WO2003101844A1 - Surface-modified aluminum can and method for manufacture thereof - Google Patents

Surface-modified aluminum can and method for manufacture thereof Download PDF

Info

Publication number
WO2003101844A1
WO2003101844A1 PCT/JP2003/006616 JP0306616W WO03101844A1 WO 2003101844 A1 WO2003101844 A1 WO 2003101844A1 JP 0306616 W JP0306616 W JP 0306616W WO 03101844 A1 WO03101844 A1 WO 03101844A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
bottomed
layer
plasma
hardened
Prior art date
Application number
PCT/JP2003/006616
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Shirakura
Teruyuki Yamasaki
Noriyasu Yoshimura
Original Assignee
Kirin Brewery Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Company, Limited filed Critical Kirin Brewery Company, Limited
Priority to JP2004509548A priority Critical patent/JP4429899B2/en
Priority to AU2003235440A priority patent/AU2003235440A1/en
Publication of WO2003101844A1 publication Critical patent/WO2003101844A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/34Coverings or external coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner

Definitions

  • the present invention relates to a surface-modified aluminum can and a method for producing the same.
  • the present invention relates to a surface-treated aluminum can having excellent perforation resistance and a method for producing the same.
  • Devising the shape of the can body The can body is made to be a polyhedron in the vertical direction to increase the deformation resistance. In addition, we will improve the resistance to deformation by subjecting the body of the can to an uneven pattern (die cut, etc.), beading, and performing group processing on the circumference.
  • the challenges for improving the strength of the can body are (1) keeping the wall thickness thin so as not to increase the material cost, (2) the processing cost being considerably lower than the material cost, ( 3) Use of aluminum material from the viewpoint of recycling system; and (4) Improvement of strength is linked to reduction of pinholes (improvement of piercing resistance).
  • a thermal diffusion surface treatment method (a carburizing treatment to increase the amount of carbon in the surface layer by maintaining contact with hydrocarbons etc. at a high temperature of several hundred degrees Celsius or higher; Nitrogen ionization method), and ion nitriding method (a method of performing nitrogen discharge of a mixed gas of nitrogen and hydrogen under low pressure to nitrogenate the surface layer).
  • Nitrogen ionization method a method of performing nitrogen discharge of a mixed gas of nitrogen and hydrogen under low pressure to nitrogenate the surface layer.
  • An object of the present invention is to apply these surface treatment techniques to the surface of a can body to economically increase the surface hardness at a low temperature and at a high speed to improve the perforation resistance.
  • the thickness of the hardened surface layer or the hard coating should be reduced in order to reduce the thickness of the can body to 65 to 2001. The problem is how much is formed.
  • the object is to simultaneously improve the adhesion between the aluminum base material and the hardened surface layer and harden the outer surface of the can body.
  • Another object of the present invention is to reduce the pinhole occurrence rate by forming a surface hardened layer in the manufacturing process of a two-piece aluminum can in order to increase the surface hardness of the body of the can after molding. It is an object to manufacture cans. At this time, it is important to form a hardened surface layer with little change to existing can manufacturing equipment and without affecting DI processing at all. The impact on can manufacturing equipment and DI processing can lead to enormous cost increases.
  • an object of the present invention is to form a surface hardened layer by converting a raw material gas into plasma using normal pressure plasma or reduced pressure plasma.
  • An object of the present invention is to increase the surface hardness of the can body after forming the can in the manufacturing process of a two-piece aluminum can.
  • the body of the two-piece aluminum can has an aluminum material thickness of 65 to 20 Oj ⁇ m, and almost the entire outer surface layer of the body is formed of nitrogen, carbon, oxygen, Surface hardened layer containing at least one of boron, hydrogen and phosphorus elements at 1 to 50 atom% It is characterized by that.
  • the surface-modified aluminum can according to claim 1, wherein the body of the two-piece aluminum can has an aluminum material thickness of 65 to 200 m, and a hard coating is formed on almost the entire outer surface of the body. Is preferred.
  • the hardened surface layer or the hard coating is formed to have a thickness of 0.1 to 30 m.
  • the surface-modified aluminum can according to claim 1 or 3, wherein the surface hardened layer is inclined such that the element content ratio of the element according to claim 1 decreases from the outer surface of the body to the inside of the aluminum material. It is preferable to form the composition.
  • the method for producing a surface-modified aluminum can is a method for producing a two-piece aluminum can, comprising: forming a bottomed can body from an aluminum plate; washing the bottomed can body; While rotating around the center axis of the bottomed can body, the body portion of the body portion is made of a plasma gasified raw material gas containing at least one of each element of nitrogen, carbon, oxygen, boron, hydrogen or phosphorus. Almost the entire outer surface layer is formed as a surface hardened layer containing at least one of the above elements at 1 to 50 atom%.
  • the method for producing a surface-modified aluminum can according to the present invention is a method for producing a two-piece aluminum can, comprising: forming a bottomed can body from an aluminum plate; washing the bottomed can body; A hard coating is formed on almost the entire outer surface of the body of the bottomed can body by phase growth method) or PVD (physical vapor phase growth method).
  • the aluminum can of the present invention has a surface hardened layer or a hard coating formed on almost the entire outer surface layer of the can body where pinholes are likely to occur. A certain pinhole generation rate could be reduced.
  • the present invention is to improve the piercing resistance by economically increasing the surface hardness at a low temperature and at a high speed.
  • the thickness of the surface hardened layer or hard coating even if the thickness of the can body is as thin as 65 to 200 ⁇ m, the strength and adhesion can be ensured while maintaining the strength and adhesion. Meets economics. Further, in the present invention, by making the surface hardened layer a graded composition layer, the adhesion between the aluminum base material and the hardened surface layer and the hardening of the outer surface of the can body are simultaneously satisfied.
  • the aluminum surface-modified can of the present invention can improve the puncture resistance because the surface hardened layer or the hard coating is formed, but with this, the body part was thickened to obtain the predetermined puncture resistance. It is possible to reduce the thickness of the aluminum material as compared with the case where no hardened surface layer or hard coating is formed. By reducing the thickness of the aluminum material, an increase in cost for forming a hardened surface layer or a hard coating can be absorbed.
  • the production method of the present invention uses an ion implantation technique, a diffusion infiltration technique, a normal pressure plasma or a reduced pressure plasma technique, or a CVD or PVD technique to convert the surface-modified aluminum can into an existing can manufacturing equipment.
  • the hardened surface layer was able to be formed with almost no change in DI and without affecting DI processing at all.
  • FIG. 1 is a conceptual diagram showing one embodiment of an apparatus for performing a surface treatment on a surface-modified aluminum can of the present invention.
  • FIG. 2 is a conceptual diagram showing another embodiment of an apparatus for performing a surface treatment on a surface-modified aluminum can of the present invention.
  • FIG. 3 is a conceptual diagram showing a longitudinal section of a bottomed can body of a surface-modified aluminum can having a surface hardened layer formed thereon.
  • FIG. 4 is an enlarged view of a part AA ′ in FIG.
  • FIG. 5 is a conceptual diagram showing a vertical cross section of a bottomed can body of a surface-modified aluminum can having a hard coating formed thereon.
  • FIG. 6 is a graph showing a comparison of piercing strength between a surface-modified aluminum can and an untreated aluminum can when an aluminum nitride film is formed on the surface of the can body.
  • 1 is an atmospheric pressure plasma generating means, a plasma generating means, an ion accelerating means or a microwave generating means
  • 2 is a plasma discharge
  • 3 is a positive / negative voltage adjusting means
  • 4 is a can body with a bottom
  • 5 is a surface hardened layer or Hard coating
  • 6 is raw material source
  • 7 is raw material supply means
  • 8 is raw material supply pipe
  • 9 is plasma raw material gas supply means
  • 10 is high frequency power supply or microwave generator
  • 11 is plasma jet outlet
  • 12 Is a hard coating
  • 13 is a hardened surface layer.
  • the body of the two-piece aluminum can has an aluminum material thickness of 65 to 20 Om, and almost the entire outer surface layer of the body is formed of nitrogen or carbon. It is a surface hardened layer containing at least one of oxygen, boron, hydrogen, and phosphorus at 1 to 50 atom%.
  • Cans, especially beverage cans, can be broadly divided into aluminum cans and steel cans depending on the material.
  • the reason why the can was limited to an aluminum can is that accidents caused by pinholes frequently occur in aluminum cans. Because it occurs. Since aluminum cans have lower perforation resistance than steel cans, improved strength is required.
  • a three-piece can is a three-piece can body consisting of a can body and a top and bottom lid.
  • a two-piece can is a can body consisting of a can body with a bottom and a lid with an opening, and is formed by a combination of extraction from a flat plate, deep drawing and ironing. It forms a bottomed can body.
  • the body of a three-piece can is formed by bending a flat plate that is considerably thicker than the thickness of the body of a two-piece can into a cylindrical shape.
  • the perforation resistance is not required as much as two-piece cans due to the thick wall of the body. Accordingly, in the present invention, an attempt is made to improve the surface strength of the outer surface of the can body of a two-piece aluminum can, for which puncture resistance is strongly required.
  • the thickness of the aluminum material of the body is 65 to 200 m is that if the thickness is less than 65 m, the strength of the aluminum can itself becomes weak, so that a practical aluminum can cannot be manufactured. On the other hand, if it exceeds 200 m, the strength of the aluminum material itself of the can body is ensured, so that the pinhole problem is reduced without applying surface treatment. Thickness is closely related to capacity. For example, in the case of beverage cans, the thickness of the aluminum part of the body is 350 to 110 m for 350 m1 cans and 500 ml cans, and 120 to 150 m for 1 liter cans.
  • the thickness of the can body is usually in the range of 90 to 120 microns, and in order to improve the perforation resistance of the can, the surface hardness of the can body is more than twice the original hardness, preferably 4 times.
  • the micro-Vickers hardness Hv30 to 60 (untreated) is preferably Hv60 to 120, It is desirable to set Hv 120 to 240.
  • the lid of a two-piece can usually has a pinhole accident because the thickness of the lid is larger than the thickness of the body, and magnesium is added to aluminum as a hardener. It is rare.
  • the bottom of the can is concave toward the inner surface of the can to withstand pressure. Therefore, a pinhole accident is rarely caused at the bottom, because the possibility of a sharp end that causes pinholes is small.
  • external shocks cause pinholes, it is necessary to harden the outer surface of the can body, so almost the entire outer surface layer of the body is made into a hardened surface layer. .
  • the surface hardened layer referred to in the present invention is classified into two, an ion implantation hardened layer and a diffusion hardened layer.
  • the ion-implanted hardened layer is formed by a plasma method.
  • ions generated by glow discharge are accelerated by an ion accelerator and solid-dissolved in a metal under vacuum and low temperature.
