JPH0411974A - Method for coating draw-ironing can - Google Patents

Method for coating draw-ironing can

Info

Publication number
JPH0411974A
JPH0411974A JP11519790A JP11519790A JPH0411974A JP H0411974 A JPH0411974 A JP H0411974A JP 11519790 A JP11519790 A JP 11519790A JP 11519790 A JP11519790 A JP 11519790A JP H0411974 A JPH0411974 A JP H0411974A
Authority
JP
Japan
Prior art keywords
paint
coating
printing
inner face
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11519790A
Other languages
Japanese (ja)
Inventor
Tadahiro Masuyama
忠弘 増山
Susumu Ikezawa
池沢 進
Akinori Takahashi
高橋 章哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP11519790A priority Critical patent/JPH0411974A/en
Publication of JPH0411974A publication Critical patent/JPH0411974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To obtain inner face coating film without any defect by applying coating material on the inner face of can body so that pencil hardness and coefficient of dynamic friction after hardening become the specific values and then printing on outer face of the can body after drying and baking. CONSTITUTION:The draw-ironing can (the following is shown as DI can) body 2 is put on a conveyor 3, and the inner face coating material 5 is injected onto the inside of DI can body 2 from multi-hole air blow nozzle type gun 4. This is dried and baked in a drying furnace 6 to obtain the inner face coating film Successively, the DI can body 2 is conveyed to a printing machine 10 with a pin conveyor 7, and a printed circular plate 13 is pressed on the outer face of DI can body 2 to apply multi-color printing. Then, this is shifted from a mandrel 12 to the pin conveyor and conveyed to a drying furnace 16. By this method, any defect of pin hole, etc., in the coating film on the inner face of can is not made to develop.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば飲料、食品や化粧品をはしめ各種の製
品を詰めるのに用いる、絞りしごきによって製造された
缶の内外面の被覆方法に関する。
The present invention relates to a method for coating the inner and outer surfaces of cans produced by drawing and ironing, which are used for filling various products such as beverages, foods, and cosmetics.

【従来の技術】[Conventional technology]

従来、絞りしごき缶(DI缶)の胴は、円形に打ち抜い
たアルミニウム板やブリキ板を絞り加工してコツプ状の
缶胴を形成した後、その側壁にしごき加工を施して製造
されている。 コツプ状に形成されたDI缶胴は、洗浄、乾燥された後
、第2図に示す印刷機10を用いて外面に印刷が施され
る。この印刷機10は回転可能な円形テーブルIfの周
縁部に1円筒形のマンドレル12をテーブル11の回転
面に直角に設けたもので、例えば特公昭60−2963
2号公報に開示されたような公知の印刷機である。マン
ドレル12にDI缶胴2を被せるようにして装着し、円
形テーブル11およびマンドレル12を回転させ、DI
缶胴2の外面に印刷円板13を圧接して印刷を施す、印
刷後、塗装機15でオーバーコートを行なう。 外面に印刷、塗装されたDr缶胴2は、例えば第4図に
示すビンコンベア7で乾燥炉8に送られ、ビン7aにか
けられた状態で塗料やインクの乾燥、焼付けが行なわれ
る。ビンコンベア7は、例えば特公昭62−26315
号公報に開示されている。 次に内面の塗装が行なわれる。塗装は、缶胴を高速回転
させる塗装機で、エアレススプレーガンを用いて内面塗
料を吹き付けた後、乾燥、焼付けを行なっている。なお
、塗装機は例えば特公昭63−44026号公報に開示
されたような公知のものである。内外面の塗装が終了し
たDI缶胴2にネックイン加工、フランジ加工を施すと
DI缶体2が完成する。 上記したDI缶体の製造工程は、軽金属協会編のアルミ
ニウム技術便覧の7.7深絞りしごき加工および製缶の
項や、日本鉄鋼協会編の鉄鋼便覧■(−次加工・表面処
理・熱処理・溶接)の 7・SDI缶の項に記載されて
いる。
Conventionally, the bodies of drawn and ironed cans (DI cans) have been produced by drawing a circular punched aluminum plate or tin plate to form a pot-shaped can body, and then ironing the side walls of the can body. After the DI can body formed in the shape of a pot is washed and dried, printing is applied to the outer surface using a printing machine 10 shown in FIG. This printing press 10 has a cylindrical mandrel 12 installed on the periphery of a rotatable circular table If at right angles to the rotating surface of the table 11.
This is a known printing machine as disclosed in Publication No. 2. Mount the DI can body 2 over the mandrel 12, rotate the circular table 11 and the mandrel 12, and
Printing is applied by pressing a printing disk 13 onto the outer surface of the can body 2. After printing, an overcoat is performed by a coating machine 15. The Dr can body 2 whose outer surface has been printed and painted is sent to a drying oven 8 by a bottle conveyor 7 shown in FIG. 4, for example, and the paint and ink are dried and baked while being placed on a bottle 7a. For example, the bottle conveyor 7 is manufactured by Japanese Patent Publication No. 62-26315.
It is disclosed in the publication No. Next, the inner surface is painted. Painting is done using a paint machine that rotates the can body at high speed, and an airless spray gun is used to spray the interior paint, followed by drying and baking. The coating machine is a known one as disclosed in Japanese Patent Publication No. 63-44026, for example. When the DI can body 2 whose inner and outer surfaces have been painted is subjected to neck-in processing and flange processing, the DI can body 2 is completed. The manufacturing process of the above-mentioned DI can body is described in section 7.7 Deep drawing ironing and can making of the Aluminum Technology Handbook edited by the Light Metals Association, and in the Steel Handbook ■ (-Following processing, surface treatment, heat treatment, (Welding) Section 7. SDI cans.

