JP2005349691A - Thermoplastic resin-coated aluminum sheet for general can - Google Patents

Thermoplastic resin-coated aluminum sheet for general can Download PDF

Info

Publication number
JP2005349691A
JP2005349691A JP2004172564A JP2004172564A JP2005349691A JP 2005349691 A JP2005349691 A JP 2005349691A JP 2004172564 A JP2004172564 A JP 2004172564A JP 2004172564 A JP2004172564 A JP 2004172564A JP 2005349691 A JP2005349691 A JP 2005349691A
Authority
JP
Japan
Prior art keywords
film
thermoplastic resin
resin
aluminum plate
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004172564A
Other languages
Japanese (ja)
Inventor
Hajime Nakada
一 中田
Keitaro Yamaguchi
恵太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004172564A priority Critical patent/JP2005349691A/en
Publication of JP2005349691A publication Critical patent/JP2005349691A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin-coated aluminum sheet for a general can not lowered in adhesion even at the time of filling with highly corrosive content and excellent in adhesion and corrosion resistance. <P>SOLUTION: The thermoplastic resin-coated aluminum sheet is constituted by forming a non-porous anodic oxidation film with a porosity of 20% or below and a thickness of 40-300 nm at least on one side of a substrate body comprising aluminum or an aluminum alloy, coating the non-porous anodization film with a silane coupling agent within a range of 0.1-100 mg/m<SP>2</SP>and forming a resin coating layer comprising a thermoplastic resin with a thickness of 8-100 μm at least on one side of the substrate body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化学薬品、塗料、油などの腐食性の高い内容物の収容に好適であって、耐食性、環境保護性に優れ、樹脂被覆層の密着性にも優れた一般缶用熱可塑性樹脂被覆アルミニウム板に関する。   The present invention is suitable for accommodating highly corrosive contents such as chemicals, paints, oils, etc., and is excellent in corrosion resistance, environmental protection and adhesiveness of a resin coating layer. The present invention relates to a coated aluminum plate.

アルミニウム材料は軽量であるとともに成形性に優れることから、缶等の金属容器、建材、日用品、筐体、あるいはこれらの蓋体として幅広く使用されている。
アルミニウム材料のこれら用途の内、18L缶、ペール缶、ドラム缶等の一般缶分野では、腐食性の高い化学薬品、塗料、調味料、油などが充填される。このような腐食性の高い内容物からアルミニウム材料を保護するために、リン酸クロメートやジルコニウム系の化成処理、硫酸アルマイトやリン酸アルマイト等の陽極酸化処理等の下地処理を施し、エポキシ系の熱硬化性樹脂塗料を二層コートしたアルミニウム板からなる缶が使用されている。また、近年では、ポリエステル系の熱可塑性樹脂フィルムを積層した樹脂被覆アルミニウム板が使用されることもある。
Aluminum materials are widely used as metal containers such as cans, building materials, daily necessities, housings, or lids thereof because they are lightweight and have excellent formability.
Among these uses of aluminum materials, in the general can field such as 18 L cans, pail cans, drum cans, etc., highly corrosive chemicals, paints, seasonings, oils and the like are filled. In order to protect aluminum materials from such highly corrosive contents, surface treatment such as phosphoric acid chromate and zirconium chemical conversion treatment, anodizing treatment such as sulfuric acid alumite and phosphoric acid alumite, etc. is performed, and epoxy heat A can made of an aluminum plate coated with two layers of a curable resin paint is used. In recent years, a resin-coated aluminum plate on which a polyester-based thermoplastic resin film is laminated may be used.

ところで、アルミニウム板材の下地処理として一般的なクロメート処理は、その処理液及び形成される皮膜中に環境及び人体に有害なクロムを含み、またジルコニウム系の化成処理膜においても化成処理のため、適正な特性を得るためには厳密な薬液管理が必要である。
また、アルミニウム板材に適用される陽極酸化処理としては、硫酸アルマイトやリン酸アルマイトが一般的であるが、これらは多孔質皮膜であり、孔の中に含まれる処理液成分が樹脂層を形成する際の加熱によりガスとなって放出され密着性に悪影響を及ぼすことがある。これを防ぐために封孔処理があるが、生産性の低下、コストが上がるといった問題がある。またこれら下地処理層は密着性が十分とは言えず、トルエンやキシレン等の有機溶剤を含む塗料を充填すると、アルミニウム板材から樹脂層が剥離するといった問題がある。
By the way, the general chromate treatment as a base treatment of an aluminum plate material contains chromium harmful to the environment and the human body in the treatment liquid and the film to be formed, and also suitable for the chemical conversion treatment in the zirconium-based chemical conversion treatment film. Strict chemical management is necessary to obtain the proper characteristics.
As anodizing treatment applied to the aluminum plate material, sulfuric acid alumite and phosphoric acid alumite are generally used, but these are porous films, and the treatment liquid component contained in the pores forms a resin layer. When heated, it is released as a gas and may adversely affect the adhesion. There is a sealing treatment to prevent this, but there are problems such as a decrease in productivity and an increase in cost. Further, these base treatment layers cannot be said to have sufficient adhesion, and there is a problem that the resin layer peels off from the aluminum plate material when filled with a paint containing an organic solvent such as toluene or xylene.

ところで本発明者らは、種々の用途のアルミニウム材料について研究開発を行っており、例えば、電機部品外筐、エアコンフィン材等のアルミニウム成形体として、アルミニウム合金からなる金属基材と、該金属基材の表面に形成された陽極酸化皮膜(いわゆるアルマイト酸化皮膜)からなる下地層とを有する表面処理アルミニウム材を研究開発する過程の一環として、多孔質陽極酸化皮膜を有する表面処理アルミ材の、耐食性、ガス放出性、アルミ基材に対する密着性を改善する目的から、多孔質に比べて空孔率を低くした無孔質の陽極酸化皮膜を得る技術について研究開発を進め、その成果を以下の特許において提供している。(特許文献1、2、3参照)
特開平5−25694号公報 特開平8−283991号公報 特開平8−283990号公報
By the way, the present inventors have been researching and developing aluminum materials for various uses. For example, as an aluminum molded body such as an outer casing of an electric component or an air conditioning fin material, a metal base material made of an aluminum alloy, and the metal base Corrosion resistance of a surface-treated aluminum material having a porous anodized film as part of the process of researching and developing a surface-treated aluminum material having a base layer made of an anodized film (so-called anodized oxide film) formed on the surface of the material For the purpose of improving gas release properties and adhesion to aluminum substrates, research and development on technology to obtain non-porous anodic oxide film with lower porosity than porous materials has been promoted. Is offered in. (See Patent Documents 1, 2, and 3)
JP-A-5-25694 JP-A-8-283991 JP-A-8-283990

