JP5060460B2 - Resin-coated aluminum plate with excellent resin adhesion - Google Patents
Resin-coated aluminum plate with excellent resin adhesion Download PDFInfo
- Publication number
- JP5060460B2 JP5060460B2 JP2008317543A JP2008317543A JP5060460B2 JP 5060460 B2 JP5060460 B2 JP 5060460B2 JP 2008317543 A JP2008317543 A JP 2008317543A JP 2008317543 A JP2008317543 A JP 2008317543A JP 5060460 B2 JP5060460 B2 JP 5060460B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- aluminum plate
- less
- molecular weight
- average molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
Description
本発明は、樹脂を設けたアルミニウム板に関し、特に絞り加工により有底円筒状構造体を形成する成形加工後において、樹脂密着性に優れたアルミニウム板に関する。 The present invention relates to an aluminum plate provided with a resin, and more particularly to an aluminum plate excellent in resin adhesion after a forming process for forming a bottomed cylindrical structure by drawing.
アルミニウム板またはアルミニウム合金板(以下、アルミニウム板とする)は、軽量で適度な機械的特性を有し、かつ美感、成形加工性、耐食性等に優れた特徴を有しているため、各種容器類、構造材、機械部品等に広く使われている。
上記用途のアルミニウム板は、耐食性・耐溶出性のさらなる向上、外観の向上およびキズつき防止等のため、その表面に樹脂塗料の塗装および樹脂フィルムのラミネート加工が施されることが多い。このときアルミニウム板には、樹脂密着性ならびに耐食性を向上させるため、既存技術に基づいた下地処理(例えばリン酸クロメート、クロム酸クロメートおよびリン酸ジルコニウム等の化成型下地処理)が施されるのが一般的である。アルミニウム製キャップの場合、材料のアルミニウム板に下地処理および樹脂被覆を施してから成型加工するプレコート材料が多く用いられている。
キャップ成型用プレコートアルミニウム合金板に対しては、成型加工をしても樹脂の剥離が生じないための樹脂密着性や、腐食雰囲気に侵されない耐食性、ならびに高度な成型に耐えうる加工性が要求される。こうした要求に対し、特に塗膜密着性向上の立場から、広範な分野においてさまざまな提案がなされている。特に下地処理方法においては、従来技術に基づく化成型下地処理に加え、その上に密着性を向上させる有機物を設けた後、それらの上に樹脂を設ける方法が提案されている。
Aluminum plates or aluminum alloy plates (hereinafter referred to as “aluminum plates”) are lightweight, have appropriate mechanical properties, and have excellent characteristics such as aesthetics, moldability, and corrosion resistance. Widely used in structural materials and machine parts.
In order to further improve the corrosion resistance and elution resistance, to improve the appearance, to prevent scratches, and the like, the aluminum plate for the above uses is often subjected to coating with a resin paint and laminating of a resin film. At this time, in order to improve the resin adhesion and the corrosion resistance, the aluminum plate is subjected to a base treatment based on existing technology (for example, a chemical-molding base treatment such as phosphate chromate, chromate chromate and zirconium phosphate). It is common. In the case of an aluminum cap, a pre-coating material is often used which is subjected to a base treatment and resin coating on an aluminum plate as a material and then molded.
Pre-coated aluminum alloy plates for cap molding are required to have resin adhesion that prevents the resin from peeling even after molding, corrosion resistance that is not affected by corrosive atmospheres, and workability that can withstand advanced molding. The In response to such demands, various proposals have been made in a wide range of fields, particularly from the standpoint of improving coating film adhesion. In particular, in the ground treatment method, in addition to chemical molding ground treatment based on the prior art, a method is proposed in which an organic material for improving adhesion is provided thereon, and then a resin is provided thereon.
例えば特許文献1は、アルミニウム板にリン酸クロメート処理を施した後、特定のフェノール重合体を含む溶液中で処理するか、またはアルミニウム板にリン酸クロメート処理を施し、次いでシラン処理を施して表面処理アルミニウム板を作成し、これに熱可塑性樹脂を被覆して樹脂被覆アルミニウム板とし、絞りしごき加工を施してコンデンサー外装用容器に成形する方法を提案している。
又、特許文献2は、化成型下地処理皮膜が、Cr付着量が1mg/m2以上30mg/m2以下かつ表面C量が50mg/m2以下であるリン酸クロメートであり、その上に重量平均分子量500につき1個以上のカルボキシル基を含有し、かつ重量平均分子量が1000以上100万以下であるアクリル酸化合物の重合体を5mg/m2以上5000mg/m2以下の付着量にて設け、その上に乾燥重量に対し5mass%以上の顔料を含有する塗膜を設けたキャップ成形用アルミニウム板を提供している。
さらに特許文献3は、表面の凹凸の平均間隔Smが5〜200μmの範囲内にあり、かつ凹凸の斜面の平均傾斜角θaが3〜30°の範囲内にあり、しかも十点平均粗さRzが0.5〜5μmの範囲内にあることを特徴とする、被覆層の密着性に優れた被覆用アルミニウム合金板を提案している。
Further, Patent Document 2 is a phosphoric acid chromate in which the chemical-molding ground treatment film has a Cr adhesion amount of 1 mg / m 2 or more and 30 mg / m 2 or less and a surface C amount of 50 mg / m 2 or less. A polymer of an acrylic acid compound containing one or more carboxyl groups per average molecular weight of 500 and having a weight average molecular weight of 1,000 or more and 1,000,000 or less is provided at an adhesion amount of 5 mg / m 2 or more and 5000 mg / m 2 or less. An aluminum plate for cap molding provided with a coating film containing 5 mass% or more of pigment on the dry weight is provided.
Further, in Patent Document 3, the average interval Sm of the surface irregularities is in the range of 5 to 200 μm, the average inclination angle θa of the uneven slopes is in the range of 3 to 30 °, and the ten-point average roughness Rz. Is in the range of 0.5 to 5 μm, and an aluminum alloy plate for coating excellent in adhesion of the coating layer is proposed.
