JPS60147113A - Manufacture of silicon film - Google Patents

Manufacture of silicon film

Info

Publication number
JPS60147113A
JPS60147113A JP181884A JP181884A JPS60147113A JP S60147113 A JPS60147113 A JP S60147113A JP 181884 A JP181884 A JP 181884A JP 181884 A JP181884 A JP 181884A JP S60147113 A JPS60147113 A JP S60147113A
Authority
JP
Japan
Prior art keywords
film
substrate
silicon
chamber
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP181884A
Other languages
Japanese (ja)
Inventor
Toshiyuki Komatsu
利行 小松
Tatsumi Shoji
辰美 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP181884A priority Critical patent/JPS60147113A/en
Publication of JPS60147113A publication Critical patent/JPS60147113A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To manufacture the titled silicon film with excellent reproducibility by reducing the amount of intruded dust by a method wherein a highly adhesive silicon containing substance of the same composition as the film body is coated on the inner wall of the film forming chamber such as film-body forming bell jar and the like and a substrate holder and the surface of the component member such as various jigs of an opposing electrode and the like. CONSTITUTION:An anode electrode 2 and a cathode electrode 3 are provided facing each other in a chamber 1, and a holder 6 to be used to support a substrate 5 is fixed on the opposing surface 4 of the anode electrode 2 using a screw and the like. The inside of the cathode 3 is connected to a CVD raw gas introducing line 7, and a plurality of holes are provided on the surface 8 opposing to the substrate 5 for the purpose of blowing off gas on the substrate 5. Raw gas is introduced into the chamber 1 which is decompressed in advance using a pressure-reducing means, gas is sprayed on the substrate 5 which is heated up by a heater 9, power is applied to the cathode 3 from a power source 13, a glow discharge is generated between the cathode 3 and the earthed anode 2, and an a-Si film is formed on the substrate 5.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はシリコン又はシリコン含有物質の堆積膜を製造
する方法に関し、更に詳しくはグロー放電分解法(プラ
ズマCvD)、スパッタ(SP)法、イオンブレーティ
ング法、光CVD法、真空蒸着法等によシシリコン又は
シリコン含有物質の堆積膜を製造する方法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for manufacturing a deposited film of silicon or a silicon-containing substance, and more specifically to a method for manufacturing a deposited film of silicon or a silicon-containing substance, and more specifically, a glow discharge decomposition method (plasma CvD), a sputtering (SP) method, an ion blating method. The present invention relates to a method for producing a deposited film of silicon or a silicon-containing substance by a photo-CVD method, a vacuum evaporation method, or the like.

〔従来技術〕[Prior art]

従来から広く行なわれているプラズマCVDやsp法、
元CVD法による非晶質シリコン膜の製造において、ペ
ルジャー等の膜形成室内壁及び基板ボルダ−・対向電極
等々の諸治具に付着した非晶質シリコン膜が、非晶質シ
リコン膜自身の内部応力及び非晶質シリコンと上記諸治
具(通常SUSステンレス)表面との弱い密着力等の原
因で7−ガレを生じ、ペルジャー内に非晶質シリコン粉
が浮遊す。
Plasma CVD and sp method, which have been widely used for a long time,
In manufacturing an amorphous silicon film by the original CVD method, the amorphous silicon film attached to the inner wall of the film forming chamber such as a Pelger and various jigs such as the substrate boulder and counter electrode is inside the amorphous silicon film itself. Due to stress and weak adhesion between the surface of the amorphous silicon and the above-mentioned jigs (generally made of SUS stainless steel), etc., 7-gassing occurs, and amorphous silicon powder floats inside the Pel jar.

る。これがイルジャー内忙残り、基板上に析出する非晶
質シリコン中にゴミが含まれ、非晶質シリコン膜が不均
一になるという不都合を生じた。
Ru. This caused the inconvenience that the amorphous silicon film was not uniform because the amorphous silicon deposited on the substrate contained dust.