先に説明したアルミニウム板材の表面への樹脂塗装は、有機溶剤を用いるため作業環境が悪く、また塗料を高温で焼き付けるためCOガスの排出等環境負荷が大きい。また、二層コートのためコストも高くなる問題がある。
次に、熱可塑性樹脂被覆では、結晶化率が低くなるとバリヤ性が低下し、有機溶剤を含む塗料を容器内に充填すると、樹脂層の剥離やアルミニウム板材そのものの腐食の発生といった問題が生じる。また、アルミニウム板材へのラミネート時に加熱溶融した樹脂が損傷し、ピンホールが発生するという問題があった。
The above-described resin coating on the surface of the aluminum plate material uses an organic solvent, so that the working environment is bad, and the paint is baked at a high temperature, so that an environmental load such as discharge of CO 2 gas is large. Moreover, there is a problem that the cost is increased due to the two-layer coating.
Next, in the thermoplastic resin coating, the barrier property is lowered when the crystallization rate is lowered, and when the container is filled with a paint containing an organic solvent, problems such as peeling of the resin layer and occurrence of corrosion of the aluminum plate itself occur. Further, there has been a problem that the resin melted by heating during the lamination to the aluminum plate material is damaged and a pinhole is generated.

本発明は上記事情に鑑みてなされたもので、腐食性の高い内容物を充填しても密着性が低下しない、密着性、耐食性に優れる一般缶用樹脂被覆アルミニウム板を得ることを目的とする。
また、本発明は、貼り合わせなどの際のロール傷や異物混入による腐食や貼り合わせ不良に伴う腐食の抑制ができるとともに、下地処理に用いる処理液や形成される皮膜に有害物質を含まないので安全性及び環境保護性に優れる一般缶用熱可塑性樹脂被覆アルミニウム板の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a resin-coated aluminum plate for general cans that has excellent adhesion and corrosion resistance, and does not deteriorate adhesion even when filled with highly corrosive contents. .
In addition, the present invention can suppress corrosion due to roll scratches and foreign matter contamination during bonding and contamination due to poor bonding, and does not contain harmful substances in the treatment liquid used for the base treatment or the film to be formed. The object is to provide a thermoplastic resin-coated aluminum plate for general cans that is excellent in safety and environmental protection.

上記目的を達成するための本発明は、アルミニウムまたはアルミニウム合金からなる基板本体の少なくとも一方の表面に、有孔率20%以下、皮膜厚さが40〜300nmの無孔質陽極酸化皮膜が形成され、この無孔質陽極酸化皮膜上にシラン系カップリング剤が0.1〜100mg/mの範囲で塗布され、前記基板本体の少なくとも一方の面に8〜100μmの厚さの熱可塑性樹脂からなる樹脂被覆層が形成されたことを特徴とする。 In order to achieve the above object, according to the present invention, a nonporous anodic oxide film having a porosity of 20% or less and a film thickness of 40 to 300 nm is formed on at least one surface of a substrate body made of aluminum or an aluminum alloy. On the nonporous anodic oxide film, a silane coupling agent is applied in the range of 0.1 to 100 mg / m 2 , and a thermoplastic resin having a thickness of 8 to 100 μm is applied to at least one surface of the substrate body. A resin coating layer is formed.

本発明は前記シラン系カップリング剤としてアミノ基を有するものを適用できる。
本発明において前記少なくとも一方の樹脂被覆層の結晶化率が40%以上とされてなることが好ましい。
In the present invention, those having an amino group can be applied as the silane coupling agent.
In the present invention, it is preferable that the crystallization rate of the at least one resin coating layer is 40% or more.

本発明において前記基板本体の少なくとも一方の面に形成された熱可塑性樹脂からなる樹脂被覆層を単層または複層のポリエステルフィルムから構成することができる。
本発明において前記基板本体の一方の面であって内容物が接触されない側の面に熱硬化性樹脂の副樹脂被覆層が積層されてなるものを用いることができる。
In the present invention, the resin coating layer made of a thermoplastic resin formed on at least one surface of the substrate body can be composed of a single layer or a multilayer polyester film.
In the present invention, a substrate in which a sub-resin coating layer of a thermosetting resin is laminated on one surface of the substrate main body on which the contents are not contacted can be used.

本発明によれば、基板本体に特定の有孔率と厚さの無孔質陽極酸化皮膜と特定塗布量のシラン系カップリン剤と特定範囲の厚さの熱可塑性樹脂の樹脂被覆層とを積層してなるので、一般缶用として本発明のアルミニウム板を用いて缶を構成し、その缶に腐食性の高い内容物を充填した場合であっても樹脂被覆層の密着性が低下しないので、耐食性に優れる一般缶を提供できる効果がある。前記樹脂被覆層のバリヤ性はその結晶化率に大きく影響を受けるので、40%以上の結晶化率とすることで、十分なバリヤ性を確保できる。
また、本発明は、基板本体に特定の有孔率と厚さの無孔質陽極酸化皮膜と特定塗布量のシラン系カップリン剤と特定範囲の厚さの熱可塑性樹脂の樹脂被覆層とを積層してなるので、貼り合わせなどの際のロール傷や異物混入による腐食や貼り合わせ不良に伴う腐食の抑制ができるとともに、下地処理に用いる処理液や形成される皮膜に有害物質を含まないので安全性及び環境保護性に優れる一般缶を提供できる。
According to the present invention, a nonporous anodic oxide film having a specific porosity and thickness, a specific coating amount of a silane-based coupling agent, and a resin coating layer of a thermoplastic resin having a specific range of thickness are provided on the substrate body. Since it is laminated, the can is constructed using the aluminum plate of the present invention for general cans, and even if the can is filled with highly corrosive contents, the adhesion of the resin coating layer does not decrease. There is an effect that can provide a general can excellent in corrosion resistance. Since the barrier property of the resin coating layer is greatly influenced by the crystallization rate, a sufficient barrier property can be secured by setting the crystallization rate to 40% or more.
Further, the present invention provides a substrate body with a nonporous anodic oxide film having a specific porosity and thickness, a specific coating amount of a silane coupling agent, and a resin coating layer of a thermoplastic resin having a specific range of thickness. Since it is laminated, it can suppress corrosion caused by roll scratches and foreign matter contamination during bonding and contamination due to poor bonding, and it does not contain harmful substances in the processing liquid used for the base treatment or the film to be formed. A general can excellent in safety and environmental protection can be provided.