しかし、上記のような従来技術には、以下のような問題があった。すなわち、ボトル缶を始めとする再密閉可能な容器に用いられるアルミニウム製キャップは、深絞り成型、スクリュー成型、更にはピルファープルーフ化に伴うミシン目加工など、特許文献1の対象であるコンデンサーケースと比べ、非常に厳しい加工を受ける。加えて、ボトル缶がホット飲料に採用されるようになったため、キャップの樹脂に耐レトルト性も要求されるようになっている。さらに近年は、コスト低減の観点からアルミニウム薄肉化の要求が高まっており、アルミニウム素材の薄肉・高強度化が検討されているが、こうした高強度材をキャップに加工した場合、金型クリアランスはよりシビアに、また成型荷重はより高くなるため、材料表面にかかるストレスが従来以上に高くなる。
こうした条件に対し、特許文献1、2および3のような技術では、厳しい加工を受けた後の樹脂密着性が不足するため、レトルト後の塗膜剥離のような問題が発生していた。
However, the conventional techniques as described above have the following problems. In other words, aluminum caps used in re-sealable containers such as bottle cans are capacitor cases that are the subject of Patent Document 1 such as deep drawing molding, screw molding, and perforation processing with pilfer proofing. Compared with, it undergoes very severe processing. In addition, since bottle cans have been adopted for hot beverages, the cap resin is also required to have retort resistance. Furthermore, in recent years, the demand for thinner aluminum has been increasing from the viewpoint of cost reduction, and attempts have been made to reduce the thickness and strength of aluminum materials. However, when such high-strength materials are processed into caps, the mold clearance is more Since the molding load is severely increased, the stress applied to the material surface is higher than before.
Under such conditions, the techniques such as Patent Documents 1, 2, and 3 have problems such as peeling of the coating film after retorting because the resin adhesion after being subjected to severe processing is insufficient.
本発明者は、上記課題を解決すべく検討を重ねた結果、アルミニウム板表面において、甲)表面粗さにおける「凸」を全体的に低くする一方で「凹」のみを深くすること、および、乙)重量平均分子量500あたり1個以上のカルボキシル基を含有しかつ重量平均分子量が1000以上100万以下であるアクリル樹脂を5mg/m2以上5000mg/m2以下の付着量にて設けること、が有効であることを見出した。 As a result of repeated studies to solve the above problems, the inventor of the present invention has reduced the overall “convex” in the surface roughness of the aluminum plate, while making only the “concave” deep, and B) An acrylic resin containing one or more carboxyl groups per weight average molecular weight of 500 and having a weight average molecular weight of 1,000 or more and 1,000,000 or less may be provided at an adhesion amount of 5 mg / m 2 or more and 5000 mg / m 2 or less. I found it effective.
すなわち、算術平均高さRaが0.1μm以上0.5μm以下かつ負荷長さ率Rmr(1.5μm)が50%以上であるアルミニウム材の表面に、重量平均分子量500につき1個以上のカルボキシル基を含有しかつ重量平均分子量が1000以上100万以下であるアクリル樹脂からなり、乾燥重量5mg/m2以上5000mg/m2以下である樹脂塗膜を形成したことを特徴とするアルミニウム板。 That is, on the surface of an aluminum material having an arithmetic average height Ra of 0.1 μm or more and 0.5 μm or less and a load length ratio Rmr (1.5 μm) of 50% or more, at least one carboxyl group per 500 weight average molecular weights. An aluminum plate comprising an acrylic resin having a weight average molecular weight of 1,000 to 1,000,000 and a resin coating film having a dry weight of 5 mg / m 2 to 5000 mg / m 2 .
また、熱間圧延あるいは冷間圧延により製造されるアルミニウム板であって、表面の形状が最大高さRzが1.0μm以上5.0μm以下であるロールにて最終圧延を施し、次いで表面の形状が算術平均高さRaが0.01μm以上0.5μm以下であるロールにて矯正工程を行った後、重量平均分子量500につき1個以上のカルボキシル基を含有かつ重量平均分子量が1000以上100万以下である水性または溶剤性のアクリル樹脂塗料を、乾燥重量にて5mg/m2以上5000mg/m2以下となるよう塗布し、30℃以上300℃以下の雰囲気にて1秒以上600秒以下乾燥させることを特徴とする、請求項1に記載の成型加工後の樹脂密着性に優れたアルミニウム板の製造方法である。 Moreover, it is an aluminum plate manufactured by hot rolling or cold rolling, the surface shape is subjected to final rolling with a roll having a maximum height Rz of 1.0 μm or more and 5.0 μm or less, and then the surface shape After the straightening process is performed with a roll having an arithmetic average height Ra of 0.01 μm or more and 0.5 μm or less, the weight average molecular weight of 500 contains one or more carboxyl groups and the weight average molecular weight of 1,000 to 1,000,000. The water-based or solvent-based acrylic resin paint is applied so that the dry weight is 5 mg / m 2 or more and 5000 mg / m 2 or less, and is dried in an atmosphere of 30 ° C. or more and 300 ° C. or less for 1 second or more and 600 seconds or less. It is a manufacturing method of the aluminum plate excellent in the resin adhesiveness after the shaping | molding process of Claim 1 characterized by the above-mentioned.
以上のように、本発明の請求項に従って作られたアルミニウム板は、適切な表面粗さの構成によりアンカー効果が発揮され、また適切なアクリル樹脂の存在によってアルミニウム表面と樹脂との密着性がさらに高められる結果、成型加工後の樹脂密着性にきわめて優れる。 As described above, the aluminum plate made according to the claims of the present invention exhibits an anchor effect due to the configuration of an appropriate surface roughness, and the adhesion between the aluminum surface and the resin is further increased by the presence of an appropriate acrylic resin. As a result, the resin adhesion after molding is extremely excellent.
以下、本発明の詳細を順に説明する。
本発明は、大きく分けて二つの要素により構成されている。すなわち、「アルミニウム材の表面に50%以上を越えるなだらかな表面と、適度な深さとなる凹部を有する表面を形成すること」と、「上記の表面粗さをもつ表面にアクリル樹脂からなる樹脂塗膜を形成すること」である。
Hereinafter, details of the present invention will be described in order.