これを防止するため、従来、イルジャー内に発生した非
晶質シリコン粉吸引清掃を行ってから基板を基板ホルダ
ーにセットし、排気操作も低速で行ない残留している非
晶質シリコン粉及び基板セット中乃至排気中に発生する
非晶質シリコン粉が舞い上り、基板上に付着するのを極
力避けることが一般的に行われているが、10μ以下(
特に5μ以下)のゴミに対しては大きな効果が得られな
いのが現状である。又、非晶質シリコン膜作成に先立っ
て、81NH、8i02膜等の異種材料を室内で析出さ
せて緒治具を被覆して非晶質シリコン膜のノ・ガレを防
止することも知られているが、こうした異種材料を析出
させることによってチャ7ノ々−雰囲気力五変わり非晶
質シリコン膜に影響を及はし、常に安定した特性の良好
な非晶質シリコン膜を製造することが出来ないという欠
点がちふた。更に、非晶質シリコン膜形成室を大気圧に
リークして開放にしないロードロツタ装置の採用によっ
て非晶質シリコン膜のハガレを防止することが行なわれ
有効であるが、装置コストが高いという欠点を有してい
る。
In order to prevent this, conventionally, the amorphous silicon powder generated in the air jar is vacuumed and cleaned, the substrate is set in the substrate holder, and the exhaust operation is also performed at low speed to remove the remaining amorphous silicon powder and the substrate set. It is common practice to avoid as much as possible the amorphous silicon powder that is generated during exhaust gas from flying up and adhering to the substrate.
Currently, it is not very effective against dust particles (particularly less than 5μ). It is also known that prior to forming an amorphous silicon film, a different material such as 81NH or 8i02 film is precipitated indoors to cover the initial jig in order to prevent the amorphous silicon film from chipping. However, by precipitating these dissimilar materials, the atmospheric pressure changes and influences the amorphous silicon film, making it impossible to produce an amorphous silicon film with stable and good properties. The downside is that there isn't one. Furthermore, it is effective to prevent peeling of the amorphous silicon film by using a load rotor device that does not leak the amorphous silicon film formation chamber to atmospheric pressure and leave it open, but this method has the disadvantage of high equipment cost. have.

〔発明の目的〕[Purpose of the invention]

本発明の一つの目的はシリコン又はシリコン含有物質の
堆積膜を膜中に含まれるゴミ量を減らして再現性よく製
造する方法を提供することにある。
One object of the present invention is to provide a method for producing a deposited film of silicon or a silicon-containing substance with good reproducibility while reducing the amount of dust contained in the film.

本発明の他の目的は、膜中のゴミit減らすことによシ
シリコン膜を用いるデバイスの歩留り、均一性を向上さ
せることにある。
Another object of the present invention is to improve the yield and uniformity of devices using silicon films by reducing dust in the films.

本発明の上記目的は、膜体の形成に際し、予めシリコン
又はシリコン含有物質の膜体を形成する −ペルシャー
等の膜形成室の内壁、基板ホルダー、対向電極等の諸治
具などの構成部材表面を膜体と同一組成でかつこれよシ
も密着力の強いシリコン又はシリコン含南物質で被覆し
ておくことに°よシ、達成される。
The above-mentioned object of the present invention is to form a film of silicon or a silicon-containing substance in advance when forming a film. This can be achieved by coating the film with silicon or a silicon-containing substance that has the same composition as the film body and has stronger adhesion.

〔発明の実施態様〕[Embodiments of the invention]

本゛発明のシリコン膜の製造法叫、グロー放電分解法(
プラズマCVD )、スバ、り(Sp)法、イオンブレ
ーティング法、元CVD法、真空蒸着法等によシシリコ
ン又はシリコン含有物質の堆積膜、即ち単結晶、多結晶
又は非晶質の、シリコン膜あるいは水素化、・−ログン
化、炭素含有、窒素含有もしくは酸素含有等のシリコン
半導体膜などの製造法、特に膜形成室が大気に晒される
パッチ構造の装置を用いるシリコン膜の製造法として適
している。
The present invention's silicon film manufacturing method, glow discharge decomposition method (
Deposited films of silicon or silicon-containing substances, i.e., single-crystal, polycrystalline, or amorphous silicon films, by plasma CVD (Sp) method, ion blating method, original CVD method, vacuum evaporation method, etc. Alternatively, it is suitable as a method for manufacturing silicon semiconductor films such as hydrogenation, .--logonization, carbon-containing, nitrogen-containing, or oxygen-containing silicon films, and is especially suitable as a method for manufacturing silicon films using a patch structure device in which the film formation chamber is exposed to the atmosphere. There is.