【発明が解決しようとする課題】[Problem to be solved by the invention]

このようなりI缶は、約20年前に量産が始められたが
、機械設備の高速化によって1ライン当りの生産能力が
年々向上し、現在では当時に比べて生産能力が数倍のラ
インが使用されている。しかし、ラインが高速化するに
従って缶内面の塗膜にピンホールなどの欠陥が発生し易
くなり、一連の製造工程を再検討する必要に迫られてい
る。例えば缶の塗装順序は外面、内面の順に行なわれ、
量産化当時から変わっていない。 本発明は、生産性が高く欠陥のない内面塗膜が得られる
絞りしごき缶の被覆方法を提供することを目的とする。
Mass production of these I-cans began about 20 years ago, but the production capacity per line has improved year by year due to faster machinery and equipment, and today there are lines with production capacity several times as large as at that time. It is used. However, as lines become faster, defects such as pinholes are more likely to occur in the coating on the inner surface of cans, and there is a need to reconsider the series of manufacturing processes. For example, the order in which cans are painted is the outside, then the inside.
It has not changed since mass production began. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for coating drawn and ironed cans that is highly productive and provides a defect-free inner coating film.

【課題を解決するための手段】[Means to solve the problem]

本発明者らは内面塗膜欠陥の発生原因を究明すべく鋭意
研究を重ねた結果、DI缶内面と外面の塗装順序を逆に
すると先に塗装したDI缶の内面塗膜には欠陥が発生し
ないことを見い出した。これは外面塗装やそれに付随し
た搬送、乾燥、焼付けの際に、未塗装の缶内面に塵埃等
の異物が付着したり、すり傷が発生し、内面塗装がその
上に重ねられるためと推察される。内面塗膜は数μmと
極めて薄いため、微細な塵埃の影響をも受ける。 即ち、前記の目的を達成するための本発明の絞りしごき
缶の被覆方法は、実施例に相当する第1図〜第3図に示
すように、絞りしごき加工により形成された缶胴2の内
面に、焼付は硬化後の塗膜の鉛筆硬度が2H−4H−で
、動摩擦係数が0.04〜0、10となるように塗料5
を塗布して乾燥、焼付けした後、缶胴2の外面に印刷お
よび塗装を施している。 缶胴2内面の塗装に用いる塗料は、例えばエポキシ−フ
ェノール系の塗料が使用可能である。 内面塗料5の乾燥塗膜硬度は、JIS K 5401規
定の塗膜用鉛筆引っかき試験機を用いて80°Cで測定
した値であり、2H−4H−が望ましい。塗膜硬度は塗
料の主成分の樹脂によって決定されることが多いが、軟
質または硬質樹脂の添加や硬化剤の添加により調整可能
である0例えばエポキシ系塗料の場合は、添加する硬化
剤(フェノール樹脂、アミン樹脂、アクリル樹脂等)の
種類や添加量を変えたり、エポキシ樹脂を変性したり、
高分子エポキシ樹脂(フェノキシ樹脂)等を添加したり
、反応促進触媒としてリン酸を添加して調整する。塗膜
硬度が2H未満の場合は後の工程で塗膜が損傷を受ける
ことがあり、4H−を越えると塗膜の加工割れの恐れが
ある。 内面塗料5の動摩擦係数はアルチック (ALTEC)
社製の三点鋼球荷重式試験機を使用して鋼球径16nu
nφ、荷重2kg、引張速度600m+m/分、20℃
で測定した値であり、004〜0.10であることが望
ましい。この動摩擦係数は、例えばラノリン、パラフィ
ンワックス、マイクロクリスタリンワックス、カルナウ
バfcarnaubalワックス、ポリエチレンワック
ス等を添加することにより調整可能である。動摩擦係数
が0.04未満のときは、外面印刷時に塗膜とマンドレ
ル12とが滑り過ぎて印刷ずれが生じたり、過剰なワッ
クスがマンドレル12やビン7aヘビルドアツプしたり
、充填後の内容物へ湾出する恐れがある。0.10を越
えるときは、内面塗装後の外面被覆工程でマンドレル1
2やビン7aとの接触によって内面塗膜が傷付くことが
ある。
The inventors of the present invention have conducted extensive research to determine the cause of defects in the inner coating film, and have found that when the order of painting the inner and outer surfaces of the DI can is reversed, defects occur in the inner coating of the DI can that was painted first. I found out that it doesn't. This is thought to be due to dust and other foreign matter adhering to the unpainted inner surface of the can and scratches occurring during the exterior painting and associated transportation, drying, and baking, and the interior coating is then layered on top of it. Ru. Since the inner coating film is extremely thin, only a few micrometers, it is also affected by fine dust. That is, as shown in FIGS. 1 to 3, which correspond to embodiments, the method for coating a drawn and ironed can of the present invention to achieve the above object covers the inner surface of a can body 2 formed by drawing and ironing. In addition, baking was performed using paint 5 so that the pencil hardness of the cured coating film was 2H-4H- and the coefficient of dynamic friction was 0.04 to 0.10.
After coating, drying and baking, the outer surface of the can body 2 is printed and painted. As the paint used for painting the inner surface of the can body 2, for example, an epoxy-phenol paint can be used. The dry film hardness of the inner surface paint 5 is a value measured at 80°C using a paint film pencil scratch tester specified in JIS K 5401, and is preferably 2H-4H-. Paint film hardness is often determined by the resin that is the main component of the paint, but it can be adjusted by adding a soft or hard resin or a curing agent. resin, amine resin, acrylic resin, etc.), modify the epoxy resin,
It is adjusted by adding a polymeric epoxy resin (phenoxy resin) or the like, or by adding phosphoric acid as a reaction accelerating catalyst. If the coating hardness is less than 2H, the coating may be damaged in subsequent steps, and if it exceeds 4H-, there is a risk of processing cracks in the coating. The coefficient of dynamic friction of the inner paint 5 is ALTEC.
Steel ball diameter 16nu was tested using a three-point steel ball loading tester made by the company.
nφ, load 2kg, tensile speed 600m+m/min, 20℃
It is a value measured at 0.004 to 0.10. The coefficient of dynamic friction can be adjusted by adding, for example, lanolin, paraffin wax, microcrystalline wax, carnauba wax, polyethylene wax, or the like. If the coefficient of dynamic friction is less than 0.04, the coating film and the mandrel 12 may slip too much during external printing, resulting in printing misalignment, excess wax may build up on the mandrel 12 or the bottle 7a, or the contents may become distorted after filling. There is a risk of release. If it exceeds 0.10, use mandrel 1 in the outer coating process after inner coating.
The inner surface coating may be damaged by contact with 2 or the bottle 7a.

