

そして、原料ガス供給管7の先端を円筒形電極120Aの中
空部に接続して、このガス噴出孔から、中心方向に向か
って、原料ガス10を放出させている。
Then, the tip of the raw material gas supply pipe 7 is connected to the hollow portion of the cylindrical electrode 120A, and the raw material gas 10 is discharged from this gas ejection hole toward the center.

また、円筒形電極120Aの中心部に、円筒形基板50を装着
するようになっている。そして、円筒形基板50の中空孔
内に棒状のヒーター60を挿入して、円筒形基板50を所望
の温度に加熱するように構成してある。
Further, the cylindrical substrate 50 is attached to the center of the cylindrical electrode 120A. Then, a rod-shaped heater 60 is inserted into the hollow hole of the cylindrical substrate 50 to heat the cylindrical substrate 50 to a desired temperature.

一方水素ラジカル発生装置20に繋がる水素ラジカル供給
管25Aは、円筒形電極120Aの内側に開口させてある。
On the other hand, the hydrogen radical supply pipe 25A connected to the hydrogen radical generator 20 is opened inside the cylindrical electrode 120A.

上述のように構成してあるので、水素ラジカル発生装置
20で発生した水素ラジカル41は、水素ラジカル供給管25
Aを介して、円筒形電極120Aの内側に引き込まれ、プラ
ズマ化された原料ガス10に反応する。よって、第2図に
示したものよりも、より一層均一に、アモルファスSi
膜を円筒形基板50の外周面に形成することができる。
Since it is configured as described above, a hydrogen radical generator
Hydrogen radicals 41 generated in 20 are hydrogen radical supply pipe 25
It is drawn into the inside of the cylindrical electrode 120A via A and reacts with the raw material gas 10 turned into plasma. Therefore, the amorphous Si is more uniform than that shown in FIG.
The film can be formed on the outer peripheral surface of the cylindrical substrate 50.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、原料ガスに水素ラジカル
を供給しさせるようにしたもので、原料ガスの歩留まり
が高くて,製造性が向上し、且つ成膜速度が速いのみな
らず、平面状の基板の他に円筒形基板にも、アモルファ
スSi膜を形成することができる等、実用上で優れた効
果がある。
As described above, according to the present invention, hydrogen radicals are supplied to the source gas, the yield of the source gas is high, the manufacturability is improved, and the film formation rate is high. In addition to the above substrate, an amorphous Si film can be formed on a cylindrical substrate, which has an excellent effect in practical use.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の構成図、 第2図は本発明の他の実施例の構成図、 第3図は本発明のさらに他の実施例の構成図、 第4図は従来例の構成図である。 図において、 1は真空チャンバー、 2,12は電極板、 120は半円筒形電極、 120Aは円筒形電極、 4は高周波電源、 5は基板、 50は円筒形基板、 6,60はヒーター、 7は原料ガス供給管、 10は原料ガス、 20は水素ラジカル発生装置、 21はマイクロ波発振器、 25,25Aは水素ラジカル供給管、 40は水素ガス、 41は水素ラジカル、 100は薄膜を示す。 FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of another embodiment of the present invention, FIG. 3 is a block diagram of yet another embodiment of the present invention, and FIG. 4 is a conventional example. It is a block diagram of. In the figure, 1 is a vacuum chamber, 2 and 12 are electrode plates, 120 is a semi-cylindrical electrode, 120A is a cylindrical electrode, 4 is a high frequency power supply, 5 is a substrate, 50 is a cylindrical substrate, 6 and 60 are heaters, 7 Is a source gas supply pipe, 10 is a source gas, 20 is a hydrogen radical generator, 21 is a microwave oscillator, 25 and 25A are hydrogen radical supply pipes, 40 is hydrogen gas, 41 is hydrogen radicals, and 100 is a thin film.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空チャンバー(1)内に珪素を含む原料ガ
ス(10)を投入し、高周波プラズマCVD法により基板の
表面に、アモルファスSi膜を形成するにあたり、 該真空チャンバー(1)を低圧にして、該真空チャンバー
(1)内の原料ガス(10)に、水素ラジカル(41)を供給し、
該基板の表面にアモルファスSi膜を形成することを特
徴とする薄膜製造方法。
1. A low-pressure vacuum chamber (1) is used for forming an amorphous Si film on the surface of a substrate by introducing a source gas (10) containing silicon into the vacuum chamber (1) by a high frequency plasma CVD method. And the vacuum chamber
The hydrogen gas (41) is supplied to the source gas (10) in (1),
A method for producing a thin film, which comprises forming an amorphous Si film on the surface of the substrate.
【請求項2】低圧真空チャンバー(1)内に、高周波電源
(4)に繋がる電極板(12)と基板(5)とを対向させ、該真空
チャンバー(1)内に珪素を含む原料ガス(10)を投入し、
高周波プラズマCVD法により、該基板(5)の表面にア
モルファスSi膜を形成する製造装置において、 該真空チャンバー(1)外に設けた水素ラジカル発生装置
(20)と、該水素ラジカル発生装置(20)を該真空チャンバ
ー(1)に連結する水素ラジカル供給管(25)とを、設けた
ことを特徴とする薄膜製造装置。
2. A high frequency power supply in a low pressure vacuum chamber (1).
The electrode plate (12) connected to (4) and the substrate (5) are opposed to each other, and a source gas containing silicon (10) is introduced into the vacuum chamber (1),
A hydrogen radical generating apparatus provided outside the vacuum chamber (1) in a manufacturing apparatus for forming an amorphous Si film on the surface of the substrate (5) by a high frequency plasma CVD method.
A thin film manufacturing apparatus comprising: (20) a hydrogen radical supply pipe (25) for connecting the hydrogen radical generator (20) to the vacuum chamber (1).
【請求項3】前記電極板が一対の半円筒形電極(120),
または円筒形電極(120A)からなり、配設した該電極(12
0,120A)の中心に、円筒形基板(50)を装着するよう構成
されてなることを特徴とする、特許請求の範囲第2項に
記載の薄膜製造装置。
3. The electrode plate comprises a pair of semi-cylindrical electrodes (120),
Or, it is composed of a cylindrical electrode (120A), and the electrode (12
The thin film manufacturing apparatus according to claim 2, characterized in that the cylindrical substrate (50) is mounted at the center of (0,120A).
JP62281652A 1987-11-06 1987-11-06 Thin film manufacturing method and thin film manufacturing apparatus Expired - Lifetime JPH0639708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281652A JPH0639708B2 (en) 1987-11-06 1987-11-06 Thin film manufacturing method and thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281652A JPH0639708B2 (en) 1987-11-06 1987-11-06 Thin film manufacturing method and thin film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH01123071A JPH01123071A (en) 1989-05-16
JPH0639708B2 true JPH0639708B2 (en) 1994-05-25

