JPS62174383A - Thin film deposition device - Google Patents

Thin film deposition device

Info

Publication number
JPS62174383A
JPS62174383A JP61016360A JP1636086A JPS62174383A JP S62174383 A JPS62174383 A JP S62174383A JP 61016360 A JP61016360 A JP 61016360A JP 1636086 A JP1636086 A JP 1636086A JP S62174383 A JPS62174383 A JP S62174383A
Authority
JP
Japan
Prior art keywords
substrates
thin film
substrate
voltage
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61016360A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshitomi
吉富 敏彦
Hiroshi Horiuchi
堀内 博視
Shinichi Morita
真一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61016360A priority Critical patent/JPS62174383A/en
Publication of JPS62174383A publication Critical patent/JPS62174383A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Abstract

PURPOSE:To improve the efficiency of gaseous raw materials and to deposit thin films having no defects such as pinholes by pairing the adjacent substrates of substrates and impressing an AC voltage to the plural substrate pairs. CONSTITUTION:The inside of a vacuum reaction vessel 1 is evacuated ad the gaseous raw material contg. silicon is introduced into the vessel through a gaseous raw material introducing port 6. After the evacuation speed is adjusted, the AC voltage is impressed to the pair of the substrates 2, 3 and the pair of 8, 9 to generate a glow discharge. The exfoliated flake, etc. arising from the electrodes are thereby eliminated and the amorphous silicon films having no defects such as pinholes and recesses are formed. Since AC is impressed to the electrodes, the paired substrates 2, 3 and 8, 9 are made electrically equiv. to each other and the films having the uniform quality are formed. This device is effective particularly for the prepn. of the drum of an electrophotographic sensitive body.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は薄膜堆積装置に関し、さらに詳しくはOVD法
による非晶質シリコン膜を成膜するのに好適な薄膜堆積
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thin film deposition apparatus, and more particularly to a thin film deposition apparatus suitable for forming an amorphous silicon film by an OVD method.

〈従来の技術〉 非晶質シリコン帖は一般にプラズマCVD法により成膜
することにより良好な特性が得られる。プラズマCVD
法は原料ガス(5in4、GeH4等の81nH2n+
2、G8n”2n+2等)をグロー放電分解することに
より、基板上に非晶質シリコン膜を堆積させる方法であ
る。グロー放雷の発生方法は真空反応槽内或いは外部に
置かれた電極に高周波或いは直流電圧を印加して発生さ
せる容量結合型、反応槽外に置かれたコイルに高周波電
力を供給して発生させる誘導結合型、マイクロ波を使用
したマイクロ波プラズマCVD法等がある。
<Prior Art> Generally, good characteristics can be obtained by forming an amorphous silicon film by a plasma CVD method. plasma CVD
The method uses raw material gas (5in4, 81nH2n+ such as GeH4)
This is a method of depositing an amorphous silicon film on a substrate by glow discharge decomposition of G8n"2n+2, etc.). Glow lightning is generated by applying high frequency to an electrode placed inside or outside a vacuum reaction chamber. Alternatively, there is a capacitive coupling type in which generation is performed by applying a DC voltage, an inductive coupling type in which high frequency power is supplied to a coil placed outside the reaction tank, and a microwave plasma CVD method using microwaves.

〈発明が解決しようとする問題点〉 特に容量結合型のプラズマCVD装置に於いて電極が反
応槽内部にある場合に、基板に非晶質シリコン膜を堆積
させると、基板以外の宵極上に非晶質シリコン膜或いは
シリコン粉末が堆積し、ついには剥離或いは脱跨Fして
基板上に付着して凹み、ピンホール等の膜欠陥をもたら
すという難点がある。
<Problems to be Solved by the Invention> Particularly in a capacitively coupled plasma CVD device where the electrode is located inside the reaction tank, if an amorphous silicon film is deposited on the substrate, non-crystalline silicon will be deposited on the surface of the substrate other than the substrate. There is a problem in that the crystalline silicon film or silicon powder is deposited and eventually peels off or falls off and adheres to the substrate, causing film defects such as dents and pinholes.