【作用】[Effect]

本発明の被覆方法では、DI缶胴2の内面、外面の順に
塗装を施しており、内面塗装の際、DI缶2の内面は洗
浄、乾燥されたままの極めて清浄な状態に保たれている
。そのため塵埃などの付着による塗膜の欠陥が発生せず
、均一な塗膜が製膜される。 また、内面の塗膜は鉛筆硬度が2H−4H−で、動摩擦
係数が0.04〜0.IOの範囲に設定されているため
、搬送の際に塗膜が他の部材と接触して損傷したり、外
面塗装の際に塗膜とマンドレル12とが滑り過ぎて印刷
ずれが生じることがない。
In the coating method of the present invention, the inner surface and outer surface of the DI can body 2 are coated in this order, and during the inner surface coating, the inner surface of the DI can 2 is kept in an extremely clean state by being washed and dried. . Therefore, defects in the coating film due to adhesion of dust and the like do not occur, and a uniform coating film is formed. The inner coating film has a pencil hardness of 2H-4H- and a dynamic friction coefficient of 0.04 to 0. Since it is set within the IO range, the coating film will not be damaged due to contact with other parts during transportation, and the coating film and mandrel 12 will not slip too much during external painting, causing printing misalignment. .

【実施例】【Example】

以下1本発明の実施例を詳細に説明する。 実施例1 平均分子量が3750のビスフェノールA型エポキシ樹
脂80重量部と、フェノール類およびホルムアルデヒド
をアルカリ金属の水酸化物触媒存在下で反応させて得た
フェノールホルムアルデヒド樹脂20重量部とからなる
樹脂混合物に、(樹脂100重量部に対して)マイクロ
クリスクリンワックスを0.5重量部、リン酸触媒を0
.5重量部添加したものを、キシレン30%、n−ブタ
ノール20%、酢酸エチル30%、酢酸ブチル20%か
らなる混合溶剤に溶解し、固形分20%のDI缶内面用
の塗料を調製した。得られた内面塗料の粘度は13秒(
フォードカップNo、4720℃)で、表面張力は25
ダイン/cmである。 次にこの塗料をDI缶胴に塗装する。テスト缶には洗浄
、乾燥済の直径66w+m、高さ123mmのブリキ製
DI缶胴2を用いる。 第1図に示すようにDr缶胴2をコンベア3に載せ、多
孔エアープローノズル式ガン4からDI缶胴2の内側に
内面塗料5を噴射する。これを乾燥炉6に速って乾燥、
焼付けし、平均乾燥膜厚が21mの内面塗膜を得る。 内面塗装が終了したDI缶胴2はビンコンベア7で印刷
機10へ搬出される。第2図に示すように印刷機10は
回転可能な円形テーブル11の周縁部に、円筒形のマン
ドレル12をテーブル11の回転面に直角に設けたもの
である6印刷機10近傍へ搬送された缶胴2は、缶供給
装置9によってビンコンベア7のビン7aから外され、
マンドレル12に被せるように装着、固定される6円形
テーブル11i3よびマンドレル12を回転させ、DI
缶胴2の外面に印刷円板13を圧接して多色印刷を施す
、印刷円板13にはインク供給装置14から外面印刷用
のポリエステル樹脂・アルキッド樹脂混合熱硬化型ブリ
キ板用インクが供給される。印刷後、塗装機15による
オーバーコート(ポリエステル系クリヤー塗料)が行な
われる。 外面の印刷、塗装が終了したDI缶胴2は、缶供給装置
9と同様な装置(不図示)を介してマンドレル12から
ビンコンベアへ移され、第3図に示す乾燥炉16へ搬送
される。外面の乾燥、焼付けには、DI缶胴2をコンベ
ア3a上に伏せた状態で乾燥、焼付けするビンレス乾燥
炉I6を使用する。乾燥、焼付けされたDI缶胴2はコ
ンベア3aで次の加工工程に搬送され、ネックイン加工
およびフランジ加工が施されてDI缶体が完成する。 DI缶胴2の内面塗装膜の硬度をJIS K 5401
規定の塗膜用鉛筆引っかき試験機を用いて測定し、また
動摩擦係数をアルチック (ALTEC1社製の三点鋼
球荷重式試験機で測定した。測定結果を後述の第1表に
示す。 上記で作成したDI缶体100個に硫酸銅溶液を瀾だし
、25℃で30分間放置して塗膜欠陥発生の有無を調べ
た。内面の塗膜にピンホールなどの欠陥があり金属面が
露出している場合には、その部分に銅が析出して塗膜欠
陥がわかる。試験結果を第1表に示す。 実施例2 実施例1と同じ樹脂を使用し、その混合比率をビスフェ
ノールA型エポキシ樹脂を90重量部、フェノールホル
ムアルデヒド樹脂を10重量部とし、マイクロクリスク
リンワックスのみを04重量部添加する他は実施例1と
同様にしてDI缶体を作成し、評価を行なった。この内
面塗料は実施例1の塗料よりもフェノール量を少なくし
、ガラス転移点を下げて塗膜を軟らかくしたものである
。 実施例3 実施例Iと同じ樹脂を使用し、その混合比率をビスフェ
ノールA型エポキシ樹脂を70重量部、フェノールホル
ムアルデヒド樹脂を30重量部とし、マイクロクリスタ
リンワックスを 0.4重量部、リン酸触媒を 1.0
重量部とする他は実施例1と同様にして01缶体を作成
し、評価を行なった。この内面塗料は実施例1の塗料よ
りもフェノールホルムアルデヒド樹脂およびリン酸触媒
を増量して硬化反応を進ませ、ガラス転移点を上げて塗
膜硬度を上げたものである。 比較例1 マイクロクリスクリンワックスを0.3重量部とする他
は実施例3と同様にして01缶体を作成し、評価を行な
った。 比較例2 ビスフェノールA型エポキシ樹脂を95重量部、フェノ
ールホルムアルデヒド樹脂を5重量部とし、マイクロク
リスタリンワックスのみを 0.5重量部添加する他は
