JP2008127625A - Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method - Google Patents

Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method Download PDF

Info

Publication number
JP2008127625A
JP2008127625A JP2006313681A JP2006313681A JP2008127625A JP 2008127625 A JP2008127625 A JP 2008127625A JP 2006313681 A JP2006313681 A JP 2006313681A JP 2006313681 A JP2006313681 A JP 2006313681A JP 2008127625 A JP2008127625 A JP 2008127625A
Authority
JP
Japan
Prior art keywords
less
mass
aluminum
oxide film
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006313681A
Other languages
Japanese (ja)
Inventor
Shinichi Hasegawa
長谷川真一
Masahiro Kurata
倉田正裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2006313681A priority Critical patent/JP2008127625A/en
Publication of JP2008127625A publication Critical patent/JP2008127625A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the coating film adhesiveness after forming a coating film containing pigment on an aluminum-made cap which is subjected to a very stringent forming and for which retort-resistance is required. <P>SOLUTION: A polymer of an acrylic acid compound containing one or more carboxylic groups for each weight average molecular weight 1,000 is deposited with the deposit of ≥5 mg/m<SP>2</SP>and ≤5,000 mg/m<SP>2</SP>on an oxide film mainly consisting of Al and O in which the thickness is ≤200 nm; C content of the surface is ≤50 mg/m<SP>2</SP>, and the maximum concentration in the depth direction from the uppermost surface to an interface between the oxide film and aluminum is Mg:≤5 mass%, and H:≤10 mass%. In addition, a coating film containing pigment of ≥5 mass% to the dry weight is deposited on a base material in which a polymer of an acrylic acid compound containing one or more carboxylic groups for each weight average molecular weight 500 with the weight average molecular weight being ≥1,000 and ≤1,000,000 with the deposit of ≥5 mg/m<SP>2</SP>and ≤5,000 mg/m<SP>2</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、少なくとも片面に、顔料を含有する樹脂塗料を塗装したアルミニウム板に関し、特にプレス成形などの成形加工後において樹脂密着性に優れたキャップ成型用アルミニウム板に関する。   The present invention relates to an aluminum plate coated with a resin paint containing a pigment on at least one side, and more particularly to an aluminum plate for cap molding having excellent resin adhesion after molding such as press molding.

アルミニウム板またはアルミニウム合金板(以下、アルミニウム板と呼称する)は、軽量で適度な機械的特性を有し、かつ美感、成形加工性、耐食性等に優れた特徴を有しているため、各種容器類、構造材、機械部品等に広く使われている。   Aluminum plates or aluminum alloy plates (hereinafter referred to as “aluminum plates”) are lightweight, have appropriate mechanical characteristics, and have excellent aesthetics, moldability, corrosion resistance, etc. Widely used in products, structural materials, machine parts, etc.

上記用途のアルミニウム板は、耐食性・耐溶出性のさらなる向上、外観の向上およびキズつき防止等のため、その表面に樹脂塗料の塗装および樹脂フィルムのラミネート加工が施されることが多い。このときアルミニウム板には、樹脂密着性ならびに耐食性を向上させるため、既存技術に基づいた下地処理(例えばリン酸クロメート、クロム酸クロメートおよびリン酸ジルコニウム等の化成型下地処理)が施されるのが一般的である。アルミニウム製キャップの場合、材料のアルミニウム板に下地処理および樹脂被覆を施してから成型加工する、いわゆるプレコート材料が多く用いられている。   In order to further improve the corrosion resistance and elution resistance, to improve the appearance, to prevent scratches, and the like, the aluminum plate for the above uses is often subjected to coating with a resin paint and laminating of a resin film. At this time, in order to improve the resin adhesion and the corrosion resistance, the aluminum plate is subjected to a base treatment based on existing technology (for example, a chemical-molding base treatment such as phosphate chromate, chromate chromate and zirconium phosphate). It is common. In the case of an aluminum cap, a so-called pre-coating material is often used in which a base treatment and a resin coating are applied to an aluminum plate of the material and then molded.

キャップ成型用プレコートアルミニウム合金板に対しては、成型加工しても樹脂の剥離が生じないための樹脂密着性や、腐食雰囲気に侵されない耐食性、ならびに高度な成型に耐えうる加工性が要求される。こうした要求に対し、特に塗膜密着性向上の立場から、広範な分野においてさまざまな提案がなされている。特に下地処理方法においては、従来技術に基づく化成型下地処理に加え、その上に密着性を向上させる有機物を設けた後、それらの上に樹脂を設ける方法が提案されている。例えば特許文献1は、アルミニウム板にリン酸クロメート処理を施した後、特定のフェノール重合体を含む溶液中で処理するか、またはアルミニウム板にリン酸クロメート処理を施し、次いでシラン処理を施して表面処理アルミニウム板を作成し、これに熱可塑性樹脂を被覆して樹脂被覆アルミニウム板とし、絞りしごき加工を施してコンデンサー外装用容器に成形する方法を提案している。また特許文献2は、アルミニウム製缶材料において、少なくともアルミニウム基体の容器内面側の表面に無機物を主体とする表面処理層、その上に水性フェノール樹脂を主体とする有機表面処理層、及び更にその上にポリエステル系樹脂被覆層の多層構造を有することを特徴とするアルミニウム製缶材料を提供している。   Cap-coated pre-coated aluminum alloy sheets require resin adhesion that prevents the resin from peeling even after molding, corrosion resistance that is not affected by corrosive atmospheres, and workability that can withstand advanced molding . In response to such demands, various proposals have been made in a wide range of fields, particularly from the standpoint of improving coating film adhesion. In particular, in the ground treatment method, in addition to chemical molding ground treatment based on the prior art, a method is proposed in which an organic material for improving adhesion is provided thereon, and then a resin is provided thereon. For example, in Patent Document 1, after an aluminum plate is subjected to phosphoric acid chromate treatment, the aluminum plate is treated in a solution containing a specific phenol polymer, or the aluminum plate is subjected to phosphoric acid chromate treatment and then subjected to silane treatment. A method has been proposed in which a treated aluminum plate is prepared and coated with a thermoplastic resin to form a resin-coated aluminum plate, which is then drawn and ironed to form a capacitor exterior container. Patent Document 2 discloses that in an aluminum can material, at least the surface of the aluminum substrate on the inner surface of the container is a surface treatment layer mainly composed of an inorganic substance, an organic surface treatment layer mainly composed of an aqueous phenol resin, and further thereon. An aluminum can material characterized by having a multilayer structure of a polyester resin coating layer is provided.