〈問題点を解決するための手段〉 本発明者らは、このような難点の改良された薄膜の堆積
方法を開発する目的で種々検討を行ない、本発明に到達
した。即ち、本発明の袂旨は、電圧印加手段を備えた真
空反応槽内に複数個の基板を設置し、グロー放電により
ガス状物質を分解して基板上に薄膜を堆積させる装置に
於いて、該基板の隣り合う基板同士を対にしてこれ等の
複数個の基板対に交流電圧を印加することを特徴とする
薄膜堆積装置にある。
<Means for Solving the Problems> The present inventors have conducted various studies for the purpose of developing a thin film deposition method that overcomes these difficulties, and have arrived at the present invention. That is, the gist of the present invention is to provide an apparatus in which a plurality of substrates are installed in a vacuum reaction tank equipped with voltage application means, and a thin film is deposited on the substrates by decomposing a gaseous substance by glow discharge. The thin film deposition apparatus is characterized in that adjacent substrates are formed into pairs and an alternating current voltage is applied to the plurality of pairs of substrates.

〈発明の構成〉 以下、本発明の詳細な説明する。<Structure of the invention> The present invention will be explained in detail below.

第1図及び第2図は、本発明に係る薄膜の堆積装置を用
いて、電子写真感光体を作製する場合のプラズマCVD
装置の例を示す。(基板数メ本の例。)真空反応容器(
1)内に電子写真感光体用の円筒状基板(2)が支持治
具上に置かれる。
FIG. 1 and FIG. 2 show plasma CVD when producing an electrophotographic photoreceptor using the thin film deposition apparatus according to the present invention.
An example of a device is shown. (Example of several substrates.) Vacuum reaction vessel (
1) A cylindrical substrate (2) for an electrophotographic photoreceptor is placed on a support jig.

この基板は、ヒーター(4)により、室温〜60θ℃程
度の範囲で加熱が可能であり、通常アルミニウム、銅、
ニッケル、タンタル、ステンレス鋼等の金属から選ばれ
る。この真空反応容器内を排気口(5)を通じて真空ポ
ンプで排気した後、原料ガス導入口(6)よシシリコン
を含む原料ガス(5in4等)を導入し、圧力10 〜
/(7TOrr程度になるように排気速度を調節した後
、基板(2)と基板(3)の対及び基板(8)と基板(
9)の対に、電源(7)により、交流電圧金印加しグロ
ー族t”k生じさせる。この時の交流電圧は、サイン波
でも矩形波でも良く、繰ジ返し周波数はj Hz〜SO
MHz 、好適には! OH2〜9t OMHzが選ば
れる。
This substrate can be heated with a heater (4) in the range of room temperature to about 60θ℃, and is usually made of aluminum, copper, etc.
Selected from metals such as nickel, tantalum, and stainless steel. After evacuating the inside of this vacuum reaction vessel with a vacuum pump through the exhaust port (5), a raw material gas containing silicon (5 in 4, etc.) is introduced through the raw material gas inlet (6), and the pressure is 10 ~
/(After adjusting the pumping speed to about 7 TOrr, the pair of substrate (2) and substrate (3) and the pair of substrate (8) and substrate (
9), an AC voltage is applied by the power supply (7) to generate a glow family t''k.The AC voltage at this time may be a sine wave or a rectangular wave, and the repetition frequency is j Hz to SO
MHz, preferably! OH2-9t OMHz is selected.

又、電源は単独でも、又6対に対応した複数個でも良い
Further, the power source may be a single power source or a plurality of power sources corresponding to six pairs.

このグロー放電分解に際しては、たとえばアに応じホウ
素、窒素、硫黄、酸素等を通常数ppm〜数チ程度ドー
ピングすることができる。
In this glow discharge decomposition, for example, boron, nitrogen, sulfur, oxygen, etc. can be doped in an amount of usually several ppm to several nitrides.

キャリアガスとしては、H2、H2S、 Ar%N!等
の通常使用されるガスを使用すればよい。光導電層の膜
厚は、通常7〜50μm1好ましくは/Q〜30μm程
度から選ばれる。上記薄膜の形成に際しては、5inH
2H+z、BinX!n+4等のガスの濃度として50
4以上(体積比)、電圧200v〜3に■、電流密fl
 0.0 / 〜J mA /cr11 真空槽内の圧
力0.7〜j ’rorr程度の範囲が採用される。
As carrier gas, H2, H2S, Ar%N! Any commonly used gas may be used. The thickness of the photoconductive layer is usually selected from about 7 to 50 μm, preferably about /Q to 30 μm. When forming the above thin film, 5inH
2H+z, BinX! 50 as the concentration of gas such as n+4
4 or more (volume ratio), voltage 200v to 3 ■, current density fl
0.0/~J mA/cr11 The pressure in the vacuum chamber is in the range of approximately 0.7~j'rorr.