実施例2と同様にして01缶体を作成し、評価を行なっ
た。 比較例3 内面塗料として市販の熱硬化ビニル塗料(関西ペイント
■製、5J−6839−009C)を用いる他は実施例
1と同様にして01缶体を作成し、評価を行なった。こ
の塗料は、塩化ビニル−酢酸ビニル共重合樹脂(分子量
約150001とエポキシ樹脂(分子量約900)と尿
素ホルムアルデヒド樹脂とを70+20+10の比で配
合したものである。 比較例4 内面塗料として、平均分子量が3750のビスフェノー
ルA型エポキシ樹脂85重量部と、尿素ホルムアルデヒ
ド樹脂15重量部とからなるエポキシウレア塗料(関西
ペイント■製、XJ−K164D−2)を用いる他は実
施例1と同様にして01缶体を作成し、評価を行なった
。 比較例5 内面塗料として、平均分子量が3750のビスフェノー
ルA型エポキシ樹脂80重量部と、フェノールホルムア
ルデヒド樹脂20重量部とからなる市販のエポキシフェ
ノール塗料(関西ペイント■製、28−L1511を用
いる他は実施例1と同様にして01缶体を作成し、評価
を行なった。 比較例6 スチレンとアクリル酸エチルとメタクリル酸とを重合さ
せて得たアクリル樹脂をビスフェノールA型エポキシ樹
脂と反応させて得たエポキシアクノル樹脂95重量部と
、レゾール型フェノール樹脂5重量部とからなる市販の
エポキシアクリル塗料を内面塗料として用いる他は実施
例1と同様にして01缶体を作成し、評価を行なった。 第1表に各実施例および比較例の内面塗料の組成および
各評価結果を示す。 (以下余白) 第   1   表 内面塗膜欠陥の評価基準は以下の通りである。 O8実用化水準の品質あり。 △:実用化水準の品質にやや欠ける。 ×、塗膜欠陥の発生大。 また、量産化試験として実施例1に示した方法でDI缶
体を10万缶製造したところ、内面に欠陥があるものは
皆無であり、内容物充填後の内容品変質や腐食によって
穴があいたものはなかった。 なお、上記の実施例では内面、外面ともに一層ずつの塗
膜を設けたが、腐食性の強い内容物に適用する缶、特に
スチールDI缶の場合にはフランジ加工後にトップコー
トを行なって複数層の塗装圧とすることもできる。
Hereinafter, one embodiment of the present invention will be described in detail. Example 1 A resin mixture consisting of 80 parts by weight of a bisphenol A type epoxy resin with an average molecular weight of 3750 and 20 parts by weight of a phenol-formaldehyde resin obtained by reacting phenols and formaldehyde in the presence of an alkali metal hydroxide catalyst. , 0.5 parts by weight of microcrystalline wax (relative to 100 parts by weight of resin), and 0 parts by weight of phosphoric acid catalyst.
.. The added 5 parts by weight was dissolved in a mixed solvent consisting of 30% xylene, 20% n-butanol, 30% ethyl acetate, and 20% butyl acetate to prepare a paint for the inner surface of a DI can having a solid content of 20%. The viscosity of the obtained inner surface paint was 13 seconds (
Ford Cup No., 4720℃), surface tension is 25
It is dynes/cm. Next, apply this paint to the DI can body. A washed and dried tin DI can body 2 with a diameter of 66 W+m and a height of 123 mm is used as the test can. As shown in FIG. 1, the Dr can body 2 is placed on the conveyor 3, and the inner surface paint 5 is injected onto the inside of the DI can body 2 from the multi-hole air blower nozzle type gun 4. This is quickly dried in the drying oven 6.
Baking is performed to obtain an inner coating film with an average dry film thickness of 21 m. The DI can body 2 whose inner surface has been coated is conveyed to a printing machine 10 by a bin conveyor 7. As shown in FIG. 2, the printing press 10 has a cylindrical mandrel 12 mounted on the periphery of a rotatable circular table 11 at right angles to the rotating surface of the table 11. The can body 2 is removed from the bin 7a of the bottle conveyor 7 by the can supply device 9,
The six circular tables 11i3 and the mandrel 12, which are mounted and fixed so as to cover the mandrel 12, are rotated, and the DI