  • an ion accelerator for example, when nitrogen gas and hydrogen gas are introduced into the glow generated by the glow discharge, positive ions such as ⁇ +, ⁇ ⁇ + are generated.
  • ion nitriding plasma nitriding
  • aluminum nitride is formed on the outer surface layer of the can body.
  • the surface is hardened even if all of the aluminum does not react with the aluminum nitride.
  • the surface of the aluminum material is plasma carburized. Carbonized, aluminum carbide is formed on the outer surface layer of the can body. This hardens the surface even if all of the aluminum does not react with the aluminum carbide.
  • oxygen, boron, hydrogen, or phosphorus can be implanted, and a plurality of these elements can be implanted.
  • the diffusion hardened layer is formed by diffusion infiltration treatment.
  • the diffusion and infiltration treatment is a treatment in which the object to be treated is brought into contact with a treatment agent containing the diffused element at a predetermined temperature or higher determined by the diffused element, and the treatment is carried out for a fixed time. Due to the concentration difference of the diffusion element, it diffuses from high concentration side to low concentration side.
  • Diffusion Infiltration treatment includes carburizing treatment, nitriding treatment, carbonitriding (soft nitriding) treatment, oxidation treatment, oxynitridation treatment, oxycarbonitridation treatment, boration treatment, hydrogenation treatment or hydrogenation treatment, depending on the diffusion element. .
  • a diffusion hardened layer containing at least one of nitrogen, carbon, oxygen, boron, hydrogen, and phosphorus is contained. Is formed on the outer surface layer of the can body. In addition, they are roughly classified into solid method, liquid method and gas method according to the form of treatment agent.
  • the gas method when this gas is introduced into the glow, the ionization and the ion acceleration are performed by the potential difference in the glow, which is the same as the above-described plasma method.
  • the surface hardened layer uses zirconium, titanium, etc. as a metal ion source and sets the can body to a negative voltage, thereby implanting metal ions into aluminum and dissolving predetermined ions into the aluminum alloy of the can body May be.
  • the hardened surface layer is formed in a gradient composition in which the element content ratio of the above elements decreases from the outer surface of the body toward the inside of the aluminum material.
  • the surface hardened layer tends to have a gradient composition due to the manufacturing principle based on ion implantation or diffusion infiltration.
  • the surface hardened layer since it is preferable to form the surface hardened layer at a low temperature and at a high speed, at least one of nitrogen, carbon, oxygen, boron, hydrogen or phosphorus is ion-implanted or diffused and permeated by a plasma method.
  • a surface hardened layer fills the aluminum crystal lattice defects in the surface layer or prevents the dislocation movement in the aluminum crystal grains in the surface layer from moving due to the presence of these elements. It is formed to increase the hardness by eliminating the slip deformability of the crystal. In order to further increase the hardness, it is effective to form aluminum nitride crystals, aluminum carbide crystals or aluminum oxide crystals with a predetermined thickness from aluminum crystals.
  • the aluminum plate used to form the bottom body of the aluminum can contains manganese element to prevent corrosion.
  • a reaction between the manganese and each element of nitrogen, carbon, oxygen, boron, hydrogen, or phosphorus may be caused to form a compound such as manganese nitride or manganese carbide as a surface hardened layer.
  • the surface hardened layer contains at least one of nitrogen, carbon, oxygen, boron, hydrogen or phosphorus in an amount of 1 to 50 atom%, the effect of the surface hardening is sufficient if it is less than 1 atom%. If it exceeds 50 atom%, the body becomes brittle.
  • the outermost surface layer must have a nitrogen atom content of 1% or more, preferably 5% or more.
  • the thickness of the surface hardened layer depends on the hardness, but is preferably in the range of 0.1 to 30 / m. Desirably, 4 to 10 / m is necessary to obtain a hardness improving effect. If it is less than 0.1 m, sufficient surface strength cannot be obtained, and if it exceeds 30 m, the can becomes brittle.
  • a method of manufacturing a surface-modified aluminum can when forming a hardened surface layer will be described.
  • a bottomed can body is formed from an aluminum plate and the bottomed can body is washed.
  • degreasing is performed because oil etc. adheres to the outer surface of the can.
  • the washing step is, for example, washing with warm water (pre-process), washing with an inorganic acid-based detergent containing sulfuric acid and activator at 60 to 80 (washing), and again using sulfuric acid and an activator. Wash with acid-based detergent at 60-80 (approximately dry), and finally wash with tap water.
  • a plasmatized raw material gas containing at least one of the elements nitrogen, carbon, oxygen, boron, hydrogen or phosphorus Is brought into contact with almost the entire outer surface layer of the torso.
  • the raw material gas may be introduced into the glow by the normal pressure plasma method, or the raw material gas may be turned into plasma and then sprayed.
  • the can body is rotated around the cylinder axis, and plasma is generated by a high-frequency power source 10 and plasma generation means 1 provided in contact with the can body, and hydrogen-nitrogen-based gas is generated. Is turned into plasma.
  • the can body 4 is converted to a negative voltage by the positive / negative voltage adjusting means 3 to generate a potential difference between the can body and the plasma generating means, and ionized N + and NH + are discharged to the can body by the sputtering effect. It is made to strike almost the entire outer surface.
  • nitrogen element is injected into the aluminum material in the body, and a hardened surface layer is formed.
  • plasma may be applied with such an intensity that no glow discharge occurs.
  • the implanted nitrogen is intended to prevent dislocation movement in the aluminum crystal grains.
  • the aluminum surface is ion-nitrided, and aluminum nitride prevents dislocation movement in aluminum crystal grains. By this phenomenon, almost the entire outer surface layer of the trunk is hardened.
  • the ion acceleration may be performed by an ion accelerator. After that, aluminum cans are manufactured through the can printing process, neck-in flange processing, and can inspection.
  • a plasma source gas supply unit integrating an atmospheric pressure plasma generation unit, a plasma generation unit, an ion acceleration unit or a microwave generation unit, and a source gas plasma generation unit having parallel plate electrodes.
  • 9 is used to supply the source gas between the parallel plate electrodes to convert the source gas into plasma, and from the plasma project outlet 11 provided in the plasma source gas supply means 9 a bottomed can that rotates around the can cylinder axis
  • the source gas which has been turned into plasma may be sprayed over the entire body of the body 4. In this case as well, a sputtering effect can be obtained due to the potential difference between the can body and the plasma source gas supply means 9.
  • a surface hardened layer 13 is formed on the outer surface of the can body 4 as shown in FIG.
  • the surface hardened layer 13 has a diffusion element such as nitrogen diffused from the surface of the can body 4 toward the inside of the material. It is preferable that the surface of the can body 4 has the highest element concentration, and has a gradient composition such that the element concentration decreases toward the inside of the material.
  • the speed of forming the surface hardened layer varies depending on the degree of hardening and the thickness of the layer, but in order to form the layer economically, the film forming time should be 120 seconds or less, preferably 30 seconds or less. Is preferred.
  • the bottomed can body may be put into a vacuum chamber, and a hardened surface layer may be formed under reduced pressure on almost the entire outer surface layer of the body portion by using plasma of the raw material gas.
  • a vacuum chamber By putting it in a vacuum chamber, it becomes a low-pressure plasma method, and it is possible to increase the deposition rate at low temperatures.
  • the surface-modified aluminum can of the present invention has a body thickness of 65 to 20 O ⁇ m in the body of a two-piece aluminum can, and forms a hard coating on almost the entire outer surface of the body. You may.
  • a hard coating is formed on almost the entire outer surface of the torso.
  • the characteristics of the can material, wall thickness, coating site, hardness, etc. are as described in the case of forming a hardened surface layer. The same applies as well.
  • a film is formed by plasma CVD, the raw material gas is turned into plasma, and titanium oxide, zirconia oxide, aluminum nitride, aluminum oxide, and the like are formed as a hard coating on the surface of the can body at a predetermined thickness.
  • a hard film When forming a film by PVD, a hard film may be formed to a predetermined thickness on the surface of the can body by using zirconium, titanium, or the like as a metal ion source and setting the can body to a negative voltage.
  • the thickness of the hard coating depends on the hardness, but is preferably formed to a thickness of 0.1 to 3 O / zm. Desirably, 1 to 5 m is necessary to obtain the effect of improving hardness. If less than 0.1 tm, sufficient surface strength cannot be obtained If it exceeds 30 / m, there is a risk of peeling.
  • a method of manufacturing a surface-modified aluminum can when forming a hard coating will be described.
  • the cleaning step is the same as the above-described cleaning step.
  • a metal alkoxide such as titanium tetra-iso-propoxide or zirconium tetra-t-butoxide may be used to form a metal chloride such as titanium chloride, zirconium chloride, or aluminum chloride.
  • the raw material gas which is a product, is turned into plasma, and a hard coating of titanium oxide, zirconium oxide, aluminum nitride, aluminum oxide, or the like is formed to a predetermined thickness on the surface of the can body.
  • a hard coating may be formed to a predetermined thickness on the surface of the can body by using zirconium, titanium, or the like as a metal ion source and setting the can body to a negative voltage.
  • the film formation time required for forming the hard film varies depending on the film thickness and the like, but is preferably 120 seconds or less, and more preferably 30 seconds or less, in order to form the film economically. After that, aluminum cans are manufactured through the can printing process, neck-in-flange processing, and can inspection.
  • a hard coating 12 is formed on the outer surface of the can body 4 as shown in FIG.
  • an aluminum nitride film was formed on the can body surface of the aluminum can by the PVD film forming method.
  • the sputtering target was metal aluminum, and the film was formed in a nitrogen atmosphere.
  • the thickness of the aluminum nitride film was 600 nm.
  • the thickness of the aluminum film was set to 1300 nm.
  • An uncoated aluminum can was used as a control.
  • the piercing strength was measured when a needle indenter with a sample indenter tip diameter of 2.25 mm (2.25 R) was pressed vertically into the can body surface. The evaluation was performed in comparison with the control.
  • the measuring instrument used was an autograph (Ag-lOkND, manufactured by Shimadzu Corporation). Figure 6 shows the results.
  • the improvement ratio of control was 144%, and in sample I, the improvement ratio of control was 149%. That is, the piercing strength was improved by 40 to 50% by forming the hard coating, which was effective in improving the perforation resistance (pinhole resistance).
  • a high frequency power supply or a microwave power supply can be exemplified as an energy source for generating plasma.
  • the method of forming the hard coating directly on the aluminum material on the outer surface of the trunk portion has been described.
  • an adhesion layer is provided between them. Is also good.
  • a lubricating oil film may be formed for the purpose of imparting lubricity to the can surface.
  • the production method of the present invention forms a hardened surface layer or a hard coating after the cleaning step, so that the existing can production equipment is hardly changed and the surface treatment is performed without any influence on DI processing.
  • a cured layer can be formed.
  • the present invention is not limited to the use of aluminum cans, but is particularly suitable for beverage cans.

