JP2007229630A - White coated steel sheet having high reflectance - Google Patents

White coated steel sheet having high reflectance Download PDF

Info

Publication number
JP2007229630A
JP2007229630A JP2006054897A JP2006054897A JP2007229630A JP 2007229630 A JP2007229630 A JP 2007229630A JP 2006054897 A JP2006054897 A JP 2006054897A JP 2006054897 A JP2006054897 A JP 2006054897A JP 2007229630 A JP2007229630 A JP 2007229630A
Authority
JP
Japan
Prior art keywords
coating
steel sheet
coated steel
film
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006054897A
Other languages
Japanese (ja)
Inventor
Michio Hirayama
三千男 平山
Sachio Matsuo
左千夫 松尾
Kenji Ikishima
健司 壱岐島
Tadashi Ashida
正 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006054897A priority Critical patent/JP2007229630A/en
Publication of JP2007229630A publication Critical patent/JP2007229630A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white coated steel sheet which is manufactured by 2-coat 2-bake coating of base coating and top coating and in which the coating defects caused by bumping evaporation of coating are prevented, and whose L-value is very high. <P>SOLUTION: In the white coated steel sheet, the film thickness of the top coating is larger than 20 μm and the film thickness of the whole coating is ≤30 μm. The top coating film containing 1-5 mass% silica having 1-10 μm average particle size in addition to titania (TiO<SB>2</SB>) of a pigment. Even when the thickness of the top coating film is increased to about 40 μm, occurrence of the coating defects due to the foaming is prevented. It is preferable that the kind of a resin for the film is a polyester based resin and the content of titania is 50-65 mass%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、塗装欠陥を発生させずに上塗り塗料を厚膜塗装することが可能な、反射率の高い白色塗装鋼板に関し、照明器具の器具効率を改善するのに有用である。   The present invention relates to a white coated steel sheet having a high reflectivity capable of thick-coating a top coating without causing a coating defect, and is useful for improving the efficiency of a lighting fixture.

従来から、光線反射性の高い塗装鋼板に対するニーズがあり、そのような塗装鋼板を証明器具の反射板またはカバーに使用すると、照明器具の器具効率が改善されることから、省エネルギーに有効であるとして注目されている。光線反射性は白色が最も高くなることから、そのような塗装鋼板は白色に塗装されている。   Conventionally, there is a need for coated steel sheets with high light reflectivity, and when such coated steel sheets are used as reflectors or covers for proof instruments, the efficiency of lighting equipment can be improved, which is effective for energy saving. Attention has been paid. Such a coated steel sheet is painted white because the light reflectivity is highest in white.

特開2001−243819号公報には、JIS Z8722によるL値が90を超え、しかも60度鏡面光沢法による光沢が80を超える光反射性を備え、加工性に優れた塗装鋼板が提案されている。   Japanese Patent Application Laid-Open No. 2001-243819 proposes a coated steel sheet having a light reflectivity with an L value of more than 90 according to JIS Z8722 and a glossiness of more than 80 according to the 60-degree specular gloss method and excellent workability. .

特開2003−236981号公報には、塗膜表面の形状(うねり)をコントロールすることで塗膜の反射性を向上させることができることが提案されている。
特開2003−236981号公報 特開2001−243819号公報
Japanese Patent Application Laid-Open No. 2003-236981 proposes that the reflectivity of the coating film can be improved by controlling the shape (swell) of the coating film surface.
JP 2003-236981 A Japanese Patent Laid-Open No. 2001-243819

光線反射性の高い白色塗装鋼板では、白色顔料としてチタニア(TiO2)が使用されている。その場合、塗膜中の白色顔料(チタニア)の濃度が同じであれば、塗膜が厚い程、塗膜は白くなり、反射性が高くなる。 In a white coated steel sheet having high light reflectivity, titania (TiO 2 ) is used as a white pigment. In that case, if the density | concentration of the white pigment (titania) in a coating film is the same, a coating film will become white and the reflectivity will become high, so that a coating film is thick.

一方、塗膜の厚みが同じであれば、塗膜中の白色顔料(チタニア)の濃度が高いほど、塗膜の白さ(反射性)は高くなる筈である。しかし、実際には、顔料濃度が約50〜65質量%付近に達するまでは白さが向上するが、それより顔料濃度を増大させても、白さが向上しなくなる。これは、光線が有効に反射しなくなるか、或いは顔料の均一分散が困難になって、見かけ上の粒子サイズが大きくなるためではないかと考えられる。   On the other hand, if the thickness of the coating film is the same, the higher the white pigment (titania) concentration in the coating film, the higher the whiteness (reflectivity) of the coating film. However, in practice, the whiteness is improved until the pigment concentration reaches about 50 to 65% by mass, but even if the pigment concentration is increased further, the whiteness is not improved. This is thought to be because the light beam does not reflect effectively or the uniform dispersion of the pigment becomes difficult and the apparent particle size increases.

以上より、白色度(反射性)の高い白色塗装鋼板を得るには、塗膜中の顔料濃度を50〜65質量%にして、その厚みを増大させればよいという結論になる。しかし、チタニアを含有する白色塗料を用いて、一度の塗装で厚い塗膜を形成するように厚膜塗装を行うと、ワキと呼ばれる現象に起因する塗装欠陥が発生する。   From the above, in order to obtain a white coated steel sheet with high whiteness (reflectivity), it is concluded that the pigment concentration in the coating film should be 50 to 65% by mass and the thickness thereof should be increased. However, when a thick film coating is performed using a white paint containing titania so as to form a thick coating film by a single coating, a coating defect caused by a phenomenon called “Waki” occurs.

ワキとは、塗装された塗料がオーブンで乾燥される際に、塗料に含まれる溶剤が、固まり始めた塗膜からスムーズに抜けずに、突沸的に蒸発する現象である。図1に示すように、塗装膜厚を増大させてある一定値を超えると、ワキ発生領域となり、ワキに起因する塗装欠陥(ブツ)が発生するようになる。   Waki is a phenomenon in which when a painted paint is dried in an oven, the solvent contained in the paint does not escape smoothly from the coating film that has started to harden, but evaporates suddenly. As shown in FIG. 1, when the coating film thickness is increased and exceeds a certain value, a crack generation region occurs, and a coating defect (burst) due to the crack occurs.

ワキは、塗装膜厚を増大させた場合に顔料や樹脂の種類によらずに共通して見られる現象であるが、白色塗装鋼板の場合、顔料の隠蔽力が比較的小さいため、白色度を上げるのに塗膜厚みを非常に大きくすることが必要となる。そのため、ワキが特に起こり易いという事情があった。   The armpit is a phenomenon commonly seen regardless of the type of pigment or resin when the coating film thickness is increased, but in the case of a white coated steel plate, the hiding power of the pigment is relatively small. To increase the thickness, it is necessary to make the coating thickness very large. For this reason, there was a situation that the armpit was particularly likely to occur.