基板と光導電層との間には酸化アルミニウム、アモルフ
ァス酸化ケイ素等の絶縁層を設けることができ、又、光
導電層上にはアモルファス炭化ケイ素、アモルファス酸
化ケイ素等の表面保護層を常法により設けることができ
る。
An insulating layer such as aluminum oxide or amorphous silicon oxide may be provided between the substrate and the photoconductive layer, and a surface protective layer such as amorphous silicon carbide or amorphous silicon oxide may be provided on the photoconductive layer by a conventional method. can be provided.

本発明方法によれば、従来から用いられている容量結合
方法によるプラズマCVD装置に於いて電極が真空槽の
内部にある平行平板型(基板と平行に対向電極がある。
According to the method of the present invention, in a conventionally used plasma CVD apparatus using a capacitive coupling method, the electrodes are of a parallel plate type inside a vacuum chamber (there is a counter electrode parallel to the substrate).

)、同軸円筒型(基板の周囲に同心の対向円筒電極があ
る。)等に比較して大きな利点がある。即ち真空槽内に
it+があると前述した様に非晶質シリコン膜が基板の
みならず対向電極にも付着する1点がある。例えばドラ
ム状基板に非晶質シリコン膜を形成し電子写真用感光体
を作製する場合、長時間成膜をすると、電極に付着した
非晶質シリフン膜或いは非晶質シリコン粉末が次第に剥
離或いは脱離して基板上に付着して、狐のピンホール凹
み叫の膜欠陥を引き起こす。しかるに対向電極をなくし
、対になった基板に交流電圧を印加してグロー放電を発
生させる本発明方法によれば、電極に由来する剥離フレ
ーク等がなくなるので、ピンホール、凹み等の膜欠陥が
ない良質な非晶質シリコン膜が成膜できる。又交流を印
加するので、対になった基板は電気的に全く等価となる
ので均質な膜が成膜できる。一方基板は回転可能にする
ことにより、膜の均一性を更に向上させることができる
), coaxial cylindrical type (there are concentric opposing cylindrical electrodes around the substrate), etc., this has a great advantage over other types. That is, when it+ is present in the vacuum chamber, there is one point where the amorphous silicon film adheres not only to the substrate but also to the counter electrode, as described above. For example, when forming an amorphous silicon film on a drum-shaped substrate to produce an electrophotographic photoreceptor, if the film is formed for a long time, the amorphous silicon film or amorphous silicon powder attached to the electrode will gradually peel off or come off. When detached and adhered to the substrate, fox pinholes cause film defects. However, according to the method of the present invention, which eliminates the opposing electrode and generates glow discharge by applying an alternating current voltage to the paired substrates, peeling flakes and the like originating from the electrodes are eliminated, so film defects such as pinholes and dents are eliminated. It is possible to form a high-quality amorphous silicon film. Furthermore, since alternating current is applied, the paired substrates are electrically completely equivalent, so a homogeneous film can be formed. On the other hand, by making the substrate rotatable, the uniformity of the film can be further improved.

又、工業生産的に見ると、従来の方法によれば基板以外
の対向型極上に堆積した非晶質シリコン膜は利用されな
いが、本発明によれば全て基板上に非晶質シリコン膜が
成膜されるので、成膜に寄与する原料ガス効率は大幅に
上昇する利点もある。
Furthermore, from an industrial production point of view, according to the conventional method, the amorphous silicon film deposited on the top of the opposing type other than the substrate is not utilized, but according to the present invention, the amorphous silicon film is deposited entirely on the substrate. Since it is formed into a film, there is also the advantage that the raw material gas efficiency that contributes to film formation is significantly increased.

〈発明の効果〉 本発明に係る薄膜堆積装置によれば、原料ガス効率を高
めて、表面にピンホールルミ膜欠陥等の欠陥の々い膜が
得られ、特に電子写真感光体のドラム作製に有用である
<Effects of the Invention> According to the thin film deposition apparatus according to the present invention, the raw material gas efficiency can be increased and a film with fewer defects such as pinhole lumi film defects can be obtained on the surface. Useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明に係る薄膜堆積数量の実施
態様を表わす概略図である。 (1):真空反応容器、 (2)、(3)二円筒状基板
、(4):ヒーター、 (6):原料ガス導入口、 (
7);電源、 (8)、(9):円筒状基板出 願 人
  三菱化成工業株式会社 代 理 人  弁理士 長谷用   −ほか7名 在
1 and 2 are schematic diagrams representing embodiments of thin film deposition quantities according to the present invention. (1): Vacuum reaction vessel, (2), (3) Two cylindrical substrates, (4): Heater, (6): Raw material gas inlet, (
7); Power supply, (8), (9): Cylindrical substrate Applicant Mitsubishi Chemical Industries, Ltd. Agent Patent attorney Hase - 7 others present