Abstract

A surface-modified aluminum can, characterized in that it is a two piece aluminum can having a thickness of an aluminum material in its trunk portion of 65 to 200 μm, and almost the whole of the outer surface of the trunk portion is covered with a surface hardening layer containing 1 to 50 atom % of at least one element of nitrogen, carbon, oxygen, boron, hydrogen and phosphorus. The employment of the surface-modified aluminum can allows the reduction of the percentage of the formation of pin holes, which is a problem inherent in an aluminum can using a thin aluminum material, with little change of the present manufacturing equipment and no effect on the DI working in the manufacture thereof.

Description

明 細 書  Specification
表面改質アルミニウム缶及びその製造方法 技術分野 TECHNICAL FIELD The present invention relates to a surface-modified aluminum can and a method for producing the same.
本発明は、 耐穿孔性に優れた表面処理アルミニウム缶及びその製 造方法に関する。 背景技術  The present invention relates to a surface-treated aluminum can having excellent perforation resistance and a method for producing the same. Background art
アルミニウム缶の胴部を板厚の増加なしに強度向上させる従来技 術として以下の 2種類がある。  There are the following two types of conventional technologies for improving the strength of the body of aluminum cans without increasing the thickness.
( 1 ) 缶胴部の形状の工夫 : 缶胴を垂直方向に多面体として耐変形 強度の増加を図る。 また、 缶胴に凹凸模様 (ダイァカッ ト等) ゃビ ード、 円周上にグループ加工を施し、 耐変形性の向上を図る。  (1) Devising the shape of the can body: The can body is made to be a polyhedron in the vertical direction to increase the deformation resistance. In addition, we will improve the resistance to deformation by subjecting the body of the can to an uneven pattern (die cut, etc.), beading, and performing group processing on the circumference.
( 2 ) 缶を異種材料で被覆する方法 : アルミ材にプラスチックフィ ルムをラミネートしてから缶に加工する (タルク缶技術)。 また、 缶 にフィルム等を被覆する (シュリンクラベル)。  (2) Method of coating cans with dissimilar materials: Laminating plastic films on aluminum and processing them into cans (talc can technology). In addition, cover the can with a film (shrink label).
以上の従来技術は、 いずれも缶材料そのものを強度向上させるも のではなく、 その強度向上効果は副次的で微小なものにとどまって いる。 特に耐穿孔性 (耐ピンホール性) 向上に効果的な表面硬度の 増加は望めないものであった。  All of the above prior art techniques do not improve the strength of the can material itself, but the effect of improving the strength is secondary and minute. In particular, an increase in surface hardness, which is effective for improving puncture resistance (pinhole resistance), could not be expected.
一方、 缶材料そのものの剛性や硬度を増加させることは、 アルミ 合金の組成変更 (マグネシウム添加量を増加させる等) で可能であ るが、 このような合金は D I ( DRAW AND WALL IRONING , 絞り しごき) 加工が困難となるため缶材として使用不可能であった。 発明の開示  On the other hand, it is possible to increase the rigidity and hardness of the can material itself by changing the composition of the aluminum alloy (such as increasing the amount of magnesium added). ) It could not be used as a can because of the difficulty in processing. Disclosure of the invention
アルミニウム缶、 特に飲料用アルミニウム缶はコス トダウンのた めの軽量化が進んでおり、 D I加工により缶胴部の肉厚は、 1 0 0 ミクロン程度になっている。 これにともないアルミニウム缶入り飲 料が消費されるまでの過程で、 鋭利な突起を有する物体と接触した 場合にピンホールと呼ばれる小孔を缶胴部に生じる事故の発生頻度 の上昇が生じている。 ピンホールの生成は内容物が漏れることによ り商品価値がなくなる重大欠陥であるため、 缶胴部の強度を上げて 孔の発生を低減することが求められている。 Aluminum cans, especially aluminum cans for beverages, are being reduced in weight for cost reduction, and the thickness of the can body has been reduced to about 100 microns by DI processing. Drinks in aluminum cans During the process of consumption, the frequency of accidents that cause small holes called pinholes in the can body when contacting with objects having sharp protrusions is increasing. Since the formation of pinholes is a serious defect that causes loss of commercial value due to leakage of the contents, it is required to increase the strength of the can body and reduce the generation of holes.
缶胴部強度向上の課題として、 ( 1 )肉厚は薄いままとして材料コ ス トの増加がないようにすること、 ( 2 )材料コス トより相当に低い 処理コス トで済むものであること、 ( 3 )リサイクルのシステム観点 からアルミニウム材料を使用すること、 ( 4 )強度向上がピンホール 低減 (耐突き刺し強度向上) に結びつく ものであること、 が挙げら れる。  The challenges for improving the strength of the can body are (1) keeping the wall thickness thin so as not to increase the material cost, (2) the processing cost being considerably lower than the material cost, ( 3) Use of aluminum material from the viewpoint of recycling system; and (4) Improvement of strength is linked to reduction of pinholes (improvement of piercing resistance).
本発明は、 肉厚の薄いアルミニウム材からなるアルミニウム缶の 固有の問題であるピンホール発生を防止するために、 ピンホールが 発生しやすい缶胴部の外表層のほぼ全面を表面硬化層にするか或い は缶胴部の外表面のほぼ全面に硬質被膜を形成することで、 ピンホ ール発生率を低減させることを目的とする。  In order to prevent the occurrence of pinholes, which is a problem inherent in aluminum cans made of thin aluminum materials, the present invention uses a hardened surface layer on almost the entire outer surface layer of the can body where pinholes are likely to occur. Another object of the present invention is to reduce the occurrence of pinholes by forming a hard coating on almost the entire outer surface of the can body.
従来、 金属製品表面を表面硬化させる方法として、 熱拡散表面処 理法 (数百度以上の高温下で炭化水素等を接触維持して表面層の炭 素量を増加させる浸炭処理、 同様にアンモニアガス中で窒素化する 方法)、 イオン窒化法(低圧下で窒素一水素混合ガスをグロ一放電さ せ表面層を窒素化する方法) が行われている。 これらは金属部品の 耐磨耗性向上を目的としており、 高温 (数百度) で数時間の処理を 要するものであった (表面硬化層は、 数 1 0 ミクロン以上)。  Conventionally, as a method of hardening the surface of metal products, a thermal diffusion surface treatment method (a carburizing treatment to increase the amount of carbon in the surface layer by maintaining contact with hydrocarbons etc. at a high temperature of several hundred degrees Celsius or higher; Nitrogen ionization method), and ion nitriding method (a method of performing nitrogen discharge of a mixed gas of nitrogen and hydrogen under low pressure to nitrogenate the surface layer). These were intended to improve the wear resistance of metal parts and required several hours of treatment at high temperatures (hundreds of degrees) (the surface hardened layer was several ten microns or more).
一方最近は、 イオン注入技術 (イオンを加速して真空、 低温化で 金属に固溶させる) による表面硬化も試みられるようになつてきて いる。  On the other hand, recently, attempts have been made to attempt surface hardening by ion implantation technology (accelerating ions to form a solid solution in a metal at a reduced temperature and at a low temperature).
本発明は、 これら表面処理技術を缶胴表面に応用し、 低温 · 高速 で経済的に表面硬度を増加させて耐穿孔性を向上させることを課題 としている。 こ こで、 表面硬化層若しく は硬質被膜を形成する場合には、 缶胴 部の肉厚が 6 5 〜 2 0 0 01と薄くするために、 表面硬化層若しく は硬質被膜の厚さをどのぐらいに形成するかが課題となる。 An object of the present invention is to apply these surface treatment techniques to the surface of a can body to economically increase the surface hardness at a low temperature and at a high speed to improve the perforation resistance. Here, when forming a hardened surface layer or a hard coating, the thickness of the hardened surface layer or the hard coating should be reduced in order to reduce the thickness of the can body to 65 to 2001. The problem is how much is formed.
さ らに本発明では、 表面硬化層をいわゆる傾斜組成層とすること で、 基材であるアルミニウムと表面硬化層との密着性の向上と缶胴 部の外表面の硬化を同時に満たすことを目的としている。  Further, in the present invention, by forming the surface hardened layer as a so-called gradient composition layer, the object is to simultaneously improve the adhesion between the aluminum base material and the hardened surface layer and harden the outer surface of the can body. And
また、 本発明の目的は、 2 ピースアルミニウム缶の製造工程にお いて、 缶成形後に缶胴部の表面硬度を増加させる目的で表面硬化層 を形成することにより ピンホール発生率を低減させたアルミニウム 缶を製造することを課題とする。 このとき、 現存の缶製造設備をほ とんど変更することなく、 D I 加工にも全く影響を及ばさずに表面 硬化層を形成することが重要である。 缶製造設備や D I 加工に影響 を及ぼすと甚大なコス ト上昇をもたらすからである。  Another object of the present invention is to reduce the pinhole occurrence rate by forming a surface hardened layer in the manufacturing process of a two-piece aluminum can in order to increase the surface hardness of the body of the can after molding. It is an object to manufacture cans. At this time, it is important to form a hardened surface layer with little change to existing can manufacturing equipment and without affecting DI processing at all. The impact on can manufacturing equipment and DI processing can lead to enormous cost increases.
ここで、 本発明では、 常圧プラズマ若しく は減圧プラズマにより 原料ガスをプラズマ化して表面硬化層を形成することを課題として いる。  Here, an object of the present invention is to form a surface hardened layer by converting a raw material gas into plasma using normal pressure plasma or reduced pressure plasma.
本発明の目的は、 2 ピースアルミニウム缶の製造工程において、 缶成形後に缶胴部の表面硬度を増加させる 目的でプラズマ C V D An object of the present invention is to increase the surface hardness of the can body after forming the can in the manufacturing process of a two-piece aluminum can.