The present invention is roughly composed of two elements. That is, “to form a smooth surface exceeding 50% on the surface of the aluminum material and a surface having a recess having an appropriate depth” and “resin coating made of acrylic resin on the surface having the above surface roughness”. “To form a film”.
第一に、表面粗さの作用について説明する。
まずアルミニウム板表面は、算術平均高さRaが0.1μm以上0.5μm以下でなければならない。算術平均高さとは、基準長さにおける粗さ曲線の絶対値の平均であり、その測定方法はJIS B 0601-2001に従う。これは、凹凸の度合いを直感的に表現する指標として最も多用されており、数値が低いほど滑らかな表面であることを表している。Raが0.1μmを下回る場合、表面が滑らか過ぎるために、その上に塗装およびラミネート等の手段により樹脂を設けて成型加工した場合、凹部に樹脂が流れ込むことによる密着性向上効果、いわゆるアンカー効果が発生せず、樹脂の密着性が低下する。反対にRaが0.5μmを上回る場合、全体的な凹凸が激しいため、上述のアンカー効果による密着性向上が、ある程度期待できる。しかし一方で、凸部において樹脂塗膜が局部的に薄くなり、その部分が加工中にひび割れ、剥離の起点となりやすい。
First, the effect of surface roughness will be described.
First, the aluminum plate surface must have an arithmetic average height Ra of 0.1 μm to 0.5 μm. The arithmetic average height is the average of the absolute values of the roughness curve at the reference length, and the measuring method follows JIS B 0601-2001. This is most frequently used as an index for intuitively expressing the degree of unevenness, and the lower the value, the smoother the surface. When Ra is less than 0.1 μm, since the surface is too smooth, when the resin is formed and processed by means such as coating and laminating, the adhesion improving effect due to the resin flowing into the recess, the so-called anchor effect Does not occur, and the adhesiveness of the resin decreases. On the other hand, when Ra exceeds 0.5 μm, since the overall unevenness is severe, it is possible to expect a certain degree of improvement in adhesion due to the anchor effect described above. However, on the other hand, the resin coating is locally thinned at the convex portion, and that portion is easily cracked during processing and tends to be a starting point of peeling.
加えてアルミニウム板表面は、負荷長さ率Rmr(1.5μm)が50%以上であることが必要である。これは、樹脂塗膜が局部的に薄くなることを防止しつつ、アンカー効果を最大限に利用するために必須となる項目である。負荷長さ率とは、ある切断レベルc(本発明においては1.5μm)における輪郭曲線要素の負荷長さMrの評価長さに対する比率を表したものであり、その測定方法はJIS B 0601-2001に従う。Rmr(1.5μm)=50%ということは、最も高い凸部から1.5μmの深さで表面を水平に切断すると、表面の50%が切り取られることを意味している。本発明によると、最も高い凸部から1.5μm以内に、全体の50%以上の領域が含まれる。言い換えると、高低差1.5μm以内という非常に滑らかな領域が全体の50%以上を占めた状態である。 In addition, the aluminum plate surface needs to have a load length ratio Rmr (1.5 μm) of 50% or more. This is an indispensable item for utilizing the anchor effect to the maximum while preventing the resin coating from being locally thinned. The load length ratio is a ratio of the load length Mr of the contour curve element to the evaluation length at a certain cutting level c (1.5 μm in the present invention), and its measuring method is JIS B 0601- Follow 2001. Rmr (1.5 μm) = 50% means that when the surface is cut horizontally from the highest convex portion at a depth of 1.5 μm, 50% of the surface is cut off. According to the present invention, 50% or more of the entire region is included within 1.5 μm from the highest convex portion. In other words, a very smooth region with a height difference of 1.5 μm or less occupied 50% or more of the whole.
上記のRaおよびRmr(1.5μm)の条件を満たした状態を定性的に表現すると、「全体としてはアンカー効果が期待できる程度に荒れており、その50%以上は非常に平滑な台地状で、残りは凹部」という形状になる。突出した凸部が存在しないことで、塗膜の薄い部分が発生せず、凹部が散在していることで、塗膜がアンカー効果を発揮する。この効果の組み合わせにより、優れた加工性を発揮するものである。
なおアルミニウム板は、上記条件を満たす限り、製造方法および材質は問わない。具体的には、圧延材、押出材、鋳造材および鍛造材等のいずれも適用可能であり、材質としては1000系、3000系、5000系および7000系など、工業的に用いられるアルミニウム合金のいずれにも有効である。
Qualitatively expressing the condition satisfying the above conditions of Ra and Rmr (1.5 μm), “As a whole, the anchor effect is rough enough to be expected, and more than 50% is a very smooth plateau. The rest is in the shape of a recess. Since there are no protruding convex portions, thin portions of the coating film do not occur, and the concave portions are scattered, so that the coating film exhibits an anchor effect. By combining this effect, excellent workability is exhibited.
In addition, as long as the said conditions satisfy | fill the said aluminum plate, a manufacturing method and a material will not ask | require. Specifically, any of a rolled material, an extruded material, a cast material, a forged material, etc. can be applied, and any of aluminum alloys used industrially, such as 1000 series, 3000 series, 5000 series, and 7000 series, can be used. Also effective.
第二に、アクリル樹脂の作用について説明する。
本発明においてアルミニウム板表面に設けるための物質としては、重量平均分子量500につき1個以上のカルボキシル基を含有し、かつ重量平均分子量が1000以上100万以下であるアクリル樹脂が最も適している。これは、アクリル樹脂に含まれるカルボキシル基が、アルミニウム表面に存在するAl-O部分や、化成処理皮膜においては皮膜表面の極性基と強固に結びつくとともに、樹脂の骨格部が塗膜の樹脂成分と溶融接着層形成効果を発揮するため、アルミニウム表面と塗膜の双方に強力に作用するためである。この他、アクリル樹脂は一般的に、屈折率が高く無色であることや、内分泌かく乱性物質(いわゆる環境ホルモン)であることが指摘されるビスフェノールAを含有しないこと等、食品包装用途として好ましい性質を備えている。以上の要件を満たす限り、本発明においては、従来技術にて公知であるアクリル樹脂をそのまま適用できる。具体的には、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸、ポリメタクリル酸エステル、ポリヒドロキシアクリル酸、ポリヒドロキシアクリル酸エステルおよびそれらの共重合体などが好適である。加えて、アンモニア、アミン類あるいはアルカリ金属水酸化物等でpH調整した樹脂も、同様に好適に用いることができる。さらに、メラミン系化合物およびユリア系化合物を架橋剤として添加した樹脂も、同様に好適に用いることができる。
また、本発明に用いるアクリル樹脂の分子量は、重量平均分子量にして1000以上100万以下のものでなければならない。これは、重量平均分子量が1000を下回ると、樹脂塗膜の水溶性が高まり、レトルト処理等におけるアクリル樹脂層の溶出が懸念されるためであり、100万を上回ると、樹脂塗膜の柔軟性が損なわれて樹脂皮膜自身の割れが発生しやすくなる上、粘度が増大することによる塗装ムラ等が生じやすいためである。
Second, the action of the acrylic resin will be described.