本発明に係る一般缶用熱可塑性樹脂被覆アルミニウム板の第1の実施形態において、アルミニウム板Aは図1に断面構造を示す如く、アルミニウム又はアルミニウム合金からなる基板本体1の上下両面側に無孔質陽極酸化皮膜2が形成され、これらの無孔質陽極酸化皮膜2の外面側にシラン系カップリング剤からなるカップリング層3が形成され、これらのカップリング層3の外側に熱可塑性樹脂からなる樹脂被覆層5が形成された構成とされている。
また、本発明に係る一般缶用熱可塑性樹脂被覆アルミニウム板の第2の実施形態において、アルミニウム板Bは図2に断面構造を示す如く、アルミニウム又はアルミニウム合金からなる基板本体1の上下両面側に無孔質陽極酸化皮膜2が形成され、これらの無孔質陽極酸化皮膜2の外面側にシラン系カップリング剤からなるカップリング層3が形成され、一方(図2の上側)のカップリング層3の外側に熱可塑性樹脂からなる樹脂被覆層5が形成されるとともに、他方(図2の下側の)のカップリング層3の外側に熱硬化性樹脂からなる副樹脂被覆層6が形成された構成とされている。
In the first embodiment of the thermoplastic resin-coated aluminum plate for a general can according to the present invention, the aluminum plate A has no holes on the upper and lower surfaces of the substrate body 1 made of aluminum or an aluminum alloy, as shown in FIG. A porous anodic oxide film 2 is formed, a coupling layer 3 made of a silane coupling agent is formed on the outer surface side of the nonporous anodic oxide film 2, and a thermoplastic resin is formed on the outside of the coupling layer 3. The resin coating layer 5 is formed.
Further, in the second embodiment of the thermoplastic resin-coated aluminum plate for general cans according to the present invention, the aluminum plate B is formed on the upper and lower surfaces of the substrate body 1 made of aluminum or aluminum alloy as shown in the cross-sectional structure of FIG. A nonporous anodic oxide film 2 is formed, a coupling layer 3 made of a silane coupling agent is formed on the outer surface side of these nonporous anodic oxide films 2, and one (upper side in FIG. 2) coupling layer A resin coating layer 5 made of a thermoplastic resin is formed on the outside of 3, and a secondary resin coating layer 6 made of a thermosetting resin is formed on the outside of the other coupling layer 3 (the lower side in FIG. 2). It has been configured.

前記基板本体1を構成するアルミニウム又はアルミニウム合金は、純AlあるいはAl合金を意味する。具体的にはJIS規定の純アルミ系の1000系、Al-Mn系の3000系合金、Al-Mg系の5000系合金などが挙げられるが、これらの合金に特に限定されるものではない。基板本体1の板厚は用途により異なるが、通常0.1〜0.5mm程度の厚みのものを使用することができる。   The aluminum or aluminum alloy constituting the substrate body 1 means pure Al or Al alloy. Specifically, pure aluminum-based 1000 series, Al-Mn-based 3000 series alloys, Al-Mg-based 5000 series alloys and the like specified by JIS are listed, but not limited to these alloys. The thickness of the substrate body 1 varies depending on the application, but a substrate having a thickness of about 0.1 to 0.5 mm can be used.

前記基板本体1の外面側に形成される無孔質陽極酸化皮膜2は、皮膜溶解性の低い電解質の溶液中で、アルミニウムを陽極として電解処理することにより形成できる。電解質はアルカリ金属の塩、ホウ酸塩、ケイ酸塩、酒石酸塩、リン酸塩などが挙げられる。皮膜溶解性の高い硫酸などでも、孔が成長して多孔質皮膜となる前に電解処理を中止すれば有孔率を目的の範囲に低くすることができる。陽極酸化皮膜の厚さは電解液の濃度及び温度、電解時の電流及び電圧、電解時間により調整可能であり、有孔率に関してもこれらの条件により制御可能である。   The nonporous anodic oxide film 2 formed on the outer surface side of the substrate body 1 can be formed by electrolytic treatment using aluminum as an anode in an electrolyte solution having low film solubility. Examples of the electrolyte include alkali metal salts, borates, silicates, tartrate, phosphates, and the like. Even with sulfuric acid having high film solubility, if the electrolytic treatment is stopped before the pores grow to become a porous film, the porosity can be lowered to the target range. The thickness of the anodic oxide film can be adjusted by the concentration and temperature of the electrolytic solution, the current and voltage during electrolysis, and the electrolysis time, and the porosity can also be controlled by these conditions.

前記無孔質陽極酸化皮膜2の有孔率は20%以下が好ましい。
無孔質陽極酸化皮膜2の有孔率が低いと、孔中に含まれる処理液成分が少なく、樹脂層形成時の加熱によって孔中に含まれる処理液成分が外部に放出されにくい。また、無孔質陽極酸化皮膜2の樹脂層に対する接着面積が大きくなるため、樹脂層との密着性が向上する。
前記無孔質陽極酸化皮膜2の厚さは40nm〜300nmの範囲が好ましい。
無孔質陽極酸化皮膜2が薄いと皮膜の均一性及び耐食性に劣り、無孔質陽極酸化皮膜2が厚いと成形加工時にクラックが生じ、加工密着性及び耐食性が低下する。前記範囲の中でも50nm〜200nmの範囲とすることがより好ましい。
The porosity of the nonporous anodic oxide film 2 is preferably 20% or less.
When the porosity of the nonporous anodic oxide film 2 is low, the treatment liquid component contained in the pores is small, and the treatment liquid component contained in the pores is not easily released to the outside by heating at the time of forming the resin layer. Moreover, since the adhesion area with respect to the resin layer of the nonporous anodic oxide film 2 becomes large, adhesiveness with a resin layer improves.
The thickness of the nonporous anodic oxide film 2 is preferably in the range of 40 nm to 300 nm.
If the nonporous anodic oxide coating 2 is thin, the uniformity and corrosion resistance of the coating are inferior, and if the nonporous anodic oxide coating 2 is thick, cracks occur during molding processing, and the work adhesion and corrosion resistance decrease. Among these ranges, it is more preferable to use a range of 50 nm to 200 nm.

前記のカップリング層3を構成するシラン系カップリング剤の化学構造は、例えば下記の(1)式で表される。
有機官能基としてはアミノ基、ビニル基、エポキシ基、メタクリル基などが、無機官能基としてはエトキシ基、メトキシ基などがある。有機官能基が有機物と、無機官能基が無機物と、あるいは、シラン系カップリング剤同士と結合し、高い接着力が得られる。ただし、相溶性などの観点から有機物の種類にあった有機官能基を選択する必要があり、ポリエステル系樹脂にはアミノ基を有機官能基としたシラン系カップリング剤が最も適していることを本発明者は見出した。またアミノ基を有するシラン系カップリング剤は水に溶けやすいため、希釈する際、作業性に優れるといった利点がある。アミノ基を有するシラン系カップリング剤としては、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシランなどが挙げられる。
前記のシラン系カップリング剤は、水またはアルコール等の揮発性溶媒で希釈して塗布する。塗布方法としては、浸漬法、スプレー法、ロールコート法が挙げられるが、これに限られるものではない。
Y−(CH)−SiX…(1)式、 Y:有機官能基、X:加水分解基
The chemical structure of the silane coupling agent constituting the coupling layer 3 is represented by the following formula (1), for example.
Examples of the organic functional group include an amino group, a vinyl group, an epoxy group, and a methacryl group, and examples of the inorganic functional group include an ethoxy group and a methoxy group. The organic functional group is bonded to the organic substance, the inorganic functional group is bonded to the inorganic substance, or the silane coupling agents, and high adhesive strength is obtained. However, it is necessary to select an organic functional group that matches the type of organic matter from the viewpoint of compatibility, etc., and it is recommended that a silane coupling agent having an amino group as the organic functional group is most suitable for polyester resins. The inventor found out. Moreover, since the silane coupling agent having an amino group is easily soluble in water, there is an advantage that it is excellent in workability when diluted. Examples of the silane coupling agent having an amino group include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, and the like.
The silane coupling agent is applied by diluting with a volatile solvent such as water or alcohol. Examples of the application method include, but are not limited to, a dipping method, a spray method, and a roll coating method.
Y- (CH 2) -SiX 3 ... (1) formula, Y: Organic functional group, X: Hydrolytic group

カップリング層3を構成するシラン系カップリング剤の塗布量は、0.1〜100mg/mの範囲が好ましい。
シラン系カップリング剤は無孔質陽極酸化皮膜2と樹脂被覆層5の架橋をするため密着性が向上する。塗布量が0.1mg/m未満では塗布むらが生じやすくなるため前記効果が得られない。塗布量が100mg/mを超えるとカップリング層3の凝集破壊が生じ易くなり、密着性が低下する。更に好ましい塗布量は1〜50mg/mの範囲である。
The coating amount of the silane coupling agent constituting the coupling layer 3 is in the range of 0.1-100 mg / m 2 is preferred.
Since the silane coupling agent crosslinks the nonporous anodic oxide film 2 and the resin coating layer 5, the adhesion is improved. If the coating amount is less than 0.1 mg / m 2 , uneven coating tends to occur, and the above effect cannot be obtained. When the coating amount exceeds 100 mg / m 2 , cohesive failure of the coupling layer 3 is likely to occur, and the adhesion is deteriorated. A more preferable coating amount is in the range of 1 to 50 mg / m 2 .

前記樹脂被覆層5を構成する熱可塑性樹脂としては、特に限定されるものではないが、ポリエステル樹脂、ポリプロピレン樹脂、ポリアミド樹脂、さらには共重合ポリエステル樹脂などが挙げられるが、バリヤ性、加工性の観点からポリエステル系樹脂が好ましい。これら樹脂からなる層として具体的には、これらの樹脂を二軸延伸してなる樹脂フィルムがハンドリング性の観点から好ましい。このフィルムは、単層、同種または異種の樹脂からなる二層以上の複層のいずれも選択可能であるが、アルミニウム表面に接する側に融点の低い層を有する二層フィルムを用いることが、より低温で密着性を確保できることから好ましい。   The thermoplastic resin constituting the resin coating layer 5 is not particularly limited, and examples thereof include polyester resins, polypropylene resins, polyamide resins, and copolymerized polyester resins. From the viewpoint, a polyester resin is preferable. Specifically, a resin film obtained by biaxially stretching these resins is preferable from the viewpoint of handling properties. As this film, either a single layer or a multilayer of two or more layers made of the same or different resins can be selected, but it is more preferable to use a two-layer film having a layer having a low melting point on the side in contact with the aluminum surface. It is preferable because adhesion can be secured at a low temperature.

前記樹脂被覆層5を構成するフィルムのラミネート方法として、加熱帯によりアルミニウム板を予備加熱し、加圧ロールを用いてアルミニウム板にフィルムを圧着後、加熱帯により本加熱する方法が挙げられる。加熱装置はヒートロール、電気炉、ガスオーブン、誘導加熱装置、赤外加熱装置等が挙げられるが、外観を維持するため非接触加熱装置であることが好ましい。特に、短時間で所定の温度まで加熱できる誘導加熱装置が好ましい。
フィルムの結晶化率は、フィルムの延伸比やラミネート後の加熱温度及び加熱時間、冷却速度により調整できる。特にラミネート後の加熱温度により容易に変えることができ、フィルムの融点近くになると、結晶化率は低下していき、フィルムの融点を超えると結晶化率は急激に低下する。ただし、フィルムの結晶化率を低くするために加熱温度を下げると、樹脂の溶融が不十分となり、十分な密着性が得られなくなる。
As a method for laminating the film constituting the resin coating layer 5, there is a method in which an aluminum plate is preheated by a heating band, the film is pressure-bonded to the aluminum plate using a pressure roll, and then heated by the heating band. Examples of the heating device include a heat roll, an electric furnace, a gas oven, an induction heating device, and an infrared heating device, but a non-contact heating device is preferable in order to maintain the appearance. In particular, an induction heating apparatus capable of heating to a predetermined temperature in a short time is preferable.
The crystallization ratio of the film can be adjusted by the stretching ratio of the film, the heating temperature and heating time after lamination, and the cooling rate. In particular, it can be easily changed by the heating temperature after lamination, and the crystallization rate decreases when the film is close to the melting point of the film, and the crystallization rate rapidly decreases when the melting point of the film is exceeded. However, if the heating temperature is lowered in order to reduce the crystallization rate of the film, the resin is insufficiently melted and sufficient adhesion cannot be obtained.

前記樹脂被覆層5の厚さは8〜100μmの範囲が好ましい。
アルミニウムの基板本体1上に被覆された熱可塑性樹脂の樹脂被覆層5が薄いと十分なバリヤ性が得られず、ピンホールの発生率も高くなる。例えば、基板本体1に対してロール圧密によりフィルムを貼り合わせる場合、樹脂被覆層5が薄いとロールの周囲に異物が存在していたり、フィルムに異物が押し付けられた場合に、異物でフィルムに傷や貫通孔を形成してしまうおそれがある。従って樹脂被覆層5の厚さは8μm程度は必要である。また、樹脂被覆層5が厚過ぎると基板本体1へのラミネート時に樹脂被覆層5の全体に熱が伝わりにくくなり密着性が低下する。さらには加工性も低下するおそれがある。
樹脂被覆層5についてフイルムとする場合の結晶化率は40%以上が好ましい。
フィルムの結晶化率はバリヤ性に大きく影響し、結晶化率を低くするとバリヤ性が低下するのでこの範囲とすることが好ましい。
The thickness of the resin coating layer 5 is preferably in the range of 8 to 100 μm.
If the resin coating layer 5 of the thermoplastic resin coated on the aluminum substrate body 1 is thin, sufficient barrier properties cannot be obtained and the incidence of pinholes is increased. For example, when a film is bonded to the substrate body 1 by roll compaction, if the resin coating layer 5 is thin, foreign matter is present around the roll, or foreign matter is scratched by the foreign matter when pressed against the film. There is a risk of forming through holes. Therefore, the thickness of the resin coating layer 5 needs to be about 8 μm. On the other hand, if the resin coating layer 5 is too thick, heat is not easily transmitted to the entire resin coating layer 5 during lamination to the substrate body 1, and adhesion is reduced. In addition, the workability may be reduced.
When the resin coating layer 5 is a film, the crystallization rate is preferably 40% or more.
The crystallization rate of the film greatly affects the barrier property, and if the crystallization rate is lowered, the barrier property is lowered.

本発明に係る第2の実施形態のアルミニウム板Bを用いて缶などの容器を構成した場合において、内容物が接しない面を熱硬化性樹脂塗装として副樹脂被覆層6を構成する場合は、内容物と接する面側に熱可塑性樹脂をラミネートして樹脂被覆層5を形成した後、内容物と接しない面側に熱硬化性樹脂の副樹脂被覆層6を塗装する方法、または、熱硬化性樹脂の副樹脂被覆層6を塗装した後、熱可塑性樹脂をラミネートして樹脂被覆層5を形成する方法が挙げられるが、前者は塗装時の焼き付け温度を高くすると、先に形成した熱可塑性樹脂フィルムの結晶化率が低下する可能性があるため、熱可塑性樹脂の融点以下で加熱することが好ましい。   In the case where a container such as a can is configured using the aluminum plate B of the second embodiment according to the present invention, when the auxiliary resin coating layer 6 is configured with a thermosetting resin coating on a surface that does not contact the contents, A method in which a thermoplastic resin is laminated on the surface in contact with the contents to form the resin coating layer 5, and then a sub-resin coating layer 6 of a thermosetting resin is coated on the surface not in contact with the contents, or thermosetting There is a method of forming the resin coating layer 5 by laminating a thermoplastic resin after coating the secondary resin coating layer 6 of the functional resin. The former is a method of forming the thermoplastic resin previously formed by increasing the baking temperature during coating. Since the crystallization rate of the resin film may be lowered, it is preferable to heat at a temperature lower than the melting point of the thermoplastic resin.

前述の副樹脂被覆層6を構成する熱硬化性樹脂は、耐内容物性、耐食性、加工性、耐レトルト性の観点からポリエステル系またはエポキシ系の樹脂であることが好ましい。これらの樹脂には接着性や潤滑性を付与させるためポリオレフィン系樹脂や合成油等をそれぞれ添加しても良い。
これらの樹脂は浸漬法、スプレー法、ロールコート法等の常法により基板本体1の表面側あるいは裏面側のカップリング層3の上に塗布し、180〜250℃の温度で焼き付けを行うことで最終的な副樹脂被覆層6を得ることができる。
The thermosetting resin constituting the sub-resin coating layer 6 is preferably a polyester-based or epoxy-based resin from the viewpoint of content resistance, corrosion resistance, workability, and retort resistance. In order to impart adhesiveness and lubricity to these resins, polyolefin resins and synthetic oils may be added.
These resins are applied onto the coupling layer 3 on the front side or the back side of the substrate body 1 by a conventional method such as a dipping method, a spray method, or a roll coating method, and are baked at a temperature of 180 to 250 ° C. The final sub resin coating layer 6 can be obtained.

以上の如く構成されたアルミニウム板Aあるいはアルミニウム板Bは、化学薬品、塗料、調味料、油などの腐食性の高い内容物を収容するための缶などの容器、あるいは缶蓋などの容器蓋として利用することができる。これらのアルミニウム板A、Bであるならば、内容物に対して接する面側に密着性に優れ、ピンホールなどの欠陥のない、適度な厚みの樹脂被覆層5を備えているので、アルミニウム又はアルミニウム合金からなる基板本体1が腐食するおそれがなく耐食性に優れた容器を提供できる。また、樹脂被覆層5の下地となる陽極酸化皮膜2とカップリング層3において製造に使用する処理液や塗布剤に有害物質を含まないので、安全管理と衛生面、環境保護性にも優れさせることができる。   The aluminum plate A or the aluminum plate B configured as described above is used as a container such as a can for storing highly corrosive contents such as chemicals, paints, seasonings and oils, or as a container lid such as a can lid. Can be used. If these aluminum plates A and B are provided with the resin coating layer 5 having an appropriate thickness on the surface side that comes into contact with the contents and having no defects such as pinholes, aluminum or There is no fear that the substrate body 1 made of an aluminum alloy corrodes, and a container having excellent corrosion resistance can be provided. In addition, since the treatment liquid and coating agent used for production in the anodized film 2 and the coupling layer 3 which are the bases of the resin coating layer 5 do not contain harmful substances, the safety management, hygiene and environmental protection are also improved. be able to.

JIS5052のアルミニウム合金を圧延し、板厚0.3mmのアルミニウム板材とし、50℃の苛性ソーダで10秒間脱脂して洗浄し、室温の5%硝酸で中和処理した後、このアルミニウム板材を陽極、カーボン板を陰極として電解処理を行った。電解液はホウ酸塩、ケイ酸塩、リン酸塩、硫酸を用い、濃度、電解時間、電解電圧等により得られる陽極酸化皮膜の厚さ及び有孔率を調整した。また、一部のアルミニウム板材試料に対してクロメート処理をCr量で15mg/mとなるように処理した。
前記陽極酸化皮膜を形成したアルミニウム板材試料に対し、シラン系カップリング剤は有機官能基がアミノ基及びエポキシ基のものを用い、ロールコートにより前記各試料表面に所定量塗布した。
A JIS 5052 aluminum alloy is rolled into an aluminum plate with a thickness of 0.3 mm, degreased and washed with caustic soda at 50 ° C. for 10 seconds, neutralized with 5% nitric acid at room temperature, and then the aluminum plate is made into an anode, carbon Electrolytic treatment was performed using the plate as a cathode. As the electrolytic solution, borate, silicate, phosphate, and sulfuric acid were used, and the thickness and porosity of the anodized film obtained were adjusted depending on the concentration, electrolysis time, electrolysis voltage, and the like. Further, chromate treatment was performed on some aluminum plate material samples so that the Cr amount was 15 mg / m 2 .
For the aluminum plate material sample on which the anodized film was formed, a silane coupling agent having an organic functional group of amino group and epoxy group was used, and a predetermined amount was applied to the surface of each sample by roll coating.

次に、各アルミニウム板材試料について、被覆する樹脂フィルムとして二層ポリエステルフィルム及び単層ポリエステルフィルムを用いて樹脂被覆層を形成する。二層ポリエステルフィルムはエチレンテレフタレートとイソフタレートを共重合した二軸延伸フィルムであり、アルミニウム板と接する側の接着層(融点230℃)とアルミニウム板と接しない側の配向層(融点260℃)の二層構造を有し、接着層の厚さは1〜2μm、配向層は任意の厚さとした。先の単層ポリエステルフィルムは融点250℃の二軸延伸フィルムである。
前記下地の表面処理を施して得られたアルミニウム板材をヒートロールにより170℃に加熱した後、先に説明した材料と積層構造の樹脂フィルムを加圧ロールにより線圧18kg/cmで圧着した。次いで、高周波誘導加熱装置で加熱後冷却して樹脂被覆層を形成した。ここでのフィルムの結晶化率はこの加熱処理時の温度によって調整した。
また、クロメート処理を施したアルミニウム板材は、陽極酸化皮膜を形成せずに、シラン系カップリング剤の塗布を行わない状態から、フィルムのみを圧着して試料とした。
Next, for each aluminum plate material sample, a resin coating layer is formed using a two-layer polyester film and a single-layer polyester film as the resin film to be coated. The bilayer polyester film is a biaxially stretched film obtained by copolymerizing ethylene terephthalate and isophthalate, and includes an adhesive layer on the side in contact with the aluminum plate (melting point 230 ° C.) and an orientation layer on the side in contact with the aluminum plate (melting point 260 ° C.). It has a two-layer structure, the adhesive layer has a thickness of 1 to 2 μm, and the alignment layer has an arbitrary thickness. The single-layer polyester film is a biaxially stretched film having a melting point of 250 ° C.
The aluminum plate obtained by applying the surface treatment of the base was heated to 170 ° C. with a heat roll, and then the material described above and the resin film having a laminated structure were pressure-bonded with a pressure roll at a linear pressure of 18 kg / cm 2 . Subsequently, it heated and cooled with the high frequency induction heating apparatus, and formed the resin coating layer. The crystallization rate of the film here was adjusted by the temperature during the heat treatment.
Moreover, the aluminum plate material which performed the chromate process did not form an anodic oxide film, but the state which does not apply | coat a silane coupling agent WHEREIN: Only the film was crimped | bonded and it was set as the sample.

「評価方法」
(1)陽極酸化皮膜有孔率
陽極酸化皮膜表面を走査型電子顕微鏡で5万倍(最低2.0μmの視野面積)以上の任意の10箇所を観察し、孔の面積率を平均値として求めた。
(2)陽極酸化皮膜厚さ
陽極酸化皮膜表面をダイヤモンド刃を備えたスーパーミクロトームで切断した後、断面を透過電子顕微鏡で観察し、膜厚を測定した。
(3)フィルム結晶化率
まず、圧着前のフィルムの密度ρを密度勾配管によって測定し、次式に代入して結晶化率Cを求めた。C=(ρ−1.335)/(1.455−1.335)×100
次いで、X線回折により圧着前後のフィルムの2θ=26゜近辺に現れる(100)結晶ピーク強度を測定する。圧着前のフィルムの強度をIa、圧着後のフィルムの強度をlbとし、次式から結晶化率C’を求めた。C’=(Ib/Ia)×C
"Evaluation methods"
(1) Porosity of the anodic oxide film The surface of the anodic oxide film was observed with a scanning electron microscope at any 10 points of 50,000 times (minimum viewing area of 2.0 μm 2 ) or more, and the area ratio of the holes was taken as an average value. Asked.
(2) Thickness of anodized film After the surface of the anodized film was cut with a super microtome equipped with a diamond blade, the cross section was observed with a transmission electron microscope and the film thickness was measured.
(3) Film Crystallization Rate First, the density ρ of the film before pressure bonding was measured with a density gradient tube, and substituted into the following equation to determine the crystallization rate C. C = (ρ−1.335) / (1.455−1.335) × 100
Next, the (100) crystal peak intensity appearing in the vicinity of 2θ = 26 ° of the film before and after pressure bonding is measured by X-ray diffraction. The strength of the film before pressure bonding is Ia, the strength of the film after pressure bonding is lb, and the crystallization rate C ′ is obtained from the following equation. C ′ = (Ib / Ia) × C

(4)密着性
端部をマスキングした試料を、380℃のトルエンに7日間浸漬した後、樹脂被覆面が凸となるようにデュポン衝撃加工し、テープ剥離してその剥離状態により評価した。
O:剥離なし、 △:一部剥離、 ×:大きく剥離
(5)耐食性
樹脂被覆面が凸となるようにデュポン衝撃加工し、端部をマスキングした試料を、500℃、5%のNaCl水溶液に7日間浸漬し、加工部の腐食状態により評価した。
O:腐食なし、 △:一部腐食、 ×:大部分で腐食
(4) Adhesiveness The sample whose edge was masked was immersed in toluene at 380 ° C. for 7 days, then subjected to DuPont impact processing so that the resin-coated surface became convex, and the tape was peeled off, and the peeled state was evaluated.
O: No peeling, Δ: Partial peeling, ×: Large peeling (5) Corrosion resistance A sample subjected to DuPont impact processing so that the resin-coated surface is convex, and masked at the end, is placed at 500 ° C. in a 5% NaCl aqueous solution. It was immersed for 7 days and evaluated by the corrosion state of the processed part.
O: No corrosion, △: Partial corrosion, ×: Most corrosion

(6)ピンホールの有無
試料を100mm角に切り出し、端部をマスキングし、各水準10個、硫酸銅試験を実施した。変色箇所の個数により評価した。
O:5個未満、 △:5個以上20個未満、 ×:20個以上
先のアルミニウム板試料を製造する際の製造条件において、電解液種別、陽極酸化皮膜の有孔率(%)、陽極酸化皮膜の厚さ(μm)、シランカップリング剤の塗布量(mg/m)、フィルム厚さ(μm)、フィルム結晶化率(%)について以下の表1に示す。
また、先のアルミニウム板試料について、先の(1)〜(6)に記載した各評価結果を以下の表2に記載する。
(6) Presence / absence of pinholes Samples were cut into 100 mm squares, the end portions were masked, and 10 copper sulfate tests were conducted for each level. Evaluation was based on the number of discolored spots.
O: Less than 5, Δ: 5 or more and less than 20, ×: 20 or more In the production conditions for producing the aluminum plate sample, the electrolyte type, the porosity (%) of the anodic oxide film, the anode The thickness of the oxide film (μm), the coating amount of the silane coupling agent (mg / m 2 ), the film thickness (μm), and the film crystallization rate (%) are shown in Table 1 below.
Moreover, each evaluation result described in the previous (1)-(6) about the previous aluminum plate sample is described in Table 2 below.

Figure 2005349691
Figure 2005349691

Figure 2005349691
Figure 2005349691

表1の試料No.2は有孔率を18%に設定し有孔率が高めの試料であるが、密着性と耐食性とピンホール有無のいずれの特性についても満足するものであったのに対し、比較例の試料No.13は有孔率が20%を超えて25%となっている試料であり、この試料は密着性が大きく低下し、耐食性も低下した。
その他、表1の試料No.1〜12はいずれも、有孔率20%以下、皮膜厚さが40〜300nmの範囲の無孔質陽極酸化皮膜が形成され、シラン系カップリング剤が0.1〜100mg/mの範囲で塗布され、8〜100μmの厚さの熱可塑性樹脂が被覆されたものであるが、良好な密着性と耐食性を具備し、ピンホールのないフィルムを備えたアルミニウム板が得られた。
Sample No. 2 in Table 1 is a sample with a porosity set to 18% and a high porosity, but it was satisfactory for all the properties of adhesion, corrosion resistance, and pinholes. On the other hand, the sample No. 13 of the comparative example is a sample having a porosity of more than 20% and 25%, and the adhesion of the sample is greatly lowered and the corrosion resistance is also lowered.
In addition, all of sample Nos. 1 to 12 in Table 1 were formed with a nonporous anodic oxide film having a porosity of 20% or less and a film thickness in the range of 40 to 300 nm, and the silane coupling agent was 0. Aluminum coated with a thermoplastic resin having a thickness of 8-100 μm, coated in the range of 1-100 mg / m 2 , but having good adhesion and corrosion resistance and having no pinhole film A plate was obtained.

試料No.14は陽極酸化皮膜を厚くした試料、試料No.15は陽極酸化皮膜を薄くし過ぎた試料であるが、陽極酸化皮膜を厚くすると密着性が大幅に低下し、耐食性も低下するとともに、陽極酸化皮膜を薄くし過ぎると耐食性が大幅に低下し、密着性も低下した。
試料No.16はシラン系カップリング剤の塗布量を多くし過ぎた試料であり、試料No.17は少なくし過ぎた試料であるがいずれの試料も密着性が大きく低下し、耐食性も低下した。
試料No.18はフィルムを厚くし過ぎた試料であるが密着性が大幅に低下し、耐食性も低下した。試料No.19はフィルムを薄くし過ぎた例であるがピンホールが発生し、耐食性が大きく低下した。試料No.20はフィルムの結晶化率を低くした例であるが、耐食性が低下し、ピンホールも多少発生した。
Sample No. 14 is a sample in which the anodized film is thickened, and sample No. 15 is a sample in which the anodized film is made too thin. However, increasing the thickness of the anodized film significantly reduces the adhesion and reduces the corrosion resistance. When the anodic oxide film was made too thin, the corrosion resistance was greatly lowered and the adhesion was also lowered.
Sample No. 16 is a sample in which the coating amount of the silane coupling agent is excessively increased, and sample No. 17 is a sample in which the amount of the silane coupling agent is excessively decreased. .
Sample No. 18 was a sample in which the film was made too thick, but the adhesion was greatly lowered and the corrosion resistance was also lowered. Sample No. 19 was an example in which the film was made too thin, but pinholes were generated and the corrosion resistance was greatly reduced. Sample No. 20 is an example in which the crystallization rate of the film was lowered, but the corrosion resistance was lowered and pinholes were generated somewhat.

試料No.21は陽極酸化皮膜を設けずに、シラン系カップリング剤の塗布も行わない例であるが、フィルムの密着性が悪くなった。
以上説明の如く有孔率20%以下、皮膜厚さが40〜300nmの範囲の無孔質陽極酸化皮膜が形成され、シラン系カップリング剤が0.1〜100mg/mの範囲で塗布されているという条件のいずれか1つの条件を外してなる試料は、密着性、耐食性、ピンホール有無のうち、いずれか特性が不足となることが判明した。
Sample No. 21 was an example in which no anodic oxide film was provided and no silane coupling agent was applied, but the film adhesion was poor.
As described above, a nonporous anodic oxide film having a porosity of 20% or less and a film thickness of 40 to 300 nm is formed, and a silane coupling agent is applied in a range of 0.1 to 100 mg / m 2. It has been found that a sample obtained by removing any one of the above conditions has insufficient characteristics among adhesion, corrosion resistance, and presence / absence of pinholes.

図1は本発明に係るアルミニウム板の第1の実施形態を示す断面図。FIG. 1 is a cross-sectional view showing a first embodiment of an aluminum plate according to the present invention. 図2は本発明に係るアルミニウム板の第2の実施形態を示す断面図。FIG. 2 is a cross-sectional view showing a second embodiment of an aluminum plate according to the present invention.

符号の説明Explanation of symbols

A、B…アルミニウム板、1…基板本体、2…陽極酸化皮膜、3…カップリング層、
5…樹脂被覆層、6…副樹脂被覆層。
A, B: aluminum plate, 1 ... substrate body, 2 ... anodized film, 3 ... coupling layer,
5 ... Resin coating layer, 6 ... Sub resin coating layer.