(化学的気相成長法)若しくは P V D (物理的気相成長法) により、 底付缶胴の胴部に硬質被膜を形成することにより ピンホール発生率 を低減させたアルミニウム缶を製造することを課題とする。 表面硬 化層の形成と同じく現存の缶製造設備をほとんど変更することなく D I 加工にも全く影響を及ばさずに表面硬化層を形成することを課 題とする。 本発明の表面改質アルミニウム缶は、 2 ピースアルミニウム缶の 胴部のアルミニウム材肉厚が 6 5 〜 2 0 O j^ mで、 前記胴部の外表 層のほぼ全面が窒素、 炭素、 酸素,ホウ素、 水素又はリ ンの各元素の うち少なく とも 1 種類を 1 〜 5 0 atom %含有する表面硬化層であ ることを特徴とする。 (Chemical vapor deposition) or PVD (physical vapor deposition) to produce aluminum cans with a reduced pinhole generation rate by forming a hard coating on the bottom of the bottomed can body. Make it an issue. As with the formation of the hardened surface layer, the task is to form the hardened surface layer with little change to the existing can manufacturing equipment and without affecting DI processing at all. In the surface-modified aluminum can of the present invention, the body of the two-piece aluminum can has an aluminum material thickness of 65 to 20 Oj ^ m, and almost the entire outer surface layer of the body is formed of nitrogen, carbon, oxygen, Surface hardened layer containing at least one of boron, hydrogen and phosphorus elements at 1 to 50 atom% It is characterized by that.
請求項 1記載の表面改質アルミニウム缶は、 2 ピースアルミニゥ ム缶の胴部のアルミニウム材肉厚が 6 5 〜 2 0 0 mで、 前記胴部 の外表面のほぼ全面に硬質被膜を形成することが好ましい。  2. The surface-modified aluminum can according to claim 1, wherein the body of the two-piece aluminum can has an aluminum material thickness of 65 to 200 m, and a hard coating is formed on almost the entire outer surface of the body. Is preferred.
請求項 1又は 2記載の表面改質アルミニウム缶では、 前記表面硬 化層又は前記硬質被膜は、 0 . 1 〜 3 0 mの厚さに形成することが 好ましい。  In the surface-modified aluminum can according to claim 1 or 2, it is preferable that the hardened surface layer or the hard coating is formed to have a thickness of 0.1 to 30 m.
請求項 1又は 3記載の表面改質アルミニウム缶では、 前記表面硬 化層は、 前記胴部の外表面からアルミニウム材内部に向かって、 請 求項 1記載の元素の元素含有比率が低くなる傾斜組成に形成するこ とが好ましい。  4. The surface-modified aluminum can according to claim 1 or 3, wherein the surface hardened layer is inclined such that the element content ratio of the element according to claim 1 decreases from the outer surface of the body to the inside of the aluminum material. It is preferable to form the composition.
本発明に係る表面改質アルミニウム缶の製造方法は、 2 ピースァ ルミニゥム缶の製造方法において、 アルミニウム平板から底付缶胴 を成形して該底付缶胴を洗浄した後、 前記底付缶胴を該底付缶胴の 中心軸で回転させながら、 窒素、 炭素、 酸素、ホウ素、 水素又はリ ン の各元素のうち少なく とも 1種類を含有するプラズマ化した原料ガ スにて、 前記胴部の外表層のほぼ全面を前記各元素のうち少なく と も 1種類を 1 〜 5 0 atom %含有する表面硬化層に形成することを 特徴とする。  The method for producing a surface-modified aluminum can according to the present invention is a method for producing a two-piece aluminum can, comprising: forming a bottomed can body from an aluminum plate; washing the bottomed can body; While rotating around the center axis of the bottomed can body, the body portion of the body portion is made of a plasma gasified raw material gas containing at least one of each element of nitrogen, carbon, oxygen, boron, hydrogen or phosphorus. Almost the entire outer surface layer is formed as a surface hardened layer containing at least one of the above elements at 1 to 50 atom%.
請求項 5において、 前記底付缶胴を洗浄した後、 前記底付缶胴を 真空槽に投入して、 前記プラズマ化した原料ガスにて、 前記胴部の 外表層のほぼ全面を減圧下で前記表面硬化層に形成することが好ま しい。  The cleaning method according to claim 5, wherein after cleaning the bottomed can body, the bottomed can body is charged into a vacuum chamber, and substantially the entire outer surface layer of the body portion is reduced under reduced pressure with the plasma-converted raw material gas. It is preferable to form on the surface hardened layer.
本発明に係る表面改質アルミニウム缶の製造方法は、 2 ピースァ ルミニゥム缶の製造方法において、 アルミニウム平板から底付缶胴 を成形して該底付缶胴を洗浄した後、 プラズマ C V D (化学的気相 成長法) 若しくは P V D (物理的気相成長法) により、 前記底付缶 胴の胴部外表面のほぼ全面に硬質被膜を形成することを特徴とする 本発明のアルミニウム缶は、 ピンホールが発生しやすい缶胴部の 外表層のほぼ全面に表面硬化層か或いは硬質被膜を形成したので、 肉厚の薄いアルミニウム材からなるアルミニウム缶の固有の問題で あるピンホール発生率を低減させることができた。 ここで、 本発明 は、 低温 · 高速で経済的に表面硬度を増加させて耐穿孔性を向上さ せたものである。 ここで、 表面硬化層若しくは硬質被膜の厚みを規 定することにより、 缶胴部の肉厚が 6 5〜 2 0 0 ^ mと薄くても強 度及び密着性を確保しつつ上記生産上の経済性を満たしている。 さ らに本発明では、 表面硬化層を傾斜組成層とすることで、 基材であ るアルミニウムと表面硬化層との密着性と缶胴部の外表面の硬化を 同時に満たしている。 The method for producing a surface-modified aluminum can according to the present invention is a method for producing a two-piece aluminum can, comprising: forming a bottomed can body from an aluminum plate; washing the bottomed can body; A hard coating is formed on almost the entire outer surface of the body of the bottomed can body by phase growth method) or PVD (physical vapor phase growth method). The aluminum can of the present invention has a surface hardened layer or a hard coating formed on almost the entire outer surface layer of the can body where pinholes are likely to occur. A certain pinhole generation rate could be reduced. Here, the present invention is to improve the piercing resistance by economically increasing the surface hardness at a low temperature and at a high speed. Here, by specifying the thickness of the surface hardened layer or hard coating, even if the thickness of the can body is as thin as 65 to 200 ^ m, the strength and adhesion can be ensured while maintaining the strength and adhesion. Meets economics. Further, in the present invention, by making the surface hardened layer a graded composition layer, the adhesion between the aluminum base material and the hardened surface layer and the hardening of the outer surface of the can body are simultaneously satisfied.
本発明のアルミニウム表面改質缶は、 表面硬化層又は硬質被膜を 形成したので耐穿孔性を向上させることができるが、 これに伴い、 所定の耐穿孔性を得るために厚く していた胴部のアルミニウム材肉 厚を、 表面硬化層又は硬質被膜を形成しない場合と比較して、 低減 することが可能である。 このアルミニウム材の肉厚低減により、 表 面硬化層又は硬質被膜を形成するためのコス ト増を吸収することが できる。  The aluminum surface-modified can of the present invention can improve the puncture resistance because the surface hardened layer or the hard coating is formed, but with this, the body part was thickened to obtain the predetermined puncture resistance. It is possible to reduce the thickness of the aluminum material as compared with the case where no hardened surface layer or hard coating is formed. By reducing the thickness of the aluminum material, an increase in cost for forming a hardened surface layer or a hard coating can be absorbed.
また、 本発明の製造方法は、 イオン注入技術、 拡散浸透技術、 常 圧プラズマ若しくは減圧プラズマの技術、 或いは C V D若しくは P V Dを駆使して、 上記の表面改質したアルミニウム缶を現存の缶製 造設備をほとんど変更することなく、 D I 加工にも全く影響を及ば さずに表面硬化層を形成することができた。 図面の簡単な説明  In addition, the production method of the present invention uses an ion implantation technique, a diffusion infiltration technique, a normal pressure plasma or a reduced pressure plasma technique, or a CVD or PVD technique to convert the surface-modified aluminum can into an existing can manufacturing equipment. The hardened surface layer was able to be formed with almost no change in DI and without affecting DI processing at all. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の表面改質アルミニウム缶の表面処理を施す装置の 一形態を示す概念図である。 FIG. 1 is a conceptual diagram showing one embodiment of an apparatus for performing a surface treatment on a surface-modified aluminum can of the present invention.
図 2は、 本発明の表面改質アルミニウム缶の表面処理を施す装置の 別形態を示す概念図である。 図 3は、 表面硬化層を形成した表面改質アルミニウム缶の底付缶胴 の縦断面を示す概念図である。 FIG. 2 is a conceptual diagram showing another embodiment of an apparatus for performing a surface treatment on a surface-modified aluminum can of the present invention. FIG. 3 is a conceptual diagram showing a longitudinal section of a bottomed can body of a surface-modified aluminum can having a surface hardened layer formed thereon.
図 4は、 図 3における A-A'部分拡大図である。 FIG. 4 is an enlarged view of a part AA ′ in FIG.
図 5は、 硬質被膜を形成した表面改質アルミニウム缶の底付缶胴の 縦断面を示す概念図である。 FIG. 5 is a conceptual diagram showing a vertical cross section of a bottomed can body of a surface-modified aluminum can having a hard coating formed thereon.
図 6は、 窒化アルミニウム膜を缶胴表面に形成したときの表面改質 アルミニウム缶と未処理のアルミニウム缶との突き刺し強度の比較 を表すグラフである。 FIG. 6 is a graph showing a comparison of piercing strength between a surface-modified aluminum can and an untreated aluminum can when an aluminum nitride film is formed on the surface of the can body.
符号の意味は次の通りである。 1 は大気圧プラズマ発生手段、 プ ラズマ発生手段、 イオン加速手段若しくはマイクロ波発生手段、 2 はプラズマ放電、 3は正負電圧調整手段、 4は底付缶胴、 5は表面硬 化層若しく は硬質被膜、 6は原料発生源、 7は原料供給手段、 8は原 料供給管、 9はプラズマ原料ガス供給手段、 10は高周波電源若しく はマイクロ波発生装置、 11 はプラズマジェッ ト出口、 12 は硬質被 膜、 13は表面硬化層、 である。 発明を実施するための最良の形態  The meanings of the symbols are as follows. 1 is an atmospheric pressure plasma generating means, a plasma generating means, an ion accelerating means or a microwave generating means, 2 is a plasma discharge, 3 is a positive / negative voltage adjusting means, 4 is a can body with a bottom, 5 is a surface hardened layer or Hard coating, 6 is raw material source, 7 is raw material supply means, 8 is raw material supply pipe, 9 is plasma raw material gas supply means, 10 is high frequency power supply or microwave generator, 11 is plasma jet outlet, 12 Is a hard coating, and 13 is a hardened surface layer. BEST MODE FOR CARRYING OUT THE INVENTION
[実施例]  [Example]
(表面硬化層を有するアルミニウム缶)  (Aluminum can with surface hardened layer)
以下に本発明を詳細に説明するが、 本発明はこれらの記載に限定 して解釈されない。  Hereinafter, the present invention will be described in detail, but the present invention is not construed as being limited to these descriptions.