本発明方法において前記室構成部材表面を予め被覆する
工程は、一般的にはシリコン又はシリコン含有物質を堆
積させる出発物質の分解゛エネルギーを高めて、基体上
に膜体を形成するときよりもシリコンの析出速度を速め
ることによシ行なわれ、これにより前記室構成部材表面
に基体上に形成する膜体と同一組成でかつ・之れよりも
密着力の強い被覆を形成する。
In the method of the present invention, the step of pre-coating the surface of the chamber component generally involves increasing the decomposition energy of the starting material for depositing silicon or a silicon-containing material, so that the decomposition energy of the starting material for depositing silicon or a silicon-containing material is higher than that for forming a film on the substrate. This is done by increasing the rate of precipitation of the film, thereby forming a coating on the surface of the chamber-constituting member that has the same composition as the film formed on the substrate and has stronger adhesion than the film formed on the substrate.

出発物質の分解エネルギーを高めるために、例えばプラ
ズマを用いるプラズマCVD + S P法では、印加
する直流又は高周波(RF)を力を高めることが効果的
でアシ、光CVD法においては照射光量の増大によって
同等の効果を生む。イオンブレーティング法では、RF
Til力と電界の強度を高めることが行なわれる。
In order to increase the decomposition energy of the starting material, for example, in the plasma CVD + SP method using plasma, it is effective to increase the power of the applied direct current or radio frequency (RF), and in the photoCVD method, it is effective to increase the amount of irradiated light. produces the same effect. In the ion blating method, RF
Increasing the strength of the Til force and electric field is done.

以下、水素化非晶質シリコン膜(以下、a−8i膜とい
う)をプラズマCvDにより製造する一実施態様につい
て説明するが、本発明の実施態様はこれにより限定され
ない。
An embodiment in which a hydrogenated amorphous silicon film (hereinafter referred to as an a-8i film) is manufactured by plasma CVD will be described below, but the embodiments of the present invention are not limited thereto.

第1図は、本発明方法を実施するために用いるバッチ方
式のプラズマCVD装置の一構成例を示した模式図であ
り、チャンバー1内にチャソノ4一本体と電気的に絶縁
されたアノード電極2とカソード電極3とが50+mの
間隔で相対向し、アノード電極2の対向面4上には基体
5を保持するためのホルダー6がネジ等で固着されてい
る。カソード電極3の内部はCVD用原料ガス(例えば
7ランガスを主成分とするシラン、水素及びアルゴンの
混合ガス)の導入ライン7と接続されている。カソード
電極3の対向面8には電極内部に導入される原料ガスを
図中矢印の如く基体5に向けて吹出させるための複数の
口が設けられている。9は基体5を加熱するためにアノ
ード電極内に設けられたヒーター、10はチャンバー内
を排気するための排気口であり、適宜の減圧手段(例え
ば真空ポンプ)と接続されている。11はペルジャー内
他所への出発原料の堆積を防ぐための防着板でおる。
FIG. 1 is a schematic diagram showing an example of the configuration of a batch type plasma CVD apparatus used to carry out the method of the present invention. and the cathode electrode 3 face each other at an interval of 50+m, and a holder 6 for holding the base 5 is fixed on the opposing surface 4 of the anode electrode 2 with screws or the like. The inside of the cathode electrode 3 is connected to an introduction line 7 for CVD source gas (for example, a mixed gas of silane, hydrogen, and argon whose main component is 7 run gas). A plurality of ports are provided on the opposing surface 8 of the cathode electrode 3 for blowing out the source gas introduced into the electrode toward the base 5 as indicated by arrows in the figure. 9 is a heater provided in the anode electrode for heating the substrate 5; 10 is an exhaust port for exhausting the inside of the chamber, and is connected to an appropriate pressure reducing means (for example, a vacuum pump). Reference numeral 11 is an anti-adhesion plate for preventing the starting materials from accumulating elsewhere in the Pelger.