Claims (1)

【特許請求の範囲】[Claims] (1)電圧印加手段を備えた真空反応槽内に複数個の基
板を設置し、グロー放電によりガス状物質を分解して基
板上に薄膜を堆積させる装置に於いて、該基板の隣り合
う基板同士を対にして、これ等の複数個の基板対に交流
電圧を印加することを特徴とする薄膜堆積装置。
(1) In an apparatus in which a plurality of substrates are installed in a vacuum reaction tank equipped with voltage application means, and a thin film is deposited on the substrates by decomposing a gaseous substance by glow discharge, adjacent substrates A thin film deposition apparatus characterized by applying an alternating current voltage to a plurality of pairs of substrates.
JP61016360A 1986-01-28 1986-01-28 Thin film deposition device Pending JPS62174383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61016360A JPS62174383A (en) 1986-01-28 1986-01-28 Thin film deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61016360A JPS62174383A (en) 1986-01-28 1986-01-28 Thin film deposition device

Publications (1)

Publication Number Publication Date
JPS62174383A true JPS62174383A (en) 1987-07-31

Family

ID=11914170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61016360A Pending JPS62174383A (en) 1986-01-28 1986-01-28 Thin film deposition device

Country Status (1)

Country Link
JP (1) JPS62174383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738288A1 (en) * 2011-07-29 2014-06-04 Kabushiki Kaisha Kobe Seiko Sho Plasma cvd device
WO2014103318A1 (en) * 2012-12-27 2014-07-03 株式会社神戸製鋼所 Method for forming protective film using plasma cvd method
JP2014125651A (en) * 2012-12-26 2014-07-07 Kobe Steel Ltd Inline-type plasma CVD apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738288A1 (en) * 2011-07-29 2014-06-04 Kabushiki Kaisha Kobe Seiko Sho Plasma cvd device
EP2738288A4 (en) * 2011-07-29 2015-04-22 Kobe Steel Ltd Plasma cvd device
JP2014125651A (en) * 2012-12-26 2014-07-07 Kobe Steel Ltd Inline-type plasma CVD apparatus
CN104903491A (en) * 2012-12-26 2015-09-09 株式会社神户制钢所 In-line plasma CVD device
US20150329968A1 (en) * 2012-12-26 2015-11-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) In-line plasma cvd apparatus
EP2940183A4 (en) * 2012-12-26 2016-09-07 Kobe Steel Ltd In-line plasma cvd device
WO2014103318A1 (en) * 2012-12-27 2014-07-03 株式会社神戸製鋼所 Method for forming protective film using plasma cvd method
JP2014125670A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Method of forming protective film by plasma cvd method

Similar Documents

Publication Publication Date Title
JPS59193265A (en) Plasma cvd apparatus
JPS5833829A (en) Thin film forming apparatus
JPS62174383A (en) Thin film deposition device
JP3372647B2 (en) Plasma processing equipment
JPS63243278A (en) Production of thin film
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
JPS5935092A (en) Vapor-phase synthesis of diamond
JPH0797690A (en) Plasma cvd device
JP2772643B2 (en) Coating method
JPS63142627A (en) Manufacture of semiconductor thin film
JPS624872A (en) Film formation device
JP2561129B2 (en) Thin film forming equipment
JPS62180077A (en) Coating method for inside surface of pipe
JPS6383271A (en) Production of diamond-like carbon film
JPH01123071A (en) Method and apparatus for producing thin film
JPS6152362A (en) Depositing method of film
JPS60162777A (en) Plasma cvd apparatus
JPH09283449A (en) Plasma chemical vapor deposition system
JPS60215766A (en) Decomposing device by glow discharge
JPH02129372A (en) Method for cleaning device for forming deposited film
JPH0280556A (en) Manufacture of film of composite material
JPS59227709A (en) Apparatus for forming amorphous silicon film
JPS63274125A (en) High frequency application electrode structure
JPH0133935B2 (en)
JPS59173262A (en) Thin film depositing apparatus