本発明の表面改質アルミニウム缶の一形態は、 2 ピースアルミ二 ゥム缶の胴部のアルミニウム材肉厚が 6 5〜 2 0 O mで、 胴部の 外表層のほぼ全面が窒素、 炭素、 酸素、ホウ素、 水素又はリ ンの各元 素のうち少なく とも 1種類を 1 〜 5 0 atom %含有する表面硬化層 であることを特徴とする。  In one embodiment of the surface-modified aluminum can of the present invention, the body of the two-piece aluminum can has an aluminum material thickness of 65 to 20 Om, and almost the entire outer surface layer of the body is formed of nitrogen or carbon. It is a surface hardened layer containing at least one of oxygen, boron, hydrogen, and phosphorus at 1 to 50 atom%.
缶、 特に飲料用缶は、 材質によりアルミニウム缶とスチール缶の 二つに大別される。 本発明において缶をアルミニウム缶に限定した のは、 アルミニウム缶についてピンホール発生による事故が頻繁に 発生するからである。 アルミニウム缶はスチール缶よりも缶胴部の 耐穿孔性が小さいため、 強度向上が求められる。 Cans, especially beverage cans, can be broadly divided into aluminum cans and steel cans depending on the material. In the present invention, the reason why the can was limited to an aluminum can is that accidents caused by pinholes frequently occur in aluminum cans. Because it occurs. Since aluminum cans have lower perforation resistance than steel cans, improved strength is required.
また、 缶は 2 ピース缶と 3 ピース缶に大別される。 3 ピース缶と は缶胴及び天地の蓋部分の計 3片よりなる缶体である。 これに対し て 2 ピース缶とは底部のついた缶胴体と開口部を備えた蓋部の 2片 からなる缶体で、 平板からの抜抜加工、 深絞り加工及びしごき加工 などの組み合わせ加工によって底付缶胴を形成するものである。 一 般的に 3 ピース缶の胴部は 2 ピース缶の胴部の材肉厚よりもかなり 厚い平板を円筒状に湾曲させて形成する。 したがって、 アルミニゥ ム製 3 ピース缶は存在するものの、 胴部の材肉厚が厚いために 2 ピ ース缶ほど耐穿孔性を要求されない。 したがって、 本発明では耐穿 孔性が強く求められている 2 ピースアルミニウム缶について缶胴外 表面の表面強度の向上を試みるものである。  The cans are roughly divided into two-piece cans and three-piece cans. A three-piece can is a three-piece can body consisting of a can body and a top and bottom lid. A two-piece can, on the other hand, is a can body consisting of a can body with a bottom and a lid with an opening, and is formed by a combination of extraction from a flat plate, deep drawing and ironing. It forms a bottomed can body. Generally, the body of a three-piece can is formed by bending a flat plate that is considerably thicker than the thickness of the body of a two-piece can into a cylindrical shape. Therefore, although there are aluminum three-piece cans, the perforation resistance is not required as much as two-piece cans due to the thick wall of the body. Accordingly, in the present invention, an attempt is made to improve the surface strength of the outer surface of the can body of a two-piece aluminum can, for which puncture resistance is strongly required.
胴部のアルミニウム材肉厚を 6 5〜 2 0 0 mとしたのは、 6 5 m未満ではアルミニウム缶自体の強度が弱くなるため、 実用性の あるアルミニウム缶を製造できないからである。 一方、 2 0 0 m を超えると缶胴のアルミニウム材自体の強度が確保されるため、 表 面処理をほどこさなくてもピンホール問題が少なくなるからである, ここで、 胴部のアルミニウム材肉厚は、 容量と深い関係にある。 例えば、 飲料用缶であれば、 胴部のアルミニウム材肉厚を 3 5 0 m 1 缶や 5 0 0 m l缶では 6 5〜 1 1 0 m、 1 リ ツ トル缶では 1 2 0〜 1 5 5 m、 1 .5 リ ッ トル缶では 1 4 0〜 1 8 0 m、 2 リ ツ トル缶では 1 5 0〜 1 9 0 u m, 3 リ ッ トル缶では 1 6 0〜 2 0 0 mにすることが好ましい。 上記以外の容量においては、 容器容量 に対してこれらの肉厚値を外挿して適宜求めることができる。  The reason why the thickness of the aluminum material of the body is 65 to 200 m is that if the thickness is less than 65 m, the strength of the aluminum can itself becomes weak, so that a practical aluminum can cannot be manufactured. On the other hand, if it exceeds 200 m, the strength of the aluminum material itself of the can body is ensured, so that the pinhole problem is reduced without applying surface treatment. Thickness is closely related to capacity. For example, in the case of beverage cans, the thickness of the aluminum part of the body is 350 to 110 m for 350 m1 cans and 500 ml cans, and 120 to 150 m for 1 liter cans. 5 m, 1.5 liter cans to 140 to 180 m, 2 liter cans to 150 to 190 um, 3 liter cans to 160 to 200 m Is preferred. For other capacities, these thickness values can be extrapolated to the capacity of the container to obtain the capacities appropriately.
缶胴の厚さは、 通常 9 0〜 1 2 0 ミクロンの範囲にあり、 缶の耐 穿孔性を向上せしめるためには缶胴の表面硬度をもとの硬度の 2倍 以上、 望ましくは 4倍以上が必要である。 すなわち、 マイクロビッ カース硬度 H v 3 0〜 6 0 (未処理) を H v 6 0〜 1 2 0、 好まし くは H v 1 2 0〜 2 4 0 とすることが望ましい。 The thickness of the can body is usually in the range of 90 to 120 microns, and in order to improve the perforation resistance of the can, the surface hardness of the can body is more than twice the original hardness, preferably 4 times. The above is necessary. That is, the micro-Vickers hardness Hv30 to 60 (untreated) is preferably Hv60 to 120, It is desirable to set Hv 120 to 240.
胴部の外表層のほぼ全面を表面硬化層にしたのは、 この部位にお いてピンホールが発生しやすいからである。 2 ピース缶の蓋部は、 通常、 蓋材の肉厚が胴材の肉厚より も大きい上にアルミニウムに硬 化剤としてマグネシウム元素が添加されているため、 蓋部でピンホ ール事故が起こることはまれである。 一方、 缶底は耐圧のために缶 内面に向けて凹部形状となっている。 従ってピンホール発生の原因 となる鋭部の突き当たりの可能性が少ないため、 底部でピンホール 事故が起こることはまれである。 さらに、 ピンホール発生の原因と なるのは外部からの衝撃であるので、 缶胴の外表面を硬化する必要 があるため、 胴部の外表層のほぼ全面を表面硬化層とするわけであ る。  Almost the entire outer surface layer of the torso is made of a hardened surface layer because pinholes are likely to occur in this area. The lid of a two-piece can usually has a pinhole accident because the thickness of the lid is larger than the thickness of the body, and magnesium is added to aluminum as a hardener. It is rare. On the other hand, the bottom of the can is concave toward the inner surface of the can to withstand pressure. Therefore, a pinhole accident is rarely caused at the bottom, because the possibility of a sharp end that causes pinholes is small. Furthermore, since external shocks cause pinholes, it is necessary to harden the outer surface of the can body, so almost the entire outer surface layer of the body is made into a hardened surface layer. .
ここで、 本発明でいう表面硬化層とは、 イオン注入硬化層と拡散 硬化層の二つに分類される。  Here, the surface hardened layer referred to in the present invention is classified into two, an ion implantation hardened layer and a diffusion hardened layer.
イオン注入硬化層は、 プラズマ法で形成し、 例えばグロ一放電等 により発生したイオンをイオン加速器で加速して真空、 低温下で金 属に固溶させることで形成する。 例えば窒素ガスと水素ガスをグロ 一放電により生じたグロ一中に導入すると、 Ν +、 Ν Η +等の正ィォ ンが生じる。 このイオンが缶胴外表面のアルミニウム材に衝突する とアルミニウム材の表面がイオン窒化 (プラズマ窒化) され、 窒化 アルミニウムが缶胴の外表層に形成される。 このとき、 アルミニゥ ムが全て窒化アルミニウムへ反応しない場合でも表面が硬化される, また、 メタンやプロパンを水素ガスやアルゴンガスをキャリアガス としてグロ一中に導入すると、 プラズマ浸炭によりアルミニウム材 の表面が炭化され、炭化アルミニウムが缶胴の外表層に形成される。 これにより、 アルミニウムが全て炭化アルミニウムへ反応しない場 合でも表面が硬化される。 イオン窒素やプラズマ浸炭の他に酸素、 ホウ素、水素又はリ ンの各元素を注入することが可能であり、また、 これら元素を複数、 イオン注入することも可能である。 一方、 拡散硬化層は、 拡散浸透処理によって形成する。 拡散浸透 処理とは、 拡散元素によって定まる所定温度以上で被処理物体と拡 散元素を含んだ処理剤を接触させ、 一定時間処理するものである。 拡散元素の濃度差により、 高濃度側から低濃度側に拡散する。 拡散 浸透処理には、 拡散元素によって、 浸炭処理、 窒化処理、 浸炭窒化 (軟窒化) 処理、 酸化処理、 酸窒化処理、 酸炭窒化処理、 硼化処理、 水素化処理又はリ ン化処理がある。 缶胴部の外表面において、 アル ミニゥム材に対してこれらの拡散処理を施すことで、 窒素、 炭素、 酸素、ホウ素、水素又はリ ンの各元素のうち少なく とも 1種類を含有 した拡散硬化層を缶胴部の外表層に形成する。 また、 処理剤の形態 から固体法、 液体法及び気体法に大別される。 なお、 気体法におい て、 グロ一中にこの気体を導入するとグロ一中の電位差によりィォ ン化とイオン加速がされるので前述のプラズマ法と同義となる。 表面硬化層は、 P V Dと同じ原理により、 ジルコニウム、 チタン 等を金属イオン源として缶胴を負電圧とすることにより、 金属ィォ ンをアルミニウムに打ち込み、 所定のイオンを缶胴アルミ合金に固 溶させてもよい。 The ion-implanted hardened layer is formed by a plasma method. For example, ions generated by glow discharge are accelerated by an ion accelerator and solid-dissolved in a metal under vacuum and low temperature. For example, when nitrogen gas and hydrogen gas are introduced into the glow generated by the glow discharge, positive ions such as Ν +, Η Η + are generated. When these ions collide with the aluminum material on the outer surface of the can body, the surface of the aluminum material is subjected to ion nitriding (plasma nitriding), and aluminum nitride is formed on the outer surface layer of the can body. At this time, the surface is hardened even if all of the aluminum does not react with the aluminum nitride.In addition, when methane or propane is introduced into the glow as a carrier gas using hydrogen gas or argon gas, the surface of the aluminum material is plasma carburized. Carbonized, aluminum carbide is formed on the outer surface layer of the can body. This hardens the surface even if all of the aluminum does not react with the aluminum carbide. In addition to ion nitrogen and plasma carburization, oxygen, boron, hydrogen, or phosphorus can be implanted, and a plurality of these elements can be implanted. On the other hand, the diffusion hardened layer is formed by diffusion infiltration treatment. The diffusion and infiltration treatment is a treatment in which the object to be treated is brought into contact with a treatment agent containing the diffused element at a predetermined temperature or higher determined by the diffused element, and the treatment is carried out for a fixed time. Due to the concentration difference of the diffusion element, it diffuses from high concentration side to low concentration side. Diffusion Infiltration treatment includes carburizing treatment, nitriding treatment, carbonitriding (soft nitriding) treatment, oxidation treatment, oxynitridation treatment, oxycarbonitridation treatment, boration treatment, hydrogenation treatment or hydrogenation treatment, depending on the diffusion element. . By performing these diffusion treatments on the aluminum material on the outer surface of the can body, a diffusion hardened layer containing at least one of nitrogen, carbon, oxygen, boron, hydrogen, and phosphorus is contained. Is formed on the outer surface layer of the can body. In addition, they are roughly classified into solid method, liquid method and gas method according to the form of treatment agent. In the gas method, when this gas is introduced into the glow, the ionization and the ion acceleration are performed by the potential difference in the glow, which is the same as the above-described plasma method. According to the same principle as PVD, the surface hardened layer uses zirconium, titanium, etc. as a metal ion source and sets the can body to a negative voltage, thereby implanting metal ions into aluminum and dissolving predetermined ions into the aluminum alloy of the can body May be.