また近年、環境意識の高まりから、製品および製造プロセスにおける重金属化合物の低減および削減の必要性が叫ばれている。こうした観点から、アルミニウム板表面に対する化成型下地処理を実施せず、アルミニウム酸化皮膜自体に塗膜密着性を付与する方法も提案されている。例えば特許文献3では、アルミニウム板表面に、厚さ=1〜200nmで、かつ最表面〜酸化皮膜/アルミ界面までの深さ方向での最大濃度がMgで5mass%以下、Hで10mass%以下、かつ最表面のC量が50mass%以下のAlおよびOを主成分とする酸化皮膜を設け、その上に樹脂皮膜を塗装する缶蓋用アルミニウム材が提案されている。
特開2001−303273号公報 特開2001−121648号公報 特許第3850253号公報
In recent years, the need for reduction and reduction of heavy metal compounds in products and manufacturing processes has been screamed due to increasing environmental awareness. From such a point of view, a method for imparting coating film adhesion to the aluminum oxide film itself has been proposed without carrying out chemical forming ground treatment on the aluminum plate surface. For example, in Patent Document 3, on the aluminum plate surface, the thickness is 1 to 200 nm, and the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is 5 mass% or less for Mg, 10 mass% or less for H, And the aluminum material for can lids which provides the oxide film which has Al and O as a main component whose C amount of the outermost surface is 50 mass% or less, and coats a resin film on it is proposed.
JP 2001-303273 A JP 2001-121648 A Japanese Patent No. 3850253

しかし、上記のような従来技術には、以下のような問題があった。
すなわち、ボトル缶を始めとする再密閉可能な容器に用いられるアルミニウム製キャップは、深絞り成型、スクリュー成型、更にはピルファープルーフ化に伴うミシン目加工など、特許文献1の対象であるコンデンサーケースや、特許文献2および3の対象であるアルミニウム缶と比べ、非常に厳しい加工を受ける。加えて、外観・意匠上の要求から、樹脂塗膜に顔料を添加することも多くなり、塗膜密着性に不利な状況になっている。さらに近年は、ボトル缶がホット飲料に採用されるようになったため、キャップの樹脂塗膜に耐レトルト性をも要求されるようになった。
こうした条件に対し、特許文献1、2および3のような技術では、厳しい加工を受けた後の樹脂密着性が不足するため、レトルト後の塗膜剥離のような問題が発生していた。
However, the conventional techniques as described above have the following problems.
In other words, aluminum caps used in re-sealable containers such as bottle cans are capacitor cases that are the subject of Patent Document 1 such as deep drawing molding, screw molding, and perforation processing with pilfer proofing. And compared with the aluminum can which is the object of Patent Documents 2 and 3, it undergoes very severe processing. In addition, pigments are often added to the resin coating film due to the appearance and design requirements, which is disadvantageous for coating film adhesion. Further, in recent years, since bottle cans have been adopted for hot beverages, retort resistance has also been required for the resin coating film of caps.
Under such conditions, the techniques such as Patent Documents 1, 2, and 3 have problems such as peeling of the coating film after retorting because the resin adhesion after being subjected to severe processing is insufficient.

本発明者は、上記課題を解決すべく検討を重ねた結果、地球環境への負荷を軽減しつつ、顔料および染料を含有した塗料における加工後塗膜密着性を高めるためには、アルミニウム板の表面において、特定の組成を有したアルミニウム酸化皮膜の上に、重合単位あたり1個以上のカルボキシル基を含有するアクリル酸化合物の重合体を5mg/m以上5000mg/m以下の付着量にて設けることが極めて有効であることを見出した。 As a result of repeated studies to solve the above problems, the present inventor has reduced the burden on the global environment, and in order to improve the coating film adhesion after processing in paints containing pigments and dyes, On the surface of the aluminum oxide film having a specific composition, a polymer of an acrylic acid compound containing one or more carboxyl groups per polymerization unit is applied in an amount of 5 mg / m 2 or more and 5000 mg / m 2 or less. It has been found that it is extremely effective to provide it.

すなわち請求項1の発明は、乾燥重量に対し5mass%以上の顔料を含有する塗膜を設けるキャップ成型用アルミニウム板の下地処理において、厚さ200nm以下かつ表面のC量が50mg/m以下かつ最表面から酸化皮膜/アルミ界面までの深さ方向での最大濃度がMg:5mass%以下、H:10mass%以下のAlおよびOを主成分とする酸化皮膜の上に、重量平均分子量1000につき1個以上のカルボキシル基を含有するアクリル酸化合物の重合体を5mg/m以上5000mg/m以下の付着量にて設けることを特徴とする、成型加工後の樹脂密着性に優れたキャップ成型用アルミニウム板である。 That is, in the first aspect of the invention, in the base treatment of the cap-molding aluminum plate provided with a coating containing 5 mass% or more of pigment with respect to the dry weight, the thickness is 200 nm or less and the surface C amount is 50 mg / m 2 or less The maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is Mg: 5 mass% or less, and H: 10 mass% or less. For cap molding with excellent resin adhesion after molding processing, characterized in that a polymer of an acrylic acid compound containing at least one carboxyl group is provided in an adhesion amount of 5 mg / m 2 to 5000 mg / m 2 It is an aluminum plate.

また請求項2の発明は、冷間圧延後のアルミニウム合金板に対し、浴温度が30℃以上95℃以下かつ、25℃におけるpHが8以上12未満のアルカリ性溶液にて、エッチング量が10mg/m以上となるアルカリ脱脂を行い、途中工程にて95℃を超える水に触れることなく、全炭素含有量が0.5mass%以下の水で最終洗浄した後、重量平均分子量1000につき1個以上のカルボキシル基を含有する水性または溶剤性のアクリル酸化合物の重合体溶液を塗布し、30℃以上300℃以下の雰囲気にて1秒以上600秒乾燥させることを特徴とする、請求項1に記載の成型加工後の樹脂密着性に優れたキャップ成型用アルミニウム板の製造方法である。 The invention of claim 2 is an alkaline solution having a bath temperature of 30 ° C. or more and 95 ° C. or less and a pH of 8 or more and less than 12 at 25 ° C. with respect to the aluminum alloy sheet after cold rolling. 1 or more per 1000 weight average molecular weight after performing final degreasing with water having a total carbon content of 0.5 mass% or less without touching water exceeding 95 ° C. in the middle of the process after performing alkaline degreasing to m 2 or more. The aqueous or solvent-based polymer solution of an acrylic acid compound containing a carboxyl group is applied and dried in an atmosphere of 30 ° C. to 300 ° C. for 1 second to 600 seconds. It is a manufacturing method of the aluminum plate for cap shaping | molding excellent in the resin adhesiveness after the shaping | molding process of this.

さらに請求項3の発明は、冷間圧延後のアルミニウム合金板に対し、浴温度が30℃以上95℃以下かつ、25℃におけるpHが8以上のアルカリ性溶液にて、エッチング量が10mg/m以上となるアルカリ脱脂を行い、浴温度が95℃以下かつ、25℃におけるpHが4.0以下かつ、Alイオン濃度、Mgイオン濃度がそれぞれ1mass%以下の酸で酸洗浄を行い、途中工程にて95℃を超える水に触れることなく、全炭素含有量が0.5mass%以下の水で最終洗浄した後、重量平均分子量1000につき1個以上のカルボキシル基を含有する水性または溶剤性のアクリル酸化合物の重合体溶液を塗布し、30℃以上300℃以下の雰囲気にて1秒以上600秒乾燥させることを特徴とする、請求項1に記載の成型加工後の樹脂密着性に優れたキャップ成型用アルミニウム板の製造方法である。 Further, the invention of claim 3 is an alkaline solution having a bath temperature of 30 ° C. or more and 95 ° C. or less and a pH of 8 or more at 25 ° C. with respect to the aluminum alloy sheet after cold rolling, and the etching amount is 10 mg / m 2. Perform alkaline degreasing as described above, perform acid cleaning with an acid having a bath temperature of 95 ° C. or lower, a pH at 25 ° C. of 4.0 or lower, and an Al ion concentration and an Mg ion concentration of 1 mass% or less, respectively. Water or solvent-based acrylic acid containing at least one carboxyl group per weight average molecular weight of 1000 after final washing with water having a total carbon content of 0.5 mass% or less without being exposed to water exceeding 95 ° C. 2. The molded tree according to claim 1, wherein a polymer solution of the compound is applied and dried in an atmosphere of 30 ° C. to 300 ° C. for 1 second to 600 seconds. This is a method for producing an aluminum plate for cap molding excellent in oil adhesion.