In the present invention, an acrylic resin having one or more carboxyl groups per weight average molecular weight of 500 and having a weight average molecular weight of 1,000 to 1,000,000 is most suitable as a material to be provided on the aluminum plate surface. This is because the carboxyl group contained in the acrylic resin is strongly bonded to the Al—O portion present on the aluminum surface and the polar group on the film surface in the chemical conversion coating, and the resin skeleton is the resin component of the coating film. This is because it exerts a strong effect on both the aluminum surface and the coating film in order to exert the effect of forming the molten adhesive layer. In addition, acrylic resins generally have high refractive index and are colorless, and do not contain bisphenol A, which is pointed out to be an endocrine disrupting substance (so-called environmental hormone). It has. As long as the above requirements are satisfied, an acrylic resin known in the prior art can be applied as it is in the present invention. Specifically, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid, polymethacrylic acid ester, polyhydroxyacrylic acid, polyhydroxyacrylic acid ester and copolymers thereof are suitable. In addition, resins whose pH is adjusted with ammonia, amines, alkali metal hydroxides, or the like can also be suitably used. Furthermore, a resin in which a melamine compound and a urea compound are added as a cross-linking agent can also be suitably used.
Moreover, the molecular weight of the acrylic resin used for this invention must be a thing of 1000-1 million in terms of a weight average molecular weight. This is because when the weight average molecular weight is less than 1000, the water solubility of the resin coating film increases, and elution of the acrylic resin layer in retort treatment or the like is concerned. When the weight average molecular weight exceeds 1,000,000, the flexibility of the resin coating film is increased. This is because cracks in the resin film itself are easily generated and uneven coating due to an increase in viscosity is likely to occur.
そして本発明において、上記のアクリル樹脂からなる樹脂塗膜は乾燥重量5mg/m2以上5000mg/m2以下であることが必須である。これは、樹脂塗膜が乾燥重量5mg/m2を下回るように塗布すると、アルミニウム板表面に均一に塗布することが工業的に難しく、部分的に塗布抜け等が生じる危険性がある。また5000mg/m2を上回ると、アクリル樹脂層の残留応力が大きくなり、強い加工を行った際に樹脂層の凝集破壊を招くためである。さらに、樹脂塗膜の乾燥重量は、10mg/m2以上500mg/m2以下であれば、より好ましい。これは、10mg/m2以上であれば塗布抜け発生の危険がほぼ回避できること、ならびに本発明の効果は500mg/m2にてほぼ飽和するため、それ以上多量に樹脂塗膜を設けてもコスト的に不利になるという、いずれも工業的な理由によるものである。 In the present invention, it is essential that the resin coating film made of the acrylic resin has a dry weight of 5 mg / m 2 or more and 5000 mg / m 2 or less. If the resin coating is applied so that the dry weight is less than 5 mg / m 2 , it is industrially difficult to uniformly apply to the surface of the aluminum plate, and there is a risk that partial application omission occurs. Further, if it exceeds 5000 mg / m 2 , the residual stress of the acrylic resin layer becomes large, which causes cohesive failure of the resin layer when strong processing is performed. Furthermore, the dry weight of the resin coating film is more preferably 10 mg / m 2 or more and 500 mg / m 2 or less. This is because the risk of coating omission can be almost avoided at 10 mg / m 2 or more, and the effect of the present invention is almost saturated at 500 mg / m 2 . Both of them are industrial disadvantages.
このようにして得られたアルミニウム板は、その表面に塗装およびラミネート等の手段により樹脂を設けることで、特にキャップ成型用の材料として好適に用いることができる。樹脂塗膜に用いられる樹脂については、従来技術に基づくものであればよい。例えば塗料であれば、ポリエステル系樹脂、エポキシ系樹脂および塩化ビニル系樹脂等、一般的に用いられる樹脂をそのまま用いることができる。また塗料は、水溶性であっても溶剤性であってもよく、酸化チタン等の顔料が含まれていてもよい。また例えばラミネートであれば、従来技術に基づき製造されたポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート樹脂(PBT)等のフィルムを、フィルム融点以上の温度にて熱圧着すればよい。さらにこれらの樹脂の上には、色彩付与を目的とした各種インキ層を設けてもよく、トップコートとして各種仕上げクリアー塗膜を設けてもよい。 The aluminum plate thus obtained can be suitably used particularly as a cap molding material by providing a resin on its surface by means such as painting and laminating. About resin used for a resin coating film, what is necessary is just based on a prior art. For example, in the case of a paint, commonly used resins such as polyester resins, epoxy resins, and vinyl chloride resins can be used as they are. The paint may be water-soluble or solvent-based, and may contain a pigment such as titanium oxide. For example, in the case of a laminate, a film such as polyethylene terephthalate (PET) resin or polybutylene terephthalate resin (PBT) manufactured based on the conventional technology may be thermocompression bonded at a temperature equal to or higher than the film melting point. Furthermore, on these resins, various ink layers for the purpose of imparting color may be provided, and various finishing clear coating films may be provided as a top coat.