A printing disk 13 is pressed against the outer surface of the can body 2 to perform multicolor printing.The printing disk 13 is supplied with polyester resin/alkyd resin mixed thermosetting tinplate ink for outer surface printing from an ink supply device 14. be done. After printing, an overcoat (polyester clear paint) is applied by a coating machine 15. The DI can body 2 whose outer surface has been printed and painted is transferred from the mandrel 12 to the bin conveyor via a device similar to the can supply device 9 (not shown), and then transported to the drying oven 16 shown in FIG. . For drying and baking the outer surface, a bottleless drying oven I6 is used that dries and bakes the DI can body 2 while lying face down on the conveyor 3a. The dried and baked DI can body 2 is conveyed to the next processing step by a conveyor 3a, and subjected to neck-in processing and flange processing to complete the DI can body. The hardness of the inner coating film of DI can body 2 is determined according to JIS K 5401.
It was measured using a specified paint film pencil scratch tester, and the dynamic friction coefficient was measured using a three-point steel ball loading tester manufactured by ALTEC1.The measurement results are shown in Table 1 below. A copper sulfate solution was poured onto 100 of the DI cans that had been prepared, and they were allowed to stand at 25°C for 30 minutes to check for coating defects.The inner coating had defects such as pinholes, and the metal surface was exposed. If it is, copper precipitates in that area, indicating a coating defect.The test results are shown in Table 1.Example 2 The same resin as in Example 1 was used, and the mixing ratio was changed to bisphenol A epoxy. A DI can body was prepared and evaluated in the same manner as in Example 1, except that 90 parts by weight of the resin, 10 parts by weight of the phenol formaldehyde resin, and 0.4 parts by weight of only microcrystalline wax were added. The paint has a lower amount of phenol than the paint of Example 1, lowering the glass transition point and making the paint film softer. Example 3 The same resin as Example I was used, but the mixing ratio was changed to bisphenol A epoxy. 70 parts by weight of resin, 30 parts by weight of phenol formaldehyde resin, 0.4 parts by weight of microcrystalline wax, and 1.0 parts by weight of phosphoric acid catalyst.
A 01 can body was prepared and evaluated in the same manner as in Example 1 except that the parts by weight were changed. This inner surface coating contains an increased amount of phenol formaldehyde resin and phosphoric acid catalyst compared to the coating of Example 1 to advance the curing reaction, raise the glass transition point, and increase the hardness of the coating film. Comparative Example 1 A 01 can body was prepared and evaluated in the