12はリークパルプ、13はアノード電極にRF電力(
例えば13.56MHz)を入力するための電源である
12 is leak pulp, 13 is RF power (
For example, it is a power supply for inputting 13.56 MHz).

予め減圧手段によって減圧されているチャンaf−i内
に原料ガスを導入しヒーター9によシ加熱された基体5
に向けて吹付ると共に、電源13によシカソード3に電
力を入力してアースされたアノード2との間でグロー放
電を生起させることによシ、基体5上にa−St膜を形
成することができる。
A source gas is introduced into the chamber af-i, which has been previously depressurized by a decompression means, and the substrate 5 is heated by a heater 9.
At the same time, an a-St film is formed on the substrate 5 by inputting power to the cathode 3 from the power source 13 to generate glow discharge between it and the grounded anode 2. I can do it.

残余の原料ガスは排気口10を通って排出される。The remaining raw material gas is exhausted through the exhaust port 10.

この装置において、本発明方法を実施するためには、基
体5上にa−81膜を形成するに際して、予め、基体5
を取シ、外した状態で同一原料ガスを導入し、電源13
からの電力を、基体上でa−8i膜を形成するときより
も高めてグロー放電を行ない、チャ/パー内壁、防着板
、アノード、カソード等の諸治具表面の被覆を行なう。
In this apparatus, in order to carry out the method of the present invention, when forming the a-81 film on the substrate 5, it is necessary to prepare the substrate 5 in advance.
Introduce the same raw material gas with the power supply 13 removed.
Glow discharge is performed using a higher electric power than when forming the a-8i film on the substrate to coat the surfaces of various jigs such as the inner wall of the chaper/par, adhesion prevention plate, anode, and cathode.

放電・ぐワーは、基板上にa−81膜を製造する場合の
2倍以上、更には5倍以上が好ましい。又この時に、同
時に基体ホルダーの温度を通常のa−81製造時よりも
高くすることは効果を更に高めるチャンバー等のベーキ
ングを同時に行うこともより好ましい。又高/4’ワー
a−81膜被覆の厚さは、0.1μ以上、更には0.2
μ以上が好ましい。以下、具体的実施例を示して更に詳
しく説明する。
The discharge/warming is preferably at least twice as high, more preferably at least five times as high as when manufacturing the A-81 film on the substrate. At this time, it is also more preferable to simultaneously bake the chamber and the like, which further enhances the effect by raising the temperature of the substrate holder higher than that during normal A-81 manufacturing. In addition, the thickness of the high/4' war A-81 film coating is 0.1μ or more, and more preferably 0.2μ.
μ or more is preferable. Hereinafter, a more detailed explanation will be given by showing specific examples.

(従来例) 第1図に示したプラズマCVD装置を分解して、チャン
バー1、アノード2、カソード3、基板ホルダー6、防
着板11等のステンレス製の各部品の付着膜をビーズゲ
ラストで落した後、溶剤(トリクレンとア七トン)、さ
らに純水で充分洗浄して、110℃の加熱乾燥後組立て
た。
(Conventional example) The plasma CVD apparatus shown in Fig. 1 was disassembled, and the adhering films on stainless steel parts such as the chamber 1, anode 2, cathode 3, substrate holder 6, and anti-adhesion plate 11 were removed using bead gellast. After dropping, it was thoroughly washed with solvent (triclene and amethane) and pure water, and then assembled after drying by heating at 110°C.