本発明のような成型加工後の樹脂密着性に優れたアルミニウム板を得る製造方法として、表面の形状が最大高さRzが1.0μm以上5.0μm以下であるロールにて最終圧延を施し、次いで表面の形状が算術平均高さRaが0.1μm以上0.5μm以下であるロールにて矯正工程を行った後、重量平均分子量500につき1個以上のカルボキシル基を含有かつ重量平均分子量が1000以上100万以下である水性または溶剤性のアクリル樹脂塗料を、乾燥重量にて5mg/m2以上5000mg/m2以下となるよう塗布し、30℃以上300℃以下の雰囲気にて1秒以上600秒以下乾燥させる方法を挙げることができる。 As a manufacturing method for obtaining an aluminum plate having excellent resin adhesion after molding as in the present invention, the surface shape is subjected to final rolling with a roll having a maximum height Rz of 1.0 μm to 5.0 μm, Next, after performing a straightening process with a roll having a surface shape with an arithmetic average height Ra of 0.1 μm or more and 0.5 μm or less, the weight average molecular weight of 500 contains one or more carboxyl groups and a weight average molecular weight of 1000 An aqueous or solvent-based acrylic resin paint having a viscosity of 1 million or less is applied to a dry weight of 5 mg / m 2 or more and 5000 mg / m 2 or less. The method of drying for less than a second can be mentioned.
アルミニウム素材の成型方法は、ダイキャスト等の鋳造、ロールによる圧延、金型による押出や引抜などが挙げられるものの、アルミニウム板を製造する方法としては、ほとんど全て、ロールによる熱間あるいは冷間圧延が用いられる。特に、適度な機械的特性を得るために、熱間圧延によりある程度の板厚まで圧延した後、引き続き冷間圧延を行う方法が多く用いられる。 ここで、圧延の最終段階、すなわち素材が圧延ロールに触れる最後のパスにおいて、圧延ロールの表面を最大高さRzが1.0μm以上5.0μm以下とすることにより、素材にロール粗さが転写される。この工程は、アルミニウム板表面を適度に荒らすことが目的であり、ロール表面のRzが1.0μm未満では板表面に十分な凹が形成されず、以降で説明する矯正工程後においてRaが小さくなりすぎる。一方で5.0μmを上回ると、矯正工程で凸が潰しきれないほど表面が荒れてしまい、矯正工程後のRaが大きくなりすぎ、いずれも不適である。 Although the method of forming the aluminum material includes casting such as die casting, rolling with a roll, extrusion or drawing with a mold, almost all methods for producing an aluminum plate include hot or cold rolling with a roll. Used. In particular, in order to obtain appropriate mechanical properties, a method of performing cold rolling after rolling to a certain thickness by hot rolling is often used. Here, in the final stage of rolling, that is, in the final pass when the material comes into contact with the rolling roll, the surface roughness of the rolling roll is transferred to the material by setting the maximum height Rz to 1.0 μm or more and 5.0 μm or less. Is done. The purpose of this step is to moderately roughen the aluminum plate surface, and if the roll surface Rz is less than 1.0 μm, sufficient concaves are not formed on the plate surface, and Ra becomes smaller after the correction step described below. Too much. On the other hand, when the thickness exceeds 5.0 μm, the surface becomes rough enough to prevent the convexity from being crushed in the correction process, and Ra after the correction process becomes too large.
続いて、上記圧延工程にて適度に表面を荒らされたアルミニウム板に対し、ロール表面の算術平均高さRaが0.01μm以上0.5μm以下であるロールにて矯正工程を行うことにより、請求項1の要請に沿った表面粗さを持つアルミニウム板が得られる。矯正工程は、レベリング工程やレベラー工程などとも称され、主に冷間圧延後のアルミニウム板のひずみを取り除くために実施されるもので、ローラーレベラーと呼ばれる設備を用いることが多い。このローラーレベラーにおいて、表面の算術平均高さRaが0.01μm以上0.5μm以下という平滑なロールを使用することにより、材料表面の凹凸が適度に押しつぶされる。
具体的には、圧延工程終了時のアルミニウム表面には、凹の部分と凸の部分がほぼ等量存在しているが、平滑なロールによる矯正工程を受けると、凹の部分はそのまま保存される一方で、凸の部分のみが押しつぶされて平滑化する。その結果、アルミニウム板表面において、Raを0.1〜0.5μmに保ちながら、Rmr(1.5μm)が50%以上であるアルミニウム板が得られるものである。ローラーレベラーのロール表面のRaが0.01μmを下回ると、ロールが平滑すぎるため空転し、矯正工程が十分に行われない可能性がある。反対に0.5μmを上回ると、アルミニウム板の凸を押しつぶす作用が十分に働かず、板表面のRaが大きくなりすぎる。
Subsequently, for the aluminum plate whose surface is moderately roughened in the rolling step, by performing a correction step with a roll having an arithmetic average height Ra of 0.01 μm or more and 0.5 μm or less on the roll surface, An aluminum plate having a surface roughness conforming to the requirement of item 1 is obtained. The straightening process is also referred to as a leveling process, a leveler process, or the like, and is mainly performed to remove distortion of the aluminum plate after cold rolling, and equipment called a roller leveler is often used. In this roller leveler, unevenness on the surface of the material is moderately crushed by using a smooth roll having an arithmetic average height Ra of 0.01 μm or more and 0.5 μm or less.
Specifically, the aluminum surface at the end of the rolling process has approximately the same amount of concave portions and convex portions, but the concave portions are preserved as they are when subjected to a correction process using a smooth roll. On the other hand, only the convex part is crushed and smoothed. As a result, an aluminum plate having an Rmr (1.5 μm) of 50% or more can be obtained while keeping Ra at 0.1 to 0.5 μm on the surface of the aluminum plate. When Ra on the roll surface of the roller leveler is less than 0.01 μm, the roll is too smooth and may idle and the correction process may not be performed sufficiently. On the other hand, if it exceeds 0.5 μm, the action of crushing the convexity of the aluminum plate does not work sufficiently and Ra on the plate surface becomes too large.