さらに本発明では、 表面硬化層は、 胴部の外表面からアルミニゥ ム材内部に向かって、 上記元素の元素含有比率が低くなる傾斜組成 に形成させることが好ましい。 表面に近いほど硬度が高くなり且つ 傾斜組成としたことで表面硬化層の密着が強くなり、 剥れにく くな る。 なお、 表面硬化層は、 イオン注入又は拡散浸透による製法原理 から傾斜組成になりやすい。  Further, in the present invention, it is preferable that the hardened surface layer is formed in a gradient composition in which the element content ratio of the above elements decreases from the outer surface of the body toward the inside of the aluminum material. The closer to the surface, the higher the hardness and the graded composition, the stronger the adhesion of the surface hardened layer and the less likely it is to peel off. The surface hardened layer tends to have a gradient composition due to the manufacturing principle based on ion implantation or diffusion infiltration.
本発明では、 低温 · 高速で表面硬化層を形成することが好ましい ため、 プラズマ法により窒素、 炭素、 酸素、ホウ素、 水素又はリ ンの 各元素のうち少なく とも 1種類をイオン注入ないしは拡散浸透させ ることが好ましい。 このような表面硬化層は、 表面層のアルミ結晶 格子の欠陥部分を充填又は表面層のアルミ結晶粒中に存在する転位 の移動をこれらの元素の存在が障害となって妨害することでアルミ 結晶のすべり変形性をなく して硬度をあげるために形成する。 また さらに硬度を上げるには、 アルミ結晶から、 窒化アルミ結晶、 炭化 アルミ結晶又は酸化アルミ結晶を所定厚さで形成させることが効果 的である。 In the present invention, since it is preferable to form the surface hardened layer at a low temperature and at a high speed, at least one of nitrogen, carbon, oxygen, boron, hydrogen or phosphorus is ion-implanted or diffused and permeated by a plasma method. Preferably. Such a surface hardened layer fills the aluminum crystal lattice defects in the surface layer or prevents the dislocation movement in the aluminum crystal grains in the surface layer from moving due to the presence of these elements. It is formed to increase the hardness by eliminating the slip deformability of the crystal. In order to further increase the hardness, it is effective to form aluminum nitride crystals, aluminum carbide crystals or aluminum oxide crystals with a predetermined thickness from aluminum crystals.
ところで、 アルミニウム缶の底付胴部を形成するに際して使用す るアルミニウム板は、 腐食防止のためにマンガン元素が添加されて いる。 このマンガンと含有させる窒素、 炭素、 酸素、ホウ素、 水素又 はリンの各元素との間で反応を起こさせて、 表面硬化層として窒化 マンガン、 炭化マンガン等の化合物を形成させてもよい。  By the way, the aluminum plate used to form the bottom body of the aluminum can contains manganese element to prevent corrosion. A reaction between the manganese and each element of nitrogen, carbon, oxygen, boron, hydrogen, or phosphorus may be caused to form a compound such as manganese nitride or manganese carbide as a surface hardened layer.
表面硬化層として、 窒素、 炭素、 酸素、ホウ素、 水素又はリ ンの各 元素のうち少なく とも 1種類を 1 〜 5 0 atom %含有させるのは、 1 atom %未満では表面硬化の効果が充分でなく、 5 0 atom %を超え ると、 胴部が脆くなるからである。  If the surface hardened layer contains at least one of nitrogen, carbon, oxygen, boron, hydrogen or phosphorus in an amount of 1 to 50 atom%, the effect of the surface hardening is sufficient if it is less than 1 atom%. If it exceeds 50 atom%, the body becomes brittle.
たとえば窒素化の場合は、 最外表層において窒素原子含量が 1 % 以上望ましくは 5 %以上が必要となる。  For example, in the case of nitrogenation, the outermost surface layer must have a nitrogen atom content of 1% or more, preferably 5% or more.
また表面硬化層の厚さは、硬度によるが 0 . 1 〜 3 0 / mの厚さに 形成することが好ましい。 望ましくは 4〜 1 0 / mが硬度向上効果 を得るに必要である。 0 . 1 m未満では充分な表面強度を得ること ができず、 3 0 mを超えると缶がもろくなる。  The thickness of the surface hardened layer depends on the hardness, but is preferably in the range of 0.1 to 30 / m. Desirably, 4 to 10 / m is necessary to obtain a hardness improving effect. If it is less than 0.1 m, sufficient surface strength cannot be obtained, and if it exceeds 30 m, the can becomes brittle.
(表面硬化層を有するアルミニウム缶の製造方法) (Production method of aluminum can having surface hardened layer)
次に 2 ピースアルミニウム缶の製造方法において、 表面硬化層を 形成するときの表面改質アルミニウム缶の製造方法を説明する。 ま ず、アルミニウム平板から底付缶胴を成形して底付缶胴を洗浄する。 底付缶胴の成形時に、 油等が缶の外表面に付着するので脱脂を行な う。 洗浄工程としては、 例えば温水で洗い (プリ ンス工程)、 硫酸 · 活性剤を含む無機酸系洗浄剤を 6 0 〜 8 0 にして洗い (プレゥォ ッシユエ程)、 再度、 硫酸,活性剤を含む無機酸系洗浄剤を 6 0 〜 8 0 にして洗い(ゥォッシユエ程)、最後に水道水で水洗いを行なう。 次に、 底付缶胴を底付缶胴の中心軸で回転させながら、 窒素、 炭 素、 酸素,ホウ素、 水素又はリ ンの各元素のうち少なく とも 1種類を 含有するプラズマ化した原料ガスを胴部の外表層のほぼ全面に接触 させる。 常圧プラズマ法により、 グロ一中に原料ガスを投入しても 良いし、 原料ガスをプラズマ化してから吹き付けても良い。 例えば 図 1 に示すように、 缶胴を缶円筒軸を中心に回転させるとともに、 缶胴に接するように設けた高周波電源 1 0 とプラズマ発生手段 1 に よりプラズマを発生させ、水素一窒素系ガスをプラズマ化させる。缶 胴 4は正負電圧調整手段 3により負電圧として、 缶胴とプラズマ発 生手段との間で電位差を発生させて、 イオン化した N +や N H +をス パッ夕リ ング効果により缶胴部の外表面のほぼ全面に衝突させる。 このイオン衝撃により胴部のアルミニウム材内部に窒素元素が注入 され、 表面硬化層が形成される。 なお、 イオンの電荷を調整するた めにグロ一放電が発生しない程度の強度でプラズマをかけても良い, このとき、 注入された窒素は、 アルミニウム結晶粒中の転位移動の 防止を図る。 或いはアルミニウム表面はイオン窒化され、 窒化アル ミニゥムがアルミニウム結晶粒中の転位移動の防止を図る。 この現 象により、胴部の外表層のほぼ全面が硬化される。ィオンの加速は、 イオン加速器で行なっても良い。 その後、 缶の印刷工程、 ネックィ ンフランジ加工、 検缶を経てアルミニウム缶を製造する。 Next, in the method of manufacturing a two-piece aluminum can, a method of manufacturing a surface-modified aluminum can when forming a hardened surface layer will be described. First, a bottomed can body is formed from an aluminum plate and the bottomed can body is washed. When forming the bottomed can body, degreasing is performed because oil etc. adheres to the outer surface of the can. The washing step is, for example, washing with warm water (pre-process), washing with an inorganic acid-based detergent containing sulfuric acid and activator at 60 to 80 (washing), and again using sulfuric acid and an activator. Wash with acid-based detergent at 60-80 (approximately dry), and finally wash with tap water. Next, while rotating the bottomed can body about the central axis of the bottomed can body, a plasmatized raw material gas containing at least one of the elements nitrogen, carbon, oxygen, boron, hydrogen or phosphorus. Is brought into contact with almost the entire outer surface layer of the torso. The raw material gas may be introduced into the glow by the normal pressure plasma method, or the raw material gas may be turned into plasma and then sprayed. For example, as shown in Fig. 1, the can body is rotated around the cylinder axis, and plasma is generated by a high-frequency power source 10 and plasma generation means 1 provided in contact with the can body, and hydrogen-nitrogen-based gas is generated. Is turned into plasma. The can body 4 is converted to a negative voltage by the positive / negative voltage adjusting means 3 to generate a potential difference between the can body and the plasma generating means, and ionized N + and NH + are discharged to the can body by the sputtering effect. It is made to strike almost the entire outer surface. By this ion bombardment, nitrogen element is injected into the aluminum material in the body, and a hardened surface layer is formed. In order to adjust the charge of the ions, plasma may be applied with such an intensity that no glow discharge occurs. At this time, the implanted nitrogen is intended to prevent dislocation movement in the aluminum crystal grains. Alternatively, the aluminum surface is ion-nitrided, and aluminum nitride prevents dislocation movement in aluminum crystal grains. By this phenomenon, almost the entire outer surface layer of the trunk is hardened. The ion acceleration may be performed by an ion accelerator. After that, aluminum cans are manufactured through the can printing process, neck-in flange processing, and can inspection.
また、 図 2に示すように、 大気圧プラズマ発生手段、 プラズマ発 生手段、 イオン加速手段若しくはマイクロ波発生手段と、 平行平板 電極を有する原料ガスプラズマ化手段とを一体化したプラズマ原料 ガス供給手段 9を使用して、 平行平板電極間に原料ガスを供給して 原料ガスをプラズマ化し、 プラズマ原料ガス供給手段 9 に設けたプ ラズマジェッ ト出口 1 1から缶円筒軸を中心に回転する底付缶胴 4 の胴部全体にわたってプラズマ化した原料ガスを吹き付けても良い この場合においても、缶胴とプラズマ原料ガス供給手段 9 との電位 差により、スパッタリング効果が得られる。 上記の工程を経ることで、 図 3に示した如く、 缶胴 4の外表面に 表面硬化層 1 3が形成される。 この表面硬化層 1 3は図 4に部分拡 大図を示したように、 缶胴 4の表面から材内部に向かって窒素等の 拡散元素が拡散している。 そして、 缶胴 4の表面を最高元素濃度と して、 材内部に向かって元素濃度が小さくなるように傾斜組成とす ることが好ましい。 Further, as shown in FIG. 2, a plasma source gas supply unit integrating an atmospheric pressure plasma generation unit, a plasma generation unit, an ion acceleration unit or a microwave generation unit, and a source gas plasma generation unit having parallel plate electrodes. 9 is used to supply the source gas between the parallel plate electrodes to convert the source gas into plasma, and from the plasma project outlet 11 provided in the plasma source gas supply means 9 a bottomed can that rotates around the can cylinder axis The source gas which has been turned into plasma may be sprayed over the entire body of the body 4. In this case as well, a sputtering effect can be obtained due to the potential difference between the can body and the plasma source gas supply means 9. Through the above steps, a surface hardened layer 13 is formed on the outer surface of the can body 4 as shown in FIG. As shown in the partially enlarged view of FIG. 4, the surface hardened layer 13 has a diffusion element such as nitrogen diffused from the surface of the can body 4 toward the inside of the material. It is preferable that the surface of the can body 4 has the highest element concentration, and has a gradient composition such that the element concentration decreases toward the inside of the material.