本発明に従って作られたキャップ成型用アルミニウム板は、顔料および染料を含有する塗膜に対し高い密着性および優れた成型加工性を有する。   The cap-molding aluminum plate made according to the present invention has high adhesion to the coating film containing the pigment and dye and excellent molding processability.

以下、本発明の詳細を順に説明する。
本発明は、大きく分けて二つの要素により構成されている。すなわち、「塗膜密着性に優れたアルミニウム酸化皮膜」と、「上記酸化皮膜と塗膜との間にアクリル樹脂を設けること」である。
Hereinafter, details of the present invention will be described in order.
The present invention is roughly composed of two elements. That is, “an aluminum oxide film having excellent coating film adhesion” and “providing an acrylic resin between the oxide film and the coating film”.

まず、塗膜密着性に優れたアルミニウム酸化皮膜について説明する。
キャップ成型用アルミニウム材には、機械的強度および加工性を満足させるために、2〜5mass%程度のMgを添加したアルミニウム合金(JIS−5021、5052、5151、5182等)が使われており、これらの材料は、加熱−圧延時にアルミニウム材マトリクス中のMgが表面に偏析濃化することが知られている。発明者らはGDS(グロー放電発光分光分析)、AES(オージェ電子スペクトル)といった解析機器を用い、酸化皮膜の深さ方向の元素分布、いわゆるデプスプロファイルを詳細に調査した。その結果、各元素は酸化皮膜全体に均一に存在するのではなく、また明確な二層を形成しているのでもなく、元素ごとの濃度分布が異なることを確認した。なお、測定対象とした元素は、H,C,O,Mg,Al,Mn,Si,Fe,Zn,CrおよびZrであり、以後、各元素のmass%は、この11元素を母集団として議論するが、これらはアルミニウム材表面のほとんど全てを網羅していると考えられるため、議論の一般性を何ら損なうものではない。また、その深さ方向の測定精度は1nmの精度が十分に保証されるものである。
First, an aluminum oxide film having excellent coating film adhesion will be described.
In order to satisfy mechanical strength and workability, an aluminum alloy (JIS-5021, 5052, 5151, 5182, etc.) to which Mg of about 2 to 5 mass% is added is used for the cap molding aluminum material. These materials are known to segregate and concentrate Mg in the aluminum matrix on the surface during heating and rolling. The inventors investigated in detail the element distribution in the depth direction of the oxide film, so-called depth profile, using an analytical instrument such as GDS (glow discharge emission spectroscopy) or AES (Auger electron spectrum). As a result, it was confirmed that each element does not exist uniformly in the entire oxide film and does not form a clear two-layer, and the concentration distribution of each element is different. The elements to be measured are H, C, O, Mg, Al, Mn, Si, Fe, Zn, Cr, and Zr. Hereinafter, the mass% of each element will be discussed based on the 11 elements as a population. However, these are considered to cover almost all the surface of the aluminum material, so that the generality of the discussion is not impaired. Further, the measurement accuracy in the depth direction is sufficiently guaranteed to be 1 nm.

Mgは酸化皮膜全体に均一に存在するわけではなく、最表面よりやや深い部位が最も濃化した濃度勾配を有して分布していた。この時、最表面〜酸化皮膜/アルミ界面までの深さ方向でのMgの最大濃度が5mass%以下となるよう調製した酸化皮膜は、キャップ用塗料樹脂とアルミニウム材の塗膜密着性、特に、板厚減少を伴う強加工後の塗膜密着性が十分高いのに対し、最大濃度が5mass%を超えていると、加工後の塗膜密着性が著しく低下することを見出した。その理由として、Mg化合物は純粋なアルミ酸化物との親和性に乏しく、Mg化合物/アルミ酸化物の界面から塗膜剥離しやすいためと考えられる。また、Mg化合物は水への溶解度が高いので、多量に存在すると耐食性をも低下させる。そしてそれらの悪影響は、深さ方向でのMgの最大濃度が5mass%を超えた時に顕著に現れる。   Mg was not uniformly present in the entire oxide film, and the portion slightly deeper than the outermost surface was distributed with the most concentrated concentration gradient. At this time, the oxide film prepared so that the maximum concentration of Mg in the depth direction from the outermost surface to the oxide film / aluminum interface is 5 mass% or less is the coating film adhesion between the cap coating resin and the aluminum material, It was found that the coating film adhesion after the strong processing accompanied by the reduction of the plate thickness is sufficiently high, whereas the coating film adhesion after the processing is remarkably lowered when the maximum concentration exceeds 5 mass%. This is presumably because the Mg compound has poor affinity with pure aluminum oxide, and the coating film is easily peeled off from the Mg compound / aluminum oxide interface. Moreover, since the Mg compound has high solubility in water, if it is present in a large amount, the corrosion resistance is also lowered. These adverse effects are prominent when the maximum Mg concentration in the depth direction exceeds 5 mass%.

また、主に水酸化物に由来するH(水素)も、Mgと同様に深さ方向に傾斜構造を有していた。そして、最表面〜酸化皮膜/アルミ界面までの深さ方向での最大濃度が10mass%以下となるよう調製した時、塗料の塗膜とアルミニウム材の加工後の塗膜密着性が十分高いのに対し、最大濃度が10mass%を超えていると、加工後の塗膜密着性が低下することを見出した。その理由として、Hを含む化合物(水酸化Al,水酸化Mg,他)はもろいので、キャップ成型における絞り成型、スクリュー加工ならびにミシン目加工のような強加工を行うと、Hを含む化合物を起点にして酸化皮膜が破壊されるためと考えられる。そしてその悪影響は、Hの最大濃度が10mass%を超えた時に顕著に現れる。   Moreover, H (hydrogen) mainly derived from hydroxide also has an inclined structure in the depth direction, similar to Mg. And when the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is adjusted to 10 mass% or less, the coating film of the paint and the coating film after processing of the aluminum material are sufficiently high. On the other hand, when the maximum density exceeded 10 mass%, it discovered that the coating-film adhesiveness after a process fell. The reason for this is that compounds containing H (Al hydroxide, Mg hydroxide, etc.) are fragile, so when strong processing such as drawing, screw processing and perforation processing in cap molding is performed, the compound containing H is the starting point. This is probably because the oxide film is destroyed. The adverse effect is prominent when the maximum concentration of H exceeds 10 mass%.

さらに、上記酸化皮膜の表面に付着した、主として有機物に由来するC(炭素)も、MgやHとともに規制する必要がある。Cの付着量が50mg/mを超えると、後述するアクリル樹脂の濡れ性を阻害し、ピンホール等の塗布欠陥を誘発する。加えて、酸化膜とアクリル樹脂層との接着力を低下させるため、結果として密着性の低い領域を形成してしまう。 Furthermore, C (carbon) mainly derived from organic substances attached to the surface of the oxide film needs to be regulated together with Mg and H. When the adhesion amount of C exceeds 50 mg / m < 2 >, the wettability of the acrylic resin mentioned later is inhibited and coating defects such as pinholes are induced. In addition, since the adhesive force between the oxide film and the acrylic resin layer is reduced, a region having low adhesion is formed as a result.