なお、このようにアルミニウム板の表面粗さ形状を整えた後、続くアクリル樹脂塗料の濡れ性を向上させること、あるいは素材の耐食性をさらに向上させることを目的とし、従来技術に基づく脱脂工程および化成処理工程を追加することができる。具体的には、pHが9〜13程度の市販アルカリ脱脂剤の水溶液を60度前後に加熱し、スプレーにてアルミニウム板表面に吹き付ける等の脱脂工程や、脱脂工程後にリン酸クロムおよびフッ化水素酸を作用させるリン酸クロメート処理等の化成処理工程が挙げられる。近年は環境対応型の化成処理として、ジルコニウム化合物やチタン化合物等を利用した、いわゆるノンクロム化成処理も用いられるようになっており、本発明においても当然適用可能である。 In addition, after the surface roughness shape of the aluminum plate is adjusted in this way, the degreasing process and chemical conversion based on the prior art are aimed at improving the wettability of the subsequent acrylic resin paint or further improving the corrosion resistance of the material. Processing steps can be added. Specifically, an aqueous solution of a commercially available alkaline degreasing agent having a pH of about 9 to 13 is heated to around 60 degrees and sprayed onto the surface of the aluminum plate with a spray, or chromium phosphate and hydrogen fluoride after the degreasing step. Examples thereof include a chemical conversion treatment step such as a phosphoric acid chromate treatment in which an acid is allowed to act. In recent years, a so-called non-chromium chemical conversion treatment using a zirconium compound, a titanium compound, or the like has come to be used as an environmentally-friendly chemical conversion treatment, which is naturally applicable to the present invention.
このようにして、理想的な表面粗さ形状が得られたアルミニウム表面に対し、適当な濃度に調製した水性または溶剤性のカルボキシル基含有アクリル樹脂塗料を塗布し乾燥させることにより、請求項1のアルミニウム板を得ることができる。この際、乾燥温度が30℃を下回ると、水または溶剤の揮発速度が遅いため、生産性に悪影響を及ぼし、また乾燥温度が300℃を上回ると、温度維持のためのエネルギーが無駄になる他、特に水溶性アクリル樹脂を用いた場合に液膜の突沸が発生しやすいため、いずれも好ましくない。生産性、エネルギーおよび突沸防止の観点からは、乾燥温度は60℃以上200℃以下とすることが、さらに好ましい。乾燥時間が1秒を下回る条件設定では、水または溶剤の揮発が十分に行われず、また600秒を上回ると生産性に悪影響を及ぼし、いずれも好ましくない。溶剤揮発、および生産性の観点からは、乾燥時間は10秒以上60秒以下とすることが、さらに好ましい。なお、アクリル樹脂塗料の塗布方法については特に制限はなく、板を溶液に浸漬した後ロールで絞る方法や、コーターロールにより板に塗りつける方法、およびスプレーにより板に吹き付ける方法等を用いることができる。中でも、アクリル樹脂の付着量が5mg/m2以上5000mg/m2以下となるように制御するためには、コーターロールを用いた方法が特に好ましい。なお、アクリル樹脂の付着量を測定するためには、付着量の狙い値が約500mg/m2以下の場合は反射赤外吸収スペクトル測定法、それ以上の場合は重量法を用いることができる。 In this way, by applying an aqueous or solvent-based carboxyl group-containing acrylic resin paint prepared at an appropriate concentration to the aluminum surface from which an ideal surface roughness shape was obtained, and drying it, An aluminum plate can be obtained. At this time, if the drying temperature is lower than 30 ° C, the volatilization rate of water or solvent is slow, which adversely affects the productivity. If the drying temperature exceeds 300 ° C, energy for maintaining the temperature is wasted. In particular, when a water-soluble acrylic resin is used, it is easy to generate a bumpy liquid film. From the viewpoint of productivity, energy, and bumping prevention, the drying temperature is more preferably 60 ° C. or higher and 200 ° C. or lower. When the drying time is less than 1 second, the water or solvent is not sufficiently volatilized, and when it exceeds 600 seconds, the productivity is adversely affected. From the viewpoint of solvent volatilization and productivity, the drying time is more preferably 10 seconds or more and 60 seconds or less. In addition, there is no restriction | limiting in particular about the application | coating method of an acrylic resin coating material, The method of squeezing with a roll after immersing a board in a solution, the method of apply | coating to a board with a coater roll, the method of spraying on a board with a spray, etc. can be used. Among them, a method using a coater roll is particularly preferable in order to control the adhesion amount of the acrylic resin to be 5 mg / m 2 or more and 5000 mg / m 2 or less. In order to measure the adhesion amount of the acrylic resin, a reflection infrared absorption spectrum measurement method can be used when the target value of the adhesion amount is about 500 mg / m 2 or less, and a gravimetric method can be used when the target value is more.
以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
アルミニウム材として、板厚0.23mmのJIS5151−H39合金板を使用した。板の製造工程の詳細および板表面の粗さ測定結果は、表1に記載したとおりである。これらの板に対し、前処理として従来技術に基づく脱脂処理あるいはリン酸クロメート処理を実施した。すなわち、市販のアルカリ脱脂剤「サーフクリーナー EC370」(日本ペイント製、濃度1.0%、温度60℃)により板表面を脱脂するとともに、一部の実施例に対しては市販のリン酸クロメート処理剤「アルサーフ408/48」(日本ペイント製、濃度2.0%/0.4%、温度45℃)によりリン酸クロメート皮膜を形成させた。皮膜の量は、Cr付着量=10mg/m2に調整した。
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.
As the aluminum material, a JIS5151-H39 alloy plate having a thickness of 0.23 mm was used. The details of the plate manufacturing process and the measurement results of the surface roughness of the plate are as described in Table 1. These plates were subjected to degreasing treatment or phosphoric acid chromate treatment based on the prior art as pretreatment. That is, the surface of the plate was degreased with a commercially available alkaline degreasing agent “Surf Cleaner EC370” (Nihon Paint, concentration 1.0%, temperature 60 ° C.), and commercially available phosphoric acid chromate treatment for some examples. A phosphate chromate film was formed with the agent “Alsurf 408/48” (manufactured by Nippon Paint, concentration 2.0% / 0.4%, temperature 45 ° C.). The amount of the film was adjusted to Cr adhesion amount = 10 mg / m 2 .