この表面硬化層形成速度は、 硬化の程度や層の厚さにより異なる が、 経済的に層形成するためには、 成膜時間を 1 2 0秒以下、 望ま しくは 3 0秒以下とすることが好ましい。  The speed of forming the surface hardened layer varies depending on the degree of hardening and the thickness of the layer, but in order to form the layer economically, the film forming time should be 120 seconds or less, preferably 30 seconds or less. Is preferred.
洗浄工程を経た後、 底付缶胴を真空槽に投入して、 プラズマ化し た原料ガスにて、 胴部の外表層のほぼ全面に減圧下で表面硬化層を 形成しても良い。 真空槽に投入することにより、 減圧プラズマ法と なり、 低温における成膜速度上昇が可能である。 (硬質被膜を有するアルミニウム缶)  After the washing process, the bottomed can body may be put into a vacuum chamber, and a hardened surface layer may be formed under reduced pressure on almost the entire outer surface layer of the body portion by using plasma of the raw material gas. By putting it in a vacuum chamber, it becomes a low-pressure plasma method, and it is possible to increase the deposition rate at low temperatures. (Aluminum can with hard coating)
本発明の表面改質アルミニウム缶は、 別形態として、 2 ピースァ ルミニゥム缶の胴部のアルミニウム材肉厚が 6 5〜 2 0 O ^ mで、 胴部の外表面のほぼ全面に硬質被膜を形成しても良い。 ここで、 胴 部の外表面のほぼ全面に硬質被膜を形成するのであるが、 缶材、 材 肉厚、 被膜部位、 硬度等の特性は、 表面硬化層を形成する場合で説 明した通りのことが同様に当てはまる。 プラズマ C V Dにより成膜 する場合には、 原料ガスをプラズマ化させて、 酸化チタン、 酸化ジ ルコニゥム、 窒化アルミニウム、 酸化アルミニウム等を硬質被膜と して缶胴表面に所定厚さに形成する。 P V Dにより成膜する場合に は、 ジルコニウム、 チタン等を金属イオン源として缶胴を負電圧と することにより、缶胴表面に硬質被膜を所定厚さに形成しても良い。 硬質被膜の厚さは、硬度によるが 0 . 1 〜 3 O /z mの厚さに形成す ることが好ましい。 望ましくは 1 〜 5 mが硬度向上効果を得るに 必要である。 0 . 1 t m未満では充分な表面強度を得ることができず 3 0 / mを超えると剥離の恐れがあるからである。 As another form, the surface-modified aluminum can of the present invention has a body thickness of 65 to 20 O ^ m in the body of a two-piece aluminum can, and forms a hard coating on almost the entire outer surface of the body. You may. Here, a hard coating is formed on almost the entire outer surface of the torso. The characteristics of the can material, wall thickness, coating site, hardness, etc. are as described in the case of forming a hardened surface layer. The same applies as well. When a film is formed by plasma CVD, the raw material gas is turned into plasma, and titanium oxide, zirconia oxide, aluminum nitride, aluminum oxide, and the like are formed as a hard coating on the surface of the can body at a predetermined thickness. When forming a film by PVD, a hard film may be formed to a predetermined thickness on the surface of the can body by using zirconium, titanium, or the like as a metal ion source and setting the can body to a negative voltage. The thickness of the hard coating depends on the hardness, but is preferably formed to a thickness of 0.1 to 3 O / zm. Desirably, 1 to 5 m is necessary to obtain the effect of improving hardness. If less than 0.1 tm, sufficient surface strength cannot be obtained If it exceeds 30 / m, there is a risk of peeling.
(硬質被膜を有するアルミニウム缶の製造方法) (Method of manufacturing aluminum can having hard coating)
次に 2 ピースアルミニウム缶の製造方法において、 硬質被膜を形 成するときの表面改質アルミニウム缶の製造方法を説明する。 洗浄 工程については上述の洗浄工程と同様である。 洗浄後、 缶胴外表面 にプラズマ C V Dにより成膜する場合には、 例えばチタンテ トラ -iso-プロボキシド又はジルコニウムテトラ- t -ブトキシド等の金属 アルコキシドゃ塩化チタン、 塩化ジルコニウム又は塩化アルミニゥ ム等の金属塩化物である原料ガスをプラズマ化させて、酸化チタン、 酸化ジルコニウム、 窒化アルミニウム、 酸化アルミニウム等の硬質 被膜を缶胴表面に所定厚さに形成する。 なお、 イオンの電荷を調整 するためにグロ一放電が発生しない程度の強度でプラズマをかけて も良い。 一方、 P V Dにより成膜する場合には、 ジルコニウム、 チ タン等を金属イオン源として缶胴を負電圧とすることにより、 缶胴 表面に硬質被膜を所定厚さに形成しても良い。 この硬質被膜形成に 要する成膜時間は、 膜厚等で異なるが経済的に膜形成するために、 1 2 0秒以下、 望ましくは 3 0秒以下とすることが好ましい。 その 後、 缶の印刷工程、 ネックインフランジ加工、 検缶を経てアルミ二 ゥム缶を製造する。  Next, in the method of manufacturing a two-piece aluminum can, a method of manufacturing a surface-modified aluminum can when forming a hard coating will be described. The cleaning step is the same as the above-described cleaning step. When a film is formed on the outer surface of the can body by plasma CVD after cleaning, for example, a metal alkoxide such as titanium tetra-iso-propoxide or zirconium tetra-t-butoxide may be used to form a metal chloride such as titanium chloride, zirconium chloride, or aluminum chloride. The raw material gas, which is a product, is turned into plasma, and a hard coating of titanium oxide, zirconium oxide, aluminum nitride, aluminum oxide, or the like is formed to a predetermined thickness on the surface of the can body. In order to adjust the charge of the ions, plasma may be applied at such an intensity that no glow discharge occurs. On the other hand, when the film is formed by PVD, a hard coating may be formed to a predetermined thickness on the surface of the can body by using zirconium, titanium, or the like as a metal ion source and setting the can body to a negative voltage. The film formation time required for forming the hard film varies depending on the film thickness and the like, but is preferably 120 seconds or less, and more preferably 30 seconds or less, in order to form the film economically. After that, aluminum cans are manufactured through the can printing process, neck-in-flange processing, and can inspection.
上記の工程を経ることで、 図 5に示した如く,缶胴 4の外表面に硬 質被膜 1 2が形成される。  Through the above steps, a hard coating 12 is formed on the outer surface of the can body 4 as shown in FIG.
( P V D成膜法により形成した窒化アルミニウム膜による表面改質 の検討) (Study on surface modification by aluminum nitride film formed by PVD film formation method)
硬質被膜として、 窒化アルミニウム膜を P V D成膜法によりアル ミニゥム缶の缶胴表面に形成した。 スパッタリ ングターゲッ トは金 属アルミニウムとし、 窒素雰囲気中で成膜を行なった。 サンプル① では窒化アルミニウム膜の膜厚を 6 0 0 n m、 サンプル②では窒化 アルミニウム膜の膜厚を 1 3 0 0 n mとした。 また被膜していない アルミニウム缶をコントロールとした。 As a hard coating, an aluminum nitride film was formed on the can body surface of the aluminum can by the PVD film forming method. The sputtering target was metal aluminum, and the film was formed in a nitrogen atmosphere. In Sample I, the thickness of the aluminum nitride film was 600 nm. The thickness of the aluminum film was set to 1300 nm. An uncoated aluminum can was used as a control.
サンプル圧子先端径が 2. 2 5 mm ( 2. 2 5 R) の針状圧子を 缶胴表面に対して垂直方向に圧入したときの突き刺し強度を測定し た。 評価はコントロールとの対比で行なった。 測定機器は、 オート グラフ (島津製作所製、 A G— l O k N D) を用いた。 結果を図 6 に示した。  The piercing strength was measured when a needle indenter with a sample indenter tip diameter of 2.25 mm (2.25 R) was pressed vertically into the can body surface. The evaluation was performed in comparison with the control. The measuring instrument used was an autograph (Ag-lOkND, manufactured by Shimadzu Corporation). Figure 6 shows the results.
サンプル①では対コントロール向上比 1 4 3 %、 サンプル②では 対コントロール向上比 1 4 9 %であった。 すなわち、 突き刺し強度 は硬質被膜を形成することで 4 0〜 5 0 %向上し、 耐穿孔性 (耐ピ ンホール性) 向上に効果的であった。  In sample I, the improvement ratio of control was 144%, and in sample I, the improvement ratio of control was 149%. That is, the piercing strength was improved by 40 to 50% by forming the hard coating, which was effective in improving the perforation resistance (pinhole resistance).
なお、 サンプル①と②との比較によると、 突き刺し強度の膜厚依 存性はなかった。 本発明において、 プラズマを発生させるためのエネルギー源とし ては、 高周波電源若しくはマイクロ波電源が例示できる。  According to the comparison between Samples I and II, the piercing strength did not depend on the film thickness. In the present invention, a high frequency power supply or a microwave power supply can be exemplified as an energy source for generating plasma.
本発明では、 硬質被膜を胴部外表面のアルミニウム材の上に直接 成膜する方法を示したが、 硬質被膜とアルミニウム材との剥離を防 止するためにこれらの間に密着層を設けても良い。  In the present invention, the method of forming the hard coating directly on the aluminum material on the outer surface of the trunk portion has been described. However, in order to prevent peeling of the hard coating and the aluminum material, an adhesion layer is provided between them. Is also good.
なお、 表面硬化層若しくは硬質被膜を形成した後、 缶表面に潤滑 性を付与する目的で、 潤滑油膜を形成させても良い。  After the formation of the surface hardened layer or the hard coating, a lubricating oil film may be formed for the purpose of imparting lubricity to the can surface.
本発明の製造方法は、 上記の通り洗浄工程後に表面硬化層若しく は硬質被膜を形成するので、 現存の缶製造設備をほとんど変更する ことなく、 D I 加工にも全く影響を及ばさずに表面硬化層を形成す ることができる。  As described above, the production method of the present invention forms a hardened surface layer or a hard coating after the cleaning step, so that the existing can production equipment is hardly changed and the surface treatment is performed without any influence on DI processing. A cured layer can be formed.
本発明は、 アルミニウム缶の用途に限定されるものではないが、 特に飲料用缶として適している。  The present invention is not limited to the use of aluminum cans, but is particularly suitable for beverage cans.