このワキを防止するために、従来の白色塗装鋼板の製造では、一度に塗布する上塗り塗料の量を低く抑え、数回に分けて塗装する(即ち、下塗りと上塗りの間に1、2回の中塗りを行う)ことが必要となり、塗装に手間がかかり、白色塗装鋼板のコスト高の要因となっていた。上述した特許文献1、2においても、ワキの発生を防止する対策はとられていない。そのため、上塗り塗膜の塗装膜厚は、比較的小さな厚みに抑えられ、十分な白色度は得られていない。   In order to prevent this wrinkle, in the production of the conventional white coated steel sheet, the amount of the top coating applied at one time is kept low, and the coating is divided into several times (that is, once or twice between the undercoating and the top coating). It was necessary to perform intermediate coating), and it took time and effort to paint, which was a factor in increasing the cost of white-coated steel sheets. In Patent Documents 1 and 2 described above, no measures are taken to prevent the occurrence of cracks. Therefore, the coating film thickness of the top coat film is suppressed to a relatively small thickness, and sufficient whiteness is not obtained.

本発明は、ワキを発生させずに一度に厚膜塗装することを可能にすることによって、反射率(白色度)の高い白色塗装鋼板を、中塗りを行わずに下塗りと上塗りだけで、コストを抑えて製造可能にする技術を提供することを課題とする。   The present invention makes it possible to apply a thick film at one time without generating any cracks, so that a white coated steel sheet having a high reflectance (whiteness) can be produced by simply applying an undercoat and an overcoat without intermediate coating. It is an object of the present invention to provide a technology that can be manufactured while suppressing the above.

チタニアを50〜65質量%含有する白色塗膜の場合、塗装膜厚を30μm以上にしないと、L値が93以上の白色にはならない。ここで、白色とは、a値、b値ともに、その絶対値が3以下であることを意味する。   In the case of a white coating film containing 50 to 65% by mass of titania, the L value is 93 or more white unless the coating film thickness is 30 μm or more. Here, white means that the absolute value of both the a value and the b value is 3 or less.

塗装膜厚をさらに大きくすれば、L値はさらに高くなる。例えば、塗装膜厚が40μmになるとL値は95前後になり、50μmではL値は96を超えるようになる。しかし、下塗りと上塗りだけでそのような膜厚を得ようとすると、上塗りの膜厚を大きくしなければならず、ワキが発生するようになる。そのため、下塗りと上塗りだけの2コート2ベーク塗装では、ワキの発生のため、従来はL値が95より高い白色塗装鋼板を製造することは困難であった。   If the coating film thickness is further increased, the L value is further increased. For example, when the coating film thickness is 40 μm, the L value is around 95, and at 50 μm, the L value exceeds 96. However, if an attempt is made to obtain such a film thickness only by the undercoating and the overcoating, the film thickness of the overcoating must be increased, and a crack occurs. For this reason, it has been difficult to produce a white coated steel sheet having an L value higher than 95 in the past because of the occurrence of cracks in the two-coat two-bake coating with only the undercoat and the topcoat.

本発明によれば、上塗り塗膜に、白色顔料(通常はチタニア)に加えて、シリカのような白色顔料より大粒径の無色の無機粒子を含有させることにより、ワキ発生領域の膜厚をより高膜厚側にシフトさせることができる。それにより、ワキが発生しない上塗り塗膜の最大塗装膜厚が従来より大きくなり、2コート2ベーク塗装により、反射性の高い白色塗装鋼板を低コストで製造することが可能になる。   According to the present invention, in addition to the white pigment (usually titania), the top coat film contains colorless inorganic particles having a larger particle size than the white pigment such as silica, thereby reducing the thickness of the region where the crack occurs. It can be shifted to a higher film thickness side. As a result, the maximum coating film thickness of the top coating film that does not generate any cracks is larger than before, and it is possible to produce a white coated steel sheet having high reflectivity at a low cost by 2-coat 2-bake coating.

ここに、本発明は、上塗り塗装膜厚が20μmより大、塗装膜厚の合計が30μm以上の白色塗装鋼板であって、上塗り塗膜が、白色顔料に加えて、平均粒子径が1〜10μmの無色無機粒子を含有し、それにより上塗り塗膜のワキ発生が解消または抑制されたことを特徴とする白色塗装鋼板である。   Here, the present invention is a white coated steel sheet having a top coating film thickness of more than 20 μm and a total coating film thickness of 30 μm or more, wherein the top coating film has an average particle diameter of 1 to 10 μm in addition to the white pigment. The white-coated steel sheet is characterized in that it contains colorless inorganic particles, thereby eliminating or suppressing the occurrence of cracks in the top coat film.

別の側面において、本発明は、それぞれ白色顔料を含有する下塗り塗料と上塗り塗料を鋼板に塗装して白色塗装鋼板を製造する方法において、上塗り塗料が、白色顔料に加えて、平均粒子径が1〜10μmの無色無機粒子を含有し、それによって、ワキを発生させずに塗装可能な最小塗装膜厚を増大させることを特徴とする、白色塗装鋼板の製造方法である。   In another aspect, the present invention provides a method for producing a white coated steel sheet by coating a steel sheet with a base paint and a top paint each containing a white pigment, wherein the top paint has an average particle size of 1 in addition to the white pigment. A method for producing a white-coated steel sheet, comprising 10 to 10 μm of colorless inorganic particles, thereby increasing a minimum coating film thickness that can be applied without generating a crack.

本発明の白色塗装鋼板において塗装膜厚の合計を30μm以上としたのは、前述したように、L値93以上の白色塗装鋼板に必要な塗装膜厚であるからである。一般に下塗り塗装膜厚は10μm以下と薄いので、下塗りと上塗りの2コート2ベーク塗装により30μm以上の合計塗装膜厚を得るには、上塗り塗装膜厚を20μmより大きくする必要がある。ところが、上塗り塗膜の塗装膜厚が20μmより大きくなると、後で例証するように、ワキが発生し易くなる。   The reason why the total coating film thickness is set to 30 μm or more in the white coated steel sheet of the present invention is that the coating film thickness is necessary for the white coated steel sheet having an L value of 93 or more as described above. In general, since the thickness of the undercoat coating is as thin as 10 μm or less, in order to obtain a total coating thickness of 30 μm or more by two coats and two bake coating of the undercoat and the top coat, it is necessary to make the top coat thickness greater than 20 μm. However, when the coating film thickness of the top coat film is larger than 20 μm, it becomes easy to generate a crack as illustrated later.

図2に示すように、従来の方法で厚膜の上塗り塗装を行うと、塗膜の乾燥・焼付き時に塗料中の溶剤が揮発する際に、溶剤が気化して発生した小さな気泡が集まって大きな気泡となり、それが塗膜から抜けにくくなるため、ワキと呼ばれる現象が発生し、それに起因する塗装欠陥が発生する。この塗装欠陥は、塗膜の表面に肉眼で見える不規則な窪み(ブツ)を生じて、表面の平滑性を低下させ、塗装外観を著しく悪化させる。また、内部にも、大きな気泡がボイドとして残っており、塗膜の性能にも悪影響がある。従って、この塗装欠陥が顕著に発生した塗装鋼板は不良品となり、廃棄されることになるため、1回の塗装厚みは、好ましくはワキが全く発生しない範囲、あるいはワキ発生が軽微な範囲に抑える必要がある。   As shown in FIG. 2, when a thick film is applied by a conventional method, when the solvent in the paint volatilizes when the coating film is dried and seized, small bubbles generated by evaporation of the solvent gather. Since it becomes a large bubble and it becomes difficult to come off from the coating film, a phenomenon called “Waki” occurs, and a coating defect resulting therefrom occurs. This coating defect causes irregular depressions (bumps) that can be seen with the naked eye on the surface of the coating film, thereby reducing the smoothness of the surface and remarkably deteriorating the appearance of the coating. In addition, large bubbles remain as voids inside, which adversely affects the performance of the coating film. Therefore, since the coated steel sheet in which the coating defects are remarkably generated becomes a defective product and is discarded, the thickness of one coating is preferably limited to a range where no cracking occurs or a range where cracking is slight. There is a need.

本発明では、上塗り塗膜中に、白色顔料に比べて著しく大粒径の無色の無機粒子(例、シリカなどの無機酸化物)を添加することにより、図3に示すように、溶剤の気化により発生した小さな気泡が、無機粒子の周囲に沿ってスムーズに移動できるため、集まって大きな気泡とならずに、小さな気泡に分散した状態のまま塗膜表面まで移動し、塗膜外に放散される。特に無色無機粒子の平均粒子径が1〜10μmである時に大きな効果が得られた。無色無機粒子の平均粒子径が1μmより小さいと、無色無機粒子が塗膜中で凝集するため、均一な塗膜を得ることができない。無色無機粒子の平均粒子径が10μmより大きくなると、塗膜の加工性や耐食性に悪影響を生じる。   In the present invention, by adding colorless inorganic particles (e.g., inorganic oxides such as silica) having a significantly larger particle diameter than the white pigment to the top coat film, as shown in FIG. The small bubbles generated by the can move smoothly along the periphery of the inorganic particles, so they do not collect into large bubbles but move to the surface of the coating film while being dispersed in the small bubbles and diffused outside the coating film. The In particular, a large effect was obtained when the average particle diameter of the colorless inorganic particles was 1 to 10 μm. If the average particle diameter of the colorless inorganic particles is smaller than 1 μm, the colorless inorganic particles aggregate in the coating film, so that a uniform coating film cannot be obtained. When the average particle diameter of the colorless inorganic particles is larger than 10 μm, the processability and corrosion resistance of the coating film are adversely affected.

その結果、ワキが発生しない最大の塗装膜厚(換言すると、ワキ発生領域の最小塗装膜厚)が従来に比べて著しく大きくなるので、ワキ上塗り塗装時の塗装膜厚を大きくすることができ、下塗りと上塗りだけの2コート2ベーク塗装によって、L値が十分に高い反射性に優れた厚膜の白色塗装鋼板を得ることが可能となる。この無機粒子は無色であるので、白色塗装鋼板の色への悪影響は生じない。   As a result, the maximum coating film thickness that does not cause any cracking (in other words, the minimum coating film thickness in the area where the cracking occurs) is significantly larger than before, so the coating film thickness can be increased during top coating. By two-coat two-bake coating with only the undercoat and the topcoat, it is possible to obtain a thick-film white-coated steel sheet having a sufficiently high L value and excellent reflectivity. Since these inorganic particles are colorless, there is no adverse effect on the color of the white coated steel sheet.

図2および図3に白色顔料が示されていないのは、チタニアのような白色顔料は粒径が0.2〜0.3μmと非常に小さいからである。このような超微細な粒子は、それがたとえ無機酸化物であっても、塗膜の乾燥中に上述した無色無機粒子の作用を果たすことはできない。   The white pigment is not shown in FIGS. 2 and 3 because the white pigment such as titania has a very small particle size of 0.2 to 0.3 μm. Such ultrafine particles, even if they are inorganic oxides, cannot perform the above-described colorless inorganic particles during drying of the coating film.

本発明によれば、白色顔料に比べて著しく大粒径の無色無機粒子を上塗り塗料に含有させることにより、ワキ発生領域が著しく高膜厚側にシフトするので、上塗り塗膜の膜厚を20μmより大きくしてもワキの発生を完全に防止できるか、あるいは膜厚が非常に大きくなる場合でもワキ発生を著しく軽減できる。   According to the present invention, when the top coating material contains colorless inorganic particles having a remarkably large particle size as compared with the white pigment, the region where the crack occurs is remarkably shifted to the higher film thickness side, so that the film thickness of the top coating film is 20 μm. Even if it is made larger, the occurrence of cracks can be prevented completely, or even when the film thickness becomes very large, the cracks can be significantly reduced.

従来の2コート2ベーク塗装では、ワキの発生を防ぐための上塗り塗装膜厚の制限により、白色塗装鋼板のL値は最高でも94程度に抑えられていた。これに対し、本発明では、ワキの発生しない上塗り塗装膜厚が少なくとも10μm以上大きくなり、例えば、40μmの上塗り塗膜をワキを発生させずに塗装可能になる。それにより、L値が95以上の高い反射性を持つ白色塗装鋼板を2コート2ベークにより製造することが可能となる。従って、本発明によれば、高品質の白色塗装鋼板を低コストで製造することが可能となる。   In the conventional 2-coat 2-bake coating, the L value of the white coated steel sheet has been suppressed to about 94 at the maximum due to the limitation of the top coat film thickness to prevent the occurrence of cracks. On the other hand, in the present invention, the thickness of the top coating film where no crack is generated is increased by at least 10 μm, and for example, a 40 μm top coating film can be coated without generating a crack. Thereby, a white coated steel sheet having a high reflectivity with an L value of 95 or more can be produced by two coats and two bake. Therefore, according to the present invention, it is possible to produce a high-quality white coated steel sheet at a low cost.

本発明の白色塗装鋼板は、鋼板の少なくとも片面の表面に、少なくとも1層の白色塗膜、即ち、白色顔料、典型的にはチタニア(TiO2)で着色した塗膜、を有する。塗膜は通常は下塗り塗膜と上塗り塗膜の2層であり、この場合は2コート2ベーク塗装により塗装鋼板を製造できる。 The white coated steel sheet of the present invention has at least one layer of a white coating film, that is, a coating film colored with a white pigment, typically titania (TiO 2 ), on at least one surface of the steel sheet. The coating film is usually two layers of an undercoating film and an overcoating film. In this case, a coated steel sheet can be produced by 2-coat 2-bake coating.

上述したように、本発明は、この2コート2ベーク塗装によりL値が非常に高い反射性に優れた白色塗装鋼板を得ることができるという効果があり、この効果を生かすために、塗膜は下塗り塗膜と上塗り塗膜の2層だけとすることが好ましい。しかし、1または2以上の中塗り塗膜を下塗り塗膜と上塗り塗膜との間に介在させることも可能である。   As described above, the present invention has the effect that a white coated steel sheet having a very high L value can be obtained by this 2-coat 2-bake coating, and in order to take advantage of this effect, It is preferable to have only two layers, an undercoat film and a topcoat film. However, it is also possible to interpose one or more intermediate coating films between the undercoating film and the top coating film.

基材鋼板は、裸の鋼板(冷延鋼板または熱延鋼板)でも、めっき鋼板でもよい。また、ステンレス鋼板などの合金鋼板も使用できる。耐食性の点から好ましい基材は、亜鉛めっきと亜鉛合金めっきとを含む亜鉛系めっき鋼板である。めっき方法は、溶融めっき、電気めっき、気相めっきのいずれでもよい。亜鉛合金めっきとしては、これらに限られないが、Zn−Ni合金めっき、Zn−Al合金めっき(Al含有量5または55質量%)、Zn−Fe合金めっきなどが例示される。コスト面から好ましいのは溶融亜鉛めっき鋼板である。めっき付着量は通常の範囲でよいが、例えば、片面当たり20〜100g/m2の範囲内であろう。 The base steel plate may be a bare steel plate (cold rolled steel plate or hot rolled steel plate) or a plated steel plate. An alloy steel plate such as a stainless steel plate can also be used. A preferable base material in terms of corrosion resistance is a zinc-based plated steel sheet including zinc plating and zinc alloy plating. The plating method may be any one of hot dipping, electroplating, and vapor phase plating. Examples of the zinc alloy plating include, but are not limited to, Zn—Ni alloy plating, Zn—Al alloy plating (Al content 5 or 55 mass%), and Zn—Fe alloy plating. From the viewpoint of cost, a hot dip galvanized steel sheet is preferred. The plating coverage may be in the normal range, but will be in the range of 20-100 g / m 2 per side, for example.

基材鋼板は、塗装前に適当な下地処理を施したものでよい。基材が亜鉛系めっき鋼板である場合、従来の典型的な下地処理はクロメート処理であったが、6価クロムの有害性から、6価クロムを使用しない化成処理を下地処理に利用することが好ましい。例えば、リン酸亜鉛処理、3価クロムを含有する化成処理、あるいはケイ酸もしくはケイ酸塩、リン酸塩などを利用した完全クロムフリーの各種のノンクロム下地処理を利用することができる。   The base steel plate may have been subjected to an appropriate base treatment before painting. When the base material is a galvanized steel sheet, the conventional typical base treatment was chromate treatment. However, because of the harmfulness of hexavalent chromium, chemical conversion treatment that does not use hexavalent chromium can be used for the base treatment. preferable. For example, a zinc phosphate treatment, a chemical conversion treatment containing trivalent chromium, or various chromium-free non-chromium base treatments using silica, silicate, phosphate, or the like can be used.

塗膜の樹脂種は特に制限されず、ポリウレタン系樹脂、メラミン樹脂、さらには特に下塗りにはエポキシ樹脂、なども使用可能であるが、少なくとも上塗り塗膜の樹脂種はポリエステル系樹脂であることが好ましい。より好ましくは、全ての塗膜の樹脂種がポリエステル系樹脂である。これは、ポリエステル系樹脂の塗膜が加工性、強度などの各種物性においてバランスがとれているためである。   The resin type of the coating film is not particularly limited, and a polyurethane resin, a melamine resin, and particularly an epoxy resin can be used for the undercoat, but at least the resin type of the top coat film may be a polyester resin. preferable. More preferably, the resin type of all the coating films is a polyester resin. This is because the polyester resin coating film is balanced in various physical properties such as processability and strength.

このポリエステル系樹脂は、塗料に慣用されている焼付け硬化型のポリエステル系樹脂であり、ポリエステル樹脂に少量に硬化剤を配合したものである。硬化剤としては、メラミン樹脂、ブロックイソシアネートなどが使用できる。硬化剤の配合量はポリエステル樹脂100質量部に対して20〜35質量部程度が適当である。   This polyester-based resin is a bake-curing type polyester-based resin commonly used in paints, and is obtained by blending a small amount of a curing agent with a polyester resin. As the curing agent, melamine resin, blocked isocyanate and the like can be used. The blending amount of the curing agent is suitably about 20 to 35 parts by mass with respect to 100 parts by mass of the polyester resin.

下塗り塗膜の塗装膜厚は通常は10μm以下であるが、それより厚膜(例、20μm以下、場合によっては20μm超)とすることも可能である。下塗り塗膜の樹脂種は、上塗り塗膜と同じとすることが好ましいが、例えば、エポキシ樹脂などの鋼板との密着性が高く、架橋密度の高い樹脂を使用することもできる。下塗り塗膜は、白色顔料、好ましくはチタニアに加えて、防錆顔料などの他の成分を含有することができる。但し、上塗り塗膜の塗装膜厚が30μm以上あれば、下塗り塗膜に白色顔料を含有させることは必ずしも必要ない。   The coating film thickness of the undercoat film is usually 10 μm or less, but it can also be made thicker (eg, 20 μm or less, in some cases more than 20 μm). The resin type of the undercoating film is preferably the same as that of the overcoating film. For example, a resin having high adhesion to a steel plate such as an epoxy resin and having a high crosslinking density can also be used. The undercoating film can contain other components such as a rust preventive pigment in addition to the white pigment, preferably titania. However, if the coating film thickness of the top coat film is 30 μm or more, it is not always necessary to include a white pigment in the undercoat film.

上塗り塗膜は、白色顔料(好ましくはチタニア)に加えて、平均粒子径が1〜10μmの無色の無機粒子、好ましくは無機酸化物粒子を含有する。それによりワキが発生する塗装膜厚みを(ワキ発生領域)を高塗装膜厚側にシフトさせることができ、ワキを発生させずにより厚い上塗り塗膜を塗装することが可能となる。それ以外の少量の添加成分をさらに含有することもできる。   The top coat film contains, in addition to a white pigment (preferably titania), colorless inorganic particles having an average particle diameter of 1 to 10 μm, preferably inorganic oxide particles. As a result, the thickness of the coating film on which the armpit is generated can be shifted to the side of the high coating film thickness, and a thicker top coat film can be applied without generating the armpit. A small amount of other additive components may be further contained.