same manner as in Example 3, except that 0.3 parts by weight of Microcrystalline wax was used. Comparative Example 2 A 01 can body was prepared in the same manner as in Example 2, except that 95 parts by weight of bisphenol A epoxy resin, 5 parts by weight of phenol formaldehyde resin, and 0.5 parts by weight of only microcrystalline wax were added. We conducted an evaluation. Comparative Example 3 A 01 can body was prepared and evaluated in the same manner as in Example 1, except that a commercially available thermosetting vinyl paint (manufactured by Kansai Paint ■, 5J-6839-009C) was used as the inner surface paint. This paint is a mixture of vinyl chloride-vinyl acetate copolymer resin (molecular weight approximately 150,001), epoxy resin (molecular weight approximately 900), and urea formaldehyde resin in a ratio of 70 + 20 + 10. Comparative Example 4 As an internal paint, an average molecular weight of A 01 can body was prepared in the same manner as in Example 1, except that an epoxy urea paint (manufactured by Kansai Paint ■, XJ-K164D-2) consisting of 85 parts by weight of 3750 bisphenol A epoxy resin and 15 parts by weight of urea formaldehyde resin was used. Comparative Example 5 A commercially available epoxy phenol paint (manufactured by Kansai Paint ■) consisting of 80 parts by weight of bisphenol A type epoxy resin with an average molecular weight of 3750 and 20 parts by weight of phenol formaldehyde resin was used as an internal paint. A 01 can body was prepared and evaluated in the same manner as in Example 1, except that 28-L1511 was used. Comparative Example 6 An acrylic resin obtained by polymerizing styrene, ethyl acrylate, and methacrylic acid was mixed with bisphenol A. A 01 can body was prepared in the same manner as in Example 1, except that a commercially available epoxy acrylic paint consisting of 95 parts by weight of epoxy acnol resin obtained by reacting with a type epoxy resin and 5 parts by weight of a resol type phenolic resin was used as the inner surface paint. Table 1 shows the composition of the inner surface paint of each Example and Comparative Example and each evaluation result. (Leaving space below) 1. The evaluation criteria for surface inner surface coating defects are as follows. Yes. The quality is at the O8 practical level. △: Slightly lacking in the quality at the practical level. When the cans were manufactured, there were no defects on the inner surface, and none had holes due to deterioration or corrosion after filling. In addition, in the above example, one layer of coating was applied to both the inner and outer surfaces. Although a membrane is provided, in the case of cans that are applied to highly corrosive contents, especially steel DI cans, a top coat may be applied after flange processing to provide multiple layers of coating pressure.