なお、上記のMg、HおよびCの効果はいずれも大きいので、その最大濃度は同時に規定されるべきであり、一元素のみを規定しただけでは十分な塗膜密着性を発揮することはできない。   In addition, since the effect of said Mg, H, and C is all large, the maximum density | concentration should be prescribed | regulated simultaneously, and sufficient coating-film adhesiveness cannot be exhibited only by specifying only one element.

また、上記酸化皮膜の厚みは、200nm以下でなければならない。これは、キャップ成型のような厳しい加工を行う場合においては、酸化皮膜に強い応力が加わるため、200nmを超える厚い酸化皮膜は凝集破壊を生じ、塗膜密着性が極端に低下するためである。   Further, the thickness of the oxide film must be 200 nm or less. This is because when severe processing such as cap molding is performed, a strong stress is applied to the oxide film, so that a thick oxide film exceeding 200 nm causes cohesive failure and extremely deteriorates the adhesion of the coating film.

次に、アルミニウム酸化皮膜の上にアクリル樹脂を設ける効果について説明する。
発明者は、TEM(透過型電子顕微鏡)により塗装板の断面観察を行い、アルミニウム板と塗膜の界面を精査した結果、乾燥重量に対し5mass%以上の顔料を含む塗膜がアルミニウム板表面に直接塗布された場合、顔料の粒子が板表面に直接接触していることを確認した。なお多くの場合、キャップ用塗料における顔料とは、酸化チタン粒子およびシリカ粒子を指す。これらの物質は、アルミニウム酸化皮膜との相互作用をほとんど持たないため、塗膜の密着性に全く寄与しない。そればかりか、酸化皮膜と塗膜樹脂成分との接触面積を横取りする形になるため、むしろ塗膜密着性を減少させる方向に作用する。限られた接触面積を最大限に活用する手段として、酸化皮膜と塗膜との間に、重量平均分子量1000につき1個以上のカルボキシル基を含有するアクリル酸化合物の重合体(以下アクリル樹脂と呼称)を設けることにより、塗膜の樹脂成分とアクリル樹脂とが熱振動等により絡み合って一種の溶融接着層を形成し、結果として酸化皮膜と塗膜樹脂成分との接触面積が増大する。以上の理由により密着性が向上することを発見し、本発明に至ったものである。
Next, the effect of providing an acrylic resin on the aluminum oxide film will be described.
The inventor performed cross-sectional observation of the coated plate with a TEM (transmission electron microscope) and examined the interface between the aluminum plate and the coating film. As a result, the coating film containing 5 mass% or more of pigment on the dry weight was formed on the aluminum plate surface. When applied directly, it was confirmed that the pigment particles were in direct contact with the plate surface. In many cases, the pigment in the cap paint refers to titanium oxide particles and silica particles. Since these substances have almost no interaction with the aluminum oxide film, they do not contribute to the adhesion of the coating film at all. In addition, since the contact area between the oxide film and the coating film resin component is intercepted, it acts rather in the direction of decreasing the coating film adhesion. As a means for maximizing the limited contact area, a polymer of an acrylic acid compound containing at least one carboxyl group per 1000 weight average molecular weight (hereinafter referred to as an acrylic resin) between the oxide film and the coating film. ), The resin component of the coating film and the acrylic resin are entangled by thermal vibration or the like to form a kind of melt-bonded layer, and as a result, the contact area between the oxide film and the coating film resin component increases. For the above reasons, it was discovered that the adhesion was improved, and the present invention was achieved.

本発明において、酸化皮膜と塗膜との中間に設ける物質としては、重量平均分子量1000につき1個以上のカルボキシル基を含有するアクリル樹脂が最も適している。これは、アクリル樹脂に含まれるカルボキシル基が、アルミニウム酸化皮膜のAl−O部分と強固に結びつくとともに、樹脂の骨格部が塗膜の樹脂成分と溶融接着層形成効果を発揮するため、アルミニウム酸化皮膜と塗膜の双方に強力に作用するためである。この他、アクリル樹脂は一般的に、屈折率が高く無色であることや、内分泌かく乱性物質(いわゆる環境ホルモン)であることが指摘されるビスフェノールAを含有しないこと等、食品包装用途として好ましい性質を備えている。本発明に対しては、カルボキシル基の含有量の要件を満たす公知のアクリル樹脂をそのまま適用できる。具体的には、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸、ポリメタクリル酸エステル、ポリヒドロキシアクリル酸、ポリヒドロキシアクリル酸エステルおよびそれらの共重合体などが好適である。加えて、アンモニア、アミン類あるいはアルカリ金属水酸化物等でpH調整した樹脂も、同様に好適に用いることができる。さらに、メラミン系化合物およびユリア系化合物を架橋剤として添加した樹脂も、同様に好適に用いることができる。なお、これらの樹脂の分子量は、重量平均分子量にして1,000以上1,000,000以下のものが、特に好適に用いられる。これは、重量平均分子量が1,000を下回ると、樹脂自体の水溶性が高まり、レトルト処理等におけるアクリル樹脂層の溶出が懸念されるためであり、1,000,000を上回ると、粘度が増大することによる塗装ムラ等が生じやすいためである。   In the present invention, an acrylic resin containing one or more carboxyl groups per weight average molecular weight of 1000 is most suitable as a material provided between the oxide film and the coating film. This is because the carboxyl group contained in the acrylic resin is strongly bonded to the Al-O portion of the aluminum oxide film, and the resin skeleton exhibits the effect of forming a molten adhesive layer with the resin component of the coating film. This is because it acts strongly on both the coating film and the coating film. In addition, acrylic resins generally have high refractive index and are colorless and do not contain bisphenol A, which is pointed out to be an endocrine disrupting substance (so-called environmental hormone). It has. For the present invention, a known acrylic resin that satisfies the requirements for the carboxyl group content can be applied as it is. Specifically, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid, polymethacrylic acid ester, polyhydroxyacrylic acid, polyhydroxyacrylic acid ester and copolymers thereof are suitable. In addition, resins whose pH is adjusted with ammonia, amines, alkali metal hydroxides, or the like can also be suitably used. Furthermore, a resin in which a melamine compound and a urea compound are added as a cross-linking agent can also be suitably used. The molecular weights of these resins are particularly preferably those having a weight average molecular weight of 1,000 or more and 1,000,000 or less. This is because when the weight average molecular weight is less than 1,000, the water solubility of the resin itself is increased, and there is a concern about the elution of the acrylic resin layer in the retort treatment or the like. This is because uneven coating due to the increase tends to occur.

本発明において、上記のアクリル樹脂を設ける量は、5mg/m以上5000mg/m以下であることが必須である。これは、アクリル樹脂の量が5mg/mを下回ると、上述の熱振動等による接触面積増大効果が不足し、塗膜密着性が確保できないためである。また5000mg/mを上回ると、アクリル樹脂層の残留応力が大きくなり、強い加工を行った際にアクリル樹脂層の凝集破壊を招くためである。 In the present invention, it is essential that the amount of the acrylic resin is 5 mg / m 2 or more and 5000 mg / m 2 or less. This is because if the amount of the acrylic resin is less than 5 mg / m 2 , the effect of increasing the contact area due to the thermal vibration described above is insufficient, and the coating film adhesion cannot be ensured. Moreover, when it exceeds 5000 mg / m < 2 >, the residual stress of an acrylic resin layer will become large and will cause the cohesive failure of an acrylic resin layer when a strong process is performed.

このようにして得られたキャップ成型用アルミニウム板は、乾燥重量に対し5mass%以上の顔料を含む塗膜との加工密着性を発揮する。この場合において顔料とは、多くの場合において酸化チタン粒子または/およびシリカ粒子であり、その発色効果ならびに下地色隠蔽効果を発揮するためには、5mass%以上の配合量とすることがほとんど必須である。また、塗膜の本体をなす樹脂には、ポリエステル系樹脂、エポキシ系樹脂および塩化ビニル系樹脂等、一般的に塗料に用いられる樹脂をそのまま用いることができる。また、顔料を含む塗料は、水溶性であっても溶剤性であってもよい。さらに本発明は、顔料を含む塗膜とアルミニウムの加工密着性を向上させるものであるから、顔料を含む塗膜の上に色彩付与を目的として各種インキ層を設けてもよく、さらにトップコートとして各種仕上げクリアー塗膜を設けてもよい。   The cap-molding aluminum plate thus obtained exhibits processing adhesion with a coating film containing 5 mass% or more of pigment with respect to the dry weight. In this case, the pigment is, in many cases, titanium oxide particles and / or silica particles, and in order to exhibit the color forming effect and the background color concealing effect, it is almost essential to have a blending amount of 5 mass% or more. is there. In addition, as a resin constituting the main body of the coating film, resins generally used for paints such as polyester resins, epoxy resins and vinyl chloride resins can be used as they are. The paint containing the pigment may be water-soluble or solvent-based. Furthermore, since the present invention improves the processing adhesion between the coating film containing the pigment and aluminum, various ink layers may be provided on the coating film containing the pigment for the purpose of imparting color, and as a top coat. Various finishing clear coatings may be provided.

ところで、請求項1に言及された酸化皮膜を得るためには、一例として、浴温度が30℃以上95℃以下かつ、25℃におけるpHが8以上12未満のアルカリ性溶液にて、エッチング量が10mg/m以上のアルカリ脱脂を行う方法を挙げることができる。従来、アルミニウム板表面に濃縮したMgは、アルカリエッチングによっては除去されないとされてきたが、浴温度が30℃以上95℃以下かつ、25℃におけるpHが8以上12未満かつエッチング量が10mg/m以上である場合に限り、表面Mgが除去され、かつ水酸化物の生成が抑制されることが判明した。アルカリ浴温度が30℃を下回ると、エッチング速度が低下するため生産性に悪影響を及ぼし、95℃を超えると、高温の水分によりベーマイト様の水酸化物が急速に形成されるほか、酸化皮膜厚も増大しやすい。25℃における液のpHが8を下回ると、アルミニウムのエッチングが進行せず、また12以上になると、表面Mgが減少するばかりか却って濃化する。エッチング量が10mg/mを下回ると、表面のMgが十分に除去されず、また均質な酸化皮膜も形成されにくい。また、エッチング量が多い場合、酸化皮膜の性能への影響はないものの、200mg/mを超えるとアルミニウム板厚の精度に悪影響を及ぼすほか、スラッジが増加して表面品質を損なう場合があるので、200mg/m以下とするのがより好ましい。 By the way, in order to obtain the oxide film referred to in claim 1, as an example, the etching amount is 10 mg in an alkaline solution having a bath temperature of 30 ° C. or more and 95 ° C. or less and a pH at 25 ° C. of 8 or more and less than 12. The method of performing alkaline degreasing of / m 2 or more can be mentioned. Conventionally, Mg concentrated on the surface of an aluminum plate has not been removed by alkaline etching, but the bath temperature is 30 ° C. or more and 95 ° C. or less, the pH at 25 ° C. is 8 or more and less than 12, and the etching amount is 10 mg / m 2. Only when it was 2 or more, it was found that the surface Mg was removed and the formation of hydroxide was suppressed. When the alkaline bath temperature is lower than 30 ° C, the etching rate is lowered, which adversely affects the productivity. When the alkaline bath temperature is higher than 95 ° C, boehmite-like hydroxide is rapidly formed by high-temperature moisture, and the thickness of the oxide film Are also likely to increase. When the pH of the solution at 25 ° C. is less than 8, the etching of aluminum does not proceed. When the pH is 12 or more, not only the surface Mg is reduced but also concentrated. When the etching amount is less than 10 mg / m 2 , Mg on the surface is not sufficiently removed, and a uniform oxide film is hardly formed. In addition, if the etching amount is large, there is no effect on the performance of the oxide film, but if it exceeds 200 mg / m 2 , the accuracy of the aluminum plate thickness will be adversely affected, and sludge may increase to impair the surface quality. , 200 mg / m 2 or less is more preferable.

また、上記方法のほか、浴温度が30℃以上95℃以下かつ、25℃におけるpHが8以上のアルカリ性溶液にて、エッチング量が10mg/m以上となるアルカリ脱脂を行い、次に浴温度が95℃以下かつ、25℃におけるpHが4.0以下かつ、Alイオン濃度、Mgイオン濃度がそれぞれ1mass%以下の酸で酸洗浄を行う方法を用いても良い。アルカリ浴温度が30℃を下回ると、エッチング速度が低下するため生産性に悪影響を及ぼし、95℃を超えると、高温の水分によりベーマイト様の水酸化物が急速に形成されるほか、酸化皮膜厚も増大しやすい。アルカリ脱脂によるエッチング量が10mg/mでは、表面のMgが十分に除去されず、また均質な酸化皮膜が形成されない。エッチング量が多い場合、酸化皮膜の性能への影響はないものの、200mg/mを超えるとアルミニウム板厚の精度に悪影響を及ぼすほか、スラッジが増加して表面品質を損なう場合があるので、200mg/m以下とするのがより好ましい。また、酸洗浄がMgの低減に寄与することは公知であるが、95℃を超えると、高温の水分によりベーマイト様の水酸化物が急速に形成されるほか、酸化皮膜厚も増大しやすい。浴温度の下限に特に制限はないものの、実用的には30℃以上が好ましく、特に50℃前後がさらに好ましい。また、pHが4.0を超えると、表面Mgの除去効果が半減する。さらに本発明の特徴である酸化皮膜中のMgおよびH濃度の規定にあたって、酸洗浴中のAlイオン濃度が1mass%を超えると表面に水酸化Al等が残存するのでHが、Mgイオン濃度が1mass%を超えると表面にMg化合物が析出するのでMgが、それぞれ酸化皮膜中に濃縮するので好ましくない。 In addition to the above method, alkaline degreasing is performed so that the etching amount becomes 10 mg / m 2 or more with an alkaline solution having a bath temperature of 30 ° C. or more and 95 ° C. or less and a pH at 25 ° C. of 8 or more, and then the bath temperature. Alternatively, a method of performing acid cleaning with an acid having a pH of 95 ° C. or lower, a pH at 25 ° C. of 4.0 or lower, and an Al ion concentration and an Mg ion concentration of 1 mass% or less may be used. When the alkaline bath temperature is lower than 30 ° C, the etching rate is lowered, which adversely affects the productivity. When the alkaline bath temperature is higher than 95 ° C, boehmite-like hydroxide is rapidly formed by high-temperature moisture, and the thickness of the oxide film Are also likely to increase. When the etching amount by alkali degreasing is 10 mg / m 2 , Mg on the surface is not sufficiently removed, and a uniform oxide film is not formed. If the amount of etching is large, there is no effect on the performance of the oxide film, but if it exceeds 200 mg / m 2 , the accuracy of the aluminum plate thickness will be adversely affected, and the surface quality may be impaired due to increased sludge. / M 2 or less is more preferable. In addition, it is known that acid cleaning contributes to the reduction of Mg. However, when the temperature exceeds 95 ° C., boehmite-like hydroxide is rapidly formed by high-temperature moisture, and the oxide film thickness tends to increase. Although there is no particular limitation on the lower limit of the bath temperature, practically it is preferably 30 ° C. or higher, and more preferably around 50 ° C. Moreover, when pH exceeds 4.0, the removal effect of surface Mg will be halved. Further, in defining the Mg and H concentrations in the oxide film, which is a feature of the present invention, if Al ion concentration in the pickling bath exceeds 1 mass%, Al hydroxide and the like remain on the surface, so that H and Mg ion concentration are 1 mass. If it exceeds 50%, an Mg compound is deposited on the surface, so Mg is concentrated in the oxide film.

そして、アルカリ脱脂後ならびにアルカリ脱脂・酸洗後に行う水洗工程においては、95℃を超える水に触れてはならない。これは、95℃を超える水に接触することにより、ベーマイト様の水酸化物が急速に形成されるほか、酸化皮膜厚も増大しやすいためである。さらに、その最終段階の水洗においては、全炭素含有量が0.5mass%以下の水を用いなければならない。これは、炭素含有量が0.5mass%を超える水にて最終洗浄を行うと、アルミニウム酸化皮膜の表面にCが残存し、カルボキシル基含有アクリル樹脂の密着の妨げになるためである。   And in the water washing process performed after alkali degreasing and after alkali degreasing and pickling, you must not touch water exceeding 95 degreeC. This is because boehmite-like hydroxide is rapidly formed by contact with water exceeding 95 ° C., and the oxide film thickness tends to increase. Further, in the final stage of water washing, water having a total carbon content of 0.5 mass% or less must be used. This is because when the final cleaning is performed with water having a carbon content of more than 0.5 mass%, C remains on the surface of the aluminum oxide film, which hinders the adhesion of the carboxyl group-containing acrylic resin.

このようにして得られたアルミニウム表面に対し、適当な濃度に調製した水性または溶剤性のカルボキシル基含有アクリル樹脂溶液を塗布し乾燥させることにより、請求項1のキャップ成型用アルミニウム板を得ることができる。この際、乾燥温度が30℃を下回ると、水または溶剤の揮発速度が遅いため、生産性に悪影響を及ぼし、また乾燥温度が300℃を上回ると、温度維持のためのエネルギーが無駄になる他、特に水溶性アクリル樹脂を用いた場合に酸化皮膜が成長する場合があり、いずれも好ましくない。乾燥時間が1秒を下回る条件設定では、水または溶剤の揮発が十分に行われず、また600秒を上回ると生産性に悪影響を及ぼし、いずれも好ましくない。なお、アクリル樹脂溶液の塗布方法については特に制限はなく、板を溶液に浸漬した後ロールで絞る方法や、コーターロールにより板に塗りつける方法、およびスプレーにより板に吹き付ける方法等を用いることができる。中でも、アクリル樹脂の付着量が5mg/m以上5000mg/m以下となるように制御するためには、コーターロールを用いた方法が特に好ましい。なお、アクリル樹脂の付着量を測定するためには、付着量の狙い値が約500mg/m以下の場合は反射赤外吸収スペクトル測定法、それ以上の場合は重量法を用いることができる。 A cap-molding aluminum plate according to claim 1 can be obtained by applying an aqueous or solvent-based carboxyl group-containing acrylic resin solution prepared at an appropriate concentration to the aluminum surface thus obtained and drying it. it can. At this time, if the drying temperature is lower than 30 ° C, the volatilization rate of water or solvent is slow, which adversely affects the productivity. If the drying temperature exceeds 300 ° C, energy for maintaining the temperature is wasted. In particular, when a water-soluble acrylic resin is used, an oxide film may grow, which is not preferable. When the drying time is less than 1 second, the water or solvent is not sufficiently volatilized, and when it exceeds 600 seconds, the productivity is adversely affected. In addition, there is no restriction | limiting in particular about the application | coating method of an acrylic resin solution, The method of squeezing with a roll after immersing a board in a solution, the method of apply | coating to a board with a coater roll, the method of spraying on a board with a spray, etc. can be used. Among them, in order to control such adhesion amount of the acrylic resin is 5 mg / m 2 or more 5000 mg / m 2 or less, a method using a coater roll is particularly preferred. In addition, in order to measure the adhesion amount of the acrylic resin, the reflection infrared absorption spectrum measurement method can be used when the target value of the adhesion amount is about 500 mg / m 2 or less, and the gravimetric method can be used when the target value is more.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
アルミニウム合金材料として、板厚0.25mmのJIS5151−H39合金板を使用した。またアルカリ脱脂浴として、市販のアルカリ脱脂剤「EC−370(日本ペイント)」を使用した。使用条件は、濃度1.0%、スプレー圧1.5kgf/cm、浴のpHは気体の二酸化炭素を吹き込むことにより調整した。浴の温度および25℃におけるpHの数値は、表1に記載したとおりである。また、エッチング量はスプレー時間により表1のとおり調整した。また実施例9〜16および比較例7〜13は、上記アルカリ脱脂の実施後、1%硫酸による酸洗浄(5秒間浸漬)を実施した。酸洗浄の温度および浴組成は、表1に示したとおりである。
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.
As the aluminum alloy material, a JIS5151-H39 alloy plate having a thickness of 0.25 mm was used. As the alkaline degreasing bath, a commercially available alkaline degreasing agent “EC-370 (Nippon Paint)” was used. The operating conditions were 1.0% concentration, 1.5 kgf / cm 2 spray pressure, and the pH of the bath was adjusted by blowing gaseous carbon dioxide. The bath temperature and the numerical value of pH at 25 ° C. are as described in Table 1. The etching amount was adjusted as shown in Table 1 depending on the spray time. In Examples 9 to 16 and Comparative Examples 7 to 13, acid washing with 1% sulfuric acid (immersion for 5 seconds) was performed after the alkaline degreasing. The acid washing temperature and bath composition are as shown in Table 1.

Figure 2008127625
Figure 2008127625

これらのアルカリ脱脂またはアルカリ脱脂・酸洗浄の後、中間水洗および最終水洗を、それぞれスプレー圧1.5kgf/cmにて5秒ずつ実施した。水洗の温度および水質は、表1に示したとおりである。
アクリル樹脂は、水溶性アクリル樹脂(重量平均分子量20000、カルボキシル基含有量=3.5個/1000重量平均分子量)、溶剤性アクリル樹脂1(重量平均分子量50000、カルボキシル基含有量=1.3個/1000重量平均分子量)および溶剤性アクリル樹脂2(重量平均分子量65000、カルボキシル基含有量=0個/1000重量平均分子量)を用いた。アルミ板への塗布はロールコーターにより実施し、所定の雰囲気温度および風速10m/秒に設定した乾燥炉に、所定の時間投入した。アクリル樹脂塗布条件は、表2に示したとおりである。
After these alkali degreasing or alkali degreasing / acid washing, intermediate water washing and final water washing were each carried out at a spray pressure of 1.5 kgf / cm 2 for 5 seconds. The temperature and quality of water washing are as shown in Table 1.
The acrylic resin is a water-soluble acrylic resin (weight average molecular weight 20000, carboxyl group content = 3.5 / 1000 weight average molecular weight), solvent-based acrylic resin 1 (weight average molecular weight 50000, carboxyl group content = 1.3). / 1000 weight average molecular weight) and solvent-based acrylic resin 2 (weight average molecular weight 65000, carboxyl group content = 0 pieces / 1000 weight average molecular weight) were used. Application to the aluminum plate was performed by a roll coater, and was put into a drying furnace set at a predetermined atmospheric temperature and a wind speed of 10 m / sec for a predetermined time. The acrylic resin application conditions are as shown in Table 2.

Figure 2008127625
Figure 2008127625

上記のサンプルの酸化皮膜組成を調査するため、GDS(グロー放電発光分光分析)による表面分析を実施した。装置は堀場製作所製JY−5000RFを使用し、定量分析モードにて、酸化皮膜の厚み、Mgの最大濃度およびHの最大濃度を測定した。測定結果を表3に示す。
また、アクリル樹脂の塗布量は、実施例4,6,8,11,12,15,16および比較例5は重量法により、それ以外は反射赤外吸収スペクトルの検量線により、それぞれ求めた。測定結果を表3に示す。
In order to investigate the oxide film composition of the above samples, surface analysis by GDS (glow discharge emission spectroscopy) was performed. The apparatus used was JY-5000RF manufactured by Horiba, Ltd., and the thickness of the oxide film, the maximum Mg concentration, and the maximum H concentration were measured in the quantitative analysis mode. Table 3 shows the measurement results.
The amount of acrylic resin applied was determined by the gravimetric method in Examples 4, 6, 8, 11, 12, 15, 16 and Comparative Example 5, and by the calibration curve of the reflected infrared absorption spectrum for the rest. Table 3 shows the measurement results.

Figure 2008127625
Figure 2008127625

このようにして得られたサンプルに対し、以下の上塗りを実施した。
(顔料を含む塗料の塗布)
サンプル両面に対し、市販のキャップ用溶剤型塗料「ホワイトコーチング」(酸化チタン顔料含有,含有量=6.3mass%,ポリエステル系樹脂,塗膜量13g/m狙い,焼付温度=190℃,焼付時間=600秒)を両面に塗布し、塗装サンプルとした。
The following topcoat was applied to the sample thus obtained.
(Application of paint containing pigment)
Commercially available solvent-based paint for cap “White Coaching” (both containing titanium oxide pigment, content = 6.3 mass%, polyester resin, coating amount 13 g / m 2 , baking temperature = 190 ° C.) Time = 600 seconds) was applied on both sides to prepare a coated sample.

このようにして得られたサンプルに対し、以下の評価を実施した。
(加工後の樹脂密着性評価)
上記の塗装サンプルの両面に、市販のシリコン系潤滑剤を50mg/mずつ塗布し、キャップ成型機により絞り成型加工(キャップ径=38mm、キャップ高さ=18mm)を行った後、ミシン目加工・スクリュー加工の順に行った。得られたキャップに対し、ミシン目部、キャップ下端およびビード部の塗膜剥離状態を、成型直後/レトルト後(125℃×30分)にて目視観察した。ミシン目部、キャップ下端およびビード部の全長に対する剥離発生部位の長さを%単位で記録し、全てにおいて10%以下のものを合格とした。
The following evaluation was performed on the samples thus obtained.
(Evaluation of resin adhesion after processing)
Apply 50 mg / m 2 of commercially available silicon lubricant on both sides of the above coated sample, perform draw forming (cap diameter = 38 mm, cap height = 18 mm) with a cap molding machine, and then perforate・ Screw processing was performed in this order. With respect to the obtained cap, the coating film peeling state of the perforation part, the lower end of the cap and the bead part was visually observed immediately after molding / after retorting (125 ° C. × 30 minutes). The length of the part where peeling occurred relative to the total length of the perforation part, the cap lower end and the bead part was recorded in units of%.

表4から明らかなように、実施例1〜16は、本発明要件を満たし、強加工を行ったときの酸化チタン顔料含有塗料に対する密着性が高いため、キャップ成型試験において、成型直後/レトルト後とも良好な結果を示した。   As is apparent from Table 4, Examples 1 to 16 satisfy the requirements of the present invention and have high adhesion to the titanium oxide pigment-containing paint when subjected to strong processing. Therefore, in the cap molding test, immediately after molding / after retorting Both showed good results.

一方、比較例1〜13は、本発明の要件を満たしていないため、強加工を行った場合における酸化チタン含有塗料に対する密着性が低く、特にレトルト実施後に塗膜剥離が目立つ結果となった。具体的には、比較例1は、アクリル樹脂を設けていないため、ホワイトコーチング層に対する密着性が不足している。比較例2はアルカリ脱脂の温度が低すぎるため表面Mgが除去されず、比較例3は逆に温度が高すぎるため水酸化物が過剰に生成し、加工密着性が劣っている。比較例4はアクリル樹脂の量が不足したため密着性が発揮されず、また比較例5はアクリル樹脂の量が多すぎるため、樹脂層の凝集破壊が発生している。比較例6は、アクリル樹脂におけるカルボキシル基が不足しているため、密着性が発揮されない。比較例7、10および12は、酸化皮膜中のMgが多すぎ、また比較例11は、酸化皮膜中のHが多すぎ、比較例8は、酸化皮膜中のMgとHがともに多すぎ、いずれも塗膜密着性が不足している。比較例3および9は、酸化皮膜中のHが多いと共に、厚みが本発明の規定を上回っており、やはり塗膜密着性が劣る。比較例13は、酸化皮膜中のHが多く、厚みが本発明の規定を満たさない上に、表面にCが多量に付着しているため、塗膜密着性が不足する。   On the other hand, since Comparative Examples 1 to 13 did not satisfy the requirements of the present invention, the adhesiveness to the titanium oxide-containing paint in the case of strong processing was low, and in particular, the coating film peeling was noticeable after retorting. Specifically, since the comparative example 1 is not provided with an acrylic resin, the adhesion to the white coating layer is insufficient. In Comparative Example 2, the surface Mg is not removed because the alkaline degreasing temperature is too low. On the contrary, in Comparative Example 3, the temperature is too high, resulting in excessive generation of hydroxide and poor work adhesion. In Comparative Example 4, since the amount of the acrylic resin is insufficient, the adhesion is not exhibited, and in Comparative Example 5, the amount of the acrylic resin is too large, so that the cohesive failure of the resin layer occurs. In Comparative Example 6, since the carboxyl group in the acrylic resin is insufficient, the adhesion is not exhibited. Comparative Examples 7, 10 and 12 have too much Mg in the oxide film, Comparative Example 11 has too much H in the oxide film, and Comparative Example 8 has too much Mg and H in the oxide film. In either case, the coating film adhesion is insufficient. In Comparative Examples 3 and 9, the amount of H in the oxide film is large and the thickness exceeds the regulation of the present invention, and the coating film adhesion is also inferior. In Comparative Example 13, the amount of H in the oxide film is large, the thickness does not satisfy the provisions of the present invention, and a large amount of C is adhered to the surface, so that the coating film adhesion is insufficient.

Claims (3)

乾燥重量に対し5mass%以上の顔料を含有する塗膜を設けるキャップ成型用アルミニウム板の下地処理において、厚さ200nm以下かつ表面のC量が50mg/m以下かつ最表面から酸化皮膜/アルミ界面までの深さ方向での最大濃度がMg:5mass%以下、H:10mass%以下のAlおよびOを主成分とする酸化皮膜の上に、重量平均分子量1000につき1個以上のカルボキシル基を含有するアクリル酸化合物の重合体を5mg/m以上5000mg/m以下の付着量にて設けることを特徴とする、成型加工後の樹脂密着性に優れたキャップ成型用アルミニウム板。 In the base treatment of an aluminum plate for cap molding provided with a coating containing a pigment of 5 mass% or more with respect to the dry weight, the thickness is 200 nm or less, the surface C amount is 50 mg / m 2 or less, and the oxide film / aluminum interface from the outermost surface Up to Mg: 5 mass% or less and H: 10 mass% or less on an oxide film containing Al and O as main components, and containing one or more carboxyl groups per weight average molecular weight of 1000 An aluminum plate for cap molding excellent in resin adhesion after molding processing, characterized in that a polymer of an acrylic acid compound is provided in an adhesion amount of 5 mg / m 2 or more and 5000 mg / m 2 or less. 冷間圧延後のアルミニウム合金板に対し、浴温度が30℃以上95℃以下かつ、25℃におけるpHが8以上12未満のアルカリ性溶液にて、エッチング量が10mg/m以上となるアルカリ脱脂を行い、途中工程にて95℃を超える水に触れることなく、全有機炭素含有量が0.5mass%以下の水で最終洗浄した後、重量平均分子量1000につき1個以上のカルボキシル基を含有する水性または溶剤性のアクリル酸化合物の重合体溶液を塗布し、30℃以上300℃以下の雰囲気にて1秒以上600秒以下乾燥させることを特徴とする、請求項1に記載の成型加工後の樹脂密着性に優れたキャップ成型用アルミニウム板の製造方法。 Alkaline degreasing with an alkaline solution having a bath temperature of 30 ° C. or more and 95 ° C. or less and a pH of 8 or more and less than 12 at 25 ° C. with an etching amount of 10 mg / m 2 or more on the aluminum alloy sheet after cold rolling. After the final washing with water having a total organic carbon content of 0.5 mass% or less without touching water exceeding 95 ° C. in the middle of the process, an aqueous solution containing one or more carboxyl groups per weight average molecular weight of 1000 Alternatively, a resin solution after molding processing according to claim 1, wherein a polymer solution of a solvent-based acrylic acid compound is applied and dried in an atmosphere of 30 ° C to 300 ° C for 1 second to 600 seconds. A method for producing an aluminum plate for cap molding with excellent adhesion. 冷間圧延後のアルミニウム合金板に対し、浴温度が30℃以上95℃以下かつ、25℃におけるpHが8以上のアルカリ性溶液にて、エッチング量が10mg/m以上となるアルカリ脱脂を行い、浴温度が95℃以下かつ、25℃におけるpHが4.0以下かつ、Alイオン濃度、Mgイオン濃度がそれぞれ1mass%以下の酸で酸洗浄を行い、途中工程にて95℃を超える水に触れることなく、全有機炭素含有量が0.5mass%以下の水で最終洗浄した後、重量平均分子量1000につき1個以上のカルボキシル基を含有する水性または溶剤性のアクリル酸化合物の重合体溶液を塗布し、30℃以上300℃以下の雰囲気にて1秒以上600秒以下乾燥させることを特徴とする、請求項1に記載の成型加工後の樹脂密着性に優れたキャップ成型用アルミニウム板の製造方法。 For the aluminum alloy sheet after cold rolling, an alkaline degreasing is performed with an alkaline solution having a bath temperature of 30 ° C. or more and 95 ° C. or less and a pH of 25 or more at 25 ° C. of 10 mg / m 2 or more, Acid cleaning is performed with an acid having a bath temperature of 95 ° C. or less, a pH at 25 ° C. of 4.0 or less, and an Al ion concentration and an Mg ion concentration of 1 mass% or less, respectively, and touches water exceeding 95 ° C. in the middle process. And after the final washing with water having a total organic carbon content of 0.5 mass% or less, a polymer solution of an aqueous or solvent-based acrylic acid compound containing one or more carboxyl groups per weight average molecular weight of 1000 is applied. And drying in an atmosphere of 30 ° C. or more and 300 ° C. or less for 1 second or more and 600 seconds or less, excellent in resin adhesion after molding processing according to claim 1 A method for producing an aluminum plate for cap molding.
JP2006313681A 2006-11-21 2006-11-21 Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method Pending JP2008127625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313681A JP2008127625A (en) 2006-11-21 2006-11-21 Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313681A JP2008127625A (en) 2006-11-21 2006-11-21 Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008127625A true JP2008127625A (en) 2008-06-05

Family

ID=39553766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313681A Pending JP2008127625A (en) 2006-11-21 2006-11-21 Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008127625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000679A (en) * 2008-06-20 2010-01-07 Furukawa-Sky Aluminum Corp Aluminum material and its manufacturing method
WO2015045855A1 (en) 2013-09-27 2015-04-02 日本ペイント株式会社 Method for treating surface of aluminum can

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517929A (en) * 1999-12-21 2003-06-03 アルコア インコーポレイテッド Copolymer primer for aluminum alloy food and beverage containers
JP3850253B2 (en) * 2001-10-15 2006-11-29 古河スカイ株式会社 Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517929A (en) * 1999-12-21 2003-06-03 アルコア インコーポレイテッド Copolymer primer for aluminum alloy food and beverage containers
JP3850253B2 (en) * 2001-10-15 2006-11-29 古河スカイ株式会社 Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000679A (en) * 2008-06-20 2010-01-07 Furukawa-Sky Aluminum Corp Aluminum material and its manufacturing method
WO2015045855A1 (en) 2013-09-27 2015-04-02 日本ペイント株式会社 Method for treating surface of aluminum can

Similar Documents

Publication Publication Date Title
JP2006188064A (en) One-side embossed colored steel sheet having printability and its manufacturing method
AU2014204601B2 (en) Packaging coating composition
US10557205B2 (en) Organic resin-covered surface-treated metal sheet
KR20040044944A (en) Precoated metal sheet with excellent press formability and process for producing the same
JP4874153B2 (en) Pre-coated metal plate, metal molded body obtained by molding the same, and method for producing pre-coated metal plate
JP2008127625A (en) Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method
JP5125284B2 (en) Aluminum coating material and manufacturing method thereof
JP4922738B2 (en) Aluminum plate for cap molding with excellent resin adhesion and corrosion resistance after molding
JP5060460B2 (en) Resin-coated aluminum plate with excellent resin adhesion
JP6322427B2 (en) Method for producing resin-coated aluminum plate
JP5150916B2 (en) Pre-coated metal plate and manufacturing method thereof
JP4851904B2 (en) Fluorine resin coated steel sheet
WO2006050094A2 (en) Metal coated with a radiation curable outdoor durable coating
JP2006264734A (en) Drink aluminum can internal face-coating method and drink aluminum can coated by the method
WO2017146040A1 (en) Metal surface treatment agent
JP3144433B2 (en) Weatherproof coating film and aluminum wheel formed therefrom
KR940008460B1 (en) Two layer si-zn coated steel sheet of removing of fingerprint with an excellant corrosion resistance and adhesion and method for making the same
JP4280658B2 (en) Clear painted stainless steel sheet with excellent coating adhesion
JP4743046B2 (en) Painted steel sheets, processed products, and thin TV panels
JP2745384B2 (en) Film-coated metal plate
JP2005349691A (en) Thermoplastic resin-coated aluminum sheet for general can
JP2007229630A (en) White coated steel sheet having high reflectance
JP2006348238A (en) Undercoating resin composition for hydrophilic coating and aluminum alloy coated plate
JP2004035988A (en) Non-chromium type aluminum substrate treatment material having excellent coating film adhesion
JP2005206921A (en) Nonchromate type surface-treated metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410