Claims

請 求 の 範 囲 The scope of the claims
1 . 2 ピースアルミニウム缶の胴部のアルミニウム材肉厚が 6 5〜 2 0 0 mで、 前記胴部の外表層のほぼ全面が窒素、 炭素、 酸素、 ホウ素、 水素又はリ ンの各元素のうち少なく とも 1 種類を 1 〜 5 0 atom %含有する表面硬化層である ことを特徴とする表面改質アル ミニゥム缶。 The body thickness of the body of the 1.2-piece aluminum can is 65 to 200 m, and almost the entire outer surface layer of the body is made of nitrogen, carbon, oxygen, boron, hydrogen or phosphorus. A surface-modified aluminum can characterized in that it is a surface-hardened layer containing at least one of 1 to 50 atom%.
2 . 2 ピースアルミニウム缶の胴部のアルミニウム材肉厚が 6 5〜 2 0 0 mで、 前記胴部の外表面のほぼ全面に硬質被膜を形成した ことを特徴とする表面改質アルミニウム缶。 2. A surface-modified aluminum can having a body thickness of 65 to 200 m and a hard coating formed on almost the entire outer surface of the body of the two-piece aluminum can.
3 . 前記表面硬化層又は前記硬質被膜は、 0 . 1 〜 3 0 / mの厚さに 形成したことを特徴とする請求項 1 又は 2記載の表面改質アルミ二 ゥム缶。 3. The surface-modified aluminum can according to claim 1, wherein the hardened surface layer or the hard coating is formed to have a thickness of 0.1 to 30 / m.
4 . 前記表面硬化層は、 前記胴部の外表面からアルミニウム材内部 に向かって、 請求項 1記載の元素の元素含有比率が低くなる傾斜組 成に形成させたことを特徴とする請求項 1 又は 3記載の表面改質ァ ルミニゥム缶。 4. The surface hardened layer is formed in an inclined composition in which the element content ratio of the element according to claim 1 decreases from the outer surface of the body toward the inside of the aluminum material. Or the surface-modified aluminum can described in 3.
5 . 2 ピースアルミニウム缶の製造方法において、 アルミニウム平 板から底付缶胴を成形して該底付缶胴を洗浄した後、 前記底付缶胴 を該底付缶胴の中心軸で回転させながら、窒素、炭素、酸素,ホウ素、 水素又はリ ンの各元素のうち少なく とも 1種類を含有するプラズマ 化した原料ガスにて、 前記胴部の外表層のほぼ全面を前記各元素の うち少なく とも 1種類を 1 〜 5 0 atom %含有する表面硬化層に形 成することを特徴とする表面改質アルミニウム缶の製造方法。 5.2 In the method for manufacturing a two-piece aluminum can, a bottomed can body is formed from an aluminum flat plate, and the bottomed can body is washed, and then the bottomed can body is rotated about a central axis of the bottomed can body. However, almost all of the outer surface layer of the body is made of a plasma-converted source gas containing at least one of the elements nitrogen, carbon, oxygen, boron, hydrogen, and phosphorus. A method for producing a surface-modified aluminum can, characterized by forming a surface-hardened layer containing 1 to 50 atom% of each type.
6 . 請求項 5 において、 前記底付缶胴を洗浄した後、 前記底付缶胴 を真空槽に投入して、 前記プラズマ化した原料ガスにて、 前記胴部 の外表層のほぼ全面を減圧下で前記表面硬化層に形成することを特 徴とする請求項 5記載の表面改質アルミニウム缶の製造方法。 6. The bottomed can body according to claim 5, wherein the bottomed can body is washed. 6. The surface reforming method according to claim 5, wherein the surface reforming is performed by forming substantially the entire outer surface layer of the body under reduced pressure on the surface hardened layer using the raw material gas that has been turned into plasma. For manufacturing high quality aluminum cans.
7 . 2 ピースアルミニウム缶の製造方法において、 アルミニウム平 板から底付缶胴を成形して該底付缶胴を洗浄した後、 プラズマ C V D (化学的気相成長法) 若しく は P V D (物理的気相成長法) によ り、 前記底付缶胴の胴部外表面のほぼ全面に硬質被膜を形成するこ とを特徴とする表面改質アルミニウム缶の製造方法。 7.2 In the method of manufacturing a two-piece aluminum can, a bottomed can body is formed from an aluminum flat plate, and the bottomed can body is cleaned and then subjected to plasma CVD (chemical vapor deposition) or PVD (physical vapor deposition). A method for producing a surface-modified aluminum can, characterized in that a hard coating is formed on almost the entire outer surface of the body of the bottomed can body by vapor phase growth.
PCT/JP2003/006616 2002-05-31 2003-05-27 Surface-modified aluminum can and method for manufacture thereof WO2003101844A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004509548A JP4429899B2 (en) 2002-05-31 2003-05-27 Surface-modified aluminum can and method for producing the same
AU2003235440A AU2003235440A1 (en) 2002-05-31 2003-05-27 Surface-modified aluminum can and method for manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/160057 2002-05-31
JP2002160057 2002-05-31

Publications (1)

Publication Number Publication Date
WO2003101844A1 true WO2003101844A1 (en) 2003-12-11

Family

ID=29706533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006616 WO2003101844A1 (en) 2002-05-31 2003-05-27 Surface-modified aluminum can and method for manufacture thereof

Country Status (3)

Country Link
JP (1) JP4429899B2 (en)
AU (1) AU2003235440A1 (en)
WO (1) WO2003101844A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260139A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Impurity doping method
JP2008184630A (en) * 2007-01-29 2008-08-14 Jfe Steel Kk Surface treated metallic plate and method of manufacturing the same, resin coated metallic plate, metallic can and can cap

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500115B2 (en) * 2004-06-28 2010-07-14 古河スカイ株式会社 Aluminum alloy material for beverage containers with excellent black water resistance against boiling water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126780A (en) * 1984-07-17 1986-02-06 Stanley Electric Co Ltd Plasma cvd apparatus
JPH01123071A (en) * 1987-11-06 1989-05-16 Fujitsu Ltd Method and apparatus for producing thin film
JPH0411974A (en) * 1990-05-02 1992-01-16 Daiwa Can Co Ltd Method for coating draw-ironing can
JPH04125457A (en) * 1990-09-17 1992-04-24 Mitsubishi Materials Corp Aluminum can
JP2001097387A (en) * 1999-09-30 2001-04-10 Showa Denko Kk Di can coated or surface-treated by low-pressure low- temperature plasma, and its manufacturing method
JP2001158976A (en) * 1999-12-02 2001-06-12 Showa Aluminum Kan Kk Di can treated by atmospheric low-temperature plasma and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126780A (en) * 1984-07-17 1986-02-06 Stanley Electric Co Ltd Plasma cvd apparatus
JPH01123071A (en) * 1987-11-06 1989-05-16 Fujitsu Ltd Method and apparatus for producing thin film
JPH0411974A (en) * 1990-05-02 1992-01-16 Daiwa Can Co Ltd Method for coating draw-ironing can
JPH04125457A (en) * 1990-09-17 1992-04-24 Mitsubishi Materials Corp Aluminum can
JP2001097387A (en) * 1999-09-30 2001-04-10 Showa Denko Kk Di can coated or surface-treated by low-pressure low- temperature plasma, and its manufacturing method
JP2001158976A (en) * 1999-12-02 2001-06-12 Showa Aluminum Kan Kk Di can treated by atmospheric low-temperature plasma and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260139A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Impurity doping method
JP4622275B2 (en) * 2004-03-15 2011-02-02 パナソニック株式会社 Impurity introduction method
JP2008184630A (en) * 2007-01-29 2008-08-14 Jfe Steel Kk Surface treated metallic plate and method of manufacturing the same, resin coated metallic plate, metallic can and can cap

Also Published As

Publication number Publication date
AU2003235440A1 (en) 2003-12-19
JP4429899B2 (en) 2010-03-10
JPWO2003101844A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
CN102191452B (en) Coloured austenite stainless steel material with high corrosion resistance and high hardness and production method thereof
US5458927A (en) Process for the formation of wear- and scuff-resistant carbon coatings
JPH04368A (en) Wear resistant coating film and production thereof
WO2009115830A2 (en) Treatment of metal components
Chang et al. Investigation of the characteristics of DLC films on oxynitriding-treated ASP23 high speed steel by DC-pulsed PECVD process
Spies et al. PVD hard coatings on prenitrided low alloy steel
JP5345436B2 (en) Method for producing hard coating member
Ma et al. Plasma nitrided and TiCN coated AISI H13 steel by pulsed dc PECVD and its application for hot-working dies
JP4429899B2 (en) Surface-modified aluminum can and method for producing the same
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
JP2001192861A (en) Surface treating method and surface treating device
Denisova et al. Influence of nitrogen content in the working gas mixture on the structure and properties of the nitrided surface of die steel
KR100336622B1 (en) Plasma polymerization on surface of material and polymer material manufactured by the same
Chang et al. Deposition of DLC/oxynitriding Films onto JIS SKD11 Steel by Bipolar-pulsed PECVD
Efeoglu et al. Mechanical and structural properties of AISI 8620 steel TiN coated, nitrided and TiN coated+ nitrided
US5217748A (en) Method of hardening metal surfaces
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
KR100594998B1 (en) Method for nitriding of Ti and Ti alloy
JP3572240B2 (en) Method and apparatus for physically modifying a conductive member
JP3637255B2 (en) Aluminum nitride material and manufacturing method thereof
Kikuchi et al. DLC duplex coating on high-speed tool-steel substrates using plasma nitrocarburizing after radical nitriding
KR20140140263A (en) Method of surface treatment for parts using plasma and parts treated thereby
JPH04325677A (en) Ion nitriding method for metallic surface by utilizing glow discharge
JPH0445287A (en) Material coated with hard carbon film and production thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004509548

Country of ref document: JP

122 Ep: pct application non-entry in european phase