【発明の効果】【Effect of the invention】

以上詳細に説明したように、本発明の絞りしごき缶の被
覆方法によれば、絞りしごきによって製造された缶の内
外面を効率良く確実に被覆することが出来、生産性が高
い。製品化後に内容物と接触する缶内面の塗膜にピンホ
ールやすり傷のような欠陥が発生しない。
As described above in detail, according to the method for coating drawn and ironed cans of the present invention, the inner and outer surfaces of cans manufactured by drawing and ironing can be coated efficiently and reliably, resulting in high productivity. Defects such as pinholes and scratches do not occur on the coating film on the inner surface of the can that comes into contact with the contents after commercialization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の被覆方法の缶内面の塗装工程を示す概
略側面図、第2区は同じく缶外面の塗装工程を示す斜視
図、第3図は缶外面の乾燥、焼付は工程を示す概略側面
図、第4図は従来の被覆方法における缶の搬送状態を示
す側面図である。 2・・・DI缶胴    3・3a・・・コンベア4・
・・多孔エアーブローノズル式ガン5・・・内面塗料 
   6・8・・・乾燥炉7・・・ビンコンベア  7
a・・・ビン9・・・缶供給装置   10・・・印刷
機11・・・円形テーブル  12・・・マンドレル1
3・・・印刷円板    14・・・インク供給装置1
6・・・ピンレス乾燥炉
Figure 1 is a schematic side view showing the process of painting the inner surface of a can according to the coating method of the present invention, Section 2 is a perspective view showing the process of painting the outer surface of the can, and Figure 3 shows the process of drying and baking the outer surface of the can. A schematic side view, FIG. 4 is a side view showing the conveyance state of cans in a conventional coating method. 2...DI can body 3.3a...Conveyor 4.
...Porous air blow nozzle type gun 5...Inner surface paint
6・8...Drying oven 7...Bin conveyor 7
a... Bin 9... Can feeding device 10... Printing machine 11... Circular table 12... Mandrel 1
3... Printing disk 14... Ink supply device 1
6...Pinless drying oven