Claims (5)

アルミニウムまたはアルミニウム合金からなる基板本体の少なくとも一方の表面に、有孔率20%以下、皮膜厚さが40〜300nmの無孔質陽極酸化皮膜が形成され、この無孔質陽極酸化皮膜上にシラン系カップリング剤が0.1〜100mg/mの範囲で塗布され、前記基板本体の少なくとも一方の面に8〜100μmの厚さの熱可塑性樹脂からなる樹脂被覆層が形成されたことを特徴とする一般缶用熱可塑性樹脂被覆アルミニウム板。 A nonporous anodic oxide film having a porosity of 20% or less and a film thickness of 40 to 300 nm is formed on at least one surface of a substrate body made of aluminum or an aluminum alloy, and silane is formed on the nonporous anodic oxide film. A coupling agent is applied in the range of 0.1 to 100 mg / m 2 , and a resin coating layer made of a thermoplastic resin having a thickness of 8 to 100 μm is formed on at least one surface of the substrate body. A thermoplastic resin-coated aluminum plate for general cans. 前記シラン系カップリング剤がアミノ基を有するものであることを特徴とする請求項1に記載の一般缶用熱可塑性樹脂被覆アルミニウム板。   The thermoplastic resin-coated aluminum plate for general cans according to claim 1, wherein the silane coupling agent has an amino group. 前記少なくとも一方の樹脂被覆層の結晶化率が40%以上とされてなることを特徴とする請求項1又は2に記載の飲料缶キャップ用熱可塑性樹脂被覆アルミニウム板。   The thermoplastic resin-coated aluminum plate for beverage can caps according to claim 1 or 2, wherein the crystallization ratio of the at least one resin coating layer is 40% or more. 前記基板本体の少なくとも一方の面に形成された熱可塑性樹脂からなる樹脂被覆層が、単層または複層のポリエステルフィルムからなることを特徴とする請求項1〜3のいずれかに記載の一般缶用熱可塑性樹脂被覆アルミニウム板。   The general can according to any one of claims 1 to 3, wherein the resin coating layer made of a thermoplastic resin formed on at least one surface of the substrate body is made of a single-layer or multi-layer polyester film. Thermoplastic resin coated aluminum plate. 前記基板本体の一方の面であって内容物が接触されない側の面に熱硬化性樹脂の副樹脂被覆層が積層されてなることを特徴とする請求項1〜4のいずれかに記載の一般缶用熱可塑性樹脂アルミニウム板。


5. The general substrate according to claim 1, wherein a sub-resin coating layer of a thermosetting resin is laminated on one surface of the substrate main body on the side where the contents are not contacted. Thermoplastic resin aluminum plate for cans.


JP2004172564A 2004-06-10 2004-06-10 Thermoplastic resin-coated aluminum sheet for general can Withdrawn JP2005349691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172564A JP2005349691A (en) 2004-06-10 2004-06-10 Thermoplastic resin-coated aluminum sheet for general can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172564A JP2005349691A (en) 2004-06-10 2004-06-10 Thermoplastic resin-coated aluminum sheet for general can

Publications (1)

Publication Number Publication Date
JP2005349691A true JP2005349691A (en) 2005-12-22

Family

ID=35584545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172564A Withdrawn JP2005349691A (en) 2004-06-10 2004-06-10 Thermoplastic resin-coated aluminum sheet for general can

Country Status (1)

Country Link
JP (1) JP2005349691A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189090A1 (en) * 2013-05-23 2014-11-27 株式会社神戸製鋼所 Aluminum alloy sheet, bonded object, and member for motor vehicle
CN104790009A (en) * 2014-01-16 2015-07-22 深圳富泰宏精密工业有限公司 Metal-resin complex preparation method and complex prepared through metal-resin complex preparation method
JP2016083794A (en) * 2014-10-23 2016-05-19 三菱アルミニウム株式会社 Resin-coated aluminum sheet and method for producing the same
US20200082973A1 (en) * 2018-09-11 2020-03-12 Novelis Inc. Highly deformable and thermally treatable continuous coils and method of producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189090A1 (en) * 2013-05-23 2014-11-27 株式会社神戸製鋼所 Aluminum alloy sheet, bonded object, and member for motor vehicle
CN105228822A (en) * 2013-05-23 2016-01-06 株式会社神户制钢所 Aluminium alloy plate, conjugant and member for automobile
US10357944B2 (en) 2013-05-23 2019-07-23 Kobe Steel, Ltd. Aluminum alloy sheet, bonded object, and member for motor vehicle
CN104790009A (en) * 2014-01-16 2015-07-22 深圳富泰宏精密工业有限公司 Metal-resin complex preparation method and complex prepared through metal-resin complex preparation method
CN104790009B (en) * 2014-01-16 2017-09-29 深圳富泰宏精密工业有限公司 The preparation method of the complex of metal and resin and complex obtained by this method
JP2016083794A (en) * 2014-10-23 2016-05-19 三菱アルミニウム株式会社 Resin-coated aluminum sheet and method for producing the same
US20200082973A1 (en) * 2018-09-11 2020-03-12 Novelis Inc. Highly deformable and thermally treatable continuous coils and method of producing the same
US20200082972A1 (en) * 2018-09-11 2020-03-12 Novelis Inc. Continuous coils containing a thin anodized film layer and systems and methods for making the same

Similar Documents

Publication Publication Date Title
JP4065693B2 (en) Resin-coated metal plate and method for producing the same
JP4487651B2 (en) Surface-treated metal material and surface treatment method thereof, resin-coated metal material, metal can, metal lid
JP4492224B2 (en) Surface-treated metal material, surface treatment method thereof, and resin-coated metal material
JP5692080B2 (en) Manufacturing method of steel plate for container material with less environmental impact
WO2007029755A1 (en) Resin-coated seamless aluminum can and resin-coated aluminum alloy lid
JP2022009226A (en) Outer packaging material for power storage device, and method for manufacturing the same
WO2012036202A1 (en) Steel plate for containers and manufacturing method for same
JP2005349691A (en) Thermoplastic resin-coated aluminum sheet for general can
JP2003342790A (en) Surface treated aluminum material and thermoplastic resin-coated aluminum material
JP3876652B2 (en) Polyester resin coated tinned steel sheet
JP3853702B2 (en) Method for producing surface-treated aluminum material
JP2009052102A (en) Surface-treated steel sheet, resin-coated steel sheet, can and can lid
JP6322427B2 (en) Method for producing resin-coated aluminum plate
JP2005349692A (en) Thermoplastic resin-coated aluminum sheet for beverage can cap
JP4774629B2 (en) Polyester resin coated tin alloy plated steel sheet
JP3893964B2 (en) Polyethylene film coated tin alloy plated steel sheet
CA3162200C (en) Method for manufacturing laminated tinplate, a laminated tinplate produced thereby and use thereof
JP2008266664A (en) Aluminum material for resin coating, resin coated aluminum material and method of manufacturing them
JP6568681B2 (en) Resin coated aluminum plate
JP2008230117A (en) Resin coating tin plated steel sheet, can, and can lid
JP2008127625A (en) Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method
JP2008266663A (en) Aluminum material for laminate, resin-coated aluminum material, and manufacturing method of the sames
JP2004068063A (en) Polyester resin-coated tin alloy plated steel sheet
JP2005350775A (en) Surface-treated aluminum material and production method therefor
JP2014195910A (en) Resin-covered aluminum alloy foil and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904