JPH0141500B2 - - Google Patents

Info

Publication number
JPH0141500B2
JPH0141500B2 JP57009708A JP970882A JPH0141500B2 JP H0141500 B2 JPH0141500 B2 JP H0141500B2 JP 57009708 A JP57009708 A JP 57009708A JP 970882 A JP970882 A JP 970882A JP H0141500 B2 JPH0141500 B2 JP H0141500B2
Authority
JP
Japan
Prior art keywords
film
vinylidene fluoride
layer
resin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57009708A
Other languages
Japanese (ja)
Other versions
JPS58126154A (en
Inventor
Hiroyuki Endo
Takeshi Nakahira
Mitsuru Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP970882A priority Critical patent/JPS58126154A/en
Publication of JPS58126154A publication Critical patent/JPS58126154A/en
Publication of JPH0141500B2 publication Critical patent/JPH0141500B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属基材への弗化ビニリデン系樹脂フ
イルムの被覆方法に関する。 弗化ビニリデン系樹脂の耐候性、耐薬品性を利
用して金属基材への被覆が試みられている。従
来、金属基材への弗化ビニリデン系樹脂フイルム
の被覆方法としては謂ゆるラミネートによる方法
が知られている。これによれば溶剤で溶かされた
接着剤組成物を金属基材の被覆されるべき表面
に、又はフツ化ビニリデンフイルム表面の片側に
1〜100μm塗布し、60〜200℃で塗布乾燥機を用
いて0.5〜30分間乾燥後、金属基材の片側又は両
側にフツ化ビニリデンフイルムを重ねる。これを
ロールラミネーター、プレスラミネーター等で圧
着し、加熱、加圧、次いで冷却する方法である。
この場合弗化ビニリデンフイルムは延伸されてい
ても厚さが10数μ以上ともなると不透明になり、
下地の着色層の色或いは金属基板の金属光沢が鮮
やかに見られないという欠点を有する。更に高価
な樹脂である故、この面からもできるだけ薄膜に
して用いることが望まれる。他方、厚さが10数μ
以下ともなるとこしがなく、作業上、取扱いにく
いばかりでなく金箔と同様しわが限りなく発生
し、積層界面において空気の抱き込みを防ぐこと
が不可能である。そのためそれ自体でも外観上見
苦しいが、その上かかる空気の泡き込み部分にフ
ツ化ビニリデンフイルム中を拡散して外界の水分
が入り込み、水泡を形成し、一層外観上見苦しい
ものとなる。これに加えてかかる接着されていな
い部分より容易に剥離しやすいという欠点をも有
するのである。 別の従来技術としては弗化ビニリデン塗料を用
いる方法がある。かかる塗料を用いれば前述方法
の如きしわの発生はない。ところが弗化ビニリデ
ン自体は耐薬品性に優れていても加圧成形時の塗
膜の亀裂、施行時のキズの発生により或いは塗装
後の揮発性成分の蒸発によるピンホールの発生に
より錆の発生を始めとする金属基材の腐触が避け
られないという欠点を有する。 本発明はかかる従来技術の現状に鑑み、弗化ビ
ニリデン系樹脂フイルムを金属基材上に被覆する
に、しわの発生を招かず、且つ弗化ビニリデン系
樹脂層の下地金属面が鮮明に見られ、しかも金属
基材の腐触を抑制し得、接着性良好な被覆方法を
提供することにある。 本発明は弗化ビニリデン系樹脂からなる層と接
着層とを有する共押出積層フイルムを、金属基材
上へ加熱圧着させることにより、弗化ビニリデン
系樹脂フイルムが1μ程度の厚さでもシワの発生
を招くことなく、しかも金属基材の腐触を抑制し
得、加えて接着性が良好であることを見出したこ
とに基づく。 本発明における弗化ビニリデン系樹脂としては
例えば弗化ビニリデンホモポリマー(以下PVDF
と示す)、弗化ビニリデンを50モル%以上とし、
これと共重合可能なコモノマーの1種又は2種以
上との共重合体、これらホモポリマー、コポリマ
ーの少なくともいずれかを主とする組成物などが
例示される。 本発明における弗化ビニリデン系樹脂の重合
度、重合方法は特に限定されるものでなく、任意
のものが用いられるが、好ましくは懸濁重合法に
より得られた重合度700〜1300、より一層好まし
くは900〜1100の範囲が用いられる。 弗化ビニリデン系樹脂層の厚さの上限は、下地
の層の色を鮮明にする上から10μm、好ましくは
8μm、より一層好ましくは5μmとする。これに
対し厚さの下限は特に限られないが、金属基材の
腐触を十分抑制させる上で、好ましくは1μm、
より一層好ましくは2μmとする。この程度の薄
さではミクロ的な成形加工のバラツキから金属基
材の腐触を抑制できない部分を成形するおそれも
考えられ、またかかる薄膜ではたとえ耐薬品性の
ある弗化ビニリデン系樹脂でも耐薬品性能が低下
するのではないかというおそれも考えられたので
あるが、後述実施例に示すように極めて優れた耐
薬品性が認められたのである。 弗化ビニリデン系樹脂層と共押出積層される接
着層としては弗化ビニリデン系樹脂と金属基材と
の両方に接着しうる接着剤であれば一層で十分で
ある。かかる接着層として好ましくはメタクリル
系樹脂がある。本発明で用いられるメタクリル系
樹脂としては例えばメタクリル酸メチル、メタク
リル酸エチル等のアルキル基の炭素数が1〜4、
好ましくは1〜2のメタクリル酸アルキルエステ
ルのいずれかからなるホモポリマー、若しくはこ
れらの少なくともいずれかを50モル%以上とする
コポリマー又はかかるポリマーをマトリツクス樹
脂の50モル%以上とするグラフトコポリマー若し
くはかかるポリマーを50モル%以上とする組成物
等が例示される。 かくの如き弗化ビニリデン系樹脂と金属基材と
の両方に接着しうる接着層であつても不十分なと
きには一層とせず、2層以上としてもよいことは
云うまでもない。例えばメタクリル系樹脂と金属
基材との接着力がやや不十分故、メタクリル系樹
脂接着層における弗化ビニリデン系樹脂層と積層
されていない面に塩化ビニル系樹脂層を共押出積
層させ、この塩化ビニル系樹脂層を金属基材と積
層させる方法がより一層好ましく用いられる。こ
の他共押出積層フイルムは別の層を含んでいても
よい。 積層フイルムの全層厚さはこしのある厚みであ
れば成形加工上支障なく取り扱え、しわを発生す
ることなく金属基材上に積層可能である。かかる
こしのある厚みとしては通常10μm以上あればよ
く、好ましくは25μm以上とすることにより、よ
り容易に金属基材上へ積層可能である。 弗化ビニリデン系樹脂層と接着層とを有する多
層積層フイルムは共押出成形法によりなされる。
共押出成形法としては例えば積層される各層を
別々に押出し、それらをロール等によりダイ外で
積層する方法、積層される層の数と同数の押出機
から押出機と同数の溝を有する単一のダイに供給
し、ダイ内で積層する方法、必要数の押出機から
流束分配装置に供給し、この分配装置で積層し、
ダイに供給させる方法等の公知の共押出成形法が
用いられる。 本発明においては他の樹脂との接着性が不十分
な弗化ビニリデン系樹脂が共押出法により接着層
とその界面において溶融混合されているため強固
に結合されており、ラミネート法或は塗装法等の
従来技術と較べ優れた接着力を呈するが、また塗
装法の如く毒性のある有機溶媒を用いる必要がな
い点でも優れている。 共押出された積層フイルムは弗化ビニリデン系
樹脂層の厚さを10μ以下にすべく、上記共押出後
ドラフトし、更に必要あれば冷延伸される。かか
るドラフトの条件としては樹脂構成、樹脂粘度に
より異なるため必らずしも一律に述べることは困
難であるが、例えば弗化ビニリデン系樹脂を一層
とし、メタクリル系樹脂を別の一層とする場合、
190〜280℃、好ましくは200〜240℃の温度範囲で
ドラフト率5〜70の範囲、好ましくは10〜40の範
囲でなされる。この際弗化ビニリデン系樹脂とし
ては重合度が700〜1200の範囲のものが用いられ、
メタクリル系樹脂としてはメルトフローインデツ
クスが0.4〜16g/10分、好ましくは1〜8g/
10分、より一層好ましくは1.5〜4g/10分のも
のが用いられる。ここでメルトフローインデツク
スはASTM D1238により230℃で荷重3.8Kg重で
求めたものである。また別の例として上記二層に
加え、塩化ビニル系樹脂を積層させた場合には
195〜210℃の樹脂温度で、ドラフト率5〜70の範
囲、好ましくは10〜40範囲でなされる。この際塩
化ビニル系樹脂は重合度700〜1700、好ましくは
1000〜1300の範囲が用いられる。 冷延伸は公知の方法でなされ、ドラフトあるい
は延伸後に緩和熱処理が必要に応じてなされる。
その場合には通常60〜100℃の間で5秒〜1分程
度なされれば十分である。緩和熱処理はドラフト
あるいは延伸による残留歪を緩和させるためにす
るものであり、かかる残留歪があつても支障ない
ときには緩和熱処理の必要はない。例えば共押出
積層フイルムと鋼板の間に軟質塩ビの如き軟らか
い層があるときはこの層が変形するため残留歪が
あつても支障がない。 上記共押出成形フイルムの形状は平板状に限ら
れるものではなく、管状に出し、切り開いたフイ
ルム等種々の形態であつてよい。 上記共押出成形フイルムが積層される金属基材
としては各種のものが採用され得る。例えば鉄系
金属、アルミニウム系金属、銅系金属、チタン系
金属等が例示される。このうち鉄系金属の中には
鋼、電解クロム酸処理鋼、あるいは亜鉛、アルミ
ニウム、銅、クロム、すず、鉛等のめつきされた
鋼、又はこれらの合金めつき鋼等が含まれる。ま
たアルミニウム系金属としてはアルミニウム単独
又はジユラルミンの如き各種アルミニウム合金、
更にはマンガン、マグネシウム等を少量含有する
アルミニウム金属などが例示され得る。 本発明において、積層フイルムと積層する前に
金属基材表面を予め表面処理することが、密着力
向上のために望ましい。例えば脱脂洗浄などの洗
浄処理、サンドプラスト、化学的エツチングなど
粗面化処理するなどが望ましい。 予め表面処理された、あるいは表面処理されて
いない金属基材の積層される面には積層フイルム
と積層する前に積層フイルムとの接着力を高める
ために接着剤を塗布してもよい。接着剤としては
アクリル系、エポキシ系、ウレタン系、ゴム系な
ど公知のものが使用される。 かかる金属基材上には前述の積層フイルムの一
層の塩化ビニル樹脂層の代わりにビニルプラスチ
ゾル法により塩化ビニル樹脂を塗布させてもよ
い。ここでビニルプラスチゾル法とはいわゆる変
性プラスチゾル法やオルガノゾル法をも含むもの
であり、可塑剤を加えた塩化ビニル樹脂をペース
ト状とし、ロールコート、浸漬コート、ナイフコ
ート、カーテンフローコートなどの方法で塗布
し、加熱成膜化を行う方法である。 積層フイルムは金属基材と圧着させることによ
り積層される。この際積層フイルムと金属基材と
の間に接着剤を用いる場合、その接着剤が常温で
十分接着層を有するときには常温で圧着してもよ
い故、圧着には必ずしも加熱を必要とするもので
はない。また接着剤を用いないときには積層フイ
ルム中の金属表面と直接接する接着層樹脂が実質
的に溶融あるいは軟化される温度に加熱して圧着
させる方法が採用される。この際加熱温度は通常
80〜250℃でなされ、圧力は3〜300Kg/cm2プレス
方式では10〜180分の範囲が好ましく用いられる。 以下、本発明の実施例について更に詳細に説明
するが、これらは単なる説明資料であつて、本発
明の範囲をそれのみに限定する趣旨のものではな
い。 実施例 1〜7 PVDF(呉羽化学工業の製造に係るKF#1000を
使用)とアクリル樹脂(三菱レーヨンの製造に係
るハイペツトHBSを使用)を別々の押出機から
押出して、積層複合Tダイス(1.3m巾)内で複
合流動させて積層押出した。これをドラフト率40
倍でドラフトし、60℃のローラーで引き取り冷却
した。この際リツプの樹脂温度は220℃であつた。
次いで100℃のローラーで緩和処理し、積層フイ
ルムの厚さが50μmであり、PVDF層の厚さが1μ
mの積層フイルムを得た。これと同様にPVDF層
の厚さがそれぞれ2μm、3μm、4μm、6μm、8μ
m、10μmであり、積層フイルムの厚さが50μm
のフイルムも得た。 一方、厚さが0.5mmの鋼板の両面に各々厚さが
20μの亜鉛メツキを施し、その表面に各々燐酸亜
鉛処理により0.1μの化成処理被覆層を施した。 上記リン酸亜鉛処理をした鋼板上に、アクリル
系樹脂接着剤“コロナペイント”(日弘ビツクス
の製造に係わる商品名)を厚さ10μmにロールコ
ートし、鋼板温度200℃で焼付けた。 この樹脂被覆鋼板を約160℃に加熱し、前述の
積層フイルムをロールで加圧融着させた。 これら樹脂被覆鋼板について次の試験をし、表
1に結果を示す。 (1) 耐薬品性 表1に示す各種薬液をフイルム上にピペツト
で0.5c.c.垂らし、時計皿を被せ、24時間空気中
に放置した。その結果、フイルム表面に全く変
化のないのを◎、ほんの少しあとがあるのを
〇、ほんの少しあとがありアクリル樹脂層に内
部白化が認められるのを△、かなり模様あとが
ありアクリル樹脂層に内部白化が認められるの
を×とした。 (2) 成膜性 鋼板被覆後、しわの発生が認められたか否か
を肉眼観察。 実施例 8〜14 実施例1〜7に用いた鋼板それぞれにアクリル
系接着剤をコートし焼付け後塗料を0.2mmの厚さ
に塗布し、約200℃で更に焼付けた。 この被覆鋼板に実施例1〜7に用いた積層フイ
ルムそれぞれを実施例1〜7と同様加圧融着させ
たところ、より一層優れた接着力が得られた他は
実施例1〜7と同様の結果を得た。
The present invention relates to a method for coating a metal substrate with a vinylidene fluoride resin film. Attempts have been made to coat metal substrates by utilizing the weather resistance and chemical resistance of vinylidene fluoride resins. Conventionally, a so-called lamination method is known as a method for coating a metal substrate with a vinylidene fluoride resin film. According to this method, an adhesive composition dissolved in a solvent is applied to the surface of a metal substrate to be coated or to one side of a vinylidene fluoride film to a thickness of 1 to 100 μm, and a coating dryer is used at 60 to 200°C. After drying for 0.5 to 30 minutes, vinylidene fluoride film is layered on one or both sides of the metal substrate. This is a method in which this is crimped using a roll laminator, press laminator, etc., heated, pressurized, and then cooled.
In this case, even if the vinylidene fluoride film is stretched, it becomes opaque when the thickness exceeds 10 microns.
The disadvantage is that the color of the underlying colored layer or the metallic luster of the metal substrate cannot be clearly seen. Furthermore, since it is an expensive resin, from this point of view as well, it is desirable to use it as a thin film. On the other hand, the thickness is about 10 μm
Anything below is not only difficult to handle, but also causes endless wrinkles like gold foil, and it is impossible to prevent air from being trapped at the laminated interface. This itself is unsightly in appearance, but on top of that, moisture from the outside world diffuses through the vinylidene fluoride film into the air bubbles and forms blisters, making the appearance even more unsightly. In addition to this, it also has the disadvantage that it is more easily peeled off than the non-bonded parts. Another conventional technique involves the use of vinylidene fluoride paints. If such a paint is used, wrinkles will not occur as in the above-mentioned method. However, even though vinylidene fluoride itself has excellent chemical resistance, it can cause rust due to cracks in the paint film during pressure molding, scratches during application, or pinholes due to evaporation of volatile components after painting. It has the disadvantage that corrosion of the metal base material is unavoidable. In view of the current state of the prior art, the present invention provides a method for coating a metal base material with a vinylidene fluoride resin film without causing wrinkles and allowing the underlying metal surface of the vinylidene fluoride resin layer to be clearly seen. Moreover, it is an object of the present invention to provide a coating method that can suppress corrosion of metal substrates and has good adhesive properties. In the present invention, by heat-pressing a coextruded laminated film having a layer made of vinylidene fluoride resin and an adhesive layer onto a metal substrate, wrinkles do not occur even when the vinylidene fluoride resin film has a thickness of about 1 μm. This is based on the discovery that it can suppress corrosion of metal substrates without causing corrosion, and has good adhesive properties. Examples of the vinylidene fluoride resin in the present invention include vinylidene fluoride homopolymer (hereinafter referred to as PVDF).
), vinylidene fluoride is 50 mol% or more,
Examples include copolymers of this and one or more comonomers that can be copolymerized, and compositions mainly containing at least one of these homopolymers and copolymers. The degree of polymerization and polymerization method of the vinylidene fluoride resin in the present invention are not particularly limited, and any method can be used, but the degree of polymerization obtained by suspension polymerization is preferably 700 to 1300, and more preferably The range of 900 to 1100 is used. The upper limit of the thickness of the vinylidene fluoride resin layer is preferably 10 μm from the top to make the color of the base layer clear.
8 μm, more preferably 5 μm. On the other hand, the lower limit of the thickness is not particularly limited, but in order to sufficiently suppress corrosion of the metal base material, it is preferably 1 μm,
Even more preferably, it is 2 μm. With such a thin film, there is a risk that parts of the metal base material cannot be prevented from being corroded due to microscopic variations in the molding process. There was a fear that the performance would deteriorate, but as shown in the Examples below, extremely excellent chemical resistance was observed. As the adhesive layer to be coextruded and laminated with the vinylidene fluoride resin layer, one layer is sufficient as long as it is an adhesive that can adhere to both the vinylidene fluoride resin and the metal substrate. Preferably, such an adhesive layer is made of methacrylic resin. Examples of the methacrylic resin used in the present invention include methyl methacrylate, ethyl methacrylate, etc., in which the alkyl group has 1 to 4 carbon atoms;
Preferably, a homopolymer consisting of one or two methacrylic acid alkyl esters, a copolymer containing at least one of these at 50 mol% or more, or a graft copolymer containing such a polymer at 50 mol% or more of the matrix resin, or such a polymer. Examples include compositions containing 50 mol% or more. It goes without saying that even if the adhesive layer is capable of adhering to both the vinylidene fluoride resin and the metal base material, if it is insufficient, the adhesive layer may not be one layer, but two or more layers. For example, since the adhesive strength between methacrylic resin and metal base material is somewhat insufficient, a vinyl chloride resin layer is coextruded and laminated on the surface of the methacrylic resin adhesive layer that is not laminated with the vinylidene fluoride resin layer, and this chloride resin layer is laminated by coextrusion. A method in which a vinyl resin layer is laminated on a metal base material is even more preferably used. In addition, the coextruded laminated film may include other layers. If the total thickness of the laminated film is thick enough, it can be handled without any problem during molding and can be laminated onto a metal substrate without wrinkles. The stiff thickness usually needs to be 10 μm or more, preferably 25 μm or more, so that it can be laminated onto a metal substrate more easily. A multilayer laminated film having a vinylidene fluoride resin layer and an adhesive layer is produced by coextrusion molding.
Coextrusion molding methods include, for example, a method in which each layer to be laminated is extruded separately and then laminated outside the die using a roll, etc., and a single extrusion molding method using an extruder with the same number of extruders as the number of layers to be laminated has the same number of grooves as the extruder. A method of supplying to a die and laminating within the die, supplying the required number of extruders to a flux distribution device, laminating in this distribution device,
Known coextrusion methods such as feeding into a die may be used. In the present invention, the vinylidene fluoride resin, which has insufficient adhesion with other resins, is melt-mixed at the adhesive layer and its interface by coextrusion, resulting in a strong bond. It exhibits superior adhesive strength compared to conventional techniques such as the above, but it is also superior in that it does not require the use of toxic organic solvents, as is the case with painting methods. The coextruded laminated film is drafted after the above-mentioned coextrusion in order to reduce the thickness of the vinylidene fluoride resin layer to 10 μm or less, and is further cold stretched if necessary. Such draft conditions vary depending on the resin composition and resin viscosity, so it is difficult to state them uniformly, but for example, when one layer is made of vinylidene fluoride resin and another layer is made of methacrylic resin,
It is carried out at a temperature range of 190 to 280°C, preferably 200 to 240°C, and a draft rate of 5 to 70, preferably 10 to 40. At this time, the vinylidene fluoride resin used has a degree of polymerization in the range of 700 to 1200,
The methacrylic resin has a melt flow index of 0.4 to 16 g/10 minutes, preferably 1 to 8 g/10 minutes.
10 minutes, more preferably 1.5 to 4 g/10 minutes. Here, the melt flow index was determined according to ASTM D1238 at 230°C and a load of 3.8 kg. As another example, in addition to the above two layers, if vinyl chloride resin is laminated,
It is carried out at a resin temperature of 195 to 210°C and a draft rate in the range of 5 to 70, preferably in the range of 10 to 40. At this time, the vinyl chloride resin has a polymerization degree of 700 to 1700, preferably
A range of 1000-1300 is used. Cold stretching is performed by a known method, and relaxation heat treatment is performed as necessary after drafting or stretching.
In that case, it is usually sufficient to heat the mixture at 60 to 100°C for about 5 seconds to 1 minute. The relaxation heat treatment is performed to relieve residual strain caused by drafting or stretching, and there is no need for the relaxation heat treatment if such residual strain does not cause any problem. For example, if there is a soft layer such as soft vinyl chloride between the coextruded laminated film and the steel plate, this layer will deform, so even if there is residual strain, there will be no problem. The shape of the above-mentioned coextrusion film is not limited to a flat plate, but may be in various shapes such as a film cut into a tube and cut open. Various types of metal substrates may be used as the metal base material on which the above-mentioned coextrusion film is laminated. Examples include iron-based metals, aluminum-based metals, copper-based metals, titanium-based metals, and the like. Among these, iron-based metals include steel, electrolytic chromic acid treated steel, steel plated with zinc, aluminum, copper, chromium, tin, lead, etc., or steel plated with alloys thereof. In addition, aluminum-based metals include aluminum alone or various aluminum alloys such as duralumin,
Further examples include aluminum metal containing small amounts of manganese, magnesium, and the like. In the present invention, it is desirable to previously treat the surface of the metal substrate before laminating it with the laminated film in order to improve adhesion. For example, cleaning treatments such as degreasing, surface roughening treatments such as sand blasting, chemical etching, etc. are desirable. An adhesive may be applied to the laminated surface of the metal base material, which has been previously surface-treated or has not been surface-treated, before laminating the metal base material with the laminated film in order to increase the adhesive force with the laminated film. Known adhesives such as acrylic, epoxy, urethane, and rubber adhesives are used as the adhesive. A vinyl chloride resin may be applied onto such a metal base material by a vinyl plastisol method instead of the single vinyl chloride resin layer of the above-mentioned laminated film. The vinyl plastisol method here includes the so-called modified plastisol method and organosol method, in which vinyl chloride resin with a plasticizer added is made into a paste and coated by roll coating, dip coating, knife coating, curtain flow coating, etc. This is a method of coating and heating to form a film. The laminated film is laminated by being pressed against a metal base material. In this case, when using an adhesive between the laminated film and the metal base material, if the adhesive has a sufficient adhesive layer at room temperature, it may be crimped at room temperature, so heating is not necessarily required for crimping. do not have. When an adhesive is not used, a method is employed in which the laminated film is heated to a temperature at which the adhesive layer resin that is in direct contact with the metal surface is substantially melted or softened. At this time, the heating temperature is usually
The temperature is 80 to 250°C, and the pressure is preferably 3 to 300 kg/cm 2 for 10 to 180 minutes in the press method. Examples of the present invention will be described in more detail below, but these are merely explanatory materials and are not intended to limit the scope of the present invention. Examples 1 to 7 PVDF (using KF#1000 manufactured by Kureha Chemical Industries) and acrylic resin (using Hypet HBS manufactured by Mitsubishi Rayon) were extruded from separate extruders, and a laminated composite T die (1.3 Composite fluidization was performed within a width of m width) and extrusion was carried out in layers. Draft this at 40
It was drafted at twice the original temperature and cooled by taking it over with a roller at 60°C. At this time, the lip resin temperature was 220°C.
Then, the thickness of the laminated film was 50 μm, and the thickness of the PVDF layer was 1 μm.
A laminated film of m was obtained. Similarly, the thickness of the PVDF layer is 2 μm, 3 μm, 4 μm, 6 μm, and 8 μm, respectively.
m, 10 μm, and the thickness of the laminated film is 50 μm.
I also got the film. On the other hand, each side of a steel plate with a thickness of 0.5 mm has a thickness of
A 20μ thick zinc plating was applied, and a 0.1μ thick chemical conversion coating layer was applied to each surface by zinc phosphate treatment. The acrylic resin adhesive "Corona Paint" (trade name related to the manufacture of Nikko Vicks) was roll-coated to a thickness of 10 μm on the zinc phosphate-treated steel plate, and the steel plate was baked at a temperature of 200°C. This resin-coated steel plate was heated to about 160° C., and the above-mentioned laminated film was pressure-fused with a roll. The following tests were conducted on these resin-coated steel sheets, and the results are shown in Table 1. (1) Chemical resistance 0.5 cc of the various chemical solutions shown in Table 1 was pipetted onto the film, covered with a watch glass, and left in the air for 24 hours. As a result, ◎ indicates that there is no change at all on the film surface, ○ indicates that there is a slight mark, △ indicates that there is a slight mark and internal whitening is observed on the acrylic resin layer, and △ indicates that there is a significant pattern mark on the acrylic resin layer. When internal whitening was observed, it was marked as ×. (2) Film formability After coating the steel plate, visually observe whether wrinkles have formed. Examples 8 to 14 Each of the steel plates used in Examples 1 to 7 was coated with an acrylic adhesive, and after baking, a paint was applied to a thickness of 0.2 mm and further baked at about 200°C. When each of the laminated films used in Examples 1 to 7 was pressure-fused to this coated steel plate in the same manner as in Examples 1 to 7, even better adhesion was obtained, but the same as in Examples 1 to 7. The results were obtained.

【表】【table】

【表】 比較例 1〜9 亜鉛鉄板にリン酸亜鉛の化成処理をし、その上
にアクリル系樹脂接着剤“コロナペイント”(日
弘ビツクスの製造に係わる商品名)をロールコー
トで塗布し、鋼板温度200℃で焼付けた。このア
クリル樹脂層の厚さはその上に積層される表1に
示すPVDF層の厚さと合わせて60μとなるように、
必要があれば繰返し塗布、焼付けを繰返した。こ
の上に厚さが表1に示すPVDFフイルム(呉羽化
学工業の製造に係るKF#1000を使用)をロール
表面温度160℃、圧力10Kg/cm2でロールコートし
た。その結果は表1に示すようにPVDF層の厚さ
が薄いとしわの発生が大である。また厚いとその
透明性は実施例1〜7と較べ透明度の小さいもの
であつた。 比較例 10〜16 亜鉛鉄板にリン酸亜鉛の化成処理をした。その
上にアクリル系樹脂接着剤“コロナペイント”
(日弘ビツクスの製造に係わる商品名)をロール
コートで塗布し、鋼板温度200℃で焼付けた。こ
のアクリル樹脂層の厚さはその上に積層される表
1に示すPVDF層の厚さと合わせて60μとなる様
に、必要があれば繰返し塗布、焼付けを繰返し
た。このアクリル樹脂層の上に弗化ビニリデンオ
ルガノゾルをロールで塗布し、135℃で15分間乾
燥し、次いで240℃で5分間焼きつけした。
PVDF層の厚さも表1に示す厚さにすべく必要が
あれば塗装、焼付けを繰返した。その結果は表1
に示す如くPVDF層の厚さが薄いと成膜が困難で
あり、成膜が可能な範囲でも薄い場合には耐薬品
性が不十分である。また耐薬品性をある程度満足
できる厚さともなると透明性が不十分である。 以上の実施例にも示した通り本発明による弗化
ビニリデン系樹脂層は数μのオーダーになりうる
ので、塗布の場合と同程度あるいはそれよりも薄
くすることが可能となり、省資源的である。しか
も塗布したものと較べ、ピンホールがないため耐
薬品性はむしろ優れているのである。加えてしわ
が発生せず、外観上あるいは耐久性にも優れてお
り、特に屋外用屋根、外壁、防汚染用内壁等の建
築土木材、例えば薬品、食品等を容れる包装缶、
自動車、船舶等の輸送器材等を始めとし、各種産
業に有用である。
[Table] Comparative Examples 1 to 9 A galvanized iron plate was subjected to a chemical conversion treatment with zinc phosphate, and an acrylic resin adhesive "Corona Paint" (trade name related to the manufacture of Nihonbix) was applied thereon by roll coating. Baked at a steel plate temperature of 200℃. The thickness of this acrylic resin layer is 60μ, including the thickness of the PVDF layer shown in Table 1, which is laminated on top of it.
If necessary, the coating and baking were repeated. A PVDF film having the thickness shown in Table 1 (KF #1000 manufactured by Kureha Chemical Industry Co., Ltd. was used) was roll coated thereon at a roll surface temperature of 160° C. and a pressure of 10 kg/cm 2 . As shown in Table 1, the results show that the thinner the PVDF layer, the more wrinkles occur. Further, when the film was thick, its transparency was lower than that of Examples 1 to 7. Comparative Examples 10 to 16 Galvanized iron plates were subjected to chemical conversion treatment with zinc phosphate. On top of that is an acrylic resin adhesive called “Corona Paint.”
(trade name related to the manufacture of Nihonbix) was applied by roll coating and baked at a steel plate temperature of 200°C. Coating and baking were repeated as necessary so that the thickness of this acrylic resin layer, including the thickness of the PVDF layer laminated thereon as shown in Table 1, was 60 μm. Vinylidene fluoride organosol was applied onto this acrylic resin layer using a roll, dried at 135°C for 15 minutes, and then baked at 240°C for 5 minutes.
Painting and baking were repeated as necessary to achieve the thickness of the PVDF layer shown in Table 1. The results are in Table 1
As shown in Figure 2, if the PVDF layer is thin, it is difficult to form a film, and even if it is possible to form a film, if it is thin, the chemical resistance will be insufficient. Furthermore, when the thickness reaches a certain level of chemical resistance, the transparency is insufficient. As shown in the above examples, the vinylidene fluoride resin layer according to the present invention can be on the order of several μm, so it can be made as thin as or even thinner than coating, which saves resources. . Moreover, compared to coated materials, it has better chemical resistance because there are no pinholes. In addition, it does not wrinkle and has excellent appearance and durability, and is especially suitable for construction materials such as outdoor roofs, external walls, and anti-contamination internal walls, packaging cans for storing medicines, foods, etc.
It is useful for various industries including transportation equipment such as automobiles and ships.