上記のアルミニウム材表面に塗布するためのアクリル樹脂塗料として、表2に示す性状のアクリル樹脂を水又は有機溶媒(2−ブタノン)に溶解したものを用いた。表2のアクリル樹脂には、A:ポリアクリル酸、B:ポリアクリル酸、C:ポリメタクリル酸エステル、D:ポリアクリル酸エステル、E:ポリアクリル酸、F:ポリアクリル酸エステルを用いた。アクリル樹脂塗料の濃度は、100g/リットルとした。これらの溶液を、ステンレスバーコーターにて表3に示す乾燥重量となるように塗布し、雰囲気120℃・風速15m/秒の炉において30秒乾燥させた。
このようにして得られたサンプルに対し、以下の評価を実施した。
As the acrylic resin paint for application to the above aluminum material surface, an acrylic resin having the properties shown in Table 2 dissolved in water or an organic solvent (2-butanone) was used. For the acrylic resins in Table 2, A: polyacrylic acid, B: polyacrylic acid, C: polymethacrylic acid ester, D: polyacrylic acid ester, E: polyacrylic acid, F: polyacrylic acid ester were used. The concentration of the acrylic resin paint was 100 g / liter. These solutions were applied with a stainless bar coater so as to have a dry weight shown in Table 3, and dried for 30 seconds in an oven having an atmosphere of 120 ° C. and a wind speed of 15 m / second.
The following evaluation was performed on the samples thus obtained.
〔塗料の塗布〕
サンプルに対し、以下の手順にて塗装を実施した。
・外面(後述のキャップ成型において、外面に相当する面): 市販のキャップ用溶剤型塗料「ホワイトコーチング」(酸化チタン顔料含有,ポリエステル系樹脂,塗膜量13g/m2狙い,焼付温度=190℃,焼付時間=600秒)を塗布した上に、市販のキャップ用溶剤型塗料「トップコート」(ポリエステル系樹脂,塗膜量5g/m2狙い,焼付温度=180℃,焼付時間=600秒)を塗布した。
・内面(後述のキャップ成型において、内面に相当する面): 市販のキャップ用溶剤型塗料「トップコート」(ポリエステル系樹脂,塗膜量5g/m2狙い,焼付温度=180℃,焼付時間=600秒)を塗布した。
[Applying paint]
The sample was painted according to the following procedure.
・ External surface (surface corresponding to the external surface in cap molding described later): Commercially available solvent coating for cap “White Coaching” (containing titanium oxide pigment, polyester resin, coating amount 13g / m 2 , baking temperature = 190 After applying ℃, baking time = 600 seconds, commercially available solvent-type paint for cap “Topcoat” (Polyester resin, coating amount 5g / m 2 aiming, baking temperature = 180 ° C, baking time = 600 seconds ) Was applied.
・ Inner surface (surface corresponding to inner surface in cap molding described later): Commercially available solvent coating for cap “Topcoat” (Polyester resin, coating amount 5g / m 2 aiming, baking temperature = 180 ° C, baking time = 600 seconds).
〔キャップ加工後の密着性評価〕
上記の塗装サンプルの両面に、市販のシリコン系潤滑剤を50mg/m2ずつ塗布し、キャップ成型機により絞り成型加工(キャップ径=38mm、キャップ高さ=18mm)を行った後、ミシン目加工・スクリュー加工の順に行った。得られたキャップに対し、ミシン目部、キャップ下端およびビード部の塗膜剥離状態を、成型直後/レトルト後(125℃×30分)にて目視観察した。ミシン目部、キャップ下端およびビード部の全長に対する剥離発生部位の長さを%単位で記録し、これらの平均値に対し、以下の基準にて判定を行った。
剥離発生0%以上5%未満 判定=◎
剥離発生5%以上10%未満 判定=○
剥離発生10%以上25%未満 判定=△
剥離発生25%以上50%未満 判定=×
剥離発生50%以上 判定=××
[Evaluation of adhesion after cap processing]
Apply 50 mg / m 2 of commercially available silicon lubricant on both sides of the above painted sample, and after drawing with cap molding machine (cap diameter = 38 mm, cap height = 18 mm), then perforation・ Screw processing was performed in this order. With respect to the obtained cap, the coating film peeling state of the perforation part, the lower end of the cap and the bead part was visually observed immediately after molding / after retorting (125 ° C. × 30 minutes). The length of the part where the peeling occurred relative to the total length of the perforation part, the lower end of the cap, and the bead part was recorded in% units, and the average value was determined according to the following criteria.
Occurrence of peeling 0% or more and less than 5% Judgment = ◎
Peeling 5% or more and less than 10% Judgment = ○
Peeling 10% or more and less than 25% Judgment = △
Peeling occurrence 25% or more and less than 50% Judgment = ×
Peeling 50% or more Judgment = ××
表3から明らかなように、実施例1〜14は、本発明要件である表面粗さおよびアクリル樹脂の条件を満たすため、キャップ成型試験において、成型直後/レトルト後とも良好な結果を示した。一方、比較例1〜11は、本発明の要件を満たしていないため、塗膜剥離が目立つ結果となった。具体的には、比較例1および2は、Raが低すぎるため、アンカー効果が不足し、塗膜剥離が発生している。比較例3は、表面のRaが高すぎるため、塗膜が局所的に薄くなり、塗膜が加工に耐えられず、剥離している。比較例4は、Raは適正であるもののRmr(1.5μm)が低すぎるため、やはり塗膜が局所的に薄くなり、加工に耐えられずに剥離を生じている。比較例5は、Raが高すぎかつRmr(1.5μm)が低すぎるため、アクリル樹脂の効果にもかかわらず加工性が著しく低下し、塗膜剥離を生じている。比較例6は、アクリル樹脂が設けられておらず、塗膜のアルミニウム板に対する密着性が不足するため、塗膜剥離を生じている。比較例7は、アクリル樹脂のカルボキシル基が不足しているため密着性が不足し、比較例8は、アクリル樹脂の分子量が低すぎるため、成型自体には効果を持つものの、レトルト処理後の剥離が顕著である。比較例9は、アクリル樹脂の分子量が高すぎるため、成型の際に樹脂が割れてしまい、塗膜剥離が発生している。比較例10は、アクリル樹脂の塗布量が少なすぎるため、塗膜剥離が抑制しきれない。比較例11は、アクリル樹脂が多すぎるため、成型の際に樹脂層に応力が蓄積され、塗膜剥離を誘発している。 As is apparent from Table 3, Examples 1 to 14 satisfy the conditions of the surface roughness and the acrylic resin, which are the requirements of the present invention, and in the cap molding test, showed good results immediately after molding / after retorting. On the other hand, since Comparative Examples 1-11 did not satisfy the requirements of the present invention, the coating film peeled off. Specifically, in Comparative Examples 1 and 2, since Ra is too low, the anchor effect is insufficient and coating film peeling occurs. In Comparative Example 3, since the surface Ra is too high, the coating film is locally thinned, the coating film cannot withstand the processing, and is peeled off. In Comparative Example 4, although Ra is appropriate, Rmr (1.5 μm) is too low. Therefore, the coating film is also locally thinned, and it is not able to withstand processing, resulting in peeling. In Comparative Example 5, Ra is too high and Rmr (1.5 μm) is too low, so that the workability is remarkably lowered despite the effect of the acrylic resin, and the coating film is peeled off. In Comparative Example 6, the acrylic resin is not provided, and the adhesion of the coating film to the aluminum plate is insufficient, and thus the coating film is peeled off. Comparative Example 7 has insufficient adhesion because the carboxyl group of the acrylic resin is insufficient, and Comparative Example 8 has an effect on molding itself because the molecular weight of the acrylic resin is too low, but peeling after retorting Is remarkable. In Comparative Example 9, since the molecular weight of the acrylic resin is too high, the resin is cracked during molding, and the coating film is peeled off. Since the comparative example 10 has too few application amounts of an acrylic resin, peeling of a coating film cannot be suppressed. Since Comparative Example 11 has too much acrylic resin, stress is accumulated in the resin layer at the time of molding, which induces peeling of the coating film.