無色無機粒子として好ましいのは無機酸化物粒子であり、特にシリカが好ましい。本発明において、シリカとは、粉末状の非晶質シリカ、即ち、シリカガラスの粉末を意味する。シリカは安価である上、チタニアと一緒に塗膜中に存在させた場合に、色相ズレ(色相の変化)を起こしにくい。シリカはまた、上塗り塗膜に微細な凹凸を形成させることにより、光沢調整作用も示す。本発明において無色無機粒子として使用できるシリカ以外の材料としては、アルミナ、酸化亜鉛など、可視光に特定吸収を示さない無色の金属酸化物が挙げられる。   As the colorless inorganic particles, inorganic oxide particles are preferable, and silica is particularly preferable. In the present invention, silica means powdery amorphous silica, that is, silica glass powder. Silica is inexpensive and hardly causes hue shift (change in hue) when it is present in a coating film together with titania. Silica also exhibits a gloss adjusting action by forming fine irregularities on the top coat film. Examples of materials other than silica that can be used as colorless inorganic particles in the present invention include colorless metal oxides such as alumina and zinc oxide that do not exhibit specific absorption in visible light.

上塗り塗膜中の無色無機粒子の含有量は、本発明の目的である、ワキ発生領域の高塗装膜厚側へのシフトが達成されるように設定すればよい。無色無機粒子がシリカである場合、上塗り塗膜中のシリカの含有量は1〜5質量%とすることが好ましく、より好ましくは2〜4質量%である。無色無機粒子の含有量が少なすぎると効果がほとんど得られず、多すぎると塗装鋼板の加工性に悪影響を及ぼす。   The content of the colorless inorganic particles in the top coat film may be set so that the shift to the high coating film thickness side of the armature generation region, which is the object of the present invention, is achieved. When the colorless inorganic particles are silica, the content of silica in the top coat film is preferably 1 to 5% by mass, more preferably 2 to 4% by mass. If the content of the colorless inorganic particles is too small, the effect is hardly obtained, and if it is too large, the workability of the coated steel sheet is adversely affected.

上塗り塗膜の膜厚は20μmより大とし、全ての塗膜の合計塗装膜厚は30μm以上とする。上塗り塗膜の膜厚が20μm以下である場合には、本発明に従って無色無機粒子を含有させなくても、ワキの発生は見られないことが多い。上塗り塗膜の膜厚の上限は、ワキの発生が顕著に起こらないように設定すればよく、これは塗膜中の無色無機粒子や白色顔料の含有量によっても変動する。   The film thickness of the top coating film is greater than 20 μm, and the total coating film thickness of all the coating films is 30 μm or more. When the film thickness of the top coat film is 20 μm or less, the occurrence of cracks is often not observed even if colorless inorganic particles are not included according to the present invention. The upper limit of the film thickness of the top coat film may be set so that the occurrence of cracks does not occur remarkably, and this varies depending on the content of colorless inorganic particles and white pigment in the film.

上塗り塗膜中の白色顔料がチタニアで、その含有量が、塗膜の白さが上限に達する50〜60質量%である場合、塗膜がシリカを含有しない場合には、膜厚が20μmを超えるとワキが発生するようになり、膜厚が30μmになるとワキが顕著となって商品価値が著しく損なわれる。これに対し、本発明に従ってこの上塗り塗膜にシリカを含有させると、シリカの含有量が3質量%ある場合、膜厚が40μmまではワキの発生は起こらず、膜厚が45μmでもワキは軽微であり、ワキが顕著となるのは膜厚が50μmになってからである。従って、この場合の膜厚は45μm以下とし、好ましくは25〜40μm以下とする。無色無機粒子(シリカ)の含有量が多ければ、膜厚をさらに大きくすることができ、逆に含有量が少なければ、膜厚をより小さくする必要がある。   When the white pigment in the top coat film is titania and the content thereof is 50 to 60% by mass where the whiteness of the film reaches the upper limit, when the coating film does not contain silica, the film thickness is 20 μm. If it exceeds the limit, a crack will be generated. If the film thickness is 30 μm, the crack will become noticeable and the commercial value will be significantly impaired. On the other hand, when silica is contained in the top coat film according to the present invention, when the silica content is 3% by mass, the occurrence of cracks does not occur until the film thickness is 40 μm, and the cracks are slight even when the film thickness is 45 μm. It is after the film thickness reaches 50 μm that the cracks become noticeable. Therefore, the film thickness in this case is 45 μm or less, preferably 25 to 40 μm or less. If the content of the colorless inorganic particles (silica) is large, the film thickness can be further increased. Conversely, if the content is small, the film thickness needs to be further reduced.

下塗り塗膜は一般に上塗り塗膜より薄く、溶剤の揮散が比較的容易である上、表面に欠陥が発生しても、上塗り塗膜によりカバーされる。従って、下塗り塗膜には、上記の無色無機粒子を含有させる必要性はない。   The undercoating film is generally thinner than the topcoating film, and the volatilization of the solvent is relatively easy. Even if a defect occurs on the surface, the undercoating film is covered with the topcoating film. Therefore, it is not necessary for the undercoat coating film to contain the colorless inorganic particles.

上塗り塗膜中の白色顔料の含有量は、塗膜の白さが最大になる量に設定することが好ましい。従って、好ましい白色顔料であるチタニア(TiO2)の場合、上塗り塗膜中のその含有量は50質量%以上とすることが好ましい。多くしすぎても、L値のそれ以上の増大は得られないので、チタニアの好ましい含有量は50〜65質量%である。下塗り塗膜については、塗膜密着性を確保するために、チタニアの含有量をより少ない量(例、30〜50質量%)としてもよい。 The content of the white pigment in the top coat film is preferably set to an amount that maximizes the whiteness of the coat film. Therefore, in the case of titania (TiO 2 ), which is a preferred white pigment, the content in the top coat film is preferably 50% by mass or more. If the amount is too large, no further increase in the L value can be obtained, so the preferred content of titania is 50 to 65% by mass. About undercoat coating film, in order to ensure coating-film adhesiveness, it is good also considering content of titania as a smaller quantity (for example, 30-50 mass%).

本発明の塗装鋼板は常法に従って塗装と焼付けにより製造することができる。通常は2コート2ベークの塗装方法が採用されるが、樹脂種によっては、下塗り塗装後の乾燥焼付けを省略して、2コート1ベークとすることも可能である。もちろん、中塗りを行う時には、塗装工程が増える。焼付け条件は樹脂種と硬化剤に応じて設定すればよい。塗装方法は特に制限されないが、工業的には通常はロール塗装により行われる。   The coated steel sheet of the present invention can be produced by painting and baking according to a conventional method. Normally, a 2-coat 2-bake coating method is employed, but depending on the resin type, it is possible to omit the dry baking after the undercoat and make 2-coat 1-bake. Of course, when performing the intermediate coating, the painting process increases. The baking conditions may be set according to the resin type and the curing agent. The coating method is not particularly limited, but industrially, it is usually performed by roll coating.

基材として溶融亜鉛めっき鋼板(片面あたりのZn付着量:60g/m2、鋼板厚み:0.5mm)を使用し、この基材の両面に、シリカ系の塗布型ノンクロム下地処理(日本ペイント製サーフコートEC2000)を付着量300mg/m2となるように施した。 A hot-dip galvanized steel sheet (Zn adhesion amount on one side: 60 g / m 2 , steel sheet thickness: 0.5 mm) was used as a base material, and silica-based coating-type non-chromium base treatment (manufactured by Nippon Paint Co., Ltd.) was performed on both sides of the base material. Surf coat EC2000) was applied so that the adhesion amount was 300 mg / m 2 .

下地処理した基材の片面に、下塗り塗料として、全固形分に基づいてチタニアを53質量%含有する焼付け型ポリエステル系塗料(関西ペイント社製KPカラー8602)をバーコーターで塗装し、200℃(PMT)で焼き付けて塗膜を乾燥した。形成された下塗り塗装膜厚は全例で5μmに固定した。   On one side of the base material subjected to the ground treatment, a baking-type polyester-based paint containing 53% by mass of titania based on the total solid content (KP color 8602 manufactured by Kansai Paint Co., Ltd.) is applied with a bar coater as an undercoat, and 200 ° C. ( The coating was dried by baking with PMT). The formed undercoat coating film thickness was fixed at 5 μm in all cases.

次いで、上塗り塗料として、全固形分に基づいてチタニアを59質量%含有する焼付け型高分子ポリエステル系塗料(関西ペイント社製KPカラー1510)を下塗り塗膜の上にバーコーターで塗装し、230℃(PMT)で焼き付け乾燥して、白色塗装鋼板を作製した。   Next, a baking type high molecular weight polyester-based paint (KP Color 1510, manufactured by Kansai Paint Co., Ltd.) containing 59% by mass of titania based on the total solid content was applied as a top coat with a bar coater on the undercoat. (PMT) was baked and dried to prepare a white coated steel sheet.

使用した上塗り塗料には、無色無機粒子として平均粒子径が5μmのシリカを、塗料中の全固形分に基づいて0〜5質量%の範囲で0.5質量%のピッチで変化させながら添加し、塗膜の加工性と塗装欠陥(ワキにより発生したブツ)の関係を調査した。また、上塗り塗膜の塗装膜厚については、15μm〜50μmの範囲で5μmのピッチで変化させながら、塗装外観(ワキ発生状況)との関係を調査した。   To the top coat used, silica having an average particle size of 5 μm as colorless inorganic particles is added while changing at a pitch of 0.5% by mass within a range of 0 to 5% by mass based on the total solid content in the paint. The relationship between the processability of the coating film and the coating defects (defects generated by the armpit) was investigated. Moreover, about the coating film thickness of top coat film, the relationship with a coating external appearance (boiled condition) was investigated, changing by the pitch of 5 micrometers in the range of 15 micrometers-50 micrometers.

塗装外観(ワキ発生状況)については、得られた白色塗装鋼板の200×300mmのサンプルの外観を目視観察して、ワキにより発生した塗装欠陥(ブツ)の個数を数え、次の基準で5段階評価した:
5:全面的に良好で、ワキに起因する塗装欠陥(ブツ)が全く見られない;
4:サンプルに1〜2個のブツが観察される;
3:サンプルに3〜10個のブツが観察される;
2:サンプルに11個以上のブツが観察される;
1:ほぼ全面にブツが観察される。
As for the appearance of paint, the appearance of the white coated steel sheet was visually observed and the number of coating defects (spots) generated by the armpit was counted. evaluated:
5: Good overall, no paint defects due to armpits;
4: 1 to 2 bumps are observed in the sample;
3: 3-10 bumps are observed in the sample;
2: 11 or more spots are observed in the sample;
1: Spots are observed on almost the entire surface.

加工性については、得られた白色塗装鋼板のサンプルに常温(20℃)で万力を用いて2T折り曲げを行い、折り曲げ部を10倍ルーペで観察して、クラックの発生状況により、次の基準で5段階評価した。   Regarding the workability, the sample of the white coated steel sheet obtained was subjected to 2T folding using a vise at room temperature (20 ° C), and the bent portion was observed with a 10-fold loupe. It was evaluated in five stages.

5:クラックが全く見られない;
4:1〜2ヶ所にクラックが観察される;
3:3ヶ所以上に部分的にクラックが観察される;
2:全面に小さいクラックが観察される;
1:全面に大きなクラックが観察される。
5: No cracks are seen;
4: Cracks are observed in 1 to 2 places;
3: Partial cracks are observed at three or more locations;
2: Small cracks are observed on the entire surface;
1: Large cracks are observed on the entire surface.

試験結果を表1〜表3および図4〜6にそれぞれ示す。なお、塗装外観と加工性のいずれもサンプル数は2であり、その平均値で結果を表示した。いずれも、評点5が最良であり、評点4は許容できるが、評点3以下は商品としては許容できない水準である。   The test results are shown in Tables 1 to 3 and FIGS. In addition, the number of samples was 2 for both the coating appearance and workability, and the results were displayed as average values. In any case, the score 5 is the best, the score 4 is acceptable, but the score of 3 or less is an unacceptable level as a product.

表1および図4は、上塗り塗膜へのシリカ添加量が0質量%(比較例)および3質量%(本発明例)である場合について、上塗り塗装膜厚と塗装欠陥(ワキ)の発生状況との関係を示す。表2および図5は、上塗り塗装膜厚が30μmおよび40μmである場合について、シリカ添加量と塗装欠陥(ワキ)との関係を示す。表3および図6は、上塗り塗装膜厚が30μmおよび40μmである場合について、シリカ添加量と加工性との関係を示す。   Table 1 and FIG. 4 show the occurrence of top coating film thickness and coating defects (wax) when the silica addition amount to the top coating film is 0 mass% (comparative example) and 3 mass% (invention example). The relationship is shown. Table 2 and FIG. 5 show the relationship between the amount of silica added and the coating defect (wax) when the top coat film thickness is 30 μm and 40 μm. Table 3 and FIG. 6 show the relationship between the amount of silica added and processability when the top coat film thickness is 30 μm and 40 μm.