Claims (1)

【特許請求の範囲】 1 厚さが10μm以下の弗化ビニリデン系樹脂フ
イルムからなる層と、接着層とを有する共押出積
層フイルムであつて、その全層の厚さが少なくと
も10μm以上とするものを、金属基材上へ圧着さ
せることを特徴とする金属基材への樹脂被覆方
法。 2 弗化ビニリデン系樹脂フイルムからなる層
が、その厚さを2μm以上とすることを特徴とす
る特許請求の範囲第1項記載の金属基材への樹脂
被覆方法。
[Scope of Claims] 1. A coextruded laminated film comprising a layer made of vinylidene fluoride resin film having a thickness of 10 μm or less and an adhesive layer, the total thickness of which is at least 10 μm or more. A method for coating a metal base material with a resin, the method comprising: pressure-bonding the above onto the metal base material. 2. The method for coating a metal substrate with resin according to claim 1, wherein the layer made of vinylidene fluoride resin film has a thickness of 2 μm or more.
JP970882A 1982-01-25 1982-01-25 Method of coating metallic base material with resin Granted JPS58126154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP970882A JPS58126154A (en) 1982-01-25 1982-01-25 Method of coating metallic base material with resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP970882A JPS58126154A (en) 1982-01-25 1982-01-25 Method of coating metallic base material with resin

Publications (2)

Publication Number Publication Date
JPS58126154A JPS58126154A (en) 1983-07-27
JPH0141500B2 true JPH0141500B2 (en) 1989-09-06

Family

ID=11727740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP970882A Granted JPS58126154A (en) 1982-01-25 1982-01-25 Method of coating metallic base material with resin

Country Status (1)

Country Link
JP (1) JPS58126154A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312140A (en) * 1987-06-15 1988-12-20 Kobe Steel Ltd Contamination resisting titanium member
JPH01267034A (en) * 1988-04-19 1989-10-24 Denki Kagaku Kogyo Kk Fluoroplastic-based film-covered laminate and manufacture thereof
CN105034486B (en) * 2015-07-07 2017-06-23 苏州扬子江新型材料股份有限公司 High intensity wear-resistant film coated plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544898A (en) * 1978-09-25 1980-03-29 Ugine Kuhlmann Compound material containing polyfluovinylidene and its preparation
JPS5561457A (en) * 1978-11-01 1980-05-09 Nippon Steel Corp Synthetic resin film coated steel prate and its preparation
JPS57203545A (en) * 1981-06-09 1982-12-13 Taiyo Seiko Kk Surface treated metallic plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544898A (en) * 1978-09-25 1980-03-29 Ugine Kuhlmann Compound material containing polyfluovinylidene and its preparation
JPS5561457A (en) * 1978-11-01 1980-05-09 Nippon Steel Corp Synthetic resin film coated steel prate and its preparation
JPS57203545A (en) * 1981-06-09 1982-12-13 Taiyo Seiko Kk Surface treated metallic plate

Also Published As

Publication number Publication date
JPS58126154A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
EP0134958B1 (en) Formable metal-plastic-metal structural laminates
JP3969625B2 (en) Manufacturing method of resin film for decorative plate lamination
EP0115103B1 (en) Metal-resin-metal sandwich laminates suitable for use in working
JPH0341342B2 (en)
JP6412388B2 (en) Molding packaging material
KR102174324B1 (en) Laminated steel plate, preparation method thereof, and sheet used therefor
JPS5882717A (en) Manufacture of polyester resin film-coated metal plate
JP6640638B2 (en) Chemical treatment metal plate
JPH0141500B2 (en)
JPH05229054A (en) Composite die oscillation damping material with high corrosion inhibitive and adhesive properties as well as resistance against peeling-off of end surface
JP7307398B2 (en) laminated film
JPH11138690A (en) Precoating metallic plate for outdoor use application
JPH0679801A (en) Manufacture of resin coated metal sheet
JP2002292784A (en) Laminated film laminated aluminum panel and method for manufacturing the same
JPS6021546B2 (en) Highly weather resistant composite coated metal plate
JP3218927B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
WO1998056577A1 (en) Resin-coated aluminum alloy sheet for can lids
JPS5894422A (en) Manufacture of metal plate coated with resin film
JP2003181981A (en) Fluoroplastic film-coated metal plate and manufacturing method therefor
JP3218923B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3218925B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP2002038121A (en) Adhesive for lamination of polyolefin resin sheet to metal material and metal plate laminated with polyolefin resin sheet
JPH0664093A (en) Manufacture of laminated metal plate
JP4761638B2 (en) Polyester resin film laminated aluminum plate, cylindrical container, aluminum electrolytic capacitor outer container
JP3147716B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same