充分なベーキングを経て、次のような条件で@−81膜
を製造した。ガラス基体5(コーニングナ7059)を
基体ホルダー6にセットし、油拡散ポンプを用いて排気
し、ペルジャー内を1.5 X 1O−6Torr i
で真空引きした。基板温度は、200℃に保ち、シラン
ガス(小松電子(株)社製、99.96%)をガス導入
ライン7を通して50 SCCM (50cc/rim
 + 1 stm )流入させ内圧0. I Torr
で、RF/#ワー5W(200mφのアノード及びカソ
ード電極)で4時間析出させ1.0μ厚のa−8i膜を
形成した。基板温度が、100℃に下るのを待ってペル
ジャー内を大気圧リークして、基板を取シ出した。
After sufficient baking, @-81 film was manufactured under the following conditions. Set the glass substrate 5 (Corninger 7059) in the substrate holder 6, evacuate the air using an oil diffusion pump, and set the inside of the Pelger to 1.5 x 1O-6 Torr i.
I pulled a vacuum. The substrate temperature was maintained at 200°C, and silane gas (manufactured by Komatsu Electronics Co., Ltd., 99.96%) was passed through the gas introduction line 7 at a rate of 50 SCCM (50 cc/rim).
+ 1 stm) and the internal pressure is 0. I Torr
Then, deposition was carried out for 4 hours using RF/#warmer 5W (anode and cathode electrodes of 200 mφ) to form an a-8i film with a thickness of 1.0 μm. After waiting for the substrate temperature to drop to 100° C., atmospheric pressure was leaked from inside the Pelger, and the substrate was taken out.

こうして得られたa−8i膜を、光学顕微鏡によって表
面観察を行ない@ −S l喚中に含まれる1μm以上
のゴミを数えて1百2当りの平均数を算出した。
The surface of the thus obtained a-8i film was observed using an optical microscope, and the number of particles of 1 μm or more contained in the @-S l mixture was counted to calculate the average number per 102 particles.

こうしたa−81膜製造プロセス(この間ペルジャー内
は、はぼ同等の条件で吸引清掃された。)で製造をくり
かえし菱。第2図曲1t1■で、a−8lam造(析出
)回数と1μm以上のゴミの32当シの平均数の関係を
示した。この曲線のようにコ゛ミが増大して20回目か
ら#1は飽和する。この製造方法によっては、5回目以
降数十個/α2と増大し、好ましくない。
Manufacturing was repeated using this A-81 membrane manufacturing process (during which time the inside of the Pelger was vacuumed and cleaned under the same conditions). Figure 2, song 1t1■, shows the relationship between the number of a-8lam formation (precipitation) and the average number of 32 pieces of dust of 1 μm or more. As shown in this curve, the noise increases and #1 becomes saturated from the 20th time onwards. Depending on this manufacturing method, the number increases to several dozen pieces/α2 after the fifth time, which is not preferable.

(実施例−1) 従来例の分解清掃工程を同様に実施した後、ガラス基体
5をセットしないで、基板温度金250℃に保ちシラン
ガスを50800M流入させ内圧をQ、1TorrでR
Fパワー100W投入して、10分間析出させた。析出
暴−S l膜厚は、約0.3μ程度である。どの後、従
来例と同様にガラス基体5上にa−8i膜製造ゾロセス
をくシかえした。こうして得られた各a−8i膜の1μ
m以上のゴミ数は、第2図の曲線■のように・増大ゝし
、従来例(曲線■)と比べて明らかなように、a−8t
中のゴミ数が、大巾に減少させられている。〈シかえし
数30回でも数十儀/32以下の状態を保っている。
(Example-1) After carrying out the disassembly and cleaning process in the same manner as in the conventional example, without setting the glass substrate 5, the substrate temperature was kept at 250°C, 50800 M of silane gas was flowed in, and the internal pressure was set to Q and R at 1 Torr.
F power of 100 W was applied and precipitation was carried out for 10 minutes. The thickness of the precipitated film is approximately 0.3μ. After that, the a-8i film manufacturing solution was replaced on the glass substrate 5 in the same manner as in the conventional example. 1μ of each a-8i film thus obtained
The number of dust particles larger than m increases as shown by curve ■ in Figure 2, and as is clear compared to the conventional example (curve ■),
The amount of garbage inside has been drastically reduced. <Even after 30 repetitions, the condition remains below 32/32.

(実施例−2) 実施例−1と同様に10回目までm−5tの製造を〈シ
かえした後、再びRFパワー100Wで10分間B−8
1による室内被覆工程を行い、続いて11回目から同様
に基体上でa−St膜をくシかえしく20回目まで)製
造した。こうした10回毎のくシかえしを行った時のa
−8ig中のゴミ数の変化が第2図曲線■に示されてい
る。
(Example-2) After repeating the manufacturing of m-5t for the 10th time in the same manner as in Example-1, B-8 was manufactured again for 10 minutes with RF power of 100W.
The indoor coating process according to No. 1 was carried out, and then an a-St film was repeatedly produced on the substrate from the 11th time until the 20th time). When recombining every 10 times, a
The change in the number of dust particles during -8ig is shown in curve 2 in Figure 2.

初期にのみ高RFパワーでa−8i膜を析出した場合に
比べ繰返しないし周期的に被覆工程を行なうことにより
、史にゴミ数が減少している。
By performing the coating process repeatedly or periodically, the number of dust particles is reduced compared to when the a-8i film is deposited using high RF power only in the initial stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するために用いるプラズマC
VD装置の一構成例を示した模式図、第2図は本発明方
法により製造されるシリコン膜に含まれるゴミ数の減少
具合を、従来例の場合と比較して示した曲線図である。 1・・・チャンバー、2・・・アノード電極、3・・・
カソード電極、5・・・基体、6・・・基体ホルダー、
7・・・導入ライン、10・・・排気口、13・・・R
F電源。 ill 図
Figure 1 shows the plasma C used to carry out the method of the present invention.
FIG. 2 is a schematic diagram showing a configuration example of a VD device, and a curve diagram showing the degree of reduction in the number of dust contained in a silicon film manufactured by the method of the present invention in comparison with a conventional example. 1... Chamber, 2... Anode electrode, 3...
cathode electrode, 5...substrate, 6...substrate holder,
7...Introduction line, 10...Exhaust port, 13...R
F power supply. ill diagram

Claims (5)

【特許請求の範囲】[Claims] (1)減圧された室内で基体上にシリコン又はシリコン
含有物質からなる膜体を形成させるに際し、予め前記基
体を除く前記室構成部材の表面を前記膜体と同一組成で
かつこれよりも密着力の強いシリコン又はシリコン含有
物質で被覆しておくことを特徴とするシリコン膜の製造
方法。
(1) When forming a film body made of silicon or a silicon-containing substance on a substrate in a reduced pressure chamber, the surfaces of the chamber constituent members excluding the base body are prepared in advance to have the same composition as the film body and to have a higher adhesion strength than that of the film body. 1. A method for producing a silicon film, which comprises coating the silicon film with strong silicon or a silicon-containing substance.
(2)室構成部材表面の被覆を、基体上に膜体を形成す
るときに比べて出発物質の分解エネルギーを高めること
により行なう特許請求の範囲第(1)項記載のシリコン
11舛の製造方法。
(2) A method for producing a silicon 11 shell according to claim (1), in which the surface of the chamber-constituting member is coated by increasing the decomposition energy of the starting material compared to when forming a film on the substrate. .
(3)室構成部セ表面の被覆を、基体上に膜体を形成す
るときに比べてシリコンの析出速度を速めることにより
行なう特許請求の範囲第(1)項記載のシリコン膜の製
造方法。
(3) A method for producing a silicon film according to claim (1), wherein the surface of the chamber component is coated by increasing the rate of silicon deposition compared to when forming a film body on a substrate.
(4)室構成部材表面の被覆にあたシ、被覆面の温度を
基体上に膜体を形成するときの基体温度に比べて高める
ことによシ行なう特許請求の範囲第(1)項記載のシリ
コン膜の製造方法。
(4) The coating of the surface of the chamber-constituting member is carried out by increasing the temperature of the coated surface compared to the temperature of the substrate when forming the film on the substrate, as described in claim (1). A method for manufacturing a silicon film.
(5)膜体及び被覆の形成をプラズマを用いる方法で行
ない、室構成部材表面の被覆を、基体上に膜体を形成す
るときに比べてよシ高いDC又はRFエネルギーを用い
て行なう特許請求の範囲第(1)項記載のシリコン膜の
製造方法。
(5) A patent claim in which the membrane and coating are formed by a method using plasma, and the coating on the surface of the chamber component is performed using DC or RF energy that is higher than that used when forming the membrane on the base body. A method for manufacturing a silicon film according to item (1).
JP181884A 1984-01-11 1984-01-11 Manufacture of silicon film Pending JPS60147113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP181884A JPS60147113A (en) 1984-01-11 1984-01-11 Manufacture of silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP181884A JPS60147113A (en) 1984-01-11 1984-01-11 Manufacture of silicon film