Claims (1)

【特許請求の範囲】[Claims] 1、絞りしごき加工により形成された缶胴の内面に、焼
付け硬化後の塗膜の鉛筆硬度が2H^−〜4H^−で、
動摩擦係数が0.04〜0.10となるように塗料を塗
布して乾燥、焼付けした後、缶胴の外面に印刷および塗
装を施すことを特徴とする絞りしごき缶の被覆方法。
1. On the inner surface of the can body formed by drawing and ironing, the pencil hardness of the paint film after baking and hardening is 2H^--4H^-,
A method for coating drawn and ironed cans, which comprises applying a paint to a dynamic friction coefficient of 0.04 to 0.10, drying and baking, and then printing and painting the outer surface of the can body.
JP11519790A 1990-05-02 1990-05-02 Method for coating draw-ironing can Pending JPH0411974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11519790A JPH0411974A (en) 1990-05-02 1990-05-02 Method for coating draw-ironing can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11519790A JPH0411974A (en) 1990-05-02 1990-05-02 Method for coating draw-ironing can

Publications (1)

Publication Number Publication Date
JPH0411974A true JPH0411974A (en) 1992-01-16

Family

ID=14656764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11519790A Pending JPH0411974A (en) 1990-05-02 1990-05-02 Method for coating draw-ironing can

Country Status (1)

Country Link
JP (1) JPH0411974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034322A (en) * 2001-04-09 2003-02-04 Kansai Paint Co Ltd Coated metal plate and drawn/ironed can using the same
WO2003101844A1 (en) * 2002-05-31 2003-12-11 Kirin Brewery Company, Limited Surface-modified aluminum can and method for manufacture thereof
WO2019130609A1 (en) 2017-12-28 2019-07-04 大和製罐株式会社 Aerosol can body having corrugated machined part on trunk part and method for manufacturing aerosol can body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034322A (en) * 2001-04-09 2003-02-04 Kansai Paint Co Ltd Coated metal plate and drawn/ironed can using the same
WO2003101844A1 (en) * 2002-05-31 2003-12-11 Kirin Brewery Company, Limited Surface-modified aluminum can and method for manufacture thereof
WO2019130609A1 (en) 2017-12-28 2019-07-04 大和製罐株式会社 Aerosol can body having corrugated machined part on trunk part and method for manufacturing aerosol can body

Similar Documents

Publication Publication Date Title
US3726711A (en) Method and apparatus for coating metal can bodies
US3826675A (en) Lubricated metallic container stocks and method of preparing the same and applying an organic coating thereto
US6755912B2 (en) Heating of golf balls prior to painting
JPS5818229B2 (en) Painted steel plate for draw and ironing cans
JPH0411974A (en) Method for coating draw-ironing can
US3819403A (en) Method and apparatus for applying wax to can ends
US2878141A (en) Method of applying pigmented coating to sheet metal
EP2153911A1 (en) Painting/coating process using a powder primer with high reactivity, polymerisable in a single step with the finishing coat
US4186225A (en) Method of coating the interior surfaces of a hollow article
JP4083920B2 (en) Metal can
US3032459A (en) Method of coating sheet material
CN112024244A (en) Spraying production line for aluminum veneer and spraying process thereof
GB2066296A (en) Method of manufacturing metal articles
US3053725A (en) Coating of sheet material
JP3670870B2 (en) How to paint inorganic board
JP2008127625A (en) Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method
JPH0534791Y2 (en)
JP4922738B2 (en) Aluminum plate for cap molding with excellent resin adhesion and corrosion resistance after molding
JPH0295901A (en) Automobile wheel bearing device
WO2024004775A1 (en) Can container
JPH0356176A (en) Painting method for finishing outer surface of two-piece can body and outer surface finish-painted two-piece can
JPS63319084A (en) Method for coating seamless can
JP2946882B2 (en) Aluminum can and manufacturing method thereof
KR940008460B1 (en) Two layer si-zn coated steel sheet of removing of fingerprint with an excellant corrosion resistance and adhesion and method for making the same
JP4515192B2 (en) How to paint the inside of the can body