Family

ID=17642085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281652A Expired - Lifetime JPH0639708B2 (en) 1987-11-06 1987-11-06 Thin film manufacturing method and thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0639708B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514186B2 (en) * 1999-09-16 2004-03-31 日新電機株式会社 Thin film forming method and apparatus
WO2003101844A1 (en) * 2002-05-31 2003-12-11 Kirin Brewery Company, Limited Surface-modified aluminum can and method for manufacture thereof
JP2007019529A (en) * 2006-08-25 2007-01-25 Nec Corp Device for forming semiconductor thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126780A (en) * 1984-07-17 1986-02-06 Stanley Electric Co Ltd Plasma cvd apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126780A (en) * 1984-07-17 1986-02-06 Stanley Electric Co Ltd Plasma cvd apparatus

Also Published As

Publication number Publication date
JPH01123071A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
JPS59199035A (en) Device for forming thin film
JP2001523038A (en) Annealing method of amorphous film using microwave energy
JPS6063375A (en) Apparatus for producing deposited film by vapor phase method
JP3146112B2 (en) Plasma CVD equipment
JPS6248753B2 (en)
JPH0639708B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
US5449880A (en) Process and apparatus for forming a deposited film using microwave-plasma CVD
US5945353A (en) Plasma processing method
JPH0420985B2 (en)
JPS60147113A (en) Manufacture of silicon film
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JPS5941773B2 (en) Vapor phase growth method and apparatus
JP2002327276A (en) Method and device for uniformizing high frequency plasma over large area in plasma cvd apparatus
JP2562662B2 (en) Method for forming amorphous silicon film
JPS58127331A (en) Plasma chemical vapor growth apparatus
JPH04355970A (en) Manufacture of solar cell
JPH01215982A (en) Device for forming film
JPH05217915A (en) Plasma cvd device
JPS63142627A (en) Manufacture of semiconductor thin film
JPH06291061A (en) Method for forming amorphous silicon film
JPS62177181A (en) Production of electrophotographic sensitive body
JPH11140653A (en) Plasma cvd device
JP2695155B2 (en) Film formation method
JPS62174383A (en) Thin film deposition device
JPH03115194A (en) Production of thin film of polycrystalline diamond