Publications (1)

Publication Number Publication Date
JPS60147113A true JPS60147113A (en) 1985-08-03

Family

ID=11512141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP181884A Pending JPS60147113A (en) 1984-01-11 1984-01-11 Manufacture of silicon film

Country Status (1)

Country Link
JP (1) JPS60147113A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172422A (en) * 1987-01-12 1988-07-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS6446936A (en) * 1987-08-17 1989-02-21 Nippon Telegraph & Telephone Growth method of thin film
JPH05102041A (en) * 1991-10-03 1993-04-23 Nissin Electric Co Ltd Plasma cvd apparatus
US5691010A (en) * 1993-10-19 1997-11-25 Sanyo Electric Co., Ltd. Arc discharge plasma CVD method for forming diamond-like carbon films
US5695832A (en) * 1993-07-07 1997-12-09 Sanyo Electric Co., Ltd. Method of forming a hard-carbon-film-coated substrate
WO2001031694A1 (en) * 1999-10-28 2001-05-03 Applied Materials Inc. Apparatus for manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172422A (en) * 1987-01-12 1988-07-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS6446936A (en) * 1987-08-17 1989-02-21 Nippon Telegraph & Telephone Growth method of thin film
JPH05102041A (en) * 1991-10-03 1993-04-23 Nissin Electric Co Ltd Plasma cvd apparatus
US5695832A (en) * 1993-07-07 1997-12-09 Sanyo Electric Co., Ltd. Method of forming a hard-carbon-film-coated substrate
US5691010A (en) * 1993-10-19 1997-11-25 Sanyo Electric Co., Ltd. Arc discharge plasma CVD method for forming diamond-like carbon films
WO2001031694A1 (en) * 1999-10-28 2001-05-03 Applied Materials Inc. Apparatus for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6499427B1 (en) Plasma CVD apparatus
JPH09148322A (en) Method for forming silicon oxide film and plasma cvd film forming apparatus
US4894254A (en) Method of forming silicone film
JP3146112B2 (en) Plasma CVD equipment
JPS60147113A (en) Manufacture of silicon film
JP3286951B2 (en) Plasma CVD film forming method and apparatus
JP3112880B2 (en) Cleaning method for CVD equipment
JP3227949B2 (en) Plasma processing method and apparatus
JPS6134931A (en) Manufacture of silicon film
JPS6059739A (en) Dry cleaning method
JPH0769790A (en) Thin film-preparing device
JP3486292B2 (en) Cleaning method of metal mesh heater
JP3180332B2 (en) Method of cleaning apparatus for forming carbon or carbon-based coating
JPH0777198B2 (en) Plasma CVD method
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH05343338A (en) Plasma cvd apparatus
JPH07335617A (en) Plasma cleaning method
JPH09223672A (en) Method and device for plasma treatment
JPS59125615A (en) Manufacture of semiconductor device
JPS6383271A (en) Production of diamond-like carbon film
JP2537822B2 (en) Plasma CVD method
JPH06140342A (en) Method of cleaning plasma cvd device
JPH02129371A (en) Method for cleaning device for forming deposited film
JPH02236279A (en) Device for forming thin amorphous silicon film
JPH10147877A (en) Gas cleaning method