Figure 2007229630
Figure 2007229630

Figure 2007229630
Figure 2007229630

Figure 2007229630
Figure 2007229630

表1および図4からわかるように、上塗り塗膜が無色無機粒子であるシリカを含有しない場合には、上塗り塗膜の塗装膜厚が25μm以上でワキが発生しはじめ、塗装膜厚が30μm以上ではワキ発生がやや目立ち(評点4)、特に40μm以上では商品価値がなくなるほどワキ発生が著しくなる(評点2以下)。   As can be seen from Table 1 and FIG. 4, when the top coating film does not contain silica, which is a colorless inorganic particle, the top coating film begins to generate cracks when the coating film thickness is 25 μm or more, and the coating film thickness is 30 μm or more. Then, the occurrence of cracks is slightly conspicuous (score 4). In particular, the crack becomes more significant as the commercial value is lost at 40 μm or more (score 2 or less).

一方、本発明に従って上塗り塗膜にシリカを3質量%の量で含有させた場合には、塗装膜厚が40μmまではワキが全く発生せず(評点5)、45μmでワキが発生し始めるが、膜厚50μmまでは評点が4であり、ワキ発生が著しくなるのは膜厚が55μm以上である。従って、シリカを含有しない場合に比べて、ワキが発生しない膜厚を約20μmも大きくすることができた。   On the other hand, when silica is contained in the top coat film in an amount of 3% by mass according to the present invention, no cracking occurs until the coating film thickness is 40 μm (rating 5), but cracking begins to occur at 45 μm. The rating is 4 up to a film thickness of 50 μm, and the occurrence of cracking is remarkable when the film thickness is 55 μm or more. Therefore, compared with the case where no silica is contained, the film thickness at which no cracking occurs can be increased by about 20 μm.

表2および図5からは、上塗り塗膜の塗装膜厚が30μmの場合にはシリカ含有量が1質量%以上になるとワキ発生を完全に防止することができ、上塗り塗膜の塗装膜厚が40μmの場合にはシリカ含有量が2質量%以上でワキ発生を抑制でき、3質量%以上では完全に防止できることがわかる。   From Table 2 and FIG. 5, when the coating film thickness of the top coat film is 30 μm, the occurrence of cracks can be completely prevented when the silica content is 1% by mass or more. In the case of 40 μm, it can be seen that the occurrence of cracking can be suppressed when the silica content is 2% by mass or more, and it can be completely prevented when the content is 3% by mass or more.

表3および図6からは、上塗り塗膜へのシリカ添加量が多くなると加工性が低下するが、シリカ添加量が5質量%以下であれば、上塗り塗膜の塗装膜厚が40μmの場合でも加工性は許容範囲内である。上塗り塗膜の膜厚をさらに大きくする場合には、シリカ含有量を例えば、4質量%以下と少なくすることにより、必要な加工性を確保できる。   From Table 3 and FIG. 6, the workability decreases when the amount of silica added to the top coat film increases, but if the silica addition amount is 5% by mass or less, even when the coating film thickness of the top coat film is 40 μm. Workability is within an acceptable range. When the film thickness of the top coat film is further increased, necessary workability can be ensured by reducing the silica content to, for example, 4% by mass or less.

なお、下塗り塗膜および上塗り塗膜のチタニア含有量ならびに下塗り塗料の塗装膜厚が本実施例に記載した条件である場合、上塗り塗膜の塗装膜厚による塗装鋼板のL値は次の通りであった(カッコ内がL値):
上塗り塗膜の塗装膜厚:20μm(90.5)、25μm(93.0)、30μm(93.9)、35μm(94.2)、40μm(95.2)、45μm(96.3)、50μm(96.5)。
In addition, when the titania content of the undercoat film and the topcoat film and the coating film thickness of the undercoat film are the conditions described in this example, the L value of the coated steel sheet according to the coating film thickness of the topcoat film is as follows. Yes (in parentheses are L values):
Coating film thickness of top coat film: 20 μm (90.5), 25 μm (93.0), 30 μm (93.9), 35 μm (94.2), 40 μm (95.2), 45 μm (96.3), 50 μm (96.5).

従って、本発明によれば、ワキを全く発生させずに、L値が95以上という反射性(白色度)に優れた、照明器具の反射板やカバーに最適の性能を持つ白色塗装鋼板を下塗りと上塗りだけで効率よく低コストで製造することができる。   Therefore, according to the present invention, a white coated steel sheet with an optimum performance for a reflector or cover of a lighting fixture, which has excellent reflectivity (whiteness) with an L value of 95 or more without generating any cracks, is primed. And it can be manufactured efficiently and at low cost only by overcoating.

白色塗装鋼板の塗装膜厚と白色度(L値)との関係を模式的に示す説明図。Explanatory drawing which shows typically the relationship between the coating film thickness of a white coated steel plate, and whiteness (L value). 従来の白色塗装鋼板の上塗り塗膜の乾燥中にワキに起因する塗装欠陥が発生する推定メカニズムを示す説明図。Explanatory drawing which shows the presumed mechanism in which the coating defect resulting from an armpit occurs during the drying of the top coat film of the conventional white coated steel plate. 本発明において上塗り塗膜に無色無機粒子を含有させることによりワキの発生が抑制される推定メカニズムを示す説明図。Explanatory drawing which shows the presumed mechanism by which generation | occurrence | production of a crack is suppressed by making a top coat film contain a colorless inorganic particle in this invention. 上塗り塗膜の塗装膜厚(塗膜厚)と塗装外観(ワキ発生状況)の発生状況との関係を示すグラフ。The graph which shows the relationship between the coating film thickness (coating film thickness) of a top coat film, and the generation | occurrence | production condition of the coating appearance (boil generation | occurrence | production condition). 上塗り塗膜へのシリカ添加量と塗装外観(ワキ発生状況)との関係を示すグラフ。The graph which shows the relationship between the addition amount of silica to a top coat film, and the coating external appearance (situation | occurrence | production condition of a crack). 上塗り塗膜へのシリカ添加量と加工性との関係を示すグラフ。The graph which shows the relationship between the silica addition amount to top coat film, and workability.

Claims (11)

上塗り塗装膜厚が20μmより大、塗装膜厚の合計が30μm以上の白色塗装鋼板であって、上塗り塗膜が、白色顔料に加えて、平均粒子径が1〜10μmの無色無機粒子を含有し、それにより上塗り塗膜のワキ発生が解消または抑制されたことを特徴とする白色塗装鋼板。   A white coated steel sheet having a top coating film thickness of more than 20 μm and a total coating film thickness of 30 μm or more, wherein the top coating film contains colorless inorganic particles having an average particle diameter of 1 to 10 μm in addition to the white pigment. A white coated steel sheet characterized by eliminating or suppressing the occurrence of cracks in the top coat film. 少なくとも上塗り塗膜の樹脂種がポリエステル系樹脂である、請求項1に記載の白色塗装鋼板。   The white coated steel sheet according to claim 1, wherein at least the resin type of the top coat film is a polyester resin. 無色無機粒子がシリカであり、上塗り塗膜中のシリカの含有量が1〜5質量%である請求項1または2に記載の白色塗装鋼板。   The white coated steel sheet according to claim 1 or 2, wherein the colorless inorganic particles are silica, and the content of silica in the top coat film is 1 to 5% by mass. 塗膜が下塗りと上塗りの2層からなる、請求項1〜3のいずれか1項に記載の白色塗装鋼板。   The white coated steel sheet according to any one of claims 1 to 3, wherein the coating film comprises two layers of an undercoat and an overcoat. 白色顔料がチタニアである、請求項1〜4のいずれか1項に記載の白色塗装鋼板。   The white coated steel plate according to any one of claims 1 to 4, wherein the white pigment is titania. 上塗り塗膜中のチタニアの含有量が50〜65質量%である、請求項5に記載の白色塗装鋼板。   The white coated steel sheet according to claim 5, wherein the titania content in the top coat film is 50 to 65 mass%. 下塗り塗料と上塗り塗料を鋼板に塗装して白色塗装鋼板を製造する方法において、上塗り塗料が、白色顔料に加えて、平均粒子径が1〜10μmの無色無機粒子を含有し、それによって、ワキを発生させずに塗装可能な最小塗装膜厚を増大させることを特徴とする、白色塗装鋼板の製造方法。   In the method of producing a white coated steel sheet by coating a steel sheet with a base coat and a top coat, the top coat contains colorless inorganic particles having an average particle diameter of 1 to 10 μm in addition to the white pigment, thereby A method for producing a white coated steel sheet, characterized by increasing the minimum paint film thickness that can be painted without causing it to occur. 乾燥膜厚で上塗り塗料の塗装厚みが20μmより大、塗装膜厚の合計が30μm以上である、請求項7に記載の方法。   The method according to claim 7, wherein the coating thickness of the top coating is greater than 20 μm and the total coating thickness is 30 μm or more in a dry film thickness. 上塗り塗料の塗装厚みが30μm以上である、請求項8に記載の方法。   The method of Claim 8 that the coating thickness of top coat is 30 micrometers or more. 無色無機粒子がシリカであり、上塗り塗料の全固形分に基づくシリカの含有量が1〜5質量%である請求項7〜9のいずれか1項に記載の方法。   The method according to any one of claims 7 to 9, wherein the colorless inorganic particles are silica, and the content of silica based on the total solid content of the top coat is 1 to 5% by mass. 上塗り塗料に含有される白色顔料がチタニアであり、その含有量が上塗り塗料の全固形分に基づいて50〜65質量%である、請求項7〜10のいずれか1項に記載の方法。   The method according to any one of claims 7 to 10, wherein the white pigment contained in the top coating material is titania, and the content thereof is 50 to 65% by mass based on the total solid content of the top coating material.
JP2006054897A 2006-03-01 2006-03-01 White coated steel sheet having high reflectance Pending JP2007229630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054897A JP2007229630A (en) 2006-03-01 2006-03-01 White coated steel sheet having high reflectance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054897A JP2007229630A (en) 2006-03-01 2006-03-01 White coated steel sheet having high reflectance

Publications (1)

Publication Number Publication Date
JP2007229630A true JP2007229630A (en) 2007-09-13

Family

ID=38550756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054897A Pending JP2007229630A (en) 2006-03-01 2006-03-01 White coated steel sheet having high reflectance

Country Status (1)

Country Link
JP (1) JP2007229630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121135A (en) * 2009-12-22 2010-06-03 Nippon Fine Coatings Inc Highly reflective coating composition and highly reflective coating film
JP2011036838A (en) * 2009-08-18 2011-02-24 Sumitomo Metal Ind Ltd Coated metal sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037591A (en) * 2003-07-18 2005-02-10 Idemitsu Petrochem Co Ltd Light reflecting sheet and its molding
JP2005169857A (en) * 2003-12-11 2005-06-30 Sumitomo Metal Steel Products Inc Coated metal sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037591A (en) * 2003-07-18 2005-02-10 Idemitsu Petrochem Co Ltd Light reflecting sheet and its molding
JP2005169857A (en) * 2003-12-11 2005-06-30 Sumitomo Metal Steel Products Inc Coated metal sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036838A (en) * 2009-08-18 2011-02-24 Sumitomo Metal Ind Ltd Coated metal sheet
JP2010121135A (en) * 2009-12-22 2010-06-03 Nippon Fine Coatings Inc Highly reflective coating composition and highly reflective coating film
JP4609738B2 (en) * 2009-12-22 2011-01-12 日本ファインコーティングス株式会社 Highly reflective coating composition and highly reflective coating film

Similar Documents

Publication Publication Date Title
JP4648992B2 (en) Painted metal material and manufacturing method thereof
JP6014005B2 (en) Black painted metal plate
JP3376949B2 (en) Solar heat reflective surface treated metal plate
JP5126548B2 (en) Coated steel sheet and electronic equipment casing using the same
JP5544782B2 (en) Paint composition for painted metal
JP5380033B2 (en) Painted metal material with excellent corrosion resistance and paint adhesion
JP5113638B2 (en) Metallic matte design coating Metal plate coating method
JP2000126678A (en) Coated metallic sheet coated with heat shieldable coating material
JP4873974B2 (en) Pre-coated metal plate and manufacturing method thereof
JP2013193273A (en) Coated steel sheet, and housing using the same
JP2007229630A (en) White coated steel sheet having high reflectance
KR102081372B1 (en) Coated steel sheet having high corrosion resistance and method for manufacturing the same
JP2010115902A (en) Coated steel sheet and case for electronic device manufactured by using the same
JP5163274B2 (en) Pre-coated metal plate and manufacturing method thereof
TWI521096B (en) Precoated steel sheet and method for manufacturing the same
JP5661699B2 (en) Manufacturing method of resin-coated steel sheet
JP4305157B2 (en) Painted metal plate
JP2011177621A (en) Method of manufacturing surface-treated coated steel sheet
JP4751274B2 (en) Fluorine resin coated steel sheet
JP6132078B1 (en) Black painted steel plate
JP5195689B2 (en) Painted metal plate
JP2011038138A (en) Painted metal material and housing made by using the same
JP6343505B2 (en) Exterior materials for construction
JP2003071980A (en) Coated steel sheet for exterior
JP2006175810A (en) Coated metal sheet good in processability and antistaining properties, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125