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008317543A JP5060460B2 (en) | 2008-12-12 | 2008-12-12 | Resin-coated aluminum plate with excellent resin adhesion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008317543A JP5060460B2 (en) | 2008-12-12 | 2008-12-12 | Resin-coated aluminum plate with excellent resin adhesion |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010137475A JP2010137475A (en) | 2010-06-24 |
JP5060460B2 true JP5060460B2 (en) | 2012-10-31 |
Family
ID=42348035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008317543A Expired - Fee Related JP5060460B2 (en) | 2008-12-12 | 2008-12-12 | Resin-coated aluminum plate with excellent resin adhesion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5060460B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX366519B (en) * | 2013-07-18 | 2019-07-11 | Mitsui Chemicals Inc | Metal/resin composite structure and metal member. |
DE102015218564B4 (en) * | 2015-09-28 | 2020-07-30 | Trumpf Laser Gmbh | Laser processing machine and method for laser welding workpieces |
JP7123605B2 (en) * | 2018-03-30 | 2022-08-23 | 日本パーカライジング株式会社 | A substrate at least all or part of the surface of which is made of a metallic material, the substrate having pores on the surface of the metallic material, and a substrate-resin cured product composite comprising the substrate and a cured resin product |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4237975B2 (en) * | 2002-04-24 | 2009-03-11 | 株式会社神戸製鋼所 | Aluminum plate for electronic equipment and molded product for electronic equipment using the same |
JP2003342790A (en) * | 2002-05-27 | 2003-12-03 | Mitsubishi Alum Co Ltd | Surface treated aluminum material and thermoplastic resin-coated aluminum material |
JP4777161B2 (en) * | 2006-06-28 | 2011-09-21 | 新日本製鐵株式会社 | Temper rolling method |
JP4922738B2 (en) * | 2006-11-21 | 2012-04-25 | 古河スカイ株式会社 | Aluminum plate for cap molding with excellent resin adhesion and corrosion resistance after molding |
-
2008
- 2008-12-12 JP JP2008317543A patent/JP5060460B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010137475A (en) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3680206B2 (en) | Aluminum alloy plate for coating with excellent adhesion of coating layer | |
JPWO2004005579A1 (en) | Pre-coated metal sheet having excellent press formability and method for producing the same | |
JP6037777B2 (en) | Resin-coated metal plate for squeezed iron can, squeezed iron can and method for producing squeezed iron can | |
JP4668063B2 (en) | Resin-coated aluminum plate and method for producing the same | |
JP5060460B2 (en) | Resin-coated aluminum plate with excellent resin adhesion | |
JP3989176B2 (en) | Method for producing thermoplastic resin-coated aluminum alloy sheet for molding process with excellent adhesion and workability of coating layer | |
JP5103111B2 (en) | Painted steel plate | |
JP5316926B2 (en) | How to paint vehicle wheels | |
CN212555317U (en) | Coating wire drawing color-coated sheet with hand feeling | |
US10550479B2 (en) | Method of thermally treating black plate coated with a conversion coating | |
JP5530436B2 (en) | Composite Al material for squeezing and ironing can and method for producing squeezing and ironing can | |
JP5827789B2 (en) | Resin-coated Al plate for squeezed iron cans with excellent luster and method for producing squeezed iron cans | |
JP6322427B2 (en) | Method for producing resin-coated aluminum plate | |
JP5462159B2 (en) | Resin-coated steel sheet capable of providing a squeezed iron can excellent in glitter and a method for producing the same | |
JP4922738B2 (en) | Aluminum plate for cap molding with excellent resin adhesion and corrosion resistance after molding | |
JPH11207860A (en) | Thermoplastic resin-clad aluminum or aluminum alloy plate, and manufacture thereof | |
JP2008127625A (en) | Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method | |
JP3144433B2 (en) | Weatherproof coating film and aluminum wheel formed therefrom | |
JPS6192850A (en) | Coated steel plate for di can having excellent corrosion resistance | |
JPH0274333A (en) | Precoated steel plate for di can and manufacture of di can using it | |
JPH0141500B2 (en) | ||
JPS63143266A (en) | Production of aluminum composite sheet for deep drawing | |
JP3218924B2 (en) | Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same | |
JP2003103697A (en) | Precoated metal sheet excellent in pressing moldability | |
JPH11613A (en) | Manufacture of aluminum alloy plate with superior molding properties and coat baking/curing properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111114 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120725 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